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REGRESSIVE PARTITION RELATIONS 
FOR INFINITE CARDINALS 

ANDRAS HAJNAL, AKIHIRO KANAMORI AND SAHARON SHELAH 

ABSTRACT. The regressive partition relation, which turns out to be important 
in incompleteness phenomena, is completely characterized in the transfinite 
case. This work is related to Schmer! [8], whose characterizations we complete. 

Regressive functions arise naturally in the study of infinite cardinals, from 
Fodor's well-known lemma to contexts involving large cardinals (for example, the 
n-subtle cardinals of Baumgartner [B2]). In Kanamori and McAloon [KM], a 
regressive function version of the theorem of Erdos and Rado [ERJ on canonical 
partitions was miniaturized and shown to be independent of Peano arithmetic. This 
result in turn reverberated to the infinite context to raise new questions; here we 
completely characterize the corresponding partition symbol for infinite cardinals. 
In contrast to the Erdos-Rado Theorem for the ordinary partition symbol, we show 
that these partition relations actually provide a characterization of cardinals in the 
finite Mahlo hierarchy. Thus, just as with the finite miniaturization, an elementary 
combinatorial property leads to a necessary transcendence. Our work confirms some 
speculations in McAloon [M], where an infinitary analogue of the Paris-Harrington 
partition relation is considered. 

After we had already established some characterizations, we became aware of 
the close relationship of this work to the results of Schmerl [SJ. The third author 
then saw how to sharpen the characterization of Schmerl's property as well as ours, 
and this paper is written so as to approach these optimal results most directly. The 
sharpening uses ideas of Todorcevic [TJ who noted that our 3.4 for n = 0 can be 
derived directly from his work. 

In §1, we begin the study of our partition symbol and establish the straight-
forward positive results about Mahlo cardinals. In §2, we develop some technical 
formulations and lemmata. Finally, we apply this work in §3 to establish the opti-
mal results on the necessity of Mahlo cardinals. We discuss the connections with 
Schmerl [SJ at the end. 

We would like to thank Jim Schmerl for several expository suggestions, particu-
larly for providing the statement of 3.3. 

1. Preliminaries. We first formulate the regressive partition symbol: Let X 
be a set of ordinals and n a natural number. If f is a function with domain 
[XJn, we write f(ao, ... , an-d for f( {ao, ... , an-d), with the understanding that 
ao < ... < an-I· Such a function is called regressive iff f(ao, .. ·, an-d < ao 
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whenever ao < ... < a n -1 are all from X and ao > O. There is a natural no-
tion of homogeneity for such a function f: H c::; X is min-homogeneous for f iff 
whenever ao < ... < a n-1 and {3o < ... < {3n-1 are all from H, ao = {3o implies 
f(ao, ... , an-d = f({3o, ... , {3n-d· In other words, f on an n-tuple from H only 
depends on the first element. We write X ~ (I):.'eg iff whenever f on [x]n is 
regressive, there is an H E [XP min-homogeneous for f. 

The following is a simple case of the motivating result of Erdos and Rado [ER] 
on canonical partitions. 

THEOREM l.l. For any nEw, w ~ (w)~eg. 

In Kanamori and McAloon [KM], the following miniaturization of this result is 
shown to be independent of Peano arithmetic: 

(*) For any k, nEw there is an mEw such that m ~ (k )~eg. 

Spurred by these results, we turned to the study of the transfinite case. First, 
we state a simple proposition that relates our symbol to well-known concepts; its 
(b) subsumes 1.1. 

PROPOSITION l.2. (a) IfrJ ~ (I):.'eg and cf(l) > {j, then 71 ~ (1)8' 
(b) rJ ~ (rJ )~eg for every nEw iff rJ ~ (rJ );eg is w or weakly compact. 

PROOF. For (b), that rJ ~ (rJ);eg implies rJ ~ (rJ)~ follows from (a). Conversely, 
there is a direct argument that rJ ~ (rJ)~+l implies rJ ~ (rJ)~eg. Alternatively, the 
standard proof by induction on n using the Tree Property shows that rJ ~ (rJ)~eg 
for every nEw. 

For exponent n = 2, the next result is a simple variation of the Erdos-Rado 
Theorem for the ordinary partition symbol and is the best possible by that theorem 
and 1.2(a). 

THEOREM l.3. (2K)+ ~ (/\:+ + 1);eg' 

PROOF. Suppose that f on [(2K)+]2 is regressive, and let <T be the usual 
corresponding Erdos-Rado tree on (2K) +. That is, a < T {3 iff a < {3 and f ( ~, a) = 
f(~, (3) whenever ~ < T a. Notice that if B is a chain through the tree and {3 and 
13 are two immediate successors of B, then, since (3 and 13 are incomparable, there 
must be a ~ E B such that f(CB) #- f(~, 13). But then this ~ must be the maximum 
point of B; otherwise if ~ <T a E B, then f(~, (3) = f(~, a) = f(~, 13). 

We can now show by induction that every level {j < /\:+ of the tree has cardinality 
::; 2K. The above argument shows that every chain without a maximum point has at 
most one immediate successor, so that any limit level {j < /\:+ must inductively have 
cardinality::; (2K)6 = 2K. For successor {j < /\:+, the above argument shows that 
each a in level {j -1 has at most lal ::; 2K immediate successors since f is regressive, 
so level {j must inductively have cardinality ::; 2K . 2K = 2K. The argument is now 
complete, since level/\:+ must be nonempty, and any element there induces a chain 
corresponding to a /\:+ + 1 length min-homogeneous set. 

Baumgartner has pointed out that 1.2 and 1.3 are special cases of his results on 
canonical partition relations in [BI]. 

To achieve positive relations for exponents n ~ 3, we shall need cardinals in 
the Mahlo hierarchy. Recall that /\: is O-Mahlo iff /\: is strongly inaccessible and 
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REGRESSIVE PARTITION RELATIONS 147 

(n+ l)-Mahlo iff every closed unbounded subset of K, contains an n-Mahlo cardinal. 
For the inductive argument and later correlations, it will be convenient to verify a 
stronger relation: 

THEOREM 1.4. If K, is n-Mahlo, , < K" and X ~ K, is unbounded, then X --+ 

h)~e12. 

PROOF. For n = 0, we can argue as in 1.3 that the corresponding Erdos-Rado 
tree is a K,-tree; that is, every level 8 < K, of the tree has cardinality < K,. Thus, for 
every, < K, there is a chain of length " and we are done. 

Proceeding by induction, suppose now that K, is (n + l)-Mahlo, , < K" X ~ K, 
is unbounded, and f on [Xjn+3 is regressive. Again, let <T be the corresponding 
Erdos-Rado tree on X. That is, a <T (3 iff a < (3 and f(~o, ... , ~n+1' a) = 
f(~o, ... , ~n+1' (3) whenever ~o <T ... <T ~n+1 <T a. Now let h: K, f--+ X be the 
increasing enumeration of X. Since <T can again be seen to be a K,-tree, if rankT 
denotes the corresponding rank function, the set C = {<; < K, I, < <;, hlf <; ~ <;, and 
if rankT(h(~)) < <;, then ~ < <; must be closed unbounded. Let A E C be n-Mahlo. 
Then we can apply the inductive hypothesis to X = {a E X I a <T h(A)} E [Aj>' 
and the function 1 on [Xjn+2 defined by f(~o, ... , ~n+d = f(~o, ... , ~n+1' h(A)) 
to complete this argument. 

It turned out that this result is also observed in a different notation in Schmerl 
[8j. He also noticed that one can go a bit further: If K, is n-Mahlo, mEw, and 
X ~ K, is unbounded, then X --+ (m )~13. 

2. Technicalities. This section is devoted to some technical considerations and 
several lemmata. They serve to isolate the salient features that push through the 
main inductive arguments which establish our characterizations. 

First of all, we formulate a technical hypothesis, due to the third author, which 
we shall preserve throughout the induction in order to obtain the optimal results. 
W (n, X) is the following proposition, where we continue to take X a set of ordinals 
and nEw. 

W(n, X): There is an f: [Xjn+2 --+ wand a g regressive on [Xjn+3 
such that whenever H ~ X is both homogeneous for f (in the usual 
sense) and min-homogeneous for g, then setting !"[Hjn+2 = {k}, 
IHI S; k. 

The particular bound IHI S; k is immaterial. In fact, for any unbounded h: w --+ 
w, W(n, X) is equivalent to the formulation with IHI S; h(k) instead: just renumber 
the range values of f appropriately. Also, note that whenever A is a set such that 
w - A is infinite, then we can require range (f) n A = 0: simply let e: w --+ (w - A) 
be the increasing enumeration and compose f with e. Finally, it is easy to see that 
W (n, X) is a strong negation of our partition symbol: 

PROPOSITION 2.1. W(n,X) implies (X -w) f+ (w)~e13. 

PROOF. Suppose that the pair (1, g) exemplifies W(n, X). For any a ~ w, fix a 
bijection ba : w x a --+ a. Now define h on [X - wjn+3 by 

h(ao, ... , a n+2) = bao(f(all"" a n+2), g(ao, ... , a n+2)), 
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so that h is regressive. If, to the contrary, (X - w) ----> (w )~et3, there would be 
an H E [X - wjW min-homogeneous for h. But then H - {min(H)} is infinite, 
homogeneous for f, and min-homogeneous for g, contradicting the choice of (/, g). 

With respect to the previous proposition and for a future correlation, we note 
that in most cases only final segments matter for our partition symbol. 

PROPOSITION 2.2. If, ~ w andXnTJ -f+ h)~eg, then X -, h)~eg iff(X-TJ)----> 
h)~eg· 

PROOF. Let h exemplify X n TJ -f+ h)~eg. In the nontrivial direction, if f is 
regressive on [X - TJjn, we must find a min-homogeneous set of ordertype ,. First 
define an auxiliary 9 on [Xjn as follows: 

{ 
f(ao, ... , an-d if TJ :::; ao, 

( ) _ h(ao, ... , an-d if an-l < TJ, else, gao, ... ,an-l - . . . 
1 If 1 < ao < ... < ai <TJ :::; ai+l and Z IS even, 
o otherwise. 

9 is regressive, so by hypothesis there is an H E [XP min-homogeneous for g. 
H - TJ -10 by the second clause of g, so H can have at most one element of TJ - 2, 
by the third and fourth clauses of g. Thus, H - TJ still has ordertype, , since , ~ w, 
and is min-homogeneous for f. 

The next several lemmata are preservation results for W(n, X). Similar results 
hold for the negation of our partition symbol and lead to a characterization, but 
the structure of the main inductive arguments needs the preservation of something 
like W(n, X) for obtaining optimal results. 

LEMMA 2.3. SupposeW(n,Xn~) holdsforevery~EX. ThenW(n+1,X) 
holds. 

PROOF. For each ~ E X, let the pair (/(" g(,) exemplify W(n, X n ~). Define 
f on [Xjn+3 by f(ao, ... ,an+2) = fa n +2(ao, ... ,an+d + 1. If 9 on [XjnH is 
analogously defined from the g(,'s then it is straightforward to verify that (/, g) 
exemplifies W(n + 1, X). 

LEMMA 2.4. Suppose X <;;; TJ, where cf( TJ) = wand W (n, X n~) holds for every 
E < TJ· Then W (n, X) holds. 

PROOF. Fix a sequence (Ek IkE w) cofinal in TJ with Eo = 0, and let (/k, gk) 
exemplify W(n, X n Ek) for every k E w. By a remark just before 2.1, we can 
suppose that no natural number of form 38 5t is in the range of any /k. Now define 
f: [Xjn+2 ----> w by 

{ 
fk+l(aO, ... , an+d if ~k :::; ao < ... < an+l < ~k+l' 

f(ao, ... , an+d = for some k, else, 
3i5k where ~k :::; ao < ... < ai < ~k+l :::; ai+l· 

Also, define 9 regressive on [Xjn+3 by 

_ {9k+dao, ... , an+2) if ~k :::; ao < ... < an+2 < Ek+l, 
g(ao, ... , an+2) - for some k, else, 

o otherwise. 
It can now be seen that (/, g) exemplifies W (n, X): If H <;;; X is homogeneous for 
f and has at least n + 3 elements, then the second clause of f insures that there 

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use

Sh:268



REGRESSIVE PARTITION RELATIONS 149 

must be some k such that H ~ [Ck, ck+d. Hence, by definition of g, we can invoke 
W(n, X n Ck+1). 

LEMMA 2.5. If there is an rJ such that W(n,xnrJ) and IXI ~ 21111 , then 
W(n,X). 

PROOF. Let (f,g) exemplify W(n,xnrJ). As before, we can assume that the 
range of f is disjoint from {O, l,n + 4}. As IXI ~ 21111, let {Aa I a E X - rJ} be 
distinct subsets of rJ, and for a < (3 both in X - rJ let 8(a, (3) be the least element 
in the symmetric difference (Aa - A,e) U (Ae - Aa). Finally, define F: [Xjn+2 ~ w 
by 

F('" "') - n + 4 if rJ ~ ao, else, { 
f(ao, ... , an+d if an+1 < rJ, 

,--,0,···,'--'n+1 - . .. o If ai < rJ ~ ai+1 and 2 IS even, 
1 otherwise. 

Also, define G on [Xjn+3 by 

{ 
g(ao, ... , an+2) if an+2 < rJ, 

G(ao, ... , an+2) = 8(aI, (2) if rJ ~ ao, 
o otherwise. 

G is regressive; and we can deduce that (F, G) exemplifies W(n, X): Suppose H ~ 
X is homogeneous for F and min-homogeneous for G with at least n + 3 elements. 
If H ~ rJ, then we are done. If H ~ X - rJ, then by the second clause of G it is not 
difficult to deduce that IHI ~ n + 4. Finally, we can easily derive a contradiction 
in the remaining cases F"[Hjn+2 = {O} or {I}. 

LEMMA 2.6. Suppose that C* ~ C are both closed unbounded subsets of some 
limit ordinal rJ. If W (n, C*) and W (n, C n c) for every C E C*, then W (n, C). 

PROOF. For each a E C, set 
w( a) = { sup( C* n a) if a > .least element of C* , 

o otherwIse. 
We next define the type of a member of [C]n+2 according to C*: If ao < ... < an+! 
are all in C, let {co, ... , cd enumerate the set {w( ai) I i ~ n + I} in increasing 
order and set rj = I{ ilw(ai) = cj}1 for j ~ k. Then the type of {ao, ... , an+d is 
(ro, ... , rk), which we can assume through coding is one natural number. 

Now let (f, g) exemplify W(n, C*) and (fe, gfJ exemplify W(n, C n c) for every 
C E C*. We can assume that the ranges of f and the fe's do not contain any 
natural number coding a type. Define F on [C]n+2 by 

fdao, ... , an+d If w(ao) = ... = w(an+d, { 

f(W(ao), ... , w(an+!)) ~f 0 < w(ao) < ... < w(an+l)' 

F ( ao, ... , an+ 1) = where C is the next element of C* 
after w(ao), 

type of {ao ... , an+d otherwise. 
Also define G on [Cjn+3 by 

{ 
g(W(ao), ... ,w(an+2)) 
gdao, ... , an+2) 

G(ao, ... , an+2) = 

o 

if 0 < w(ao) < ... < w(an+2), 
if w(ao) = ... = w(an+2)' 
where C is the next element of C* 
after w(ao), 
otherwise. 

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use

Sh:268



150 ANDRAS HAJNAL, AKIHIRO KANAMORI AND SAHARON SHELAH 

G is regressive, and we can deduce that (F, G) exemplifies W(n, C): Suppose H is 
homogeneous for F with at least n + 3 elements. By using the third clause of F, we 
can easily deduce that t/J must be either one-to-one or constant on [H]n+2. Hence, 
the argument is complete by definition of G. 

We will also need a version of 2.6 that deals directly with or partition symbol. 

LEMMA 2.7. Suppose that n 2: 3 and C' <:;;; C are both closed unbounded subsets 
of some limit ordinal rJ such that C n W = 0. If C' f+ h)~eg and C n ~ f+ h)~eg 
for every ~ E C*, then C f+ h)~eg. 

PROOF. Let t/J and type be as in 2.6. Let g exemplify C· f+ h)~eg and gf. 
exemplify C n ~ f+ (, )~eg for every ~ E C*. Since C n W = 0, we can assume that 
the ranges of g and the gf. 's do not contain any number coding a type. 

We can now define G on [C]n as follows. 

{ 

g(t/J(ao),··., t/J(an-d) 
gt,{ao, ... , an-d 

G(ao, ... , an-d = 

type of {ao, ... , an-d 

if t/J(ao) < ... < t/J(an-l), 
if t/J(ad = ... = t/J(an-d, 
where ~ is the next element of C' 
after t/J(ad, 
otherwise. 

(In the second clause, that we start with t/J( ad is not a misprint; that n 2: 3 is 
called upon here.) G is regressive, so suppose that H <:;;; C is min-homogeneous for 
G. We can assume that H has at least n + 1 elements, and we can let (30 < (31 be 
its least two elements. 

Assume first that t/J((30) = t/J((3d. If there were a further (3 E H such that 
t/J((3d < t/J((3), then there would be two sequences of length n from H, both starting 
with (30 and with different types-one with (31 and one without. This is contradic-
tory, so t/J must be constant on H. Thus, by the second clause of G, H cannot have 
ordertype ,. 

Assume next that t/J((30) < t/J((3d. Suppose first that there were a further (3 E H 
such that t/J((3d < t/J((3). Then if t/J were not one-to-one on H, one can again 
generate two appropriate sequences of length n from H, both starting with (30 and 
with different types, to derive a contradiction. Thus, t/J must be one-to-one on H, 
and by the first clause of G, H cannot have ordertype ,. 

In the remaining case of t/J((30) < t/J((3d with t/J((3) = t/J((3d for every further 
(3 E H, we can invoke the second clause of G to again show that H cannot have 
ordertype ,. This completes the proof. 

3. Characterizations. With the work of §2 in hand, we can now establish our 
characterizatons. The next theorem takes the first step beyond 1.3 and is itself the 
basis step of the general inductive argument. The main line of argument is related 
to the third author's recent work on the consistency of 2W ---> [WIg, which in turn 
was influenced by Todorcevic's recent result WI f+ [Wd~l . 

THEOREM 3.1. If for some limit ordinal rJ, C <:;;; rJ is closed unbounded and 
contains no inaccessible cardinals, then W(O, C). 

PROOF. We proceed by induction, considering the different possibilities for rJ. 
For any rJ :::; w, the result is trivially true. Next, suppose that cf(rJ) = w. If 
first of all C has ordertype 8 + W for some limit ordinal 8 then the result follows by 
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REGRESSIVE PARTITION RELATIONS 151 

induction and 2.5. Otherwise, for arbitrarily large ~ < "', Cn~ is closed unbounded 
in ~; then the result follows by induction and 2.4. 

Suppose now that cf(",) > w, and for some ~ < '" we have ICI ::::: 2€. Since there 
is a ~ such that ~ ::::: ~ < '" and C n ~ is closed unbounded in ~, the result follows 
by induction and 2.5. 

Finally, it remains to consider the case of '" a strong limit cardinal such that 
cf( rJ) > w. Here, C* = {a E C I a is a singular cardinal} is also closed unbounded 
since C contains no inaccessibles. It now suffices to establish W(O, C*), for then 
the result follows by induction and 2.6. 

To do this, let us first define sets Co. for a E C* as follows: If a is a limit 
point of C*, let Co. be a closed unbounded subset of a of ordertype cf( a) such that 
cf(a) < min(Ca ). If a is not a limit point of C*, set Co. = {sup(C* n a)}. 

Next, set O"(a,(3) = min(C{3 - a) 2': a for a < (3 both in C*. Then, inductively 
define Tm(a, (3) as follows: Set To(a, (3) = (3. If Tm(a, (3) is defined and> a, set 
Tm+1(a,(3) = O"(a, Tm(a, (3)). Since the Tm(a,(3)'s form a descending sequence of 
ordinals, let k E w be a maximal such that Tk(a, (3) is defined. For further reference, 
notice that if a < (3 < , are all in C* then 

(1) ifm::::: k and (3::::: Tm(a,,), then Tm(a,,) = Tm((3,,). 

Set F(a, (3) = 4k + 2. 
Finally, define three functions Fo, F1 and F2 on [C*j3 as follows. 

Fo(a, (3,,) = max{m I Tm(a,,) 2': (3}, 

F1(a (3 ) = {I if cf(T~(a, ,)) < a, where m = Fo(a, (3, ,), , " ° otherwIse, 

{
I + ordertype (Cr",(a,""jl n (3) if this is < a, 

F2(a,(3,,) = where m = Fo(a,(3,,), ° otherwise. 
Since C· consists of cardinals, we can faithfully code Fo, F1, and F2 into one func-

tion G regressive on [C*j3. We will now establish that (F, G) exemplifies W (0, C*): 
Suppose that H ~ C* is homogeneous for F and min-homogeneous for G. In par-
ticular, F"[Hj2 = {4k + 2} for some k E w. By min-homogeneity for G, whenever 
a E H, there are mea) < k and i(a) < 2 such that if (3" E H and a < (3 < " 
then Fo(a,(3,,) = mea) and F1(a,(3,,) = i(a). 

To verify W(O,C*), let us assume to the contrary that IHI 2': 4k + 3. Since 
there are 2k possible pairs (mea), i(a)), by the Pigeonhole Principle there must 
be three elements ao < a1 < a2 among the first 4k + 1 elements of H such that 
m(ao) = meat} = m(a2) = fixed m and i(ao) = i(ad = i(a2) = fixed i. Let a3 
and a4 be two elements of H above a2. 

Set p = Tm(a1, (4). Since FO(a1, a2, (4) = m, 

(2) 

Thus 

(3) 

since T m+ 1 (a}, (4) is a member of this set by (2). By (1) and (2), we also have 
p = Tm (a2, (4). Since Cp n cf(p) = 0 by the definition of the COo's it follows from 
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(3) that i = F1 (a2, a3, (4) = 1. Since i(ao) = i = 1, we can now conclude from 
(3) that F3(ao, aI, (4) = 1 + ordertype (Cp n ad =I- 1 + ordertype (Cp n (2) = 
F3(ao, a2, (4), contradicting min-homogeneity. 

All of the work has now been done for the overall inductive result. 

THEOREM 3.2. If for some limit ordinal TJ, C <;;; TJ is closed unbounded and 
contains no n-Mahlo cardinals, then W(n,C). 

PROOF. We proceed by induction on n. The case n = 0 is 3.1. Assume that 
the result has already been established for n, and suppose that C <;;; TJ is closed 
unbounded and contains no (n + l)-Mahlo cardinals. We shall now establish by 
induction on ~ that 

W(n, C n~) for every ~ E C. 

This together with 2.3 implies W(n + 1, C), so the proof would be complete. 
(*) is trivially true for ~ the minimum element of C. Also, if ~ and ~ are 

consecutive elements of C and W(n, C n ~), then W(n, C n ~) by 2.5. The only 
remaining case to consider is when ~ is a limit point of C. Then ~ E C, so ~ 
is not (n + 1)-Mahlo. Thus, there is a closed unbounded D <;;; C n ~ containing 
no n-Mahlo cardinals. By the inductive hypothesis on n, W(n, D). Thus, by the 
inductive hypothesis on ~ and 2.6, W(n, C n C). 

We can now state several summarizing characterizations. The first formulation 
was suggested to us by Schmerl and subsumes the others. 

THEOREM 3.3. For any 1 ~ w, the following are equivalent: 
(a) X ---> h)~et3. 
(b) Either (i) there is an (n + l)-Mahlo '" > 1 such that X n '" is unbounded in 

"', or (ii) 1 is w or weakly compact and X n 1 is unbounded in 1. 

PROOF. (b)--->(a) is immediate by 1.4 and 1.2(b). Assume now that (a)--->(b) 
is false, and fix a pair (X, a) with TJ = sup(X) the least possible such that X ---> 
h );>;,t3, yet (b) fails. Note that TJ must be a limit ordinal by 2.2. Let C <;;; TJ be the 
<-closure of X, i.e. the closed unbounded subset of TJ consisting of the members of 
X together with the limit points of X. Since (b) fails, TJ > 1, else 1 would be w or 
weakly cOmpact by 1.2(b), so TJ cannot be (n + l)-Mahlo. Thus, there is a closed 
unbounded C* <;;; C - w which does not contain any n-Mahlo cardinals. By 2.1 and 
3.2, C· -f+ h)~et3. Also, for any ~ < TJ, (C n ~) -f+ h)~et3 by the minimality of 
TJ, since C is just the closure of X. Hence, (C - w) -f+ h)~et3 by 2.7. We can also 
conclude that C -f+ h);>;,t3 by 2.2, since either 1 > w, or else C n w = X n w is 
bounded below w by the failure of (b). But this is a contradiction, since X <;;; C. 

The following characterization of (n + 1)-Mahlo cardinals is now a consequence 
of 3.3, or of 1.4, 2.1, and 3.2 directly. Todorcevic noted that the case n = 0 can be 
derived directly from his work in [T]. 

THEOREM 3.4. The following are equivalent: 
(a) '" is (n + l)-Mahlo. 
(b) For any 1 < '" and unbounded X <;;; "', X ---> h )~e~3. 
(c) For any closed unbounded C <;;; "', C -+ (w )~e~3. 

3.3(c) is optimal, in the sense that w cannot be replaced by any mEw, by the 
remark at the end of §1. 
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We can also take a more dynamic approach: the following is another consequence 
of 3.3. 

THEOREM 3.5. If, > w, then the least rt such that rt --+ (, )~e13 is the least 
(n + I)-Mahlo cardinal::::: ,. 

As an immediate corollary, we have another characterization: 

THEOREM 3.6. The following are equivalent for K, > w. 
(a) K, is (n + I)-Mahlo or a limit of (n + I)-Mahlo cardinals. 
(b) For every, < K" K, --+ h)~13. 

We conclude by making some remarks on the connection of our results to the 
work of Schmerl [8]. Schmerl and Shelah [88] deals with a model-theoretic trans-
fer theorem which involves combinatorial properties of cardinals high in the Mahlo 
hierarchy. Schmerl [8] established that for n-Mahlo cardinals these properties pro-
vide a characterization. If F is an ordinal-valued function with domain a set of 
ordinals X, then f on [x]n is F-regressive iff f(o:o, ... , O:n-d < F(o:o) whenever 
F(o:o) > O. Schmerl's property P(n, 0:) of K" stated in our terminology, is: For ev-
ery cardinal-valued function F: K, --+ K, and every F-regressive function on [K,]n-1, 

there is a min-homogeneous set for f of ordertype 0:. Note that for regular K" 

K, E P(n, 0:) iff for any unbounded X c:;;; K" X --+ (0:)~e11. Thus, our study turns 
out to be a variant, motivated by regressive functions. Considering only F = the 
identity map on K, does simplify the development and leads to clear inductive argu-
ments involving closed unbounded sets. Schmerl essentially provided the following 
characterizations, stated in our terminology, for finite min-homogeneous sets. 

THEOREM. The following are equivalent: 
(a) K, is n-Mahlo. 
(b) For any mEw and unbounded Xc:;;; K" X --+ (m)~e13. 

(c) For any closed unbounded C c:;;; K, C --+ (n + 5)~13. 
However, Schmerl did not complete his characterization of P(n, 0:) for every n 

and 0:; we switched to the properties W (n, X) in order to obtain the optimal results. 
In particular, our results confirm a conjecture from [8] by establishing P( n + 2, w) 
implies K is (n + I)-Mahlo in a sharp sense and fill in the question marks in the 
chart on p. 290 of [8]. 

In developing some II~ "Borel diagonalization" propositions about reals equicon-
sistent with the existence of n-Mahlo cardinals, H. Friedman [F] relied on the 
combinatorial work of Schmerl [8]. Thus, regressive partition relations provide a 
unifying approach to two incompleteness phenomena: the finite version is equiva-
lent to the Paris-Harrington proposition (see Kanamori and McAloon [KM]), and 
the transfinite version leads to Friedman's result. 
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