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ABSTRACT 

Correct proofs are given for Theorem 3 and the Propositions of §§5, 6 of [4]. For 
the latter, we must modify the principle (S)" in a technical way. We prove a 
weaker version of Theorem 2, where [] is replaced by the stronger hypothesis 
Pr~ r 

The burden of this note is to acknowledge and correct errors in [4] which were 

pointed out by Velleman in his review [7]. We are grateful to the referee for 

many helpful suggestions which spared all of us a Corrigendum 2. 

§1. The most serious error affects "Lemma"  1, "Theorem" 2 and Theorem 

3. The last is in fact true, but "Lemma"  1 of [4] is false (see (1.5) below) and thus 

the "proof"  of "Theorem" 2 of [4] is irreparably false. However,  Shelah has 

recently found a rather different approach to proving analogous results. See, 

below, the Corollary and Theorem 2' of (1.1). 

The difficulty in the "proof"  of "Lemma"  1 in [4] is as follows. We cannot 

prove that CH f f  (BA applies to the partial ordering pC); in fact (see below), we 

conjecture that CH f f  (BA does not apply to any partial ordering Q whose 

regular open algebra is isomorphic to that of pC). 

In the "Lemma"  at the end of §3 it is claimed that pC is K-closed and (though 

this terminology is not used in the Lemma) well-met. Reference is made to [5] 

for proofs. 
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pC is a slightly simpler version of the partial ordering considered in [5], §1.4, 

where it is proved that the latter partial ordering is well-met (again, this 

terminology is not used)and ( <  K,~)-distributive (the proof actually proves K- 
strategic-closure). These proofs go over for pC, but pC is not K-Closed. 

Suppose p(a)= (s(a), w(a), u(a))is an increasing sequence, where a < 0 < 

K, 0 limit. Let 7(a)=maxs(a) ,  let y =  U { y ( a ) : a < O } ,  and suppose y >  

y ( a )  for all a < 0 .  Let §=U{s (a ) :a<O} ,  ~ ,=U{w(a ) :a<O} ,  fi= 
U { u ( a ) : a  < 0}. Then, (Vv ~ range •) y C B,.. 

However, it may be that {A~, : v E range a} is not linearly ordered by _E~, in 

which case (g, ff, tT) cannot be extended to a condition. The problem arises if 
there is {v, v'}E [range if]2 such that the following are both cofinal in y: 

v,  oAo, }, 

V2 = {a E g" A,,,,A,,,,E &(a)^ A,,,,, ~ fi,,,,}, 

i.e., if the v-branch and the ~,'-branch intertwine cofinally beneath 3'. In [5], this 

is prevented by guaranteeing, at even a, that if v ,v 'Grange  u(a), v < v ' ~  
v G X~°),,,. 

In fact, this requirement can be built into pC, i.e., by requiring in the definition 
of pC : 

(iv) let 7 = maxs ;  then (u,u'Erangeu ^ v< v ' ) ~  u~X,,,,. 
With this change, pC becomes K-closed. Alas, it is no longer well-met (nor 

even neatly K+-normal), since now (s, w, u LI u') will not be a condition, since (iv) 

will fail. It can be extended to one, but not to a least one. Thus, the "proof" that, 

under CH, BA applies to pC collapses and with it the "proof" of "Lemma"  1. 
A situation similar to this obtains for the countable conditions P for forcing 

[5]~, (see [3], (4.1)-(4.7), or [6], I, §3). In this context Velleman proved the 
following (II.4.2) of [6]: 

THEOREM (CH). R.O.(Q) ~ R.O.(P) ~ Q countably closed ~ Q ill met. 

CONJECTURE (CH). R.O.(Q) ~ R.O.(P c) ~ Q countably closed ~ Q ill met. 
See also (1.5), below. 

(1.1) The correct proof of Theorem 3 and an analogue of Theorem 2 of [4] is 

as follows. For regular uncountable K, we introduce three principles: 

Pr~: (::IA C_ K) (K + = (K+)Llal), 

Pr~: (::IA C_ K +) (V6) (K < 6 < ~+ f f  L[A N 6]l="card 6 = K"), 

Pr]: (:IA _C K+)({8 :K < 5 < K÷^ L[A N 511="5 is regular"} is non-stationary. 
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We easily prove: 

P r~>  Pr~; PROPOSITION. (a) " c 

(b) If  K + is not (Mahlo)  L then Pr]. 

PROOF. The left-to-right implication of (a) is obvious. For the other implica- 

tion, use the obvious pressing-down function provided by Pr~ to pack in 

well-orderings of K of the appropriate order types. Taking A = Q, (b) is clear. 

We shall prove, below: 

LEMMA. K <" = K A BA,  t, 2" > K + A Pr"~ f f  Pr~. 

This has the immediate corollary, taking K = N,: 

COROLLARY. B A C H + 2 " ' > N 2 + I ' I 2  is not ( Mahlo )L ~ 3(N,,1)  morasses. 

PROOF OF COROLLARY. By the Proposition and the Lemma, the hypotheses 

yield Pr;,,. As was argued in [3], Pr~,, ~ 3(•,, 1) morasses, since clearly, in Pr~,,, A 

can be chosen so that 1~, LIAI= I,¢~, as well. 

Now the above Corollary replaces "Lemma"  1 of [4]. We have the following 

analogue of "Theorem" 2 of [4]. 

THEOREM 2'. C H + 2  N ' > b t ~ +  b 'S _ Pr,,, + BA :ff there an l~2-super-Souslin tree 

and thus (viz. (2.3) of [3])~SH,,~. 

Then the proof of Theorem 3 of [4] goes through with the Corollary and 

Theorem 2' in place of "Lemma"  1 and "Theorem" 2 of [4]. We prove the above 

Lemma in (1.2), (1.3). 

(1.2) Let A C_ K + witness Pr",. For 6 < K +, let M~ = L [ A  N 6]. Note that 

M ~ c a r d 3  =< K. Now define (A¢ :~ < K +) by recursion as follows: given 

(A~'~: < 6), let A~ be the < Ms-least element of [K]~ f3 M~ which is almost 

disjoint from the A¢ and non-stationary in the sense of M~. To see that A~ is 

defined, first note that the definition of (A¢" ~: < 6) can be carried out in M~, so 

this sequence lies in M~, and in M~ each A¢ is non-stationary. But then, since 

M~ ~card  6 =< K, we can, in M~, take the diagonal intersection, C, of a sequence 

of club subsets, G (which avoids A¢), ~ <  6, and we take A~- -any  non- 

stationary subset of C of power K. 

Having defined .d = (A¢ '~  < K+), in (1.3), below, we shall define a partial 

ordering P(A),  which will be K-closed, well-met and, assuming K <~= K, 

K-linked, so that BA,, the version of BA, for K, applies to P (* ) .  P(fi=) is a 

variant of the almost-disjoint set coding of A, using * as the almost disjoint 
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family. A twist is that the "yes" part of the condition is required to have a 

co-initial segment of fewer than K many A~ and to have additional information 

of size < K, SO that P(fi, ) is really an almost-inclusion coding. It will then be fairly 

routine to show, in (1.4) below, that: 

LEMMA. There are K + dense subsets of P(fi, ) which, if met, yield X C_ K such 

that A, A C L[X].  

The Lemma of (1.1) is then clear: the set X of the above Lemma witnesses 

Pr~,,. 

(1.3) We now define P(fi,). 

DEFINITION. f E P(fi~ ) ¢:> f : d o m f ~  2, d o m f  C_ K and there's W E [K+] <* s.t.: 

(a) (V~ E W)(a  E A  ^ (::1i E K ) ( V i < j < K ) ( j E A , ~  ~ j U d o m f ^ f ( j ) =  1)). 

(b) d o t a l \  U {A, :o~ E W} has power < K. 

For f, g E P(fi, ), set [ _-< g iff [ C_ g. P(fi, ) = (P(,£.), =< ). 

REMARKS. (1) U E W ~ A ~ \ d o m f  has power < K. 

(2) f-'[{0}] has power < K, 

(3) W is uniquely determined by (a), (b), 

(4) (O E [P(,4)] <" ^ tO O is a function) ~ tO O E P ( ~ ) .  

Remark (4) immediately yields: 

PROPOSITION. P(,~) is K-closed and well-met; further, if f-'[{0}] = g-~[{0}] 

then f, g are compatible. 

COROLLARY (K <* = K). P(fi~) is K-linked. 

PROOF. Enumerate [K] <K as (a~ :i < K); then set P~ = Po, = {f E P : f-~[{0}] = 

a~}. Note that, in fact, P(A)  is (K,K) centered. 

We now complete the proof of the Lemma of (1.2). For o~ < K +, ~ < K, let 

D~.~ = {f E P(/~ ) : (::lsr E A~ \ ~¢)f(~') = 0}, if ot ~ A ; otherwise, let 

D~.e = D~ = {f E P ( A )  : f-t[{1}] includes a final segment of A,,}. 

Clearly, each D~.~ is dense, in either case. 

Now suppose G is an ideal in P(,,~) meeting all the D~.e Let F = U G, and let 

X = F-'[{1}] (so X C_ K). Then clearly: 

(!) ot E A  ¢:> A,  C_*X (i.e. ca rd (A, , \X)<  K). 

Thus, a ~ L [ X , A  ]. 

We now claim that * E L[X].  To see this, simply note that the recursive 

definition of * can be carried out in L[X] :  given (Ae :~ < 6), use X to read off 
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A n& let M, = L [ A  ns], and then define A, from ( A , : ~ < 8 )  and M~ as 

above in (1.2). Thus, A E L[X,  fi~] = L[X] ,  so X witnesses Pr~,.. So, the proof of 

the Lemma of (1.2) and, therefore, the proof of the Lemma of (1.1), is complete. 

(1.4) We should point out the limitations to the methods of (1.1)-(1.3). 

LEMMA. I f  tO < r < A, A is (strongly) Mahlo, r regular, then there's K-closed, 
A-c.c. P s.t., in V r, 2 K = A +, BA, holds, but Prb~ fails. 

PROOF (Sketch). Let P0 = P~ be the L6vy collapse of A to become r ÷, let 

fJ~ = f~ E V Po be the natural length A ÷ iteration to make BAr true. It suffices 

then to show that in V Po'o,, Pr~ fails. By way of contradiction, suppose 

A E ~ ( K ) n  V Po'~ witnesses Pr~. But then for some (strongly) inaccessible 

) t ' <  A, the whole situation is reflected at A'; i.e. 

A E V P~'×A, and there witnesses Pr]; 

here 1~ is an initial segment of the length (A')+ iteration, f~' for BAr in V P~'. 

The main point is that the "evidence" for the chain condition of the Q~'s (in 

the iteration for f~) is very explicit and can therefore be reflected to suitable A'; 

further, for suitable A', P~*P~---P~'*F'~'*0, for some P~'*f~'-name 0 for a 

partial ordering. 

But then L [ A  ] C_ V e~'×i and in V e~''a, A is still Mahlo, so A cannot witness Pr~ 

in V P°'~,. 

In a similar fashion, we obtain: 

LEMMA. If  tO < K < A, A weakly compact, r regular, then there's K-closed 

A-c.c. P s.t. in V r, 2 K = A +, (S)K (the version for K of the principle (S) of [4]) holds 
but Pr b fails. 

(1.5) Of course, as was known quite early to Jensen, [1], Pr b ~ D,. However, 

as we shall now show: 

PROPOSITION. BACH + 2"' > N2 + Fin, # P b rMl. 

Before proving the Proposition, we note that this shows that "Lemma"  1 of [4] 

is in fact false. In an early version of this paper, we had claimed a result 

analogous to the Proposition, for arbitrary regular r in place of Mr, and without 

assuming r <~= r, but with 2 ~=  K + in place of BA, + 2 ~ >  r +. The referee 

found problems with the proof we gave, but suggested another for r = N, which, 

as he pointed out, yielded the Proposition as stated. The obstacle to generalizing 

this proof to higher r is that the < K-size conditions for forcing IlK are not 
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K-closed; this affects the strategic-closure property of the tail of the iteration, 

Po*P~, even though appropriate initial segments and the whole iteration are 

strategically-closed. 

PROOF OF PROPOSmON. Let r be a Mahlo cardinal in the ground model, V. 

Let P0 E V be the analogue of the countable conditions for forcing [qN,, viz. [3], 

§4, except that if p = (a, ~) ~ P0, then a is allowed to be a countable subset of r, 

and not required to be in [o~2] No. It is easy to see that forcing with P0 

simultaneously collapses K to become N2 and adds a [-1,,-sequence C'; thus (~ is 

defined on limit ordinals < r = oJ2 of the extension, V~. Over V~, make a further 

extension, by countably-closed conditions, F'~, to make BA + 2 ", > ~2 hold in V2. 

Now by exactly the same arguments as in the first Lemma of (1.4) Pr~, fails in V2. 

§2. The second error discovered by Velleman is less serious. It affects the 

Propositions of §§5, 6. However,  a reformulation of (S)", given below, yields 

correct proofs of these Propositions. It should be noted that, in the absence of 

"Lemma"  1, the Proposition of §5 is needed to conclude that (the reformulation 

of) (S)", together with CH and 2", > N2 implies that there's an M2-super-Souslin 

tree. 

Let us first examine the error in the "proof"  of the Proposition of §6, in order 

to motivate our reformulation of (S)". The difficulty occurs in the (extremely 

sketchy) argument for (c) of (S)", where it was claimed that Rij (t.J riP", t-Jnq n). As 

Velleman pointed out, this would require that d(t.J,p") and d ( O , q  n) have the 

same order type, which is supposed to follow, but doesn't, from the hypothesis 

that for each n, d ( p ' )  and d(q") have the same order type. However,  the desired 

conclusion does follow if the hypotheses are strengthened in the following way: 

(*) for p E P and limit ordinals A < to2, let (O(A)~ : a  < cfA) be a sequence of 

ordinals cofinal in a and let a(p ,A) be the least a such that d ( p ) N  ;t _C O(A)~, if 

there is such, and a (p, A) = cf A if not. If p, q E P and p ~ q, let p ~ "q (p is 

strongly isomorphic to q)  iff whenever ,~ ~ d(p)  is a limit ordinal, cfA = 

cf(f,~(a)) and a ( p , A ) =  a(q,[~(A)). We then require: 

(a) VnRo(p",q"); further, letting rr, :d(p")~d(q") be the order isomor- 

phisms, for all n, 
(b) "Jr. C_ "rr.+,, 

(c) p" ~'q". 

This is the paradigm for our strengthening of (S)"; we are grateful to the referee 

for formulating the notion of ~ and pointing out the necessity of something like 

(c). 
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We shall define, for regular r > to, classes of partial orderings called r -  

elegant. GMA,  (r-elegant)  is that form of GMA which applies to r-elegant 

partial orderings P and collections {D~ :a  < 0} of dense subsets of P, where 

0 < T.  The definition will be in terms of the existence of a system of four-place 
relations on P, (To:i<j ,  i, jES~+), where S~+={a ELimAK+:c fa  = r } .  In 

order to explicate the meaning of the T~i in terms of the relations l~ij of (S)", let 

us accept the paradigm that R,,(r,s) is witnessed by an order-preserving (on 

ordinals) isomorphism ~r from the < r -many  ordinals mentioned by r, all of 

which are smaller than ], to the < r many ordinals mentioned by s, and such that 

7r l i = id I i, 7r(i)= ] and ,r is an "isomorphism" of r and s (as "structures" on 

the sets of ordinals they mention). Then we can think of T~j as meaning: 

(,) T~j(p,p',q,q') ¢::> p < p',q <= q',R,~(p,q), 

Ri~(p',q'), and if ~',~r' witness Rij(p,q), R~j(p',q')then ~"D ~;  further p =Sq 

and p' ~- Sq,. 
This will make it clear that the Propositions of §§5, 6 hold if (S)" is replaced by 

GMA,,  (t~-elegant). We turn, then, to defining the K-elegant partial orderings. 

Let r > to be regular. 

DEFINITION 1. S~+ = {a E Lim tq r + : c f a  = K}. 

DEFINITION 2. P = (P, > ) is K-fine if there exists (T~j : i < j, i,] E S~.), each 

T~ C P '  such that: 

(i) T~j(p,p',q,q') ~ p <p'  ^q <q '  aT~i(p,p,q,q)AT,j(P',p',q',q'), 
(ii) p <-_ p' ~ (3io E S:÷)(Vi, j E S:+\io)(i <= j ~ T~j(p,p',p,p'), 
(iii) To(p,p,q,q)~p,q are compatible. 
(iv) if (p,~ :a  < 0), ( p ' : a  < 0) are increasing where 0 <  r and (Va </3 < 0) 

T~i(p~,,p~,p',,,p'~) then: 

(3p, p' e P)(Va < O)T,i(p~,p,p'~,p' ). 

REMARK 3. It is natural, but not necessary, to also require: 

(a) (T~j(p,p',q,q')^ T~i(p',p",q',q")) ~ T~j(p,p",q,q"), 
(b) (Tij(p,p",q,q")A T~i(p',p",q',q")^ p <--p'^ q <-- q') ~ T~j(p,p',q,q'). 

REMARK 4. P is r-fine ~ P  is r-closed. 

PROOF. This is like the remark, following the definition of (S)", that (a), (c) of 

(S)" imply that P is ~l-closed. 

DEFINITION 5. P is r-elegant if P is r-fine and the T~j also satisfy: 
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(v)if (po : a  < x+), (p'.: a < K+) are sequences from P and (Va < K+)p~ <=p'., 

then (3  club C C K+)(=I regressive g : K+---> K+)(Vi, j E C VI S:+)((i <= j ^ g(i) = 

g(j)) ~ Tq(p,,p',,p,,p)). 

REMARK 6 .  P is K-elegant f f  P is r+-normal.  

PROOF. This is clear from (iii), (v). 

Correct  proofs can now be given for the Propositions of §§5, 6. In what 

follows, "e legan t"  means "Nl-elegant",  " G M A  (elegant)" means GMA,,,ffC]- 

elegant)".  Also, S~ = S".' 2. 

LEMMA 7 (CH). Let P be the Velleman partial order for adjoining a morass. 

Then P is elegant, and there's a collection of N2 dense sets which, if met, guarantee 
the existence of an (Nl,1)-morass. 

PROOF. Let i, j E S~, i <= j. Set T,,(p,p',q,q') Cz> p <= p ', q ~ q', p IN~ = q l~], 

= P'---> S~', such that p']N, q'[~h, S~ICj, and there 's  order-preserving tr :S, , ,  o,,o 

tr [i = idl i, S~ 1 61 j C i, o~(0) = 0, (r(n + 1) - t r (n)  + 1, A E Lim ~ cf h = cf (r(h), 
t! p (r S,,, = S~,. Then Definition 2(i) is clear. For (ii), we take i0 such that S~ I C_ io, so 

for io<-_i<=j, we take g = id[S~ I. (5.7) of [3] gives (iii). 

For (iv), let g.:S~, .+~ .... S,~+* be order-preserving. Then n <-_ m ~ g, C g,,. 
P +1 

Let S =  U .  S;,~ , S ' =  U,s~ i÷ , ,  g -- U , g , ,  so g : S ~ o , , o S '  is order-preserving. 

Let tr = sup S, (r' = supS' ;  for -q E S~ 61 S, let A~ = sup S 61 7/; similarly, for 

n ~ s ~ n  -' ' -  ~' S ,  let ) t ~ -  sup 61 7/. Let  

s = g u { ~ } u { x . : n ~ s ~ n ~ } ,  s '=g 'u {~ ' }u {x ' . :n~s~61g ' } ;  

then define order-preserving g : S  ~ .... S', by g IS = ~; g(tr)  = tr', g(A,)  = A~-(n ). 

Let p,p' be the upper  bounds for {p. :n  <to},  {p',:n <to}  respectively, con- 

structed in (5•9) of [3]. Then for all n, g witnesses that Tq(p,,p,p'.,p'). 

For Definition 5(v) we let C = {j < toz : i < j ~ S~I _C j}, and l~t g : to2--~ to2 be 

• S ~ ~' tqj, regressive such that ( i < j ,  i, j E S ~ t q C ^ g ( i ) = g ( j ) ) ~  ~',61i=SN, 

' " = ~' o . t .S£ i-- o.t .  S";, p, I~1 p, IN,, p ' , /~ ,  pil~, S~) n i = S~:/'1 j, o.t. S,,, o.t. S,,,, ,, = = ' 

and for all se < o.t. S~' 1 all s r < o.t. S~i , " the seth e lement  S~', = the ~'th-element of 
S p ' , ,  N; iff " the  seth e lement  of S pj = the ( t h  r , ,  ., e lement  of S N, . Then g is as required• 

COROLLARY 8. CH + 2 ~' > ~ + G M A  (elegant) ~ there exist ~z-Souslin 
trees• 

PROOF• By L e m m a  7, and (2.16) of [3]• 

LEMMA 9. Let P be admissible (viz §6 of [4]). Then, assuming CH, P is 

elegant. Thus CH + G M A  (elegant) ~ G M A . ,  (admissible). 
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PROOF. We shall content ourselves with giving the definition of the T,j; with 

these changes the proofs of the Propositions of §6 yield the Lemma. So let 

Tij (p, q, p', q ') iff p <-_ p ', q <<- q', d (p') f3 002 C_ j, d ( q') tq ] C_ i, p ' ~- ,u~p,)nd~q,))q ', 

P ~-,u~dtp)na~q)~q, f~ = fp'q'l d(p),  and p ~s q, p,_~s q,. In fact, the formulation of 

r-elegant  and G M A ,  (r-elegant)  were known to us, except for the requirement 

of ~s,  but we were " tempted"  by the somewhat simpler formulation of (S)". 

To conclude, we sketch a relative consistency proof for CH + 2", > 1,12 + G M A  

(elegant), following (1.1)-(1.3) of [2]• The proof generalizes to arbitrary regular 

r > 00 (as do the proofs of Lemmas 7 and 9, and, if r is a successor cardinal, 

Corollary 8). 

LEMMA 10. For all 8, if  (P~ : ce <-_ 8), (0~ : a < 8) is a countable support 

iteration where P0 = {0} and for ot < 8, II-po "t)~ is elegant",  then P'~ is countably 

closed and X2-normal. 

PROOF. By induction on 8, the case 8 = 0  being clear• By Remark 4, 

(Va < 8)(lI-p~"0, is countably closed"), so P~ is countably-ciosed. By the 

induction hypothesis, for all a < 8, 00, = 00v%, i = 1,2, and S~ = (S~) v'~. 
For a < 8, let ('r~: i,] E s t ,  i <=j) witness that 0o is elegant in V P-. For f E P~, 

let s p ( f ) = t h e  support of f = { a  < 8 : / ( a ) # l o o } .  We now show that P, is 

1,12-normal. Let ~ : i < 002) E ~'~Ps. We define by recursion increasing sequences 

f~ = (fT:n < 00). We set f~ = /o=f~ .  If n > 1, having defined the fT, for each 

< 8, we have: 

I1-,,, (f~'(sc): i < 002)E "~0e- 

Therefore, there's ~ ,  ~ such that: 

II-p, " ~ "  002---> 002 is regressive A ~ C 002 is club A 

(Vi, j E ( ~  f3 S~)((i <= ] ^ ~,~(i) = ~,~(j)) ~ 'r~(fT-'(~),fY(~),fT-'(~),fT(~)))." 

By the induction hypothesis, we may assume each ~ = C~ E V is club C oo2. 

We easily find fT~'>= J7 such that 

• n + l  a n  • 

• sp(fT))(3,  < I I ,g,0) - 

If ~Zsp(fT), let a ~ ( i ) = 0 .  Let C¢= f'l,C~, let { ~ : a < t 0 2 }  enumerate 

O{sp(fT) : i < 002, n < 00}, and let C = h~<~ C~. = {i < 002 :(Va < i)i • Ceo}. We 

easily find c lubE C_ C, and regressive g:t02---->002 such that if i, j E E  N S',, 

g ( i )  = g( j )  and i -< j, then: 

(1) 0 ~<. spf7 f3 {~ : V < i} = O .<.  spf ,  tq {$~ : y < 1}, 

(2) 0 . < .  sp f7 C {~:, : V < ]}, 
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(3) {( "/,n, a e" (i))" n < to , , /<  i} C_ {(,/ ,n,a~,(j))  : n < to , , /< j} .  

We show that for such i,j, {f,": n < to} 13 {f~': n < to} has an upper bound, so that, 

in particular, f~,fj are compatible. 
We define by recursion h[¢  for ¢ =< 8 such that h I~: is an upper bound for 

{f~'[~:n < to} U {f~'[~::n < to}. This is trivial if ~ = tO ~¢, or s c = ~ + 1, where 

~ ( O { s p / ~ : n < t o } A  t O { s p f T : n < t o }  ), so, suppose s ¢ = ~ ' + l ,  where 

f i g  tO{sp/~ ' :n<to}A tO{sp/7:n<to} and that hl~r is an upper bound for 

{f~'l~" : n < to} tO{ f ; l f f :n  < to}. 
For such if, ( :1 ' /< i ) (~ '=£~)  (by (1), (2)), and ( V n < t o )  (a~,( i )= 

o~e"(,j), i , j  ~ Ce,), (a~,(i) = a~(j),i , j  ~ Ce), by properties of C,g. Also, 

(Vn < to) (~" G sp/; '+' A spf~ T M  :z~ h 1~" I1-, "r~(fT(¢),fT+'(C),fT(l~),fT+'(¢))) 

and so by Definition 2(iv) 

(::l/3,/~')h I ~" II-,(Vn < to)('[r~ffT(~'),/~,f~(~'),/~')). 

But then, by Definition 2(i), (iii), (::lr)(Ib~ ~ 0~)^  h ] ~11-~ "~_-> d~,/~ ', so, by 

Definition 2(i), h i s  r I~-~ "~ is an upper bound for {f~(~'): n < to} 13 {fT(~): n 

to}". Set h(~')= ~, and the induction hypotheses are preserved. 

THEOREM 11. Con(ZF) ~ Con(ZFC + CH + 2"~ > N2 + GMA, , (e l egan t ) ) .  

PROOF. Iterate, in length K, forcing with elegant p.o.'s of power < r, where r 

regular > •2, K<~ = K, and every elegant p.o. of power < r is treated r many 

times. This last is possible by the fact that PK is Nz-c.c. by Lemma 10, and 

observing that if ('r,j : i,j E S~2, i <-_ j )  witnesses, in V P-, that 0 is elegant, then for 

some ~ < r ,O ,  f E  VP~, where, in V P , , f : S ~ x  S i x  Q4--~2, f ( i , j , p , p ' , q , q ' ) =  1 iff 

1",s (P,P', q, q') (so that (~£,i:i,j E S~, i <-_ j ) E  VP~). Finally, by an argument totally 

analogous to that of Lemma 1.2 of [2], if ('F,j : i,j ~ S~, i <~ j )  E VP~ and in V ~-, 

(l"q : i , j  E S~,i <-_j) witness that 0 is elegant, then they do in VP~ also, since 

(again by Lemma 10, in VP~) the tail of the iteration, P~.~ is ¢ountably closed and 

N2-normal. 
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