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ABSTRACT

We force 2λ to be large, and for many pairs in the interval (λ, 2λ) a

strong version of the polarized partition relations holds. We apply this to

problems in general topology. For example, consistently, every 2λ is the

successor of a singular and for every Hausdorff regular space X, hd(X) ≤
s(X)+3, hL(X) ≤ s(X)+3 and better when s(X) is regular, via a half-

graph partition relations. For the case s(X) = ℵ0 we get hd(X), hL(X) ≤
ℵ2.
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[Assume GCH for simplicity and given p a parameters with λ < μ

regular and Θ ⊆ Reg ∩ [λ, μ+), and we define Qp which adds μ

Cohen subsets to λ but have many kinds of supports, one for each

θ ∈ Θ, influencing the order.]

§3 Applying the criterion p. 535

[The main result is that (cardinal arithmetic is changed just by

making 2λ = μ and) using §1 we prove the strong version of polar-

ized partition relations hold in many instances.]

References p. 542

0. Introduction

Out motivation is a problem in general topology and for this we get a consistency

result in the partition calculus.

In Juhasz–Shelah [JuSh:899] we proved: if (∀μ < λ)(μℵ0 < λ) then there is a

c.c.c. forcing notion that adds a regular topological space, hereditarily Lindelof

of density λ.

A natural question asked there ([JuSh:899]) is:

Problem 0.1: Assume ℵ1 < λ ≤ 2ℵ0 . Does there exist (i.e., provably in ZFC) a

hereditary Lindelof regular space of density λ?

On cardinal invariants in general topology, see [Juh80].

We prove the consistency of a negative answer, in fact of stronger results by

proving the consistency of strong variants of polarized partition relations (the

half-graphs, see below). They are strong enough to resolve the question about

hereditary density (and hereditary Lindelof). Moreover, if λ = λ<λ < μ = μ<μ

(and G.C.H. holds in [λ, μ)), then there is a forcing extension making 2λ ≥ μ

neither adding new (< λ)-sequences nor collapsing cardinals such that, for many

pairs λ∗ < μ∗ in the interval, we have the appropriate partition relations.

An earlier result is in the paper [Sh:276, Theorem 1.1, p. 357] and it states

the following: if λ > κ > μ are regular cardinals, λ > κ++, then there is a

cardinal and cofinality preserving forcing that makes 2μ = λ and

κ++ → (κ++, (κ;κ)κ)
2 in addition to the main result there 2λ → [λ]23; see

more in [Sh:289], [Sh:288], [Sh:481], [Sh:546]. The applied notion of forcing

(Q,≤) is the following: p ∈ Q if p is a function from a subset Dom(p) ∈ [λ]≤κ
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into Add(μ, 1)−{∅}, where Add(μ, 1) denotes the forcing adding a Cohen sub-

set of μ; p ≤ q if Dom(p) ⊇ Dom(q), p(α) ≤ q(α) for α ∈ Dom(q) and

|{α ∈ Dom(q) : p(α) �= q(α)}| < μ.

For simultaneously many n-place polarized partition relation, Shelah–Stanley

[ShSt:608] deals with it but there are problems there, so we do not rely on it.

Our main result in general topology is Theorem 3.10, and by it: consistently,

G.C.H. fails badly (2μ is a successor of a limit cardinal > μ except when μ is

strong limit singular and then 2μ = μ+) and hd(X),hL(X) are ≤ s(X)+3 for

every Hausdorff regularX and |X | ≤ 2(hd(X))+ , w(X) ≤ 2(hL(X))+ for any Haus-

dorff X . (Usually s(X)+2 suffices, so in particular “X is hereditary Lindelof

⇒ X has density ≤ ℵ2”.)

Concerning partition relations we give a generalizaiton of the earlier result

explained above, namely, the consistency of 2ℵ0 = λ and μ++ → (μ, (μ;μ)μ)
2

simultaneously holding for each regular cardinal μ such that μ++ ≤ λ. This

gives a model in which though GCH fails badly, we have strong enough parti-

tion relations implying that the hereditary density and the hereditary Lindelof

numbers of a T3 space X are bounded by s(X)+3, where s(X) stands for spread.

The notion of forcing (P,≤) used for the argument is defined as follows. For

each regular cardinal μ < λ define the following equivalence relation Eμ on λ:

xEμy iff x+ μ = y+ μ. Let [x]μ denote the equivalence class of x; p ∈ P if p is

a function from some set Dom(p) ⊆ λ into {0, 1} such that |[x]μ∩ Dom(p)| < μ

holds for every successor μ < λ, x < λ; p ≤ q if p ⊇ q and for every successor

μ < λ we have

|{[x]μ : ∅ �= Dom(q) ∩ [x]μ �= Dom(p) ∩ [x]μ}| < μ.

This notion of forcing (P,≤), in a most remarkable way, imitates concurrently

several different posets (Q,≤) as defined above. Not surprisingly, in order to

show that (P,≤) is cardinal and cofinality preserving, the author uses ideas

similar to those in [Sh:276].

In order to prove the main claim, that is, the partition relation, we use the

following trick: we find a condition p̄ such that the dense sets we are interested

in are all dense below p̄. It suffices, therefore, to show that forcing with the

part below p̄ gives the required result, and this reduces the problem to showing

that a certain notion of forcing (R,≤) forces the sought-for-partition relation,

where |R| is small (compared to μ). As (R,<) is close to the poset (Q,<) of

[Sh:276], an elementary submodel argument similar to the one there applies.
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The exposition of the method is axiomatic; the author formulates the most

general situation where this method works, and then specifies it to the situation

sketched above. This is not necessarily the optimal description for those who

are only interested in the application given. There is, however, reason for the

peculiar way of presenting this proof: we would like to include this method into

the tool kit set, and simply quote it at possible later applications.

Recall (first appeared in Erdős-Hajnal [EH78], but probably raised by Galvin

in letters in the mid-seventies):

Definition 0.2: (1) λ → (μ;μ)2κ means that: for every c : [λ]2 → κ there are

ε and αi, βi for i < μ such that:

(a) ε < κ,

(b) if i < j < μ then αi < βi < αj < λ,

(c) if i ≤ j < μ then c{αi, βj} = ε.

(2) We can replace μ by an ordinal and if κ = 2 we may omit it.

Definition 0.3: (1) Let λ → (μ, (μ;μ)κ)
2 mean that: for every c : [λ]2 →

1 + κ there are ε and αi, βi for i < μ such that:

(a) ε < κ,

(b) αi < βi < αj < λ for i < j < μ,

(c)0 if ε = 0 then i < j ⇒ c{αi, αj} = ε, so we can forget the βi’s,

(c)1 if ε ≥ 1 then i ≤ j ⇒ c{αi, βj} = ε.

(2) In part (1), if κ = 1 we may omit it. Above, replacing μ by “< μ”

means “for every ξ < μ we have ...”.

We thank Shimoni Garti for many corrections and Istvan Juhász for questions

and historical remarks; we may continue this research in [Sh:F884].

1. Strong polarized partition relations

We deal with sufficient conditions on a forcing notion for preserving such parti-

tion relations. For this, we use an expansion of a forcing notion. Instead of the

usual pair (Q,≤Q), namely, the underlying set and the partial order, we use a

quadruple of the form Q = (Q,≤Q,≤pr
Q , apQ).

The “pr” stands for pure, and the “ap” stands for apure. Both are included

(as partial orders) in Q.
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Discussion 1.1: We define (below) the notion of “(λ, θ, ξ)-forcing” to give a

sufficient condition for appropriate cases of the partition relations defined above

to hold. We start with the quadruple Q = (Q,≤Q,≤pr
Q , apQ) such that q ∈ Q ⇒

apQ(q) ⊆ Q and ≤Q,≤pr
Q are quasi orders on Q. The idea is that if r ∈ apQ(q),

then r and q are compatible in Q, close to “r is an a-pure extension of q”.

Definition 1.2: (1) We say that Q is a (χ+, θ, ξ)-forcing notion when χ+, θ

are regular uncountable cardinals, ξ an ordinal and � below holds; in

writing (χ+, θ, < ζ) we mean that � holds for every ξ < ζ; also, we can

replace χ+ by λ:

� (a) Q = (Q,≤Q,≤pr
Q , apQ),

(b) Q = (Q,≤Q) is a forcing notion (i.e., a quasi order, so �Q

means �Q and p ∈ Q means p ∈ Q and VQ means VQ and

G
˜

is the Q-name of the generic set),

(c) ≤pr
Q is a quasi order on Q and p ≤pr

Q q implies p ≤Q q,

(d) (α) apQ is a function with domain Q,

(β) for q ∈ Q we have1 q ∈ apQ(q) ⊆ Q,

(γ) r ∈ apQ(q) ⇒ r, q are compatible in Q; moreover,

(γ)+ if r ∈ apQ(q) ∧ q ≤pr
Q q+ then q+, r are compatible in

Q; moreover, there is r+ ∈ apQ(q+) such that q+ �Q

“r+ ∈ G
˜

Q ⇒ r ∈ G
˜

Q”2,

(e) (Q,≤pr
Q ) is (< θ)-complete, i.e., any ≤pr

Q -increasing sequence

of length < θ has a ≤pr
Q -upper bound in Q,

(f) (Q,≤pr
Q ) satisfies the χ+-c.c.,

(g) if q̄ = 〈qε : ε < θ〉 is ≤pr
Q -increasing then3 for stationary

many limit ordinals ζ < θ, the sequence q̄ � ζ has an exact

≤pr
Q -upper bound; see part (2) below,

1 It is natural to demand q ∈ apQ(q), but not really necessary (if we do not demand it,

this just complicates a little �(c)(d)).
2 No harm in asking that r ≤pr

Q s and s ∈ apQ(q+) and q+ ≤ s for some s. Why does this

not follow from our assumption? By the present demand r+, q+ have a common ≤-upper

bound which is s, so s � “q+, r+ ∈ G
˜

Q hence r ∈ G
˜

Q”, so without loss of generality

r ≤ s, but this does not say that q ≤pr
Q s.

3 Note that: we can restrict ourselves to the case q0 ∈ I, where I is a dense subset of Q.

Also, we can restrict ourselves to the set of q̄ sequences which is the set of plays of a

suitable game with one player using a fixed strategy, etc.
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(h) if 〈qε : ε < θ〉 is ≤pr
Q -increasing and pε ∈ apQ(qε) for ε < θ

and ξ < θ then for some ζ < θ we have qζ �Q “if pζ ∈ G
˜

Q

then ξ ≤ otp{ε < ζ : pε ∈ G
˜

Q}”,
(i) if q ∈ Q then apQ(q) has cardinality < θ,

(j) if q∗ ≤ r then there is a (q∗, r)-witness (q, p) which means

•1 q∗ ≤pr
Q q,

•2 p ∈ apQ(q∗),
•3 q �Q “p ∈ G

˜
⇒ r ∈ G

˜
”.

(2) Assume Q satisfies clauses (a)–(e) of part (1).

Let q̄ = 〈qε : ε < δ〉 be a ≤pr
Q -increasing sequence of conditions, δ < θ

a limit ordinal. We say that q is an exact ≤pr
Q -upper bound of q̄ when

ε < δ = g(q̄) ⇒ qε ≤pr
Q q and:

(∗)q̄,q if p ∈ apQ(q) then for some ε < δ and p′ ∈ apQ(qε), we have

�Q “if q, p′ ∈ G
˜

Q then p ∈ G
˜

Q”.

Remark 1.3: Can we weaken clause (i) of � of 1.2(1) to “cardinality ≤ θ”?

(1) Here it mostly does not matter, but in one point of the proof of 1.4 it

does: in proving �4 there, choosing ζ(∗) such that it will be possible to choose

ε(∗).
(2) There is a price for demanding a strict inequality. The price is (in 2.12(1))

that, recalling κ = κy, instead of using apy(q) = {r : q ≤ap
κ r ∈ Qy} we use

apy(q) = {r : q ≤ap
κ r ∈ Qy and suppκ(q, r) ⊆ suppθ(p

y
αy(q)

, q)}.

Claim 1.4: If Q is a (χ+, θ, ξ∗)-forcing notion, κ < θ = cf(θ) and χ = χ<θ

then χ+ → (ξ∗, (ξ∗; ξ∗)κ)2 holds in VQ.

Remark 1.5: We can replace χ+ by “regular χ′ such that α < χ′ ⇒ |α|<θ < χ′”.

Proof. Let λ∗ be large enough (so, in particular, Q, θ, . . . ∈ H(λ+∗ )). Choose a

well ordering <∗
λ+
∗
of the set of H(λ+∗ ). Recalling Definition 1.2, clearly θ > ℵ0,

hence without loss of generality κ is infinite, so 1 + κ = κ.

Toward a contradiction, assume p∗ �Q “c
˜
is a function from [χ+]2 to κ” is a

counterexample.

We now choose M̄ such that

�1 (a) M̄ = 〈Mα : α ≤ θ〉,
(b) Mα ≺ (H(λ+

∗ ),∈),
(c) Mα has cardinality χ,
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(d) [Mα]
<θ ⊆ Mα if α is non-limit,

(e) Mα is ≺-increasing continuous,

(f) Q, p∗, c
˜
belong to Mα and χ+ 1 ⊆ Mα,

(g) M̄ � (α+ 1) ∈ Mα+1.

Note that χ = χ<θ implies θ < χ+, so let

�2 δ∗ := min(χ+\Mθ).

We shall now prove:

�3 if q ∈ Q and ϕ(x, y) ∈ Lθ,θ is a formula with parameters from Mθ

such that (H(λ+
∗ ),∈, <∗

λ+
∗
) |= ϕ[δ∗, q] then for some pair (δ, q′) ∈ Mθ

we have:

(a) δ < δ∗,
(b) (H(λ+∗ ),∈, <∗

λ+
∗
) |= ϕ[δ, q′],

(c) q′, q has a common ≤pr
Q -upper bound.

Why does �3 hold? Let r̄ = 〈rζ : ζ < ζ∗〉 list Q, each member appearing

χ+ times, now without loss of generality r̄ ∈ M0, so necessarily we can find

ζ1 ∈ ζ∗\Mθ such that q = rζ1 and let ζ2 = min(Mθ ∩ (ζ∗ + 1)\ζ1); of course,
ζ∗ ∈ Mθ and ζ2 ∈ Mθ and ζ1 < ζ2 ∧ cf(ζ2) > χ.

Let

Y = {q′ ∈ Q : (H(λ+
∗ ),∈, <∗

λ+
∗
) |= (∃x)(ϕ(x, q′) ∧ x ∈ χ+)}.

Recall that χ<θ = χ, so

�3.1 Y ∈ Mθ, Y ⊆ Q and q ∈ Y .

Now we ask:

�3.2 Is there Z ⊆ Y of cardinality ≤ χ ∈ χ+ such that, for every q′′ ∈ Y for

at least one q′ ∈ Z, the pair (q′, q′′) is ≤pr
Q -compatible?

Assume toward a contradiction that the answer is negative. Then, in particular,

|Y | > χ and we can choose rε ∈ Y by induction on ε < χ+ such that ζ < ε ⇒ the

pair (rζ , rε) is ≤pr
Q -incompatible. Why? In stage ε try to use Z := {rζ : ζ < ε},

so Z ⊆ Y has cardinality ≤ |ε| ≤ χ, so some rε ∈ Y can serve as q′′ in �3.2,

by our assumption toward a contradiction. Hence 〈rε : ε < χ+〉 contradicts

clause (f) of Definition 1.2(1). So the answer to �3.2 is yes, hence there is such

Z ∈ Mθ, but χ+ 1 ⊆ Mθ, hence Z ⊆ Mθ.

So apply the property of Z, with q standing for q′′, so there is q′ ∈ Z ⊆ Q∩Mθ

such that the pair (q′, q) is ≤pr
Q -compatible; but Z ⊆ Y , hence by the definition

Sh:918



514 S. SHELAH Isr. J. Math.

of Y there is δ ∈ χ+ such that (H(λ+
∗ ),∈, <∗

λ+
∗
) |= ϕ[δ, q′], and as q′ ∈ Z ⊆ Mθ

without loss of generality δ ∈ Mθ, hence δ ∈ χ+ ∩Mθ, so by the definition of

δ∗ we have δ < δ∗; so �3 holds indeed.

Next (but its proof will take a while)

�4 if q0 ∈ Q is above p∗, then for some triple (q1, p, ι) we have:

(a) q0 ≤pr
Q q1,

(b) ι < κ,

(c) p ∈ apQ(r) for some r satisfying q0 ≤pr
Q r ≤pr

Q q1,

(d) if ι = 0 then p ≤ q1,

(e) if q satisfies q1 ≤pr
Q q and ϕ(x, y) ∈ Lθ,θ is a formula with

parameters from Mθ satisfied by the pair (δ∗, q) in the model

(H(λ+
∗ ),∈, <∗

λ+
∗
), then we can find q′, q′′, δ such that the septu-

ple q = (q, p, ι, ϕ(x, y), q′, q′′, δ) satisfies
�q •1 δ < δ∗ (hence δ ∈ Mθ),

•2 (H(λ+∗ ),∈, <∗
λ+
∗
) |= ϕ[δ, q′],

•3 if ι = 0 then

(α) q ≤pr
Q q′′,

(β) q′ ≤pr
Q q′′,

(γ) q′′ � “c
˜
{δ, δ∗} = 0”,

•4 if ι ∈ (0, κ), then q ≤pr
Q q′′ and q′′ � “p ∈ G

˜
Q ⇒

c
˜
{δ, δ∗} = ι ∧ q′ ∈ G

˜
Q”.

Why? Assume toward a contradiction that �4 fails. We let 〈Sε : ε ≤ θ〉 be a ⊆-

increasing continuous sequence of subsets of θ with Sθ = θ, |Sε+1\Sε| = θ, |S0| =
θ and min(Sε+1\Sε) ≥ ε. Now we try to choose (q∗ε ,xε, ϕε) by induction on

ε < θ (but ϕε is chosen in the (ε+ 1)-th stage) such that:

�4.1 (α) q∗ε ∈ Q and 〈q∗ζ : ζ ≤ ε〉 is ≤pr
Q -increasing,

(β) q∗0 = q0,

(γ) if ε is a limit ordinal (< θ) and 〈q∗ζ : ζ < ε〉 has an exact ≤pr
Q -

upper bound (see part (2) of Definition 1.2) then q∗ε is an exact

≤pr
Q -upper bound of it,

(δ) xε = 〈(p∗ξ , ιξ) : ξ ∈ Sε〉 lists {(p, ι) : ι < κ and p ∈ apQ(q∗ζ )
for some ζ such that ζ = 0 ∨ ζ ≤ ε}; here we use clause (i) of

1.2(1) recalling q∗ζ ∈ apQ(q∗ζ ), by clause (d)(β) of 1.2(1), so 1 ≤
|apQ(q∗ζ )| < θ,
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(ε) for successor ordinal ε = ζ + 1, let (q∗ζ+1, ϕζ(x, y)) exemplify that

the triple (q∗ζ , p
∗
ζ , ιζ) does not satisfy demand (e) on (q1, p, ι) in �4,

i.e.,

(∗) q∗ζ ≤pr
Q q∗ζ+1 and ϕζ(x, y) ∈ Lθ,θ is a formula with parameters

from Mθ which the pair (δ∗, q∗ζ+1) satisfies in (H(λ+
∗ ),∈, <∗

λ+
∗
),

but we cannot find q′, q′′, δ such that the septuple

qζ+1 := (q∗ζ+1, p
∗
ζ , ιζ , ϕζ(x, y), q

′, q′′, δ) satisfies �qζ+1
.

We show that the induction can be carried out. Assume we are stuck at ε.

Now if ε = 0 we can satisfy clauses (α) + (β) and, recalling 1 ≤ |apQ(q0)| < θ,

we can choose x0 to satisfy clause (δ), and since (γ), (ε) are vacuous we are

done.

Suppose ε > 0. For limit ε we can choose q∗ε as required in clause (α) by clause

(e) of Definition 1.2(1); also, clause (γ) is relevant but causes no problem; and

lastly, we can choose xε and, since clause (ε) is vacuous for limit ordinals, we

are done again. So ε is a successor; let ε = ζ + 1, so q∗ζ was defined. Now

if we cannot choose (q∗ζ+1, ϕζ(x, y)) = (q∗ε , ϕζ(x, y)), then the triple (q∗ζ , p
∗
ζ , ιζ)

is as required from the triple (q1, p, ι) in �4. But this is impossible (by our

assumption toward a contradiction), so we can find (q∗ζ+1, ϕζ(x, y)) as required;

and again we can choose xε as for ε = 0.

So it is enough to get a contradiction from the assumption that we can carry

out the induction. But by clause (g) of Definition 1.2(1) the set S := {ζ < θ : ζ

is a limit ordinal and the sequence 〈q∗ε : ε < ζ〉 has an exact ≤pr
Q -upper bound}

is stationary. As S is stationary, noting �4.1(δ) and recalling clause (i) of

Definition 1.2(1) which gives |apQ(q∗ε )| < θ = cf(θ) for ε < θ, clearly for some

limit ordinal ζ(∗) ∈ S we have: if ι < κ (< θ) and p ∈ ⋃{apQ(q∗ε ) : ε < ζ(∗)}
then for unboundedly many ε < ζ(∗) we have (p∗ε, ιε) = (p, ι).

Let ϕ(x, y) ∈ Lθ,θ express all the properties that the pair (δ∗, q∗ζ(∗)) satisfies
and are used below, i.e., (∃y0, . . . , yζ(∗))[x ∈ χ+ ∧ y = yζ(∗) ∧

∧
ε<ζ≤ζ(∗)

yε ≤pr
Q

yζ ∧
∧

ε<ζ(∗)
ϕε(x, yε+1) ∧ (yζ(∗) is an exact ≤pr

Q -upper bound of 〈yi : i < ζ(∗)〉)].
So

(∗) (H(λ+∗ ),∈, <∗
λ+
∗
) |= ϕ[δ∗, q∗ζ(∗)].

By �3 we can find a pair (δ, q′) such that:

�4.2 (a) δ < δ∗, hence δ ∈ Mθ and q′ ∈ Mθ,

(b) (H(λ+
∗ ),∈, <∗

λ+
∗
) |= ϕ[δ, q′],
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(c) q′, q∗ζ(∗) are ≤pr
Q -compatible.

Let q′′ be such that

(d) q′ ≤pr
Q q′′ and q∗ζ(∗) ≤pr

Q q′′.

Let 〈q′ζ : ζ ≤ ζ(∗)〉 exemplify ϕ[δ, q′] and, without loss of generality,

{q′ζ : ζ ≤ ζ(∗)} ⊆ Mθ; in particular, ε ≤ ζ(∗) ⇒ q′ε ≤pr
Q q′ζ(∗) = q′ ≤pr

Q q′′

and, of course, ε ≤ ζ(∗) ⇒ q∗ε ≤pr
Q q∗ζ(∗) ≤pr

Q q′′.
Case 1: q′′ �Q “c

˜
{δ, δ∗} = 0”.

There is ε < ζ(∗) such that ιε = 0. We get a contradiction to the choice of

the (q∗ε , ϕε).

Why? Let us check that the septuple q = (q∗ε+1, q
∗
ε+1, 0, ϕε(x, y), q

′
ε+1, q

′′, δ)
is such that �q holds.

For •1: Recall �4.2(a).

For •2: By �4.1(ε)(∗) we have (H(λ+
∗ ),∈, <∗

λ+
∗
) |= ϕε(δ∗, q∗ε+1), by the choice of

ϕ(x, y) and of 〈q′ζ : ζ ≤ ζ(∗)〉 we have (H(λ+
∗ ),∈, <∗

λ+
∗
) |= ϕε[δ, q

′
ε+1] as required.

For •3(α): It means q∗ε+1 ≤pr
Q q′′, which holds as q∗ε+1 ≤pr

Q q∗ζ(∗) by �4.1(α) and

q∗ζ(∗) ≤pr
Q q′′ by �4.2(d).

For •3(β): It means q′ε+1 ≤pr
Q q′′, which has been proved just before “case 1”.

For •3(γ): It means q′′ � “c
˜
{δ, δ∗} = 0”, which holds by the case assumption.

For •4: It is vacuous.
So indeed �q holds, contradicting the choice of (q∗ε+1, ϕε) see �4.1(ε).

Case 2: Not Case 1.

Choose (q+, ι) such that q+∈Q, q∗ζ(∗) ≤Q q′′ ≤Q q+ and q+ �Q “c
˜
{δ, δ∗} = ι”

where ι ∈ (0, κ); we use “not Case 1”. By clause (j) of � of Definition 1.2 applied

with (q∗ζ(∗), q
+) here standing for (q∗, r) there, we can find a pair (s, p) such that

�4.3 (a) p ∈ apQ(q∗ζ(∗)),
(b) q∗ζ(∗) ≤pr

Q s,

(c) s �Q “p ∈ G
˜

Q ⇒ q+ ∈ G
˜

Q”.

As q∗ζ(∗) is an exact ≤pr
Q -upper bound of 〈q∗ε : ε < ζ(∗)〉 because ζ(∗) ∈ S and

p ∈ apQ(q∗ζ(∗)), see part (2) of Definition 1.2, there is a pair (p′, ε(∗)) such that:

�4.4 (a) ε(∗) < ζ(∗),
(b) p′ ∈ apQ(q∗ε(∗)),
(c) �Q “if q∗ζ(∗), p

′ ∈ G
˜

Q then p ∈ G
˜

Q”.
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So by the choice of ζ(∗) for some ζ < ζ(∗) which is > ε(∗) we have (p∗ζ , ιζ) =
(p′, ι). Let q = (q∗ζ+1, p

∗
ζ , ιζ , ϕζ(x, y), q

′
ζ , s, δ). This septuple satisfies �q be-

cause:

For •1: Recall �4.2(a).

For •2: As in Case 1.

For •3: It is vacuous.
For •4: It means first q∗ζ+1 ≤pr

Q s, which holds as q∗ζ+1 ≤pr
Q q∗ζ(∗) by �4.1(α) and

q∗ζ(∗) ≤pr
Q s by �4.3(b). Second, s � “p∗ζ ∈ G

˜
Q ⇒ c

˜
{δ, δ∗} = ι”, which holds as

p∗ζ = p′, and assuming G ⊆ Q is generic over V if s, p′ ∈ G then by �4.3(b)

also q∗ζ(∗) ∈ G, hence by �4.4(c) also p ∈ G, hence by �4.3(c) also q+ ∈ G,

hence by the choice of q+ in the beginning of the case we have V[G] satisfies

c
˜
[G]{δ, δ∗} = ι.

Third, s � “p∗ζ ∈ G
˜

Q ⇒ q′ζ ∈ G
˜

Q”, which holds as p∗ζ = p′ and assuming

G ⊆ Q is generic overV, if s, p′ ∈ G then as above q+ ∈ G, hence by the choice

of q+ in the beginning of the case also q′′ ∈ G, hence by �4.2(d) also q′ ∈ G,

hence by the choice of ϕ and of 〈q′ζ : ζ ≤ ζ(∗)〉 we have q′ζ ∈ G, as required.

Hence we get a contradiction to the choice of (q∗ζ+1, ϕζ). So we are done

proving �4.

Let the triple (q∗, p∗, ι∗) satisfy the demands on (q1, p, ι) in �4 for q0 = p∗

and let r∗ be as guaranteed by clause (c) of �4, so

� p∗ ≤pr
Q r∗ ≤pr

Q q∗ and p ∈ apQ(r∗).

Now we choose qζ , q
′
ζ , q

′′
ζ , q

′′′
ζ , rζ , pζ, αζ , βζ by induction on ζ < θ such that:

�5 (a) qζ ∈ Q,

(b) 〈qξ : ξ ≤ ζ〉 is ≤pr
Q -increasing,

(c) q0 = q∗,
(d) αζ < βζ < δ∗ and ε < ζ ⇒ βε < αζ ,

(e) (q′ζ , q
′′
ζ , αζ) is as (q′, q′′, δ) is guaranteed to be in clause (e) of �4,

with qζ here standing for q there (and, of course, p∗, ι∗ here stands

for p, ι there) and a suitable ϕ, hence

(α) αξ, βξ < αζ < δ∗ for ξ < ζ,

(β) qζ ≤pr
Q q′′ζ ,

(γ) the pair (αζ , q
′
ζ) ∈ Mθ is similar enough to (δ∗, qζ),

(δ) if ι∗ > 0 then q′′ζ � “if p∗ ∈ G
˜

Q then c
˜
{αζ, δ∗} = ι∗ and

q′ζ ∈ G
˜

Q”,
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(ε) if ι∗ = 0 then q′ζ ≤pr
Q q′′ and q′′ζ � “c

˜
{αζ , δ∗} = ι∗” and

q′′ζ � “c
˜
{αε, αζ} = ι” for ε < ζ

(f) the quadruple (βζ , rζ , pζ , q
′′′
ζ ) ∈ Mθ is similar enough to the quadru-

ple (δ∗, r, p∗, q′′ζ ), i.e.,
(α) βζ ∈ (αζ , δ∗),
(β) the pair (q′′′ζ , q′′ζ ) is ≤pr

Q -compatible,

(γ) pζ ∈ apQ(rζ) and rζ ≤pr
Q q′′′ζ ,

(δ) q′′′ζ �Q “if pζ ∈ G
˜

Q then c
˜
{αε, βζ} = ι∗ for ε ≤ ζ”,

(g) q′′ζ ≤pr
Q qζ+1 and q′′′ζ ≤pr

Q qζ+1.

Why can we carry out the induction? Note that q′ζ , . . . , βζ are chosen in the

(ζ + 1)-th step.

For ζ = 0 just let q0 = q∗, so the only relevant clauses (a) and (c) are satisfied.

For ζ limit only clause (b) is relevant, and we can choose qζ by clause (e) of

Definition 1.2.

We are left with ζ successor; let ζ = ξ + 1.

We first choose (q′ξ, q
′′
ξ , αξ) as required in clause (e) of �5 using appropriate

ϕ and �4(e) for our (q∗, p∗, ι∗). Clearly in �5, clause (e) holds as well as the

second statement in clause (d). In particular, (e)(δ) comes from �4 (e) and

(e)(ε) comes from ϕ i.e. as ε < ζ.

Second, we choose (βξ, rξ, pξ, q
′′′
ξ ) as required in clause (f) of �5.

[Why? We can find (βξ, rξ, pξ, q
′′′
ξ ) ∈ Mθ similar enough to (δ∗, r, p∗, q′′ξ ).

Using �3 with (δ∗, q′′ζ ) here standing for (δ∗, q) there and q′′′ζ here standing for

q′ in the conclusion of �3 (and rξ, pξ are gotten by existential quantifier in

choosing which ϕ holds as r∗, p∗ witness). First note that αζ < δ∗ holds as

αζ ∈ Mθ, hence βξ < δ∗ but βξ ∈ Mθ so βξ < δ∗, so clause (f)(α) holds. Second

q′′′ζ , q′′ζ are ≤pr
Q compatible by �3(c) hence clause (f)(β) holds.

Third, the parallel of (f)(γ) holds for (p∗, r∗) by the choice of r∗ and as

q∗ = q0 ≤pr
Q qζ ≤pr

Q q′′ζ .
Fourth, the parallel of (f)(δ) holds for (q′′ζ , p∗) by (e)(δ).]

Third, as q′′ξ , q
′′′
ξ are ≤pr

Q -compatible, there is qζ = qξ+1 as required in clause

(g).

So we can satisfy �5.

Now we apply clause (h) of Definition 1.2(1) to the sequence 〈(qε, pε) : ε < θ〉,
hence there is ζ < θ as there, so as pε ∈ apQ(qε) the conditions pε, qε are
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compatible in Q, hence they have a common upper bound r ∈ Q, hence by the

choice of 〈(pε, qε) : ε < θ〉 above, r �Q “ξ∗ ≤ otp{ε < ζ : qε, pε ∈ G
˜

Q}”.
So r �Q “the sequence 〈(αε, βε) : ε < ζ and qε, pε ∈ G

˜
Q〉 is as required”.

So we are done. 1.4

Noting that:

• if ι∗ > 0, then qζ+1 � “c
˜
{αε, βζ}”= ι∗ for ε ≤ ζ,

• if ι∗ = 0, then qζ+1 � “c
˜
{αε, dζ}”= ι∗ for ε ≤ ζ.

2. Many strong polarized partition relations

We can say more below on strongly inaccessible θ ∈ Θ.

Hypothesis 2.1: Let p = (λ, μ,Θ, ∂̄) satisfy:

(a) λ = λ<λ < μ = μ<μ,

(b) Θ ⊆ [λ, μ] is a set of regular cardinals with λ, μ ∈ Θ,

(c) ∂̄ = 〈∂θ : θ ∈ Θ〉 is an increasing sequence of cardinals such that:

(α) ∂θ = cf(∂θ),

(β) ∂θ = (∂θ)
<∂θ ,

(γ) ∂θ ≤ θ, and if θ < κ are from Θ then ∂θ < ∂κ,

(δ) ∂θ ≥ κ if κ ∈ (Θ ∩ θ),

(ε) if θ = λ then ∂θ = λ.

The reader may concentrate on (see 3.4):

Example 2.2: Assume

(a) V satisfies G.C.H. from λ to μ, i.e., ∂ ∈ [λ, μ) ⇒ 2∂ = ∂+,

(b) λ = λ<λ < μ = μ<μ,

(c) Θ := {θ+ : λ ≤ θ < μ} ∪ {λ, μ}, and
(d) ∂θ = θ for every θ ∈ Θ, so in 2.3(5) below we have ∂θ = min{θ+, μ}.

For the rest of this section p, i.e., λ, μ,Θ, ∂̄, are fixed.

Definition 2.3: (1) For κ ∈ Θ, let Eκ be the equivalence relation on μ defined

by

(∗) iEκj iff i+ κ = j + κ.

(2) For any cardinal κ ∈ [λ, μ], define E<κ as Eqλ ∪⋃{Eθ : θ ∈ Θ ∩ κ}. For
such κ, if κ /∈ Θ, let Eκ = E<κ.
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(3) For i < μ and κ ∈ Θ, let [i]κ = i/Eκ = the Eκ-equivalence class of i, and

for A ⊆ μ, let A/Eκ = {i/Eκ : i ∈ A}. For i < μ,A ⊆ μ we say that i/Eκ is

represented in A iff A ∩ (i/Eκ) �= ∅. If A ⊆ B ⊆ μ, we say that i/Eκ grows

from A to B iff ∅ �= A∩ (i/Eκ) �= B ∩ (i/Eκ). If we write functions p, q instead

of A,B, we mean Dom(p), Dom(q), respectively.

(4) Note that for all i, j < μ we have iEμj. Thus, the following definition

makes sense: if i, j are < μ, we let κ(i, j) be the minimal κ ∈ Θ such that iEκj.

(5) Suppose κ ∈ Θ; let

∂κ = min{∂θ : κ < θ ∈ Θ} if κ < μ and ∂κ = μ if κ = μ.

(Notice that κ is just an index in ∂κ, and this is not cardinal exponentiation.)

Thus, in particular,

Observation 2.4: (1) For i, j < μ we have: κ(i, j) is well defined and for

i, j < μ, θ ∈ [λ, μ) we have iEθj ⇔ θ ≥ κ(i, j) as

(∗) if θ < κ are both from Θ, then Eθ refines Eκ and, in fact, each

Eκ-equivalence class is the union of κ many Eθ-equivalence classes.

(2a) If κ < θ are from Θ then ∂κ ≤ ∂θ; used in 2.8(1).

(2b) ∂θ < ∂θ except possibly for θ = μ (still ∂μ ≤ μ = ∂μ); recall 2.1(c)(γ).

(2c) sup(Θ ∩ κ) ≤ ∂κ for κ ∈ Θ; recall 2.1(c)(δ).

(2d) ∂θ = (∂θ)<∂θ

for θ ∈ Θ.

(2e) If κ ∈ Θ then each E<κ-equivalence class has cardinality ≤ ∂κ (by

(2c)); used in the proof of 2.8(3)).

(3a) ∂λ = λ.

(3b) If θ < κ are successive elements of Θ then ∂θ = ∂κ.

(3c) If κ ∈ Θ and
⋃
(Θ ∩ κ) is a singular cardinal, then ∂κ ≥ (

⋃
(Θ ∩ κ))+.

Definition 2.5: (1) The forcing notion Qp = (Qp,≤Qp) (but we may omit p

when it is clear from the context) is defined by:

(A) q ∈ Q iff

(a) q is a (partial) function from μ to {0, 1},
(b) if i < μ and κ ∈ Θ, then the cardinality of (i/Eκ) ∩ Dom(q) is

< ∂κ (note: taking κ = μ, the cardinality of Dom(q) is < ∂μ ≤ μ).

(B) p ≤Q q iff

(a) p ⊆ q, i.e., Dom(p) ⊆ Dom(q) and α ∈ Dom(p) ⇒ p(α) = q(α),
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(b) for every θ ∈ Θ the set {A ∈ μ/Eθ : A grows from p to q} has

cardinality < ∂θ.

(2) For κ ∈ Θ\{μ} and p, q ∈ Q, let:

(A) p ≤pr
p,κ q or p ≤pr

κ q iff

(a) p ≤ q, and

(b) no Eκ-equivalence class grows from p to q.

(B) p ≤ap
p,κ q or p ≤ap

κ q iff

(a) p ≤ q,

(b) Dom(q)/Eκ = Dom(p)/Eκ.

(3) For κ = μ and p, q ∈ Q, let:

(A) p ≤pr
μ q iff p = q,

(B) p ≤ap
μ q iff p ≤ q.

(4) Let Qκ = Qp,κ = (Q,≤Q,≤pr
κ , apκ), where apκ = app,κ is the function

with domain Q such that apκ(q) = {q′ : q ≤ap
κ q′}; so Qκ as a forcing notion is

Q.

(5) Let ≤us
p,κ=≤us

κ =≤p be ≤Qp for κ ∈ Θ.

Remark 2.6: Clearly Qκ is related to §1, and if κ is the last member of Θ∩μ we

can use it (enough if Θ = {λ, μ}, but not in general, so we shall use a variant).

Claim 2.7: Concerning Definition 2.5:

(a) (α) if κ ∈ Θ, then ≤,≤pr
κ ,≤ap

κ are partial orderings of Q,

(β) p ≤pr
κ q ⇒ p ≤ q and p ≤ap

κ q ⇒ p ≤ q,

(γ) if κ = μ then ≤ap
κ =≤,

(δ) if κ = μ then ≤pr
κ is the equality;

(b) (α) if p1, p2 ∈ Q and they are compatible as functions, then p1∪p2 ∈ Q,

(β) moreover, letting q = p1 ∪ p2, if clause (b) of 2.5(1)(B) holds be-

tween pk and q, for k = 1, 2, then q is the lub, in Q, of p1 and

p2;

(c) if p ≤ q and κ ∈ Θ, then there are r, s ∈ Q such that:

(α) p ≤pr
κ r ≤ap

κ q,

(β) p ≤ap
κ s ≤pr

κ q,

(γ) q = r ∪ s,

(δ) q is the ≤-lub of r, s;

(d) if q ∈ Q then:

(α) ∅ ≤ q (and ∅, the empty function, ∈ Qp),
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(β) (∀r)(q ≤ r ≡ q ≤ap
μ r),

(γ) κ ∈ Θ\{μ} ⇒ ∅ ≤pr
κ q,

(δ) ∅ �= q ⇒ ∅ �ap
κ q for any κ ∈ Θ\{μ};

(e) if κ1 ≤ κ2 are both from Θ, then :

≤pr
κ2
⊆≤pr

κ1
and ≤ap

κ1
⊆≤ap

κ2
;

(f) if κ ∈ Θ and p ≤ap
κ q and p ≤pr

κ r, then :

(α) q ∪ r is a well-defined function ∈ Q,

(β) p ≤ (q ∪ r),

(γ) q ≤pr
κ (q ∪ r),

(δ) r ≤ap
κ (q ∪ r),

(ε) q ∪ r is a ≤-lub of q, r in Qp;

(g) if κ ∈ Θ, p ≤pr
κ qi (i = 1, 2) and q1, q2 are compatible in Q (even just

as functions), then p ≤pr
κ (q1 ∪ q2);

(h) if p ≤ap
κ qk for k = 1, 2, and q1, q2 are compatible in Q (even just as

functions), then qk ≤ap
κ q1 ∪ q2 for k = 1, 2;

(i) (α) if {pε : ε < ζ} has an ≤-upper bound then ∪{pε : ε < ζ} is an

upper bound,

(β) similarly for ≤pr
κ ,≤ap

κ ,

(γ) assume pε ∈ Q for every ε < ζ, and pε, pξ has a common ≤x
κ-upper

bound for any ε, ξ < ζ; then the union of {pε : ε < ζ} is a ≤x
κ-lub,

when x = us,ap and ζ < λ;

(δ) if {pε : ε < ζ} ⊆ Q has a common ≤pr
κ -upper bound and ζ < ∂κ,

then {pε : ε < ζ} has a ≤pr
κ -lub—the union;

(j) if p ≤ap
κ q then Dom(q)\Dom(p) has cardinality < ∂κ;

(k) if p1 ≤ap
κ p3 and p1 ≤ p2 ≤ p3 then p1 ≤ap

κ p2 and p2 ≤ap
κ p3;

(l) if p1 ≤pr
κ p2, p
 ≤ap

κ q
 for  = 1, 2 and q1 ∪ q2 is a function, then

q := q1 ∪ q2 is a ≤-lub of q1, q2 and q2 ≤ap
κ q, q1 ≤ q;

(m) assume p1, p2 are compatible in Q; then there is a pair (q, t) such that:

•1 p1 ≤pr
κ q,

•2 p2 ≤ap
κ t,

•3 q � “t ∈ G
˜

⇒ p1 ∈ G
˜
”,

•4 q, t are compatible and we say (q, t) is a witness for (p1, p2);

(n) if 〈p
α : α < δ〉 is≤pr
κ -increasing for  = 1, 2, δ a limit ordinal of cofinality

< ∂κ and α < δ ⇒ p1α ≤ap
κ p2α, then

⋃
α<δ

p1α ≤ap
κ (

⋃
α<δ

p2α).

Proof. Straightforward. For example:
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Clause (i):

So assume x ∈ {us, pr, ap} and κ ∈ Θ and {pε : ε < ζ} ⊆ Q and q ∈ Q is an

≤x
κ-upper bound of {pε : ε < ζ}. Let p := ∪{pε : ε < ζ}; then we shall prove

that p ∈ Q and p is a ≤x
κ-upper bound of {pε : ε < ζ}. This clearly suffices for

proving sub-clauses (α), (β) of clause (i), and the ≤x
κ-lub part, i.e., sub-clauses

(γ), (δ) are left to the reader; for (γ), (δ), see 2.8(1B),(1A).

Now

(∗)1 p is a well-defined function with domain ⊆ μ and p ⊆ q.

[Why? As ε<ζ ⇒ pε ⊆ q, i.e., as functions (by 2.5(1)(B)(a)) clearly p ⊆ q, as

functions, so p is a well defined function with domain⊆Dom(q), but Dom(q)⊆μ

by 2.5(A)(a).]

(∗)2 if i < μ and θ ∈ Θ then the cardinality of (i/Eθ) ∩ Dom(p) is < ∂θ.

[Why? Recall p ⊆ q ∈ Q, see above; so as q ∈ Q by 2.5(1)(a) we have

|(i/Eθ) ∩ Dom(p)| ≤ |(i/Eθ) ∩ Dom(q)| < ∂θ.]

(∗)3 p ∈ Q.

[Why? By (∗)1 + (∗)2 recalling 2.5(1)(A).]

(∗)4 pε ⊆ p for ε < ζ.

[Why? By the choice of p.]

(∗)5 If ε < ζ and θ ∈ Θ, then {A ∈ μ/Eθ : A grows from pε to p} has

cardinality < ∂θ.

[Why? Because, recalling p ⊆ q, this set is included in {A ∈ μ/Eθ : A grows

from pε to q} which has cardinality< ∂θ because pε ≤ q, which holds as pε ≤x
κ q.]

(∗)6 pε ≤ p for ε < ζ.

[Why? By (∗)4 + (∗)5 recalling 2.5(1)(B).]

(∗)7 If x = us then p is a ≤-upper bound of {pε : ε < ζ}.
[Why? By (∗)3 + (∗)6.]

(∗)8 If x = pr and ε < ζ then pε ≤pr
κ p.

[Why? If κ = μ then ≤pr
κ is equality and pε ≤pr

κ q, hence pε = q; but pε ⊆
p ⊆ q, hence pε = p so this is trivial, hence assume κ < μ. We have to check

2.5(2)(A); now clause (a) there holds by (∗)6 and clause (b) there holds as no

Eκ-equivalence class grows from pε to q (as pε ≤pr
κ q) and p ⊆ q.]

(∗)9 If x = pr then p is a ≤x
κ-upper bound of {pε : ε < ζ}.

[Why? By (∗)8.]
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(∗)10 If x = ap and ε < ζ then pε ≤ap
κ p.

[Why? If κ = μ then ≤ap
κ =≤us

κ and we are done by (∗)7. Assume κ < μ. We

have to check 2.5(2)(B). First, clause (a) there holds by (∗)6. Second, clause (b)
there holds because if A ∈ Dom(p)/Eκ then A ∩Dom(p) �= ∅ by the definition,

hence A ∩ Dom(q) �= ∅ as p ⊆ q by (∗)1; but this implies A ∩ Dom(pε) �= ∅
because pε ≤ap

κ q, as required.]

(∗)11 If x = ap then p is a ≤x
κ-upper bound of {pε : ε < ζ}.

[Why? By (∗)10.]
The ≤x

κ-lub parts are easy too; for a limit ordinal δ see 2.8(1A).

Clause (j):

Let U = {A : A ∈ μ/Eκ and A grows from p to q}. Recalling Definition

2.5(1)(B)(b), clearly, as p ≤ q, we have |U| < ∂κ. But as p ≤ap
κ q necessarily

Dom(q)\ Dom(p) is included in
⋃{A : A ∈ U}. Also, as q ∈ Q, by Definition

2.5(1)(A)(b) we have A ∈ U ⇒ |A ∩Dom(q)| < ∂κ.

So Dom(q)\ Dom(p) is included in
⋃{A∩ Dom(q) : A ∈ U}, a union of < ∂κ

sets each of cardinality < ∂κ. But ∂κ is regular by 2.1(C)(β), so we are done.]

Clause (m):

As p1, p2 are compatible in Q, there is r ∈ Q such that p1 ≤ r, p2 ≤ r. Choose

t =
⋃{r�(i/Eκ) : i/Eκ grow from p2 to r} ∪ p2, so t ∈ Q and p2 ≤ap

κ t ≤pr
κ r.

Choose q =
⋃{r�(i/Eκ) : i/Eκ does not grow from p1 to r} ∪ r, so q ∈ Q and

p1 ≤pr
κ q ≤apr

κ r.

Now check. 2.7

Claim 2.8: Let κ ∈ Θ.

(1) (Q,≤pr
κ ) is (< ∂κ)-complete and, in fact, if p̄ = 〈pα : α < δ〉 is <pr

κ -

increasing, δ a limit ordinal < ∂κ then pδ :=
⋃{pα : α < δ} is a ≤pr

κ -lub

and a ≤-lub of p̄; we use κ < θ ∈ Θ ⇒ ∂κ ≤ ∂θ; see 2.4(2a).

(1A) If γ(∗) < ∂κ and pα ∈ Q for α < γ(∗) and pα, pβ has a common ≤pr
κ -

lub for any α, β < γ(∗) then p∗ =
⋃{pα : α < γ(∗)} is a ≤pr

κ -lub of

{pα : α < γ(∗)}.
(1B) If γ(∗) < λ then (1A) holds for ≤ap

κ .

(2) If p ∈ Q then Qp := Qp,p = ({q : p ≤ap
κ q}, <ap

κ ) satisfies4 the (∂κ)
+-c.c.

(3) Moreover, if 〈pα : α < ∂+
κ 〉 is ≤pr

κ -increasing continuous and pα ≤ap
κ qα

for α < ∂+
κ , then for some α < β the conditions qα, qβ are compatible

4 Compare with [ShSt:608, 1.8].
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in Q; moreover, there is r such that qα ≤ r and qβ ≤ap
κ r and pα =

pβ ⇒ qα ≤ap
κ r ∧ qβ ≤ap

κ r.

(4) Assume p ∈ Qp, χ = |A| < ∂κ, κ ∈ Θ and p � “f
˜

is a function from

A ∈ V to V”. Then we can find q such that:

(α) p ≤pr
κ q,

(β) if a ∈ A then Iq,f
˜
,a := {r : q ≤ap

κ r and r forces a value to f
˜
(a)} is

predense over q in Qq,

(γ) moreover, some subset I ′
q,f
˜
,a of Iq,f

˜
,a of cardinality ≤ ∂κ is pre-

dense over q in Qq (really follows).

Proof. (1) By (1A).

(1A) Let qα,β be a common ≤pr
κ -upper bound of pα, pβ for α, β < γ(∗). Why

is p∗ ∈ Q? Let us check Definition 2.5(1)(A).

Clearly p∗ is a partial function from μ to {0, 1}, so clause (a) there holds. For

checking clause (b) there, assume θ ∈ Θ and A ∈ μ/Eθ.

First, assume θ ≤ κ and A∩ Dom(p∗) �= ∅. Then for some α < γ(∗) we have

A ∩ Dom(pα) �= ∅, hence

A∩ Dom(p∗) =
⋃

{A∩ Dom(pβ) : β < γ(∗)} ⊆
⋃

{A∩ Dom(qα,β) : β < γ(∗)},

but pα ≤pr
κ qα,β and A∩ Dom(pα) �= ∅, hence A∩ Dom(qα,β) = A∩ Dom(pα).

Together A ∩ Dom(p∗) is equal to A ∩ Dom(pα) which, because pα ∈ Q, has

cardinality < ∂θ as required in clause (b) of Definition 2.5(1)(A).

Second of course, if A ∩ Dom(p∗) = ∅ this holds, too.

Third, assume θ > κ. Then α < γ(∗) ⇒ pα ∈ Q ⇒ |A ∩ Dom(pα)| < ∂θ,

hence |A ∩ Dom(p∗)| = |A ∩ ⋃
α<γ(∗) Dom(pα)| ≤

∑
α<γ(∗) |A ∩ Dom(pα)|

which is < ∂θ as γ(∗) < ∂κ ≤ ∂θ = cf(∂θ), so again the desired conclusion of

clause (b) of Definition 2.5(1)(A) holds. Together indeed p∗ ∈ Q.

Why does the following hold: α < γ(∗) ⇒ pα ≤ p∗? We have to check

2.5(1)(B); obviously clause (a) there holds. Clause (b) there is proved as above.

Why does the following hold: α < γ(∗) ⇒ pα ≤pr
κ p∗? We have to check

Definition 2.5(2)(A). Now clause (a) there was just proved, and clause (b) there

holds as in the proof of “p∗ ∈ Q”.

Next we show that p∗ is a ≤pr
κ -lub of p̄, so assume q ∈ Q and α < δ ⇒

pα ≤pr
κ q. To show p∗ ≤pr

κ q we have to check clauses (B)(a),(b) of 2.5(1) and

(A)(b) of 2.5(2). As p∗ = ∪{pα : α < γ(∗)}, clearly p∗ ⊆ q as a function, so

2.5(1)(B)(a) above holds. Also, if A ∈ μ/Eκ and A is represented in p∗, then
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it is represented in pα for some α < γ(∗); but pα ≤pr
κ q, so q � A = pα � A, but

(pα�A) ⊆ (p∗�A) ⊆ (q�A), hence q � A = p∗ � A as required in 2.5(2)(A)(b).

Lastly, when θ ∈ Θ, 2.5(1)(B)(b) holds: if θ ≤ κ because more was just

proved and if θ > κ it is proved as in the proof of p∗ ∈ Q.

(2) This is a special case of (3) when 〈pα : α < ∂+
κ 〉 is constant (recalling

2.7(h)).

(3) So in particular pi ≤ap
κ qi for i < ∂+

κ . Hence by clause (j) of Claim

2.7 the set ui := Dom(qi)\ Dom(pi) has cardinality < ∂κ. Hence by the Δ-

system lemma (recalling that (∂κ)
<∂κ = ∂κ by 2.1(c)(β)) for some unbounded

U ⊆ ∂+
κ the sequence 〈ui : i ∈ U〉 is a Δ-system, with heart u∗. Moreover, since

2|u∗| ≤ ∂<∂κ
κ = ∂κ < ∂+

κ , we can assume that qi�u∗ = q∗ for every i ∈ U .
As each E<κ-class has cardinality ≤ ∂κ (see 2.4(2)(c),(e)), without loss of

generality for every i �= j from U , if α ∈ ui\u∗ then α/E<κ is disjoint to uj.

Now by 2.7(h) for every i, j ∈ U , the function q = qi ∪ qj is a ≤ap
κ -lub of qi, qj

for part (2), i.e., when pi = pj . Also, it is easy to check that for i < j, q is a

≤-lub of qi, qj , which is ≤ap
κ -above qj for part (3).

(4) If κ = μ then ≤ap
κ =≤ by clause 2.7(a)(γ), recall Qp = ({q ∈ Q : p ≤

q},≤Qp), so q = p can serve, as Qp satisfies the ∂+
κ -c.c. by part (2); so we shall

assume κ < μ. Recall that ∂κ < ∂κ by 2.4(2)(b). As |A| < ∂κ = cf(∂κ), by

part (1) of the claim and clause (f) of Claim 2.7 it is enough to consider the

case A = {a}. Now we try to choose pi, ri, bi by induction on i < ∂+
κ ; but ri, bi

are chosen in stage i+ 1 together with pi+1, such that:

� (a) p0 = p,

(b) 〈pj : j ≤ i〉 is ≤pr
κ -increasing,

(c) pi+1 ≤ap
κ ri,

(d) pi+1 � “if ri ∈ G
˜

Q then f
˜
(a) = bi”,

(e) pi+1 � “if ri ∈ G
˜

Q then for no j < i do we have rj ∈ G
˜

Q”,

(f) if i is a limit, then pi is the union so a ≤pr
κ -lub of 〈pj : j < i〉.

For i = 0 just use clause (a) of �.

For i limit use clause (f) of �, recalling part (1) of the claim and the fact

that ∂+
κ ≤ ∂k.

For i = j + 1, try to choose qi such that:

pj ≤ qi

and

qi � “ri1 /∈ G
˜

Q for i1 < j”.
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If we cannot, we have succeeded, i.e., pi is as required from q with Ipi,f
˜
,a =

{pi ∪ rj : j < i}. If we can, let (bj , rj) be such that qi ≤ rj and rj forces

f
˜
(a) = bj ; this is clearly possible. By clause (c) of Claim 2.7 applied to the pair

(pj , rj) we choose
5 pi such that pj ≤pr

κ pi ≤ap
κ rj , and clearly we have carried out

the induction. But if we carry out the induction, then we get a contradiction

by part (3). So we have to be stuck for some i < ∂+
κ , and, as said above, we

then get the desired conclusion. 2.8

Conclusion 2.9: Forcing with Qp

(a) does not collapse cardinals except possibly cardinals from the set Ωp =

{θ : λ < θ ≤ μ and for no κ ∈ Θ do we have ∂κ < θ ≤ ∂κ}, so μ /∈ Ωp,

(b) does not change cofinalities /∈ Ωp; moreover, if it changes the cofinality

of θ ∈ Reg to χ < θ then there is θ1 ∈ Ωp such that χ < θ1 ≤ θ,

(c) does not add new sequences of length < λ,

(d) does not change 2θ for θ /∈ [λ, μ),

(e) makes 2λ = μ,

(f) also the set Ω′
p :=

⋃{(κ1, 2
sup(Θ∩κ)]: for some κ ∈ Θ, Θ∩ κ has no last

member, so sup(Θ∩κ) is strong limit and κ1 = min(Reg\ sup(Θ∩κ))}
is O.K. in clauses (a),(b),

(g) Qp has cardinality μ and satisfies the ∂+
μ -c.c., recalling ∂μ ≤ μ.

Proof. First, Qp is (< λ)-complete, hence it adds no new sequences to λ>V,

i.e., clause (c) holds so cardinals ≤ λ are preserved as well as cofinalities ≤ λ

as well as 2θ for θ < λ.

Second, |Qp| = μ as p ∈ Qp ⇒ p is a function from Dom(p) ⊆ μ to {0, 1} (see

2.5(1)(A)(a)) and |Dom(p)| < ∂μ = μ by 2.5(1)(A)(b) and μ<μ = μ by 2.1(a).

Third, by 2.8(2) the forcing notion Qp satisfies the ∂+
μ -c.c. but Q = Qp when

p = ∅, so Q satisfies the ∂+
μ -c.c. and, of course, ∂μ ≤ μ. This gives clauses (g)

and (d) (recalling (c)).

Fourth, for clause (e), for any α < μ let η
˜
α ∈ λ2 be defined by p � “ηα(i) = ”

iff i < λ∧α+ i ∈ Dom(p)∧  = p(α+ i). By density, indeed �Q “η
˜
α ∈ λ2” and

�Q “η
˜
α �= η

˜
β” for α �= β < μ, so clearly clause (e) holds.

Fifth, use 2.8(2),(4) to prove clauses (a) and (b), toward a contradiction

assume θ is regular in V and θ1 is not in Ωp but p �Q “χ = cf(θ) < θ1 ≤ θ”.

5 We can use r′j such that pj ≤ap
κ r′j ≤pr

κ rj where rj is the ≤-lub of r′j , pi+1; this may be

helpful but is not needed now.
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If θ ≤ λ or just χ < λ use clause (c), if θ > μ use clause (g), so necessarily

λ ≤ χ < θ1 ≤ θ ≤ μ. By the choice of Ωp there is κ ∈ Θ such that ∂κ < θ1 ≤ ∂κ

and χ+ ∂κ < θ1 ≤ θ; now, without loss of generality, p � “f
˜
: χ → θ has range

unbounded in θ”. Apply 2.8(4) with (p, χ, f
˜
, κ) here standing for (p,A, f

˜
, κ)

there, and get q, 〈Iq,f
˜
,α : α < χ〉 as there. By 2.8(3) we have |Iq,f

˜
,α| ≤ ∂κ, and⋃{Iq,f

˜
,α : α < χ} has cardinality ≤ χ+ ∂κ ≤ θ1. In any case, in V the set {β:

for some α < χ and q � “f
˜
(α) �= β”} has cardinality < θ1 ≤ θ, contradiction.

So clauses (a) and (b) hold.

We are left with clause (f); it is not really needed, but still nice to have.

Now if θ ∈ Reg ∩ (λ, μ] is in Ω′
p and κ witness it, then necessarily Θ ∩ κ,

which is not empty, has no last element, so if θ1 < θ2 are from Θ ∩ θ then

θ1 ≤ ∂θ2 = (∂θ2)
<∂θ2 ≤ θ2, hence sup(Θ ∩ θ) is strong limit.

If θ = κ use clause (b). If θ ≥ 2<κ we repeat the proofs above for ≤pr
<κ, where

≤pr
<κ=

⋂
{≤pr

θ : θ ∈ Θ ∩ θ},≤ap
<κ= {(p, q) : p ≤ q and

α ∈ Dom(p)\Dom(p) ⇒ (∃θ ∈ Θ ∩ θ)((α/Eθ ∩Dom(p)) �= ∅}. 2.9

Definition 2.10: (1) If p ≤ q and κ ∈ Θ, let suppκ(p, q) :=
⋃{i/Eκ : i ∈

Dom(q)\Dom(p)}, so of cardinality < ∂κ.

(2) We say y = 〈κ, p̄, ū〉 = 〈κy, p̄y, ūy〉 is a reasonable p-parameter when:

�1 (a) κ ∈ Θ but κ < μ,

(b) p̄ = 〈pα : α < γ〉 is a non-empty ≤pr
θ -increasing continuous se-

quence, so we write γ = γy, p̄ = p̄y and pα = pyα,

(c) ū = 〈uα : α < γ〉 is ⊆-increasing continuous, so uα = uy
α, ū = ūy,

(d) uα ⊆ ⋃{i/Eκ : i ∈ Dom(pα)} for α < γ,

(e) |uα| ≤ ∂κ for α < γ.

(3) For y as above we define Qy as (Qy,≤y,≤pr
y , apy) (so Qy = (Qy,≤y) is Qy

as a forcing notion), where:

�2 (a) θ = θy = min(Θ\κ+
y ); notice that θ is well defined, as κy < μ and

μ ∈ Θ,

(b) Qy :={q: for some α<γy we have pα ≤ap
θ q and suppθ(pα, q) ⊆ uα},

(c) ≤y=≤p� Qy,

(d) for q∈Qy, let αy(q)=min{α<γy : pα≤ap
θ q and suppθ(pα, q)⊆uα},

(e) the two-place relation ≤pr
y is defined by p ≤pr

y q iff

(α) p, q ∈ Qy,

(β) p ≤pr
p,κ q,
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(f) for q ∈ Qy let apy(q) = apQy
(q) = {r ∈ Qy : q ≤ap

κ r and

suppκ(q, r) ⊆ suppθ(pαy(q), q)}.
Observation 2.11: Let y be a reasonable p-parameter.

(0) If p1 ≤ p2 ≤ q2 ≤ q1 and κ1 ≥ κ2 are from Θ, then suppκ2(p2, q2) ⊆
suppκ1

(p1, q1).

(0A) If p1 ≤ p2 ≤ p3, then suppκ1(p1, p3) = suppκ1
(p1, p2) ∪ suppκ1

(p2, p3).

(1) For q ∈ Qy, the ordinal αy(q) is well defined < γy.

(2) If q1 ≤y q2 are from Qy, then αy(q1) ≤ αy(q2).

(2A) If q1 ∈ Qy and q1 ≤ap
p,κ, then q2 ∈ Qy, q1 ≤y q2 and αy(q1) = αy(q2).

(3) If p ≤pr
y r and q ∈ apy(p), then s := q ∪ r belongs to Qy,

s ∈ apy(r) and q ≤pr
y s.

Proof. (0), (0A) Should be easy.

(1) By the definitions of q ∈ Qy and of αy(q).

(2) For  = 1, 2, letting α
 = αy(q
) we have pα�
≤ap

θ q
 ∧ suppθ(pα�
, q
) ⊆

uα�
. If α2 < α1, then pα2 ≤ pα1 ≤ap

θ q1 ≤ q2 ∧ pα2 ≤ap
θ q2 hence pα2 ≤ap

θ q1 (by

2.7(k)) and suppθ(pα2 , q1) ⊆ suppθ(pα2 , q2) ⊆ uα2 by the definition of 2.10(1)

of supp, contradicting the choice of α1.

(2A) We know pαy(q1) ≤ap
p,κ q1 by the definition αy(q1) but we assume q1 ≤ap

p,κ

q2 and ≤pr
p,κ is a quasi order hence pαy(q1) ≤ap

p,κ q1. So by the definition,

q2 ∈ Qy ∧αy(q1) ≥ αy(q2). Also clearly q1 ≤p q2 hence q1 ≤y q2 hence by part

(2), αy(q1)
p ≤ αy(q2), together we are done.

(3) Let κ = κy and θ = θy, pα = pyα. By Definition 2.10(3)(e),(f) we know

that p ≤pr
p,κ r and p ≤ap

p,κ q. By Claim 2.7(f) we know that s ∈ Qp and

p ≤ap
p,κ q ≤pr

p,κ s and p ≤pr
p,κ r ≤ap

p,κ s recalling s = q ∪ r, note

(∗)1 [why? As r ∈ Qy]

(∗)2 αy(s) = αy(r) = β.

[Why? As p ∈Qy the ordinal β := αy(r) < γy is well defined and the ordinal

α := αy(p) < γy is well defined and, by part (2), we have α ≤ β. So clearly

pβ ≤ap
p,θ r by the choice of β and r ≤ap

p,κ s as said above, hence by 2.7(e) recalling

κ < θ, we have ≤ap
p,κ⊆≤ap

θ hence r ≤ap
p,θ s so together pβ ≤ap

p,θ s. Also, s = q ∪ r

hence suppθ(r, s) ⊆ suppθ(p, q) and, as q ∈ apy(p), necessarily p ≤ap
p,κ q, hence

p ≤ap
p,θ q, hence by part (2A) suppθ(p, q) ⊆ suppθ(pα, q) ⊆ uy

αy(q)
= uy

αy(p)
= uy

α,

but uy
α ⊆ uy

β as α ≤ β. Together suppθ(r, s) ⊆ uβ, and by the choice of β

Sh:918



530 S. SHELAH Isr. J. Math.

clearly suppθ(pβ , r) ⊆ uβ, hence suppθ(pβ , s) ⊆ suppθ(pβ , r) ∪ suppθ(r, s) ⊆
uβ ∪ uβ = uβ . As we have shown earlier that pβ ≤ap

p,θ s it follows that s ∈ Qy

and αy(s) ≤ β. But r ≤p s, hence by part (2) we know that β = αy(r) ≤ αy(s),

so necessarily αy(s) = αy(r) = β, i.e., (∗) holds.]
So pαy(s) ≤ap

p,θ s and suppθ(pαy(s), s) = suppθ(pβ , s) ⊆ uβ = uαy(s), hence

together s ∈ Qy, the first statement in the conclusion.

Also q ≤pr
y s; for this check (e)(α) + (β) of Definition 2.10(3); for clause (α):

q ∈ Qy is assumed, s ∈ Qy was just proved; for clause (β): “q ≤pr
p,κ s” was

proved in the beginning of the proof; so the third statement in the conclusion

holds.

Lastly, we check that s ∈ apy(r). For this we have to check the two demands

in 2.10(3)(f). Now “s ∈ Qy” was proved above, “r ≤ap
p,κ s” was proved in the be-

ginning of the proof and “suppκ(r, s) ⊆ suppθ(pαy(r), s)” holds as suppκ(r, s) ⊆
suppθ(r, s) ⊆ suppθ(pαy(r), s) = suppθ(pβ , s) = suppθ(pαy(s), s) is as re-

quired. 2.11

Claim 2.12: (1) Assume κ < θ are successive members of Θp and

(∀α < ∂θ)(|α|<∂κ < ∂θ), and y is a reasonable p-parameter, κ = κy, hence

θy = θ and p̄y is ≤pr
θ -increasing (hence also ≤pr

κ -increasing) and γy is a succes-

sor or a limit ordinal of cofinality ≥ ∂θ. Then Qy is a (∂+
θ , ∂θ, < ∂θ)-forcing.

(2) If, in addition, γy = α∗ + 1 then

pα∗ � “G
˜

Q ∩Qy is a subset of Qy generic over V”.

Proof. (1) We should check for Q = Qy (defined in 2.10) each of the clauses of

Definition 1.2. Let pα = pyα, uα = up
α.

Clause (a): Trivial, just Qy has the right form, a quadruple.

Clause (b): (Qy,≤y) is a forcing notion.

Why? By �2(b)+(c) from 2.10(3), i.e., Qy is a non-empty subset of Qp

because γy > 0, so py0 = p ∈ Qy and ≤y being ≤Qp �Qy is a quasi order.

Clause (c): ≤pr
y is a quasi order on Qy and p ≤pr

y q ⇒ p ≤y q ⇒ p ≤p q.

Why? The first half holds because if p1 ≤pr
y p2 ≤pr

y p3 then: we should check

that p1 ≤pr
y p3, i.e., clauses (α), (β) of �2(e) of 2.10(3) hold. Now clause (α) is

obvious. For clause (β) note p1 ≤pr
p,κ p2 ≤pr

p,κ p3 and ≤pr
p,κ is a partial order of

Qp, so p1 ≤pr
p,κ p3, and hence (β) holds.

The second part of clause (c), which says p ≤pr
y q ⇒ p ≤y q (recalling Claim

2.7(a)(β)), holds by the definition of ≤y,≤pr
y in �2(c),(e) of 2.10(3).
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Clause (d)(α): apy is a function with domain Qy.

Why? By �2(f) of 2.10(3).

Clause (d)(β): If q ∈ Qy then q ∈ apy(q) ⊆ Qy.

Why? By �2(f) of 2.10(3) trivially apy(q) ⊆ Qy. Also, we can check that

q ∈ apy(q) : q ∈ Qy by an assumption and q ≤ap
κ q as ≤ap

κ is a quasi order on

Qp and “suppκ(q, q) ⊆ suppθ(pαy(q), q)” trivially, because suppκ(q, q) = ∅.
Clause (d)(γ): If r ∈ apy(q) and q ∈ Qy, then r, q are compatible in Qy.

Why? As r ∈ apy(q) ⇒ (q ≤ap
κ r ∧ {r, q} ⊆ Qy) ⇒ q ≤y r.

Clause (d)(γ)+: If r ∈ apy(q) and q ≤pr
y q+, then q+, r are compatible in

(Qy,≤y); moreover, there is r+ ∈ apQy
(q+) such that

q+ �Qy “r+ ∈ G
˜

Qy ⇒ r ∈ G
˜

Qy”.

This follows from 2.11(3), by defining s = r+ = r ∪ q+, which gives more.

Clause (e): (Qy,≤pr
y ) is (< ∂θ)-complete, recalling ∂θ = ∂κ.

So assume 〈qε : ε < δ〉 is ≤pr
y -increasing and δ is a limit ordinal < ∂θ; now

(Qp,≤pr
κ ) is (< ∂κ)-complete by Claim 2.8(1) and 〈qε : ε < δ〉 is also ≤pr

p,κ-

increasing by clause �2(e)(β) of Definition 2.10(3), hence qδ :=
⋃{qε : ε < δ}

is a ≤pr
p,κ-lub of the sequence by 2.8(1). Now 〈αε := αy(qε) : ε < δ〉 is an

≤-increasing sequence of ordinals < γy by Observation 2.11(2).

Also, by an assumption of 2.12(1), the ordinal γy is a successor ordinal

or limit of cofinality ≥ ∂θ, but then δ < cf(γy). So in both cases α∗ =

sup{αε : ε < δ} is an ordinal < γy. But p̄y is ≤pr
p,κ-increasing continuous,

hence pα∗ =
⋃{pαε : ε < δ} and similarly uα∗ =

⋃{uαε : ε < δ}. Now easily qδ

is a ≤ap
θ -extension of pyα∗ , and suppθ(p

y
α∗ , qδ) ⊆

⋃{suppθ(pαy(qε), qε) : ε < δ} ⊆⋃{uαε : ε < δ} = uα∗ which has card < ∂θ, hence qδ ∈ Qy. Easily qδ is as

required.

Clause (f): (Qy,≤pr
y ) satisfies the ∂+

θ -c.c.

Why? Let qε ∈ Qy for ε < ∂+
θ , so αε := αy(qε) is well defined and, without

loss of generality, 〈αε : ε < ∂+
θ 〉 is constant or increasing; also pαε ≤ap

θ qε, so by

Definition 2.5 the set suppθ(pαy(qε), qε) has cardinality < ∂θ, so by the Δ-system

lemma, as in the proof of 2.8(3), there are ε(1) < ε(2) < ∂+
θ such that:

(∗) if i1 ∈ suppθ(pαε(1)
, qε(1)) and i2 ∈ suppθ(pαε(2)

, qε(2)), then:

(α) if i1 = i2 then qε(1)(i) = qε(2)(i),

(β) if i1Eκi2 then i1, i2 ∈ suppθ(pαε(1)
, qε(1)) ∩ suppθ(pαε(2)

, qε(2)).
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So ε(1) < ε(2), αε(1) ≤ αε(2), pαε(1)
≤ap

θ qε(1), pαε(2)
≤ap

θ qε(2).

Hence q := qε(1) ∪ qε(2) belongs to Qp, is a ≤ap
θ -lub of {qε(1), qε(2)} and

qαε(2)
≤ap

θ q, hence q ∈ Qy. Also, if i ∈ Dom(q)\ Dom(pε(
)) then i/Eκ is

disjoint to Dom(pε(
)) by (∗)(β); this implies pε(
) ≤pr
κ q, which means pε(
) ≤pr

y

q by 2.10(3)(e), for  = 1, 2, so qε(1), qε(2) are indeed compatible in (Qy,≤pr
y ).

Clause (g): If q̄ = 〈qε : ε < ∂θ〉 is ≤pr
y -increasing, then for stationarily many

limit ζ < ∂θ the sequence q̄ � ζ has an exact ≤pr
y -upper bound (recalling that

∂θ here stands for θ in Definition 1.2).

Why? We prove more, that if cf(ζ) = ∂κ and 〈qε : ε < ζ〉 is ≤pr
y -increasing

then the union q =
⋃{qε : ε < ζ} is an exact ≤pr

y -upper bound. This suffices as

∂κ < ∂θ and both are regular. Now by 2.11(2) the sequence 〈αy(qε) : ε < ζ〉 is≤-

increasing, hence 〈uαy(qε) : ε < ζ〉 is ⊆-increasing and, letting α∗ =
⋃{αy(qε) :

ε < ζ}, we have α∗ < γy as γy is a successor ordinal or limit of cofinality ≥ ∂θ;

hence uα∗ =
⋃{uαy(qε) : ε < ζ}; see 2.10(2)(c).

By the proof of clause (e) which we have proved above, clearly q ∈ Qy and is

a ≤pr
y -upper bound of 〈qε : ε < ζ〉. But what about “exact”? We should check

Definition 1.2(2). So assume p ∈ apy(q), and we should prove that for some

ε < ζ and p′ ∈ apy(qε) we have �Qy “if q, p′ ∈ G
˜

Qy then p ∈ G
˜

Qy”.

Note that q ≤ap
p,κ p and suppθ(q, p) ⊆ uα∗ by the definition of apy(q); hence

u := suppκ(q, p) is a subset of suppθ(q, p) ⊆ uy
α∗ of cardinality < ∂κ. As

〈uy
αε

: ε < ζ〉 is ⊆-increasing with union uy
α∗ , necessarily for some ε < ζ we have

u ⊆ uαε . Let p
′ = p� Dom(pε), and check (as in earlier cases).

Clause (h): If 〈qε : ε < ∂θ〉 is ≤pr
y -increasing and rε ∈ apy(qε) for ε < ∂θ

and ξ < ∂θ then for some ζ < ∂θ we have qζ �Qy “if rζ ∈ G
˜

Qy then ξ ≤
otp{ε < ζ : pε ∈ G

˜
Qy}”.

This follows from 2.8(3).

Clause (i): apy(q) has cardinality < ∂θ.

Should be clear as α < ∂θ ⇒ |α|<∂κ < ∂θ by an assumption of the claim and

α < ∂θ ⇒ |uα| < ∂θ (see 2.10(3)(f)) and the definition of apy(q) in �2(e) of

2.10(3).

Let α = αy(q), so α < γy and

|apy(q)|= |{s : q ≤ap
κ s and suppκ(q, s)⊆ supθ(pαy(q), q)}|≤|suppθ(pαy(q), q)|<κ,

but |suppθ(pαy(q), q)| < ∂θ and so, by an assumption of the claim,

|suppθ(pαy(q), q)|<κ < ∂θ, hence we are done.
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Clause (j): Let q∗ ≤y r, so α ≤ β where α := αy(q∗), β := αy(r).

By 2.7(c) we can find a pair (q, p) such that q∗ ≤pr
p,κ q ≤ap

p,κ r, q∗ ≤ap
p,κ p ≤pr

p,κ r,

r = p ∪ q. Now check.

(2) Let Q′′ = {p : pα∗ ≤ap
θ p}. So clearly Q′′ ⊆ Qy and then

(∀p ∈ Qy)(∃q ∈ Q′′)[p ≤y q], by clause (f) of Claim 2.7, i.e., Q′′ is a dense

subset of Qy (by ≤Qy=≤Qp� Qy). Really q1 ∈ Q′′ ∧ q1 ≤ q2 ∈ Qy ⇒ q2 ∈ Q′′

by 2.11(2).

Suppose I is a dense open subset of Qy, so I1 := I ∩Q′′ is dense in Qy.

Let G be a subset of Q generic overV such that pα∗ belongs to it. If I∩G �= ∅
we are done, otherwise some q1 ∈ G is incompatible (in Q) with every q ∈ I.
As G is directed, there is q2 ∈ G such that pα∗ ≤ q2 ∧ q1 ≤ q2. As pα∗ ≤ q2,

by clause (c) of Claim 2.7 there is a r2 ∈ Q such that pα∗ ≤ap
θ r2 ≤pr

θ q2. So

r2 ∈ Q′′, hence by the assumption on I there is r3 ∈ I such that r2 ≤ r3. Now

as r3 ∈ I, necessarily pα∗ ≤ap
θ r3 and, of course, pα∗ ≤ r2 ≤ r3, hence by clause

(k) of Claim 2.7 we have r2 ≤ap
θ r3. Recalling r2 ≤pr

κ q2 it follows by clause (f)

of 2.7 that there is q3 ∈ Q such that q2 ≤ q3 ∧ r3 ≤ q3, hence q3 � “G
˜
∩ I �= ∅”

and q1 ≤ q3, contradicting the choice of q1. 2.12

Claim 2.13: If κ ∈ Θ\{μ}, θ = min(Θ\κ+) and θ = μ ⇒ ∂θ < μ and

(∀α < ∂θ)[|α|<∂κ < ∂θ] and ξ < ∂θ, σ < ∂θ then �Qp “∂+
θ → (ξ, (ξ; ξ)σ)

2”.

Proof. Let σ < ∂θ and ξ < ∂θ and we shall prove �Qp “∂+
θ → (ξ, (ξ; ξ)σ)

2”.

Toward this assume c
˜
is a Qp-name and q∗ ∈ Qp forces that c

˜
is a function

from [∂+
θ ]2 to 1 + σ. Now we shall apply Claim 2.8(4) with θ here standing for

κ there. We choose (pi, ui) by induction on i < ∂+
θ such that:

�1 (a) pi ∈ Qp is ≤pr
θ -increasing continuous with i and p0 = q∗,

(b) for every i < j < ∂+
θ the set Ii,j is predense above pj+1 where

Ii,j = {r : pj+1 ≤ap
θ r and r forces a value to c

˜
{i, j}},

(c) moreover, Ii,j has a subset I ′
i,j of cardinality ≤ ∂θ which is pre-

dense over pj+1,

(d) ui is ⊆-increasing continuous and ui ⊆ ∪{α/Eκ : α ∈ Dom(pi)}
and |ui| ≤ ∂θ for i < ∂+

θ ,

(e) α ∈ ui ⇒ (α/Eκ) ⊆ ui,

(f) q ∈ I ′
i,j ⇒ suppκ(pj+1, q) ⊆ uj+1.

[Why is this possible? For i = 0 let p0 = q∗, for i limit let ui =
⋃{uj : j < i}

and i < ∂+
θ , and we like to apply 2.8(1) with κ there standing for θ here; so
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if ∂+
θ ≤ ∂θ this is fine, otherwise by 2.4(2)(h) necessarily θ = μ ∧ ∂θ = μ =

2θ, contradicting an assumption. Lastly, if i = ι + 1 then we have to deal

with c
˜
{ζ, ι} for ζ < ι, i.e., with ≤ ∂θ names of ordinals < σ. So we apply

2.8(4) with (pι, ι, 〈c
˜
(j, ι) : j < ι〉, θ) here standing for (p,A, f

˜
, κ) there and get

pi, 〈Ij,ι, I ′
j,ι : j < ι〉 here standing for q, 〈Iq,f

˜
,a, I ′

q,f
˜
,a : a ∈ A〉 there. So the

relevant parts of clauses (a),(b),(c) hold. Define ui as in clauses (d),(e),(f),

possible as |I ′
j,ι| ≤ ∂θ, r ∈ I ′

j,ι ⇒ |suppκ(pi, q)| ≤ ∂κ < ∂θ. So we are done

carrying the induction.]

Let p̄ = 〈pi : i < ∂+
θ 〉 and ū = 〈ui : i < ∂+

θ 〉.
So this will help to translate the problem from the forcing Q to the forcing

Qy.

We define y = (κ, 〈pα : α < ∂+
θ 〉, 〈uα : α < ∂+

θ 〉), so:
�2 y is a reasonable p-parameter.

[Why? Check, see Definition 2.10(2).]

�3 Qy is a (∂+
θ , ∂θ, < ∂θ)-forcing.

[Why? By Claim 2.12(1).]

Now for i < j < ∂+
θ :

(∗) (a) Ii,j is predense in Qy,

(b) if q1, q2 ∈ Ii,j or just ∈ Qy, then q1, q2 are compatible in Qp iff

they are compatible in Qy.

[Why? The first clause (a) holds by our definitions. For the second clause

(b), assume q1, q2 ∈ Qy. If they are compatible in Qy, then clearly they are

compatible in Qp. To show the other direction, let q be q1∪q2. If q ∈ Qy we are

done, since q1, q2 ≤y q. So let us prove that q ∈ Qy. Denote α1 = αy(q1), α2 =

αy(q2) and, without loss of generality, α1 ≤ α2. So pα1 ≤ap
θ q1, pα2 ≤ap

θ q2

and also pα1 ≤pr
θ pα2 , and it follows from 2.7(f)(δ) that pα2 ≤ap

θ q. Moreover,

suppθ(pα2 , q) ⊆ suppθ(pα1 , q1) ∪ suppθ(pα2 , q2) ⊆ uα1 ∪ uα2 = uα2 . Together,

q ∈ Qy and we are done.]

So we can define a Qy-name c
˜
′ as follows: for q ∈ Qy

q �Qy “c
˜
′{i, j} = t” iff q �Qp “c

˜
{i, j} = t”.

So by (∗)
�Qy “c

˜
′ : [∂+

θ ]2 → σ”.
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Now by Claim 1.4, for some Qy-name and a sequence 〈α
˜
ε, β
˜
ε : ε < ξ〉 we have

�Qy “the sequence 〈α
˜
ε, β
˜
ε : ε < ξ〉 is as required in Definition 0.3

(for ∂+
θ → (ξ, (ξ; ξ)σ)

2)”.

So for each ε < ξ there is a maximal antichain Jε of Qy of elements forcing a

value to (α
˜
ε, β
˜
ε) by Qy.

But Qy satisfies the ∂+
θ -c.c., so |Jε| ≤ ∂θ hence, for some α∗ < ∂+

θ we have:

(∗) Jε ⊆ {q : (∃α ≤ α∗)(pα ≤ap
Q q)} for any ε < ξ.

Recall that (by 2.12)

(∗) pα∗ � “G
˜

Q ∩Qy�(α∗+1) is a subset of Qy�(α∗+1) generic over V”,

so we are done. 2.13

Remark 2.14: (1) We can replace the exponent 2 by n ≥ 2, so getting suitable

polarized partition relations; we intend to continue elsewhere.

(2) For exact such results provable in ZFC, see [EHMR84] and [Sh:95].

3. Simultaneous partition relations and general topology

Recall (to simplify results we define hL+(X) > λ > cf(λ) using an elaborate

definition for regulars)

Definition 3.1: Let X be a topological space:

(a) the density of X is:

d(X) = min{|S| : S ⊆ X and S is dense in X},
(b) the hereditary density of X is:

hd(X) = sup{λ : X has a subspace of density ≥ λ},
(c) hd+(X) = ĥd(X) = sup{λ+ : X has a subspace of density ≥ λ},
(d) X is not λ-Lindelof if there is a family {Uα : α < λ} of open susets of

X whose union is X but w ⊆ λ ∧ |w| < λ ⇒ ⋃{Uα : α ∈ w} �= X ,

(e) the hereditarily Lindelof number of X is:

hL(X) = ĥL(X) = sup{λ : there are xα ∈ X and Uα ∈ open(X)

for α < λ, such that xα ∈ Uα and α < β ⇒ xβ /∈ Uα},
(f) hL+(X) = sup{λ+: there are xα ∈ X,Uα for α < λ as above},
(g) the spread of X is s(X) = sup{λ : X has a discrete subset with λ

points}; s+(X) = ŝ(X) = sup{λ+ : X has a discrete subspace with λ

points}.
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Our starting point was the following problem (0.1) of Juhasz–Shelah

[JuSh:899].

Problem 3.2: Assume ℵ1 < λ < 2ℵ0 . Does there exist a hereditarily Lindelof

Hausdorff regular space of density λ?

We answer negatively by a consistency result, but then look again at related

problems on hereditary density, Lindelofness and spread; our main theorem is

3.10 getting consistency for all cardinals.

We also try to clarify the relationships of this and related partition relations

to χ → [θ]22κ,2, recalling that by [Sh:276], consistently, e.g., 2ℵ0 → [ℵ1]
2
n,2 for

n < ω. Now, see 3.13 below, 2ℵ0 → [ℵ1]2n,2 implies 2ℵ0 → (ℵ1, (ℵ1;ℵ1)n)
2

and by 3.14 it implies γ < ℵ1 ⇒ 2ℵ0 → (γ)2n; see on the consistency of this

Baumgartner-Hajnal in [BH73], and Galvin in [Gal75].

On cardinal invariants in general topology, in particular, s(X),hd(X),hL(X);

see Juhasz [Juh80]. In particular, recall the obvious

Observation 3.3: For a Hausdorff topological space X :

(a) hL(X) ≥ s(X),

(b) hd(X) ≥ s(X),

(c) for λ regular, X is hereditarily λ-Lindelof (i.e., every subspace is λ-

Lindelof) iff there is xα ∈ X,Uα for α < λ as in (e) of Definition 3.1,

(d) we choose the second statement in (c) as the definition of “X is hered-

itarily λ-Lindelof”, in which case 3.7 and 3.9 hold also for λ singular.

Conclusion 3.4: Assume λ = λ<λ < μ = μ<μ and G.C.H. holds in [λ, μ], so

λ ≤ θ = cf(θ) ≤ μ ⇒ θ = θ<θ and {λ, μ} ⊆ Θ ⊆ Reg ∩ [λ, μ] and, for θ ∈ Θ,

we let ∂θ = θ and let p = (λ, μ,Θ, 〈∂θ : θ ∈ Θ〉). Then
(a) p is as required in Hypothesis 2.1,

(b) the forcing notion Qp satisfies:

(α) Qp is of cardinality μ,

(β) Qp is (< λ)-complete (hence no new sequence of length < λ is

added),

(γ) no cardinal is collapsed, no cofinality is changed,

(δ) in VQp we have λ = λ<λ, 2λ = μ and χ /∈ [λ, μ) ⇒ 2χ = (2χ)V,

(ε) if κ < θ are successive members of Θ and θ is not a successor of

singular (or just θ = χ+ ⇒ χ<κ = χ) then λ → (ξ, (ξ; ξ)σ)
2 for

any ξ, σ < θ.

Sh:918



Vol. 191, 2012 MANY PARTITION RELATIONS BELOW DENSITY 537

Proof. By 2.9 and 2.13. 3.4

The topological consequences from 3.4 in 3.5 hold by 3.7 and 3.9 below, that

is

Conclusion 3.5: We can add in 3.4 that

(b)(ζ) if θ ∈ [λ, μ)∩Θ is the successor of the regular κ, then for any Hausdorff

regular topological space X we have hd(X) ≥ θ+ ⇒ s+(X) ≥ θ and

also hL(X) ≥ θ+ ⇒ s+(X) ≥ θ, so recalling θ = κ+ we have hd(X) ≥
θ+ ⇒ hL(X) ≥ s(X) ≥ κ, hL(X) ≥ θ+ ⇒ hd(X) ≥ s(X) ≥ κ,

(η) if θ ∈ (λ, μ] is a limit cardinal, then hd(X) ≥ θ∨ hL(X) ≥ θ ⇒ s(X) ≥
θ.

Observation 3.6: (1) If λ1 → (ξ1; ξ1)
2
κ1

and λ2 ≥ λ1, ξ2 ≤ ξ1, κ2 ≤ κ1

then λ2 → (ξ2; ξ2)
2
κ2
.

(1A) Similarly for λ → (ξ, (ξ; ξ)κ)
2.

(2) If λ → (ξ, (ξ; ξ)κ)
2 then λ → (ξ; ξ)21+κ.

(3) λ → (ξ + ξ; ξ + ξ)2κ implies (λ, λ) → (ξ, ξ)1,1κ , the polarized partition.

Claim 3.7: X has a discrete subspace of size μ, i.e., s+(X) > μ (hence is not

hereditarily μ-Lindelof) when :

(a) λ → (μ, (μ;μ))2,

(b) X is a Hausdorff; moreover, a regular (= T3) topological space,

(c) X has a subspace of density ≥ λ.

Remark 3.8: The proofs of 3.7 and 3.9 are similar to older proofs.

Proof. X has a subspace Y with density ≥ λ, by clause (c) of the assumption.

We choose xα, Cα by induction on α < λ such that

� (α) xα ∈ Y ,

(β) Cα = the closure of {xβ : β < α},
(γ) xα /∈ Cα.

This is possible as Y has density ≥ λ.

Let u1
α be an open neighborhood of xα disjoint to Cα.

Let u2
α be an open neighborhood of xα whose closure, c(u2

α), is ⊆ u1
α. Why

does it exist? As X is a regular (= T3) space.

We define c : [λ]2 → {0, 1} as follows:

(∗) if α < β then c{α, β} = 1 iff xβ ∈ u2
α.
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By the assumption λ → (μ, (μ;μ))2 at least one of the following cases occurs.

Case 1: There is an increasing sequence 〈αε : ε < μ〉 of ordinals < λ such that

ε < ζ < μ ⇒ c{αε, αζ} = 0.

This means that ε < ζ < μ ⇒ xαζ
/∈ u2

αε
. But if ε < ζ < μ, then u2

αζ

is an open neighborhood of xαζ
included in u1

αζ
which is disjoint to Cαζ

and

xαε ∈ Cαζ
, so xαε /∈ u2

αζ
.

Lastly, xαε ∈ u2
αε

by the choice of u2
αε
. Together we are done, i.e.,

〈(xαε , u
2
αε
) : ε < μ〉 is as required.

Case 2: There is a sequence 〈(αε, βε) : ε < μ〉 such that:

(∗)1 ε < ζ < μ ⇒ αε < βε < αζ < λ,

(∗)2 ε < ζ ⇒ c{αε, βζ} = 1; really ε ≤ ζ suffices.

So

(∗)3 ε < ζ ⇒ xβζ
∈ u2

αε
,

but now for every ε < μ let

(∗)4 yε := xβ2ε and u3
ε := u2

β2ε
\c(u2

α2ε+1
).

So

(a) u3
ε = u2

β2ε
\c(u2

α2ε+1
) is open (as open minus closed),

(b) yε ∈ u3
ε.

[Why? Recall yε = xβ2ε belongs to u2
β2ε

(by the choice of u2
β2ε

) and not to u1
α2ε+1

(as u1
α2ε+1

is disjoint to Cα2ε+1 while xβ2ε ∈ Cα2ε+1), hence not to c(u2
α2ε+1

),

being a subset of u1
α2ε+1

. Together yε belongs to u2
β2ε

\c(u2
α2ε+1

) = u3
ε.]

(c) If ε < ζ < μ then yζ /∈ u3
ε.

[Why? Now yζ = xβ2ζ
belongs to u2

α2ε+1
by (∗)3 as 2ε+ 1 < 2ζ, which follows

from ε < ζ, hence yζ belongs to c(u2
α2ε+1

), hence yζ /∈ u3
ε by the definition of

u3
ε.]

(d) If ζ < ε < μ then yζ /∈ u3
ε.

[Why? As u3
ε ⊆ u2

β2ε
and the latter is disjoint to Cβ2ε , to which xβ2ζ

= yζ

belongs.]

Together 〈(yε, u3
ε) : ε < μ〉 exemplifies that we are done. 3.7

Claim 3.9: X has a discrete subspace of size μ when:

(a) λ → (μ, (μ;μ))2,

(b) X is a Hausdorff; moreover, a regular (= T3) topological space,
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(c) hL+(X) > λ, i.e., if λ is a regular cardinal this means that X is not

hereditarily λ-Lindelof.

Proof. Similar to 3.7. We choose 〈(xα, u
1
α) : α < λ〉 such that u1

α is an open

subset of X, xα ∈ u1
α and u1

α ∩ {xβ : β ∈ (α, λ)} = ∅. We can choose them

as hL+(X) > λ. We then choose an open neighborhood u2
α of xα such that

c(u2
α) ⊆ u1

α. We then define c : [λ]2 → {0, 1} as follows:

(∗) if α < β then c{α, β} = 1 iff xα ∈ u2
β.

We continue as in the proof of 3.7, but now, in Case 2,

(∗)′3 ε < ζ ⇒ xαε ∈ u2
βζ
,

and let

(∗)′4 yε := xα2ε , u
3
ε := u2

α2ε
\c(u2

β2ε+1
). 3.9

Now we come to our main result.

Theorem 3.10 (The Main Theorem): It is consistent (using no large cardinals)

that:

(∗) (α) 2μ is μ+ if μ is strong limit singular and always 2μ is the successor

of a singular cardinal,

(β) for every μ we have μ ≤ χ < 2μ ⇒ 2χ = 2μ,

(γ) hd(X) ≥ θ ⇔ hL(X) ≥ θ ⇔ s(X) ≥ θ for any limit cardinal θ and

Hausdorff regular (= T3) topological space X ,

(δ) hd(X) ≤ s(X)+3 and hL(X) ≤ s(X)+3 for any Hausdorff regular

(= T3) topological space,

(ε) in (δ) we can replace s(X)+3 by s(X)+2, except when 2s(X) is

regular,

(ζ) in particular, if X is a (Hausdorff regular topological space which

is) Lindelof or of countable density or just s(X) = ℵ0 then

hd(X) + hL(X) ≤ ℵ2,

(η) if X is a Hausdorff space6 then |X | < 2(hd(X)+),

(θ) if X is a Hausdorff space then w(X) ≤ 2(hL(X)+),

(ι) if 2μ > μ+ then μ++ → (ξ, (ξ; ξ)μ)
2 for ξ < μ+.

Remark 3.11: In Theorem 3.10 above:

6 This is interesting because usually 2χ = 2(χ
+); see clause (α).
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(1) If we use less sharp results in §§1–3, above we should just use (hd(X))+n(∗)

for large enough n(∗).
(2) We may like to improve clause (η) to ≤ 2hd(X). If below we choose με+1

strongly inaccessible (so we need to assume V |= “there are unboundedly many

strong inaccessible cardinals and clause (α) is changed”), nothing is lost; we

have λε+1 = με+1, then we can add

(η)+ for any Hausdorff space X, |X | < 2hd(X) except (possibly) when hd(X)

is strong limit singular.

(3) Similarly of clause (θ) about w(X) ≤ 2hL(X).

(4) Probably using large cardinals we can eliminate also the exceptional

case in (η)+; it seemed that a similar situation is that in Cummings–Shelah

[CuSh:541], but we have not looked into this.

(5) We may wonder whether in clause (ζ) we can replace ℵ2 by ℵ1 and simi-

larly for other cardinals; hopefully see [Sh:F884].

Proof. We can assume V satisfies G.C.H. We choose 〈(λε, με) : ε an ordinal〉
such that:

� (a) λ0 = μ0 = ℵ0,

(b) λε < cf(με+1) < με+1,

(c) λε+1 is the first regular ≥ με+1,

(d) for limit ε we have λε is the first regular cardinal ≥ με :=⋃{λζ : ζ < ε}.

Now let pε=(λε, λε+1,Θε, ∂̄ε), where Θε, ∂̄ε are defined by Θε=Reg∩[λε, λε+1],

∂̄ε = 〈∂ε
θ : θ ∈ Θε〉, ∂ε

θ = θ, so are chosen as in 3.4.

Hence 〈pε : ε an ordinal〉 is a class. We define an Easton support iteration

〈Pε,Q
˜

ε : ε ∈ Ord〉, so ⋃{Pε : ε ∈ Ord} is a class forcing, choosing the Pε-

name Q
˜

ε such that �Pε “Q
˜

ε = Qpε , i.e., Q
˜

ε is defined as in Definition 2.5 for

the parameter pε (in the universe VPε of course)”.

As in VPε , section two is applicable for pε, so in VPε+1 , the conclusions of

3.4 and 3.5 hold and 2λε = λε+1, so cardinal arithmetic should be clear, in

particular, clause (α) holds. Of course, forcing with P∞/Pε+1 does not change

those conclusions as it is λε+1-complete.

In VP∞ we have enough cases of θ+ → (ξ, (ξ; ξ))2, i.e., clause (γ) by 2.13. So,

first, if χ ≥ s(X) belongs to [λε, με+1) and is regular we have χ+2 → (χ; (χ;χ))2
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and hd(X), hL(X) ≤ χ+2. But if s(X) ∈ [λε, με+1) then s(X)+ < με+1

recalling με is singular hence hd(X), hL(X) ≤ s(X)+3 < με+2

Second, if χ = s(X) belongs to no such interval, then χ+ = λε, χ = με >

cf(με) for some ε, hence recalling λε = λ<λε
ε = 2χ (in VP∞) we have the

conclusion. So clause (δ) follows, hence also clauses (γ) and (ε).

Let us deal with clause (η); set χ = hd(X). First, if χ ∈ [λε, με+1) we get

hL(X) ≤ χ+3 < με+1, hence |X | ≤ 2χ
+3

= 2χ by the classical inequality of

de-Groot (|X | ≤ 2hL(X); see [Juh80]). Second, if χ belongs to no such interval,

then χ = με ∧ χ+ = λε, 2
με = 2χ for some ε. So |X | ≤ 22

hL(X) ≤ 22
χ

= 2χ
+

as

required.

Clause (θ) is proved similar. 3.10

Theorem 3.12: If in V there is a class of (strongly) inaccessible cardinals,

then in some forcing extension:

(∗) (α) 2μ is μ+ when μ is a strong limit singular cardinal and is a weakly

inaccessible cardinal otherwise,

(∗) (β)− (ι) as in Theorem 3.10.

Proof. As in the proof of Theorem 3.10.

Claim 3.13: Assume χ→ [θ]22κ,2, where κ ≥ 2, χ ≤ 2λ and λ=λ<λ<θ=cf(θ).

Then χ → (θ, (θ; θ)κ)
2.

Proof. Let c : [χ]2 → κ be given.

Let ηα ∈ λ2 for α < χ be pairwise distinct. We define d : [χ]2 → 2κ by:

for α < β < χ let d{α, β} be 2ε +  when c{α, β} = ε and  = 1 iff  �= 0

iff ηα <lex ηβ (i.e., ηα(g(ηα ∩ ηβ)) < ηβ(g(ηα ∩ ηβ)). As we are assuming

χ → [θ]22κ,2 there is U ∈ [χ]θ such that Rang(d � [U ]2) has≤ 2 members; without

loss of generality otp(U) = θ. If the number of members of Rang(d � [U ]2) is one
we are done, so assume it is {2ε0+ 0, 2ε1 + 1} where ε0, ε1 < κ and 0, 1 < 2.

But we cannot have 1 = 2 by the Sierpinski coloring properties as θ > λ,

hence without loss of generality 0 = 0, 1 = 1. If ε0 = ε1 = 0 we are done,

as then Case (c)0 of Definition 0.2(2) holds, so assume  ∈ {0, 1} ⇒ ε
 �= 0.

Let Λ = {η ∈ λ>2 : for θ ordinals α ∈ U we have η � ηα}. Now Λ has two

�-incomparable members (otherwise we get a contradiction by cf(θ) > λ), say

ν0, ν1 ∈ Λ are �-incomparable, and without loss of generality ν0 <lex ν1.

So
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(∗) if ν0 � ηα and ν1 � ηβ and α < β, then c{α, β} = ε0,

(∗) if ν1 � ηα, ν0 � ηα and α < β, then c{α, β} = ε1.

As θ is regular and otp(U) = θ, we can choose αε, βε by induction on ε < θ

such that:

� (a) αε ∈ U and αε > sup{βζ : ζ < ε},
(b) ν0 < ηαε ,

(c) βε ∈ U is > αε,

(d) ν1 � ηβα .

So Case (c)1 of Definition 0.2(2) holds. We are done. 3.13

We can note also

Claim 3.14: Assume λ = λ<λ < cf(θ) and χ ≤ 2λ and χ → [θ]22κ,2. Then for

every ordinal γ < λ+ we have χ → (γ)2κ.

Proof. Without loss of generality κ ≥ 2.

So let c : [χ]2 → κ. Choose 〈ηα : α < χ〉 and d as in the proof of 3.13, and

let U ⊆ χ of order type θ and {2ε0, 2ε1 + 1} be as there, so ε0, ε1 < κ.

As {ηα : α ∈ U} is a subset of λ>2 of cardinality θ > λ = λ<λ, clearly

(e.g., prove by induction on γ < λ+ that) for every such U there is U ′ ⊆ U of

order type γ such that 〈ηα : α ∈ U ′〉 is <lex-increasing. So U ′ is as required,

i.e., c � [{ηα : α ∈ U ′}]2 is constantly ε0 (of course also ε1 is O.K. if we use

<lex-decreasing sequence). 3.14

Remark 3.15: If we use versions of χ → [θ]2κ,2 with privilege positions for the

value 0, we can get corresponding better results in 3.13 and 3.14.
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