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THF JOURNAL OV SYMIIOI \C LOGIC 

Volume 72, Number 4. Dec. 2007 

RELATIONAL STRUCTURES CONSTRUCTIBLE BY QUANTIFIER 
FREE DEFINABLE OPERATIONS 

SAHARON SHELAH AND MOR DORON 

Abstract. We consider the notion of bounded m-ary patch-width defined in [9], and its very close 

relative m-constructibility defined below. We show that the notions of m-constructibility all coincide for 

m > 3, while 1-constructibility is a weaker notion. The same holds for bounded m-ary patch-width. The 

case m = 2 is left open. 

§1. Introduction. 
1.1. Background. Our interest in this subject started from investigating spectra 

of monadic sentences, so let us begin with a short description of spectra. Let 0 be a 
sentence in (a fragment of) second order logic (SOL). The spectrum of cj> is the set 
{n € N: 4> has a model of size n}. In 1952 Scholz defined the notion of spectrum 
and asked for a characterization of all spectra of first order (FO) sentences. In [1] 
Asser asked if the complement of a FO spectrum is itself a FO spectrum. 

DEFINITION 1.1. A set A C N is eventually periodic if for some n,p € N, for 
all m > n,m e A if and only ifm + p G A. 

In [7] Durand, Fagin and Loescher showed that the spectrum of a FO sen
tence in a vocabulary with finitely many unary relation symbols and one function 
symbol is eventually periodic. In [10] Gurevich and Shelah generalized this for spec
trum of monadic second order (MSO) sentence in the same vocabulary. Inspired 
by [10] Fisher and Makowsky in [9] showed that the spectrum of a CMSO sentence 
(a monadic sentence with counting quantifiers) is eventually periodic provided that 
all its models have bounded patch-width. A many sorted version for the context of 
graphs is the generalization of the Parikh's theorem proved by Courcelle in [6]. The 
notion of patch-width of structures (usually graphs) is a complexity measure on 
structures, generalizing clique-width. The proofs of [9] remains valid if we consider 
m-ary patch-width, i.e., we allow m-ary relations as auxiliary relations. Classes of 
bounded patch-width are of importance to the study of graphs. Two important 
example shown to be of bounded patch-width are graph languages generated by 
context free VR grammars and context free HR grammars. In [11] Shelah general
ized the proof of [10] and showed eventual periodicity for a MSO sentence provided 
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1284 SAHARON SHELAH AND MOR DORON 

that all its models are constructible by recursion using operations that preserve 
monadic theory (see definitions below). 

1.2. Summary of results. The above results on eventual periodicity led us to ask: 
What are the relations between the different notions for which we have eventual pe
riodicity of MSO spectra? In other words do we have three different results, or are 
they all equivalent? In [4] Courcelle proved (using somewhat different notations) 
that a class of structures is constructible if and only if it is monadically interpretable 
in trees, thus implying that two of the results coincide. We give a proof of Cour-
celle's result more coherent with our definitions, which we use later on. We prove 
that the notions of bounded ra-ary patch-width is very close to w-constructibility 
(constructibility where we allow m-ary relations as auxiliary relations) (see Lem
mas 2.9 and 2.10). Next we show that for m > 3 a class of models is contained 
in a m-constructible class if and only if it is contained in a 3-constructible class 
(see Theorem 3.7). The same holds for classes of bounded w-ary patch-width. 
Finally we show that in the above theorem we cannot replace 3-constructible by 
1-constructible. That is, there exists a 3-constructible class which is not contained 
in any 1-constructible class. We give a specific example (see 4.1). The case m = 2 is 
left open. We thank the referee for his or hers helpful comments. 

§2. Preliminary definitions and previous results. 

NOTATION 2.1. (1) Let U denote the disjoint union operation. 
(2) Let x be a finite relational vocabulary. 
(3) For R £ T let n(R) be the number of places of R. We say that R is n{R)-ary 

orn(R) place. We allow n{R) ~ 0 i.e., the interpretation of R is in {T. F}. We 
call x nice if R E x =>• n{R) > 0. 

(4) A x-structure M has the form (\M\, RM : R E r) where M is a finite set called 
the domain (or universe) of M, and RM C nl-R'\M\for R E x. [We denote 
by "A the Cartesien product of the set A with itself n times). 

(5) For k E N, let Xk be x U {P\,..., Pk } with P\,..., P* unary predicates. 
(6) A k-colored x-structure is a x^-structure in which the interpretation of the Pi's 

is a partition of the set of elements of the model {but some P, 's may he empty). 
(7) A k-const x-structure is a x U {C\,..., Cu\structure where each Ct is an 

individual constant symbol. We denote such a structure by (M, a\,..., «&) 
where M is a x-structure and a\,..., a& E M. We allow a, = a/ for i ^ / . 
The notation const stands constants. Our constants are referred to as sources 
in the hypergraph context, see [4]. 

DEFINITION 2.2. (1) A monadic second order {MSO) formula in vocabulary x 
is a second order formula in which every second order quantifier quantifies a 
unary relation symbol. The notion of quantifier depth extends, naturally to 
MSO formulas. 

(2) Let M be a x-structure, and q a natural number. The monadic q-theory of M, 
Th^so{M), is the set of all sentences of quantifier depth < q that hold in M. 

(3) Let M be a x-structure, and n,q natural numbers. Let a = (a\ a„) e"\M\. 
The q-type of a in M, tp (a, M), is the set of all x formulas <j>. of quantifier 
depth < q in free variables x\,..., xn, such that: M \= 4>[a\ a„]. If q = 0 
we sometimes write tp Ad, M). 
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(4) The notion of a q-type extends to MSO logic. We write tp^so(a, M) for the 
set of MSO formulas tj>, of quantifier depth < q in free variables x\,..., xn, 
such that: M (= 4>[a\,..., a„]. 

(5) The set of all formally possible q-types in a vocabulary x and in variables 
(x\ xn), will be denoted by TPq((x\,... ,xn),x), and similarly 
TP^S0((x\ x„),x). We may write TPfso(n,x) instead of 

TP^S0((x\,..., x„),x). (By formally possible' we mean a set of formulas S 
such that <j> e S •& -*<f) $ S, <j> A i// e. S •& <j> €. S and y/ £ S, and we identify 
4> with -i-i0. We do not demand that S is realizable.) 

DEFINITION 2.3 (Patch-width, see [9]). (1) Let x be a nice vocabulary, M ax-
structure, k a natural number, and ^} a finite set of k-colored x-structures. 
We say that M has patch-width at most k (with respect to *p) and denote 
pwdy(M) < k, if M is the x-reduct of a k-colored x-structure which is in the 
closure ofity under the operations: 

(i) disjoint union - U , 
(ii) recoloring - Pi^j (change all the elements with color Pj to color Pf) and 

(iii) modifications -SR,B (redefine the relation R € x by the quantifier free 
formula B in vocabulary T& ). 

A class 8. of x-structures is a PW(k)-class, if for some finite set of k-colored 
x-structures <P the elements of M. are all the x-reducts of structures of patch-
width at most k with respect to ^3. We say ^ is of bounded patch-width (BP W) 
if it is a PW(k)-class for some k E N. 

(2) In the definition above we may instead of k-colored x-structures, talk about 
x+-structures where x+ D x, \x+ \ x\ = k and every relation in x+ \x is at 
most m-ary. We then talk about m-ary patch-width, where the rest of the 
definition remains unchanged. Note that the notions of patch-width and unary 
patch-width are close but not identical as in the former we demand that the sets 
of colors are disjoint. 

In [9] it is proved that: 

THEOREM 2.4. Let <f> be a MSO(x) sentence, and &a class of x-structures of bounded 
m-ary patch-width. Then the set {||M||: M e &,M j= <f)} is eventually periodic. 

We now define our set of operations. For k, k\,ki £ N, GT,k,k,,k2 will be a set 
of binary operations that take as arguments one k\-const r-structure and one ki-
const r-structure, and produce a &-const r-structure. Each operation consists of 
quantifier free definitions of the relations in x, and a (combinatorial) definition of 
the k constants of the resulting structure. 

DEFINITION 2.5 (Addition operations). (1) Syntactic definition: 
For k, k\,k2 € N, each s £ &Tik,k,,^ consists of: 

(i) Sets At =A]<Z {\,..., k,\ for I e {1,2}. 
(ii) Fori G {1,2}, a 1-1 function gi = gf from A] to { 1 , . . . ,k} such that: 

/m(#i)u Im(g2) = {\,...,k}. 
(iii) For l e {1.2} a set Bi C { 1 , . . . , ki } 2 , and a set B C { 1 , . . . , k\} x 

{ 1 , . . . , * 2 } . 
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1286 SAHARON SHELAH AND MOR DORON 

(iv) For each R G x with n{R) = n and each w/ C {1, n} for I G {1,2}, 
a function /VW,,TO2 = fRw tt„ with range {T,F}, and domain a set of 
triples of the form {p, q\,q-i) where: 

• p G TPQ{(XU ..., x„),cr) where a is a vocabulary with k\ + ki indi
vidual constants and two unary predicates, 

• Fori G {1,2}, qi G TP0((XJ\ i £m, ) , i ) . 
(2) Semantic definition: 

Let k,k\,ki G N and s G @r,k.ki.k2- Let {Mi,a[,... ,ak) be ki-const x-
structure for I G {1-2}. The addition {M\,a\,... ,a\ ) ©s {Mi,a\,... ,ak^j is 
defined whenever: 

. (|M,| n \M2\) C ({a,1,..., al
ki} n {a? , . . . , < } ) anrf 

• Fori £ {1,2}: a/ = aj o (ij) G 5/ anrfa/ = a] <̂> (/,y) G 5 , 
to be the k-const x-structure (M, b\,..., bk) defined by: 

(i) \M\ = (|M,| \ {a\,..., al}) U (|M2| \ {a\....,a2
ki}) U {a\: I € {1,2}, 

i G 4/}). 
(ii) For each I G {1,2} am// G .4/, a- = &g,(,-). 

(iii) For all R G T W///; «(/?) = « awJ x = ( x j , . . . , x„) G "|M|, /e? u>/ = 
{?': X/ G |M/|}_/br / G {1,2}. Le?/? be the quantifier free typeofx in the 
model with {a\,.,. ,a\ } U {a2,... , a | , } as constants, and \M\\, \Mi\ as 
unary predicates. For I G {1,2} let qi = tpJ(xt: i G u>i),M{). Now the 
value of RM(x) is defined to be fs

R (p, q\,qi)-
Note that we may have two different syntactic definitions {i.e., s ^ s' G 
&T,k,ki.k2)

 mat %iye r'se t0 tne same semantic operation {i.e., ®s and ®%* are 
equal). 

(3) For technical reasons we would like to allow empty structures, i.e., let x' := 
{R G x: n{R) = 0}, and X C x'. Now Nullx is the x-structure with 
| Nullx | = 0 and RNuUx = True <̂> R G X. Then ifs G ST,*.fcl,o, ana" M 
i's a tjt, - structure then M ®s Nullx is a well defined x^ -structure. Furthermore 
for any x-structure M, M U Nullq, is defined and equal to M. 

The important properties of the addition operations are the following: 

THEOREM2.6. Letk,k\,ki G N. Then: 

(1) <5z,kMM is finite. 
(2) The addition theorem: 

Let M,M' be k\-const x-structures such that Thq
MSO{M) = Thq

MS0{M'), 
and N, N' be ki-const x-structures such that Thq

MS0{N) = Thq
MS0{N'), and 

s G &T,k,kuk2- Assume that the additions M ®s N and M' @s N' are defined. 
Then 

Thq
MSO{M ©s N) = Thq

MSO{M' ®SN'). 

PROOF. (1) Immediate from the definition as the number of quantifier free for
mulas in a finite relational vocabulary and a given set of variables is finite (up to 
logical equivalence). 

(2) An easy proof can be given using Ehrenfeucht-Fraisse games, it is a straight 
forward generalization of the proof given in [8] for the disjoint union operation. An 
other proof by Courcelle is Theorem 3.4 of [4]. H 
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It follows from 2.6(2) that given q e N and s € &t,k,k, ,k2 > there exists a computable 
function g*: TPfso(0, xk,) x TPf5O(0, T*2) -+ TPfso(0, xk), such that whenever 
M ©s N is defined we have: 

^ 1 , S 0 ( M ©s TV) - ^ ( r ^ S 0 ( M ) , Th"MSO{N)), 

DEFINITION 2.7 (Constructibility). Lef m* and k* be natural numbers. A class M. 
ofx-structuresis (m* ,k*)-constructible, if there exists: A finite relational vocabulary 
r+ D x, a finite set of structures ^3, and a finite set of addition operations & such that: 

(i) Every relation in x+ \ x is at most m*-ary. 
(ii) Every structure in Ĵ3 is a k-const x+-structure for some k < k*. 

(iii) Every operation in & is in 6T> jcjCl kl for some k,k\,ki < k*. 
(iv) The elements of 8. are all the x-reducts of structures in the closure ofty under the 

operations in &. 
We say that & is m*-constructible if it is (m*,k*)-constructiblefor some k*, and that 
it is constructible if it is m*-constructible for some m*. 

In [11] it is proved that: 

THEOREM 2.8. Let (j> be a MSO(x) sentence, and 8. a constructible class of x-
structures. Then the set {\\M\\: M G &, M f= 4>] is eventually periodic. 

This is a generalization of 2.4 as we have: 

LEMMA 2.9. Let x be a nice vocabulary, and & be a m-ary PW{k)-class of x-
structures. Then R is a (m, ^-constructible class. 

PROOF. First note that the disjoint union operation of i+-structures is in 6T+,o,o,o-
As for the recoloring and the modification operations, those are unary operations, 
so we look at the operation s e ©T-.O.OO that acts as recoloring or modification on 
its left operand. So M ©s Null^ is the desired recoloring or modification of M. H 

In the addition operations we allow omitting marked elements (i.e., we allow 
|M ®s JV| C |M| U |iv"|, but we demand that the elements of the difference are 
constants of M or N). Moreover the universe of the the two operands is not 
necessarily disjoint, that is we allow that the intersection is a set of values of 
constants. This is not allowed in the operations of patch-width. It turns out though 
that these are the only essential differences between the two types of operations as 
suggested by the following: 

LEMMA 2.10. Let & be a (m,0)-constructible class such that the vocabulary x+ 

associated with 8. is nice. Then R is of bounded m-ary patch-width. 

PROOF. R is (m, 0)-constructible so we have a vocabulary x+ and sets & and ^3. 
Now the set of atomic structures for the patch-width definition will be the same ^3. 
The vocabulary ofthe patch-width definition will be: T + U {R': R e T + } U {Pi . i^}-
P\, Pi are new unary relation symbols. We now have to show for each operation in & 
how to simulate it by operations of patch-width. Let s e 6 and let M\,M% be x+-
structures. Denote by M[, M'2 the trivial extensions to the new vocabulary i.e., for 
/ G {1,2} define RMi = 0 for R g" x+. We will now describe a series of patch-width 
operations on M[, Mj resulting in a structure M* such that M*|T+ = M\ ©s M%, 
this will complete the proof. First color all the elements of M/ by Pi for / e {1,2}. 
Next for each .R e T+ redefine/?' to be the same as R, do this for both M[,M'2. Now 
take the disjoint union of the to resulting structures. Finally we have to redefine the 
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1288 SAHARON SHELAH AND MOR DORON 

relations of T + of the disjoint union to be as in M\ ©s M%. Let R G x+ be w-ary and 
let w\, W2 C { 1 , . . . , n} satisfy w\ U W2 = {1, • •., n}. Let p be the quantifier free 
type in the vocabulary with two unary relations S\, 52 "saying" that for i < n and 
I £ {1,2}, xt £ Si if and only if i 6w/ . Now define: 

(xu...xn):= f\ P\(xt) f\ P2{xi)A\ \f l\q[f\q'2 

i'6«)i i6ui2 q,eTPa({x,: i en j , ) , r ' ) 

Where A ;̂' is the disjunction of all the formulas in #/ where we replace every relation 
R G T + by i?'. Now redefine the relation R using the modification SRg for the 
formula: 

B(x[,...,x„) := f\ <PR,WI,W2(XU-
U!],W2^:{l,-..,n} 

Do this for all i? G r + and we are done. H 

From the two lemmas above we see that if we do not use constant symbols, then the 
definitions of bounded patch-width and of constructibility coincide. The reason we 
prefer to use constructibility is that the binary operations suggests interpretations 
by binary trees (which we prefer), and the use of constants allows more general 
operations (which is useful in proofs). We could however used m-ary patch-width 
instead of m -constructibility without much difference. 

NOTATION 2.11 (Trees). (1) The vocabulary of trees, t,rees, is {<, cr,}. 
(2) The vocabulary of k-colored-trees, Tk~trees, is {<,cr,} U {P\,... ,P^} i.e., 

\Ttrees)k-

(3) A tree 1 is a xtrees-structure in which: 
• <% is a partial order on |T|. 
• cft is a singleton. We write cft instead of {cf,}. 
• For every t e |T| the set {s G |T|: s ^ t} is linearly ordered by <'1. 
• For all x G |T|, cft <% x. 

(4) A k-colored-tree X is a Tk~lrees-structure, such that T | Ttrees >s a tree. 
(5) A 2-colored-tree 1 is directed binary (DB) if (cft, Pf ,Pj) is a partition of 

|T|, and each non-maximal element ofT has exactly two immediate successors 
one in Pf and the other in Pf. For k > 2, a k-colored-tree T is DB if 
(\<Z\;<?,c?t>P?,pS)is. 

DEFINITION 2.12 (Monadic interpretation in trees). (I) We callc a monadic k-
interpretation scheme for a vocabulary x ifc consists of: 

• Natural numbers k\ = k\ andk\ = k\ both less then or equal to k. 
• For every I < k\ a monadic x^-mes-formula <pc

=l{x). 

• For every n-place relation R G xandeveryn G ^x-,n\0,... ,k\} a monadic 
xkl~trees-formula: ip = tp^xi,..., x„). 

(2) Let cbea monadic k-interpretation scheme for a vocabulary x, andla k\-tree. 
The interpretation of% by c denoted by T ^ is the x-structure M defined by: 

• \M\ = {(t,I) G |T| x {0, . . . , * , } : X (= V=J(t)}. 
• For every R G x n-place relation: 

RM = {((?,-,/,): i < n) G "\M\: T |= <fiR,{,r. i<n)(tu- • •, *»)}• 

Sh:865



RELATIONAL STRUCTURES 1289 

(3) For c a monadic k-interpretation scheme for x we denote by M.™° the class of all 
x-structures M such that for some k\-tree, X, we have: X^ = M. $^odb is the 
same as &"'" only we demand that X is directed binary. 

(4) We say that c has the leaf property ifk\ = 0 and for every k\-tree X, and every 
t € |X|: X \= <PQ _[t] implies that t is a maximal element in X. 

Our scheme c is a special case of a monadic second order definable transduction 
defined by Courcelle in [4, 5]. For comparison note that c is the (T, xtrees) {k\ + 1)-
copying with k\ parameters defined by: (cj)trees, ^ 0 , . . . , 0 1 ^ , ( f t ) w 6 t , t l ) , (in the 
notations of [4, 5]) where 4>trees is the conjunctions of the tree axioms. 

Without loss of generality we may assume that k\ — 0. This is because of the 
following: 

LEMMA 2.13. For every c a monadic k-interpretation scheme for a vocabulary x, 
there exists c' a monadic (k + ^-interpretation scheme for x, such that: 

• kf = 0. 
• k( = k$ + 2. 
• For every k\-tree X, there exists a k\ -tree X', such that: XM = X [ c ' . 

Hence &™° C J ^ » . 

PROOF. Let s\ and si be the two "new" unary predicates, and let X be a k\-
tree. Define X' as follows: |X'| = |X| U (|X| x {0, ...,&f}), sf = |X|, sf = 
|X| x {0, . . . , k'}, and if t\ is the immediate successor of ti in X then define, t\ < T 

(tu0) <r (tul) <%' ••• < ' r (t\,k\) <*' h. Now define: 

H>Uix) •= * 2 « A f\(Wy)[si(y) A (y,,(x,y)] - « ; ( > ' ) ) J l . 
l<k< 

Where y/t(x, y) is a formula stating that there are exactly / elements between x 
and y and all of them are in s2, and (<pc

= ^y))51 is the formula (p=t(y) relativized to 
s\ i.e., we replace every quantifier of the form 3x or Vx by 3xs\ (x) A or Wxs\ (x) —> 
respectively, and every quantifier of the form 3X or \/X by 3Xi^/xX(x) —> s\ (x)) A 
or \/X(VxX(x) —> s\(x)) —> respectively. It should be clear that X \= <p'Ll[t] if and 
only if X' (= y£ 0[(/, /)]. The relations are dealt with in a similar way. H 

LEMMA 2.14. Let &be a {m* ,k*)-constructible class of x-structures. Then there 
exists a natural number k** and a monadic k**-interpretation scheme c with the leaf 
property, such that & C &™odb. 

We will not go into detail here. A similar result was proved by Courcelle in [4] 
Theorem 4.6. We do however give a sketch of the proof containing some definitions 
that will be useful later. 

SKETCH. Suppose *P and 6 are the finite sets of structures and operations gen
erating &, and T+ is the vocabulary associated with M. (see 2.7). Now with every 
M e .8 we can associate a DB tree which represents the construction of M from 
the structures in *p. The leaves of this tree are structures in ^3, every non-maximal 
node of the tree is a x+-structure which is the result of its two immediate successors 
by an operation in 6 , and its root (restricted to x) is M. Formally we define: 

DEFINITION 2.15. We say that the pair (X, Wl) with1 = {T; <%, cft, Sf ,S%) aDB 
tree andVJl = (M,: t £ T), is a full representation of M e A when: 
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1290 SAHARON SHELAH AND MOR DORON 

(1) Every Mt is a k,-const T+-structure for some kt < k*. 
(2) For every t e T <%-maximal, M, G ty. 
(3) Ther-reduct of Mci is M. 
(4) For every t, a non-maximal element ofT, let s\, S2 be its immediate successors 

with si € Sf. Then Mt = MSI ©s MS2for some s £ &t< ^ j ^ , * , H 6 . 

We can encode the information necessary for the construction of M using labels 
(colors) for the nodes of the tree. Formally: 

DEFINITION 2.16. (1) Let T* be the vocabulary z^-irees w'm the following unary 
predicates: 
(a) 5*1 and Si-
(b) Pkfork<k*. 
(c) & for see. 
(d) RjfforNzy. 
ki is the total number of unary predicates in t*, i.e., ki = \V$\ + | 6 | + k* +2. 

(2) A T*-structure lis a representation of M G 8., if we can find DJl = (M,: t e |T|) 
such that: 
(a) ((|T|, <%, cft, Sf,S^),M) is a full representation of M. 
(b) (P%: k < k*) is a partition of\1\. If t € Pf, then k, = k i.e., M, is a 

k-const T+-structure. We writek%(t) = k if and only ift € Pf. 
(c) (Qf: s G 6} U {R.%: N e <#) is a partition of\1\. 
(d) For every t G |T| <%-maximal, t G Rjf . 
(e) For every t G |T| non-maximal, let s\, sj be its immediate successors with 

si G Sf. Suppose Mt = M„ ©s Ms, for somes G &T< ,k, k„,k, n ®- Then 
t£Ql 

Note that: 

OBSERVATION 2.17. (1) Every M G fi. has a full representation, and hence a 
representation. 

(2) If Mi G .ft are represented by 1/ for I G {\,2},and1i = T2. 77je« Mi = Mi. 

Now define: A;i = max{\N\: N G ^J}, /C2 is the number of unary predicates 
in T* (see 2.16(1)), and let k** ~ max{k\,k2). We can define a k**-interpretation 
scheme c with k\ = k\ and k\ = ki such that for all M G A, and T a representation 
of M we have M = T[c]. Note that indeed 1 is a DB /^-colored-tree. We will not 
specify all the formulas of c as they tend to be very long and complicated, but do 
note that all the information about M can be decoded from the representation of M 
using monadic formulas. Finally by an argument very close to that of 2.13 we may 
assume that c has the leaf property. (See [3] Proposition 62 for more details). H 

§3. Equivalence of w-ary patch-width for m > 3. We come now to the main 
part of our result. Basically what we do here is proving the reverse inclusion 
of 2.14. It turns out that in our constructible class we only need 3-ary relations as 
auxiliary relations, thus we can replace constructible by 3-constructible. It follows 
that a class 8. is contained in a constructible class, if and only if it is contained 
in a 3-constructible class, and similarly for m-ary patch-width. We start with an 
investigation of directed binary trees that will be useful later. See [2] for a similar 
discussion including a proof of Lemma 3.2 formulated in the terms of tree automata. 
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NOTATION 3.1. Let % be a DB k-colored-tree. Let n G N and x\,..,,xn G T be 
fixed maximal elements of 1. 

(1) For x,y e T denote by x Ay the maximal element z with z < x, y. 
(2) For x,y G T with x < y denote [x,y] := {z G T.x < z < y} and 

(x,y) := {z e T: x < z < y}. 
(3) Define Y := {x\,... ,x„} U {xt A Xj : i,j < n} U {c^}, and fix (v i , . . . ,ym) 

an enumeration of Y. Note that m < 2n. 
(4) For any non-maximalx G T let FR{X) G T (resp. Fi(x) G T) be the unique 

immediate successor of x which is in Pf {resp. Pj). 
(5) Let R.R(y,y') and Ri(y,y') be binary relations meaning Fn{y) < y' and 

Ft(y) < y' respectively. 
(6) The branching structure of x\,...,X2 is the structure (Y,<%,RR,RL, 

x\,..., xn). The elements of Y will be referred to as branching points. Note 
that there are {up to isomorphism) finitely many possible branching structures 
for a fixed n. 

(7) For y,y' e Y with y < y' define, Tyy = {xeT: x>yAx^- y'}. 
(8) LetTR = {c*}U{t G T: RR{cft,t)},andTL = {c?t}u{t G T: RL{cft,t)}. 

LEMMA 3.2. Let q G N. The type tp^so{{y\,..., ym), 1) is computable from the 
branching structure of X\,..., x„, the types tp^so{cft,T|r£). tp^so{cJt, 1\TR)> and 
the types tp^so{{y, y'), T|rv ,) for y, y' adjacent branching points. 

PROOF. Let t = tk-trees W {RR, RL}- We proceed by induction on n. 
For« = 0: We can define an operation s G 6r,i,i.i such that for every DB tree T we 

have: (X, cjt) = (%\TL, cjt) ©s {%TR, cft). The result now follows from the addition 
Theorem (2.6(2)). 

For n = 1: Similarly to the previous case we can define an operation SL G 
Sr.2,2.i such that for every DB tree 1 and every x G TL we have: {{X,cft,x) = 
(T | rT ,cjt,x) ©SL {%\rR,cft). Symmetrically we can define SR G ST,2,I,2 such that 

for every DB tree 1 and every x G TR we have: {%,cft,x) = (1\TL,C%) ©SR 

(T|r x , cjt, x). Now from the branching structure of x we can compute if x G TR 

or x G 7/, holds and use SR or SL accordingly. 
For n +1: Assume we have proven the lemma for x\,..., xn G T and let x„+i G T. 

We make use of the following fact: Let y be a branching point of x\,..., xn, and 
let: 

T>y — {x G T: x > y}, 

Tlv = {xeT:RR{y,x)}u{y}, 

T^, = {xeT:RL{y,x)}u{y}. 

Let 7>v. 7>v and 7>y be the restrictions of {yi,..., ym) to T>y, T>y and T>y 

respectively. Then we can compute the types: 

< 5 ° ( 7 > > ^ | 7 - 2 > ) , tpfs°{ny,1\TR_ )and < 5 ° ( 7 | , , X | r L ) . 

Why? from the induction hypothesis we can compute Tp^so{y\,... ,ym,%), so all 
we have to do is to restrict the quantifiers of our formulas appropriately. 
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We return to the proof of the case n + 1. Let us first deal with the following case: 

, , x\,...,x„€TL and x„+\ G TR or 
x\,..., xn G TR and xn+\ G TL. 

(which can be computed from the branching structure of x\,..., xn+\). Similarly to 
the case n = 1 we can define s'L G &x,m+\.m.i such that for every DB k-colored-tree T 
and every x\,...,x„ G TL and xn+\ G 7/j we have: 

(%yu...,ym,xn+i) = (1\rL,yi,..-,ym) ©s; (1 |r . r ,cJ,,xn+{). 

Symmetrically we can define s'R G 6t.m+i,2.m such that for every DB A:-colored-
tree X and every x\,... ,x„ G 7/? and xn+\ G TL we have: (X, j i , j m , x„+i) = 

, c^>*n+i) ©s: (X|rfi,.yi, • • • ,ym)- In both cases we can compute the MSO 
theory of both operands, one is given and the other from the induction hypothesis. 
So by the addition theorem we are done. 

Lastly assume that (*) does not hold. Hence we have a unique y ^ xn+\ 
which is a branching point of x\,..., xn+\ and not of x\,..., x„, and let y', y" 
be the adjacent branching points of x\,...,x„ such that y' < y < y". There 
are four possibilities for the branching structure of y. y',y" which can be dealt 
with symmetrically. Without loss of generality let us assume that the possibil
ity RR{y',y) and RL{y,y") holds. Now from the types tp^so(y^y„,T\T>r„) 
(given by the fact above) and tp^so((y,y"),T\rr,,„) (given by the assumptions 
of the lemma) we can compute tp^s0((j>yll, y),%\TL ). From this and the type 
tp^so((y, X„+I),1\TVKII ) (again given by the assumptions of the lemma) we can 
compute tp^s0{{y>yll,y,xn+i)T\T^t.). From thisand the type tp^so({y'. y),1\Tl,,) 
we can compute tpfso((j^yl,y,x„+i),T|r« ). From this and the type 

tp^so(jyy,,1\TL ) (again given by the fact above) we can compute 

tp?so«y$yl,y,xtt+i),'Z\T2t,). I f / = 4 then T>? = T and J«.yl = ( j , . . . . y m ) 
so we are done. Else assume (without loss of generality) that RR{c'ft.y') holds, 
and let y' be the restriction of (y\,..., ym) to Tc% yl. We can compute the types 

tpfS°(7>ciMTL ) a n d tp™so(y,y', cft,%\rc%,y') which together with the above 
— >crl n 

gives us the desired tp^so(yi,..., ym, y, xn+\, 1). -\ 

LEMMA 3.3. Let k* be a natural number, andca monadic k*-interpretation scheme 
with the leaf property for a vocabulary x. Then there exists a natural number k**, and 
a (3,k**)-constructible class ofx structures, £, such that: §™°-dh c &. 

PROOF. First we introduce some notation. Let q* be the maximal quantifier rank 
of the formulas {<PQ,O'- Q G T} . Define the vocabulary x+ to consist of: 

• x. 
• *k2-trees where kt = k\. 
• Two 3-place relations RR and Ri. 
• For each t G TPf,so(2, xkl-trees), a 3-place relation R\. 

• For each t G TP™so(2, xkl-trees), a 2-place relation R2
t. 

• For each t G TPf,so{\, xkl-trees) two 0-place relations R* and R^. 
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Given a ki-colored-tree we use the new relations of T + to encode the logical types 
we are interested in. We call the structure "correct" if indeed the new relations are 
interpreted as we want. 

DEFINITION 3.4. A x+-structure, %, is called a correct k2-colored-tree if: 

• For each Q ez, Qx = 0. 
• T | Tk->-trees's o DB k2-colored-tree. 
• For each x\, x2, XT, maximal elements o/ |T|, let y = x\ A X2 andy' = y A X3. 

Then we have, 

Rl(xi,x2,xy}^FR(y) <y', 

and similarly for Rj. 
• For each t e TP^.so{2 , Tk2~trees)< und x\, X2, X3 maximal elements of |T|, let 

y = x\ A %2 and y1 — y A X3 then we have, 

( / ^ ( x , , x 2 , x 3 ) « . tp?,so((y,y'),%\T>J = t. 

• For each t e TP^S0(2 
,Xkj—trees\ und x\,x2 maximal elements of |X|, let 

y = x\ A x2 then we have, 
{R2

t)Hx\,x2) o ^ ° ( ( 4 , y ) , 1 \ T c % J = t. 

• For <?ac/i t e TPf,so{\, Tkz_trees), (Rt
R)% = T ifandonly if 

and similarly for R^. 

Note that every DB £2 -colored-tree can be uniquely extended to a correct DB 
k2 -colored-tree. Now define <P to consist of all singleton correct models (models 
with one element) of the vocabulary T + , plus all the null restructures (see Defini
tion 2.5(5)). 

We now turn to the definition of the operations in 6 . Let u be a possible 
"color" of a singleton £2-colored-tree. Formally u C {P3, . . . ,Pk2}- We define 
the operation ©„ on DB /^-colored-trees as the addition of two trees with root of 
color u. Formally Let %\, %2 be DB &2-colored-trees define X = %\ ffiM %2 by: 

. |T| = [T,|U |T2|U {c}. 
• c is the root of 1 i.e., cft = {c} and for all t e \1\, c <% t. 
• c has color w i.e., for all i > 3, c € P f if and only if/ € H. 
• 4 1 G / f andc*2 e / f . 
• The rest of the relations on Tj and T2 remain unchanged. 

Note that indeed Tj ©» T2 is a DB &2-colored-tree whenever %\ and X2 are, and 
hence ©„ extends uniquely to an operation on correct fo-trees. 

Now for / e {1,2} let 21/ be a r+-structure such that there exists a correct k2-
colored-tree with |2l/| C |X/|, T/||a,| = 21/, and every element of 21/is maximal in 1/. 
Define an operation s„ on such structures by: 2ti ©SB 2I2 = (Xi ©« l2)||2i, |u|a2| • ̂  ^s 

easy to verify that ®Su is well defined and indeed belongs to ST+,0.0.0- We now have: 

LEMMA 3.5. For every correct k2-colored-tree, X and every set A C |X| of maximal 
elements, the restriction 1\A is in the closure ofty under the operations {su: u C 
{3,...,k2}}. 
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PROOF. First it is obvious that we can construct T from <p using the operations 
{©« : a C { 3 , , . „ kj}}. Now use the same construction only replace in each step 
the operation Ti ffiu T2 by the operation Ti \A ©s„ T2U • ^ 

The last thing we need now is to "decode" the relations in the correct structure 
into the relations in our vocabulary x. For this we use: 

LEMMA 3.6. There exist s* G 6T+,0,0,0 such that For every correct ki-tree, 1 and 
every set A C |T| of maximal elements, the structure 21' = %\A ©S* Null® satisfies for 
each Q G x with n{Q) = n, 

(*) 221' = {Ui, . . . ,x„) e 'k: T |= VG.o(xi,.. •,*„)}. 
PROOF. Let Q G r be an n-place relation symbol, and tuj, wi C {1 , . . . , «} . We 

should define f%W[ Wl in such a way that (*) will hold. As we have kf = k\ = 
ks* = 0 and we are only interested in Null® as the right operand, the only relevant 
case is w\ = {1 , . . . ,«} and wj = 0. In order to have (*) We need to define a 
function: 

/ o : if '• P is a quantifier free type of n variables in vocabulary r + } —> {T,F} 

such that for all ( x i , . . . , x„) e "A, fgitp^Xi,..., x„),%')) = T if and only if T (= 
VQ,O(XI, . . . , x„). Recall that by Lemma 3.2 the value of 1 |= v?g,o(xi,..., x„), is 
determined by the branching structure of x\,... ,x„, the types tp^so{(y,y'),1\T3 ) 

for y,y' adjacent branching points of x\,... ,x„, and the types tp^so(c^t,1\TL) 
and tp^so{c^t,T\TR) (see 3.2 and Notation 3.1). But as T is correct these all are 
determined by p so we are done. H 

We can now conclude the proof of Lemma 3.3. Define 

6 = {su: M c {3,...,A:2}}U{s*}, 

and let £ be the constructible class of T-structures defined by *p and 6 . Let M 
be a x-structure in &™°'db. So we have M = Tj for some DB A:2-colored-tree 1\. 
Let T2 be the correct extension of T\. Let A = {x G |Xi|: Ti |= <p=,o(x)}, and 
21 = T2U ©s* Nullq,. From Lemma 3.5 we have that I2U is in the closure of ^} under 
the operations in 6 and hence so is 21. From Lemma 3.6 and the definition of if1, 
we have that 2l|T = if1 = M, so M e & as desired. H 

From Lemmas 3.3 and 2.14 we conclude our main: 

THEOREM 3.7. Let Si be a class of t-structures. Then & is contained in a m-
constructible class for some m G N if and only if & is contained in a 3-constructible 
class. 

The same holds for patch-width: 

COROLLARY 3.8. Let x be a nice vocabulary and .ft a class of x-structures. Then ft 
is contained in a class of bounded m-ary patch-width for some m G N if and only j /ft 
is contained in a class of bounded 'i-ary patch-width. 

PROOF. Assume ft C ft' for some ft' of bounded m-ary patch-width. By 
Lemma 2.9 ft' is (m, 0)-constructible. By Theorem 3.7 ft' is contained in some 
3-constructible ft". Notice that that the set 6 defined in the proof of 3.3 satisfies 
that 6 C ST+,0,0,0 so ft" is in fact (3,0)-constructible. Notice further that in the 
proof of 3.3 we do not need null structures in the construction, hence we may replace 
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z+ by a nice vocabulary. So by Lemma 2.10 A" is a bounded 3-ary patch-width 
class as desired. H 

A close result to this corollary is Proposition 63 in [3] by Blumensath and Cour-
celle. They proved that if a class of r-structures is monadically interpretable in 
trees then it can be constructed from singleton restructures, where max{n(R) : 
R e z+ \ T} < max{n{R): R e z}. The operations used for the construction 
though are more limited then ours so our Corollary 3.8 is not a generalization of 
their result. 

§4. The cases m = 1 and m = 2. Can we improve Theorem 3.7 by replac
ing 3-constructible by 2-constructible? Consider a unary operation on A:-const 
r-structures, Si for i < k defined by: Sj(M) is the restriction of M to the set 
{x e M: x 0 Pf1}- If we would allow these operations in the definition of con-
structibility then the answer would be yes. Why? In the proof of Lemma 3.3 we 
could construct the full tree rather then restrict to the leaves (i.e., we could use the 
operations ®u instead of ©s„). In this case we could encode the necessary logical 
types by binary relations. If we do not change the definition of constructibility then 
the question remains open. 

Can we improve Theorem 3.7 by replacing 3-constructible by 1-constructible? In 
this case we know the answer to be negative. This follows from the following: 

THEOREM 4.1. There exists a nice vocabulary x, and a class of z-structures £, 
contained in some 3-constructible class, that is not contained in any l-constructible 
class. 

The idea behind the proof is the following: In the complete binary tree of depth n, 
we will define a 4-ary relation R(xi, xi, x^, xt) on leaves of the tree, which is some 
relation q on the distances (in the binary tree) between x\_ and X2 and between x3 

and X4 where the distances are taken mod p. The relation R will be defined in terms 
of of general p and q, and particular p and q are chosen in the end of the proof. A 
counting argument will prove that R cannot be constructed using unary auxiliary 
relations only. We give the proof in detail: 

PROOF. Let z = {R} with n(R) = 4. Set p e N be large enough (to be defined 
later). Let 1 be a tree. A set X C T is convex in X if z, z' € X and z < z" < z' 
implies z" € X. For x,y e T Define: 

• x A1 y = x A y = the <% maximal z € T such that x >% z and y >% z. 
• d%(x,y) =d(x,y) = min{\S\: S C T,x,xAy € S, S is convex in (T, < x ) } . 
• d*(x,y) =dp{x,y) = d{x,y) (mod/?). 

Let q: {0 , . . . , p - 1 }2 —» {0,1} be some function that will be defined later. We 
now define c a O-interpretation scheme for z: 

• kf = *f = 0. 
• <PLO(X)

 = ^yy > x i-e-> t r ie elements of the interpreted structure are the 
leaves of the tree. 

• <^,o(*l 'X2,*3,*4) = "q(dp(xi,X2),dp(x3,X4)) = 0 " . 

We have to show that tpRfi is indeed a monadic formula in ztrees. Note that there 
exists a monadic formula <Pdp=o(x, y) such that for any tree 1, 1 |= tpdp=o(x,y) if 
and only if d^{x, y) = 0. ipar=o(x, y) will "say" that there exists a set X such that: 
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• x,x A y E X, 
• the set X is convex in X, 
• if z' is the immediate successor in X of z G X, then there exist exactly p — 1 

elements (of T) between them. 
similarly we have formulas ipa =i(x, j ) for 0 < / < /?. Now define: 

<PRfl(xuX2,X3,X4)= \J <Pdr=ni{x\.X2) A <^ , = „ , (x3 , X4). 

«|.«2€{0 p-\} 
n\=n2 (mod p) 

This gives us c as desired. Define A = &™odb. By 3.3 & is contained in a 3-
constructible class (in fact in a 3-ary BPW class). For each n G N let M„ — 
("-2, <) i.e., Mn is the complete binary tree of depth n, and N„ = M„ (see 
Definition 2.12(2)) so Nn is just the relation R. Let 8! be a constructible class 
of i-structures, so T + = Tk for some t £ f f . Towards contradiction assume that 
Nn G &' for all « G N. Let *$ be the set of "atomic" structures associates with 8!. 
Without loss of generality we may assume that ty consists of singleton structures 
only. Otherwise increase k by max{\M\: M G ̂ 3} and construct each M G <P from 
singletons of distinct colors. Now let K G &', and let (X, 9Jt) be a full representation 
of K (see 2.15). Assume K = N„ for some n. So we have a 1-1 function / , from "2 
to the leaves of 1, as every t] G "2 corresponds to a unique element a G K under 
the isomorphisms, and for every element of a G K there exist a unique t a leaf 
of X such that a = \Mt\. Define f{r\) = /. Note that / is not onto, as some 
of the leaves of X may be omitted during the creation process. For each t G T 
let A, - {f~x(s)\ s <% As G range(f)}. So A, C "2. For each rj e_ A, let 
a = an = \Mf(,j)\. an is an element of M,, so ^4, is divided into 2* parts according 

to the color of a, in Mr, (more formally according to the type tpt'r{an, M,)). We 

therefore have B, c A, such that \B,\ > ̂ , and all the elements of f~x(Bt) have 
the same color. Now define: 

Q = {d^(r,,r,A v): i/, v G 5,} C {0 , . . . , p - 1}. 

We have %J- < |5r) < 2lc'L For the right-hand inequality use induction on \C,\. 
Hence we conclude 

\A,\ < \Bt\-2
k <2^+k. 

Now note that if C, ^ {0, . . . ,p - 1}, then \C,\ < n - [^J and hence \A,\ < 

2|C;|+i < 2"~LpJ+A:. We now consider two cases: 

CASE 1. There exist s G T with two immediate successors t\,ti G T such that: 
\AtX\Ah\>2n~^+k. 

According to what we saw above we have C\ = Cj = {0 , . . . , p — 1}. So for 
/ G {1,2} we have ((pt,j,vtht '• i G {0, ...,p — 1}} such that: 

(a) {/»/,,/, vt,j<: i G {0 , . . . , p — 1}} all have the same color in Mtl. 
(/?) d*"(ptlj,vtl.i) = i for all / < p. 

Denote by m the number of quantifier free types of couples in the vocabulary x 
(actually in our case m = 2*2 ' ) . Note that m does not depend on p. So for 
each / G {1,2}, {0 , . . . ,p — 1} is divided into m parts according to the type 
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tptfiiptfj, v^jj.M,!). We claim that we can (a priori) choose p (large enough) 
and q in such a way that we can find i\,h,}\,ji such that for each / G {1,2}: 
(Pti.ii• Vti.it) a n d (pit.it- Vtt.ii) n a v e the same quantifier free type in vocabulary T in 
M,,, and on the other hand: q{i\. j\) ^ q(h>h)- This is of course a contradiction 
as the quantifier free type of {pt,.i,. v,,,,-,) and (ptlj,, vt,,j,) in vocabulary t> in Af,, 
determines the value of R(pt,j,, v<,,,-,, /?r / ; / , vt,.j,) in M, and hence in Mc%. But this 
value is true if and only if q(ii,ji) = 0 in contradiction with q(i\,j\) ^ q{h,ji)-
Why can we choose p and q as desired? Let / : {0 , . . . . p — l } 2 -> {0,1}. By a 
partition of {0 , p — 1 }2 into m parts we will mean a pair (e\, e2) of equivalence 
relations on {0, . . . p — 1} both with at most m equivalence classes. We say that 
/ respects the partition {e\,e-i) if for each i\, h,j\,ji G {0, . . . ,p — 1} we have 
A/e{i.2}('/< J') G e' => A/e{i,2} / ( ' ' ) = / ( / / ) • Now for a given /? the number of 
partitions of {0 ,p~ l } 2 into m parts is < mp • mp. and the number of func
tions from {0, p — l } 2 to {0,1} that respect a given partition is < 2mm. Hence 
the number of functions that we cannot choose (i.e., functions that respects some 
partition of {0, . . . , / > - 1} into m parts) is < 22^]osM+m2. But the total number of 
functions is 2P\ So if we choose (a priori) p such that p2 > 2p log(w) + m2 we can 
choose a function q as desired. 

Assume now that the assumption of CASE 1 does not hold. Assume also that 
we have chosen n large enough such that 2L?-'_ > 4. In this case we can find 
t0,t\,... Jd e T such that: 

• d > 5. 
• t0 = cjt. 
• The element td is maximal in T. 
• For 0 < i < d, ti+\ is an immediate successor in X, of t\. 
• ForO < i < d, denote by s,-+i the immediate successor of tt different from ti+\, 

then K , , | <2v'^-k. 

Note that for any 0 < i < d: Uo<;</^'/ an^ ^-u ^s a partition oi Ac%, and 
that |/fc;i| = 2". So we can find 0 <~i* < d such that | Uo<i<,* As,l \'K* I > 
2^~k. We proceed similarly to CASE 1. As there we can find ((ptl,j,v,.,,i eAt.-. 
i G {0, ...,p — 1}) that satisfy (a) and (/?) above, and the same for ((/?,, v,: ;' G 
{0, . . . ,p- 1}) where /?,, v, G Uo<y</« ^*; • Again let m denote the number of quan
tifier free types of couples in the vocabulary x. This time we want to choose p 
and q in such a way that we can find: i,j\,ji such that: (/?(,»,;,,vti,_j{) and 
(pt., j 2 , vt.,j2) have the same quantifier free type in vocabulary x in Mtj,, and on the 
other hand: q{i, j\) ^ q(i. ji). Again this is a contradiction as the quantifier free 
type of {pt,.,jn Vt,.j,) for/ e {1-2} determines the value of R(pt.,jl,vt.,jrpi, v,) 
in Mc.r. Again this value is true if and only if q(i,ji) = 0 in contradiction with 
qihjx) i= q(i> h)• Why c a n w e choose p and q as desired? For a given p the number 
of functions from {0,. . . , /?— I}2 to {0,1} such that we cannot choose as above 
is the number of partitions mp, times the number of functions that respect that 
partition 2mp, or 2plo^m)+m p. So if we choose p such that p2 > plog(m) + m • p 
we can choose a function q as desired. Note that the function we used for the second 
case will also work for the first case so we can use one definition of q. In both cases 
we get a contradiction and the proof is complete. H 
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§5. Conclusion. We considered a set of quantifier free definable operations on 
relational structures, and the classes of structures constructible by these operations 
when we allow auxiliary relations. Our main result, Theorem 3.7 shows that we can 
restrict to 3-ary auxiliary relations without losing constructible classes. A parallel 
result for patch-width is Corollary 3.8. An example given in 4.1 shows that if we 
restrict to unary auxiliary relations we do lose constructible classes. The question 
regarding binary relations is left open. 
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