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We consider and give a complete solution to, implications of the form: (=) Every X,-set
of reals ..as the property P, implies every X,-set of reals has the property P,, for X,,X,€
{4}, M, X}, I3}, and where P,,P, are among ‘to be Ramsey’, ‘K, -regular’ and of course
‘Lebesgue measurable’ and ‘Baire categoricity’. Naturally we are led to look for characteriza-
tions of such properties (by forcing). Not surprisingly, excepting the trivial implications, we get
many consistency results, but ‘fortunately’ we get quite a number of theorems ( = implications
proved in ZFC), notably among the ‘to be Ramsay’ and ‘K,,-regular’.

Theorem 1. The following are equivalent:
(a) Every Z}-set of reals is Ramsey.
(b) Every Al-set of reals is Ramsey.
{c) For every r € R there exists s € [@]®, s is P(D,[r]})-generic over L{r]|D,).

Definitions are given in Section 0.) For this theorem we develop a forcing P(D) (D an
ultrafilter on @) shooting a real ‘through’ the ultrafilter.

Thecvem 2, The following are equivalent:
(a) Every Z}-set of reals is K,,-regular.
(b) Every A} set of reals is K -regular.
(c) Every ITi-set of reals is K ,-regular.
() For every r e R, there exists f € o, f is a o-bound to @ N Ljr].

0. Introduction

The Borel sets were introduced by E. Borel in 1905. The analytic sets were
introduced by Souslin who had proved the existence of an analytic non-Borel set.
The Lebesque measurability of the analytic sets is due to Luzin in 1917 and the
Barie categoricity of them is due to Luzin and Sierpinski in 1923. The projective
sets were introduced by Luzin and Sierpinski, and Godel showed that from the
axiom of constructibility it is possible to prove that there exists a Aj-set of reals
which is not Lebesque measurable and does not have the property of Baire.

Since forcing was born, much work on the Lebesgue measurability of the
projective sets was done, and Martin—Solovay [9] proved that Martin’s Axiom
implies that every Z3-set of reals is Lebesgue measurable and has the property of
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Baire. Moreover, the following characterization was given:

0.1. Theorem (Solovay). (a) Every Z}-set of reals is Lebesgue measurable iff
for every real r, the set of random reals over Lir} is a measure one set.

(b) Every Z}-set of reals has the property of Baire iff for every real r, the set of
Cohen reals over L|r] is a comeager set.

Dunng the seventies, another two properties were studied, and Silver [17]
proved that every analytic set is Ramsey and Kechris {7] proved that every
analytic set is K,-regular (these properties will be stated below). Also it was
proved that under Martin’s Axiom every Xj-set of reals is Ramsey and
K,-regular. From the work of Thoda |2, 3], we will obtain the following.

0.2. Theorem. The following assertions are equivalent:

(a) Every Zi-set of reals is K,-regular.

(>) Every Al-set of reals is K -regular.

(c) Every I}-set of reals is K,-regular.

(d) For every reR there exists f € “@ such that for every g € ©® N L[r] there
exists n € o such that for every m =n, g{m) <f(m).

Looking at those two theorems, it seems natural to search for some forcing
characterization of the proposition “Every X}-set of reals is Ramse;”.
In [3] the following was proved:

If “Every Z%-set of reals is Ramsey”, then:
(i) Every Zi-set of reals is K,-regular.
(ii) For every r eR, [w]”N L[r] is not a splitting family.

Indeed, in [3] it was proved that (ii) follows from “Every A}-set of reals is
Ramsey”. By making some minor changes in this proof, we begin Section 2 by
showing:

0.3. Thaeorem. If every Aj-set of reals is Ramscy, then for every r € R there exists
a € {»]® such that for every x: [w]*—2, if & € Lir], then there exists n € @ such
that a -- n is homogeneous for .

it is rot hayd to dcduce, from this thoerem, that if every A}-set of reals is
Ramsey, then every X3-set of reals is K,-regular, and it seems plausible to find
more intrinsic connections between the assertions “Every Zl-set of reals is
Ramsey” and “Every Aj-set of reals is Ramsey”. Our search gives the following:

0.4. Theorem. The followir.g assertions are equivalent:
{(a) Every Zi-set of reals is Ramsey.
(b) Every Al-set of reals is Ramsey.
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This theorem will be proved in Section 2, but prior to this we need to study the
following forcing notion.

0.S. Definition. If D is an ultrafilter over w, let P(D) be the following partially
ordered set:
(i) pe P(D) iff pc @™ is a tree and there exists s € p, called the stem of p,
such that for every rep, tcsorsctand {new:t (n) ep) e D.
(ii) If p,q € P(D), we say that p<gq if g cp.
(iii) Clearly we can identify a P(D)-generic object with an infinite subset of w
(= the generic branch ="\ {p : p € Gp(p)}).

In Section 1 we prove the following facts about forcing with P(D).

0.6. Theorem. (a) If x e[w]® is P(D)-generic over V, then for every aeD,
xc*a and for every y €[x]®, y is P(D)-generic over V. Where xc*a means
(3n € w)(x —n ca).

(b) For every P(D)-sentence ¢, and for every p € P(D) there exists q € P(D)
such that

psq"_“¢") or psq“_6¢_'¢’1

and the stem of p is equal to the stem of q.

(c) If Py is the Silver forcing notion using a Ramsey ultrafilter D, then a € [0]®
is Pp-generic over V iff a is P(D)-generic over V.

(d) If ae[w]® is P(D)-generic and Pp-generic over V, then D is a Ramsey
ultrafilter.

Because Mathias forcing is isomorphic to forcing a Ramsev ultrafilter with
([@]®/[@]=*; =) followed by Silver forcing with the generic ultrafilter, we can
conclude that P(D) is the natural forcing notion related to the property of ‘to be
Ramsey’. Also it can be useful to remark that Ramsey ultrafilters do not
necessarily exist and forcing with ([@]“/[@]=*; 2 ) can collapse 2™ (see [4]), but
ultrafilters always exisi in models of ZFC.

According to the above, we know that if every Aj-set of reals is Ramsey, then
for ever r € R there exists a € [w]® such that

{xe[w}*NL[r]:ac*x}

is an ultrafilter in the Boolean algebra P(w)™!").
Thinking about this, in Section 2 we define

0.7. Defnition. (a) If s € [w]®, then D, = {x e [w]“: s=*x}.
(b) D*(r)= L[r}[D,1 O D,.
(c) Clearly D°(r) € L{r}{D,] = L[r}[D*(r)}.
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The proof of Theorem 0.4 is given by using Theorem 0.6 and the following

0.8. Theorem. The following assertions are equivalent:
(a) Every Aj}-set of reals is Ramsey.
(b) For every r € R there exists s € “[w] such that

D?(r) is an ultrafilter in L{r}{D;], and
s is P(D,(r))-generic over L[r][D;]).

Making small changes in this proof, in the last part of Section 2 we prove the
following version of ‘theorem 0.8.

0.9. Theorem. Let r € R. Then the following are equivalent:
(a) Every set, with a A}-definition using only r as parameter, is Ramsey.
(b) Every set, with a =}-definition using only r as parameter, is Ramsey.
(c) There exists s € “[@] such that

Dy(r) is an ultrafilter in L[r}[D,], and
s is P(D,:~))-generic over L{r][D,}.

From these theorems we can ask if the measurability of the =}-sets of reals
follows from the measurability of the A}-sets of reals. In Section 3 we clear up
this question by showing:

0.10. Theorem. (a) Every A}-set of reals is Lebesgue measurable iff for every real
r there exists a random real over L{r].

(b) Every Aj-set of reals has i’.2 property of Baire iff for every real r there exists
a Cohen real over Lir].

We finish Section 3 by giving mod=i- :r the following theorem.

0.21. Theorem. Consistoney 27 2o implies:

(@) Cons(Z£C +ewery  '-vef of reals is Lebesgue measurable + there exist
Al-sets of reals whicii .+ -ion /save the property of Baire, are not Ramsey and are
not K,-regular).

(b) Cons{ZFC + every Aj-sei of reals has the property of Baire + there exist
Al-sets of reals which are not Lebesgue measurable, are not Ramsey and are not
K,-regular). -

(c) Cons(ZFC + every Al-set of reals is Ramsey + there exist Al-sets which are
not Lebesgue measurable and do not have the property of Baire).

(d) Tons(ZFC + every Aj-set of reals is k,-regular + there exists A}-sets of reals
which are not Lebesgue measurable, do not have the property of Baire, and are
rot Ramsey).



Sh:321

Al-sets of reals 2n

From the theorems of this article and the results of [3] and [10], we have the

following chart
Lebesgue Baire
M «— 3} S e— 1L

AN
Al A}
VRN /N
me——3 — 3

|

me——3 —— Sle—nn

A; A;
m «— >} 3 e— I}
To be Ramsey K,-regular

Remarks. (1) All directions are proved in ZFC.
(2) There are no other possible implications between these propertics.

All our notation will be standard and can be found in [3]. We recall just the
following:
(@) [x]*={acx:la| =R,}.
(ii) A subset A c[w]”is Ramsey iff there exists a € [w]* such that [a]” = A or
[a]” = ~A.
(i) T c ™= is a superperfect tree iff T is a tree and for every ¢, € T there
exists £, € T such that t, c t, and {n € w: t,{(n) € T} € [®]®.
(iv) A c w®is K,-regular iff there exists a superfect tree T c = such that

the set of branches of T =[T]c A

or there exists f € @ such that for every g € A there exists n € @ such that m>n
implies g(m) <f(m).

We say that NEZFC* iff N is a transitive model of some part of ZFC,
sufficiently rich in order to build the forcing framework. In many cases we need to
use the fact that there is a Z3-good well order of L[r]. All this technology can be
found in Jech [6, Part IV, p. 493]. We assume that the reader is familiar with
forcing and the Boolean valued model notation, especially in the case of the
Random Algebra and the Cohen Algebra. Finishing this section, we will present a
modern proof of the Luzin theorem about the measurability of the analytic seis,
this proof was inspired by [17]. The scheme of this proof is a central idea in this
context. Let u(A) be the Lebesgue measure of A.
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0.12. Theorem (Luzin-Sierpinski). Every analytic set is Lebesgue measurable.

Proof. Let ¢(x) be a Z}-formula. Let N<H(X,, €, <\,) be countable and such
that the param:ters of ¢(x) belong to N. Therefore in N we can compute the
Boolean value, related to random forcing, of ¢(x).

Claim. p({x: ¢(x)}) = p(llP(x)Rncom) = #(P(*)lrancom)-
Proof. Because N is countable,

p({x: x is random over N})=1.

Therefore it is sufficient to show that if x is random over N ind x € ||¢(x)lrandom>
then ¢(x). Let x be random over N, x € ||@(x)llrancom, the.s

Nix]E ¢(x)

but 3}-formulas are absoiute for countable models of ZFC*, thus ¢(x) holds in
the world. O

1. Between Siiver and Laver reals
In this section D will denote a non-principal ultrafilter over w.

1.1. DeSnition. (a) P(D) will denote the following partially ordered set:
(1) p € P(D) iff p is a subtree =" with the property that there exists s € p
(denoted s(p)) so that Vtep, tcsorsct, andif sctep, then

{new:t{n)ep)eD,

for every p € P(D) and for every s € p, s is an increasing function.
(i) pysp. iff p, 2p>.
(b) Ifs<p, thenp,={tep:tcsorsct}.
(©) p1=<"p. iff s(p;) =s{p.) and p, <p.

+.2. Fact. (a) P(D) is a o-centered partially ordered set.
o) If G = P(D) is generic over V, then if

g=U{sew=":(3peG)(s(p)=5)},

we have that g € 0 is increasing and V[G] = V|g].

1.3. Definition. If / c P(D) is a dense open subset of (P(D), <) and p € P(D)
we define 1k’: p — ORD by induction on the ordinals.
(i) tk’(s) =0 iff there exists g € I, p,<°q.
(ii) ik'(s)=a>0 {n:5 (n) ep and k(s (n)) is well defined and less than
a}eD.
(ili) rk’(s) = iff there does not exist & € ORD such that rk’ s)=a.
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1.4. Claim. For every s(p) c s € p we have that tk'(s) <.

Proof. Let s € p be such that rk/(s) ==, s(p) cs. We define p} = {trep:tcsor
sct and for every kellg(s), 1g("), k(¢ | k) =x). Clearly pcp, and by
definition of rk/, if sctep?, then {n:f(n)ep?}eD. Therefore p* e P(D)
and. as [ is dense open in P(D), there exists p** such that pJ <p**el By
hypothesis s(p**)ep*, and this implies that rk'(s(p**))=o, but clearly
tk/(s(p**))=0. O

1.5. Definition. We say that Acp e P(D) is a front of p iff for every s,te€ A,
s ¢ t and for every branct X of p there exists k € @ such that X | k € A.

1.6. Lemma. (a) If I c P(D) is a dense open subset P(D) and p € P(D), then
there exists q € P(D) such that

() p<"q,

(ii) {s € g:q, €1} contains a front.

() I {I,: n <} is a set of dense open subsets of P(D), and p € P(D), then

there exists q € P(D) such that

@) p<°q,

(ii) for every n e w, {t € q:q,€l,} contains a front.

Prooi. (a) By induction on rk'(s(p)).

(b) We will give ¢" by induction on n using (a). Let ¢° be such that p<°¢° and
{seq®q%el;} contains 2 front, say, Ao. Suppose we have defined ¢", A,
satisfying: A, is a front for ¢" and gf € I, for every s € A,. Every member of 4,
extends some member of A,,_,. g, = J,-1- For cach s € A, let g(s), A(s) be such
that g” <%q(s), A(s) is a front of g7 and for every t € A(s), g(s), € I,+;. Then let
A,=U{AG):seA,} and g"'={r: (Ise A )(t s vieq(s))]. Then we de-
fineg=\g,. O

1.7. Theorem. If » is a P(D)-sentence and p € P(D), then there exists q € P(D),
such that p<"q and

qiE“¢” or qlk“g”.
Proof. Let I={q:qI+“¢” or qI-“¢”}. Clearly I is a dense open subset of

(P(D), <). We will prove the theorem by induction on rk'(s) for sctep. M
rk/(t) = 0, then there exists g°=p, such that

q “_ ‘ﬁ¢” Ol' q “_ (‘—‘¢,‘).

If k() =, then {n:1k'(f (n))<a}=aeD for cach nea. Let 492 Pi(m)
such that

g.t“¢” or g, “9o”.



Sh:321

214 J.L Ihoda, S. Shelah

Leta,={n€a:q, 9"}, ao={n €a: ¢, I ‘“1¢”}. Therefore, without loss of
generality, a, € D, and we dcfine g € P(D) by ¢ =Ujca, ga = p.- Clearly

qﬁ_66¢'9.
This finishes the proof of the theorem. O

1.8. Defia’fion. Let x € [®]®. Then fx € @ will be the uiique increasing and
onto function satisfying Range(fx)=x. Let xe[w]” and p € P(D), ther we
define:

(1) x satisfies p iff fx is a branch of p. In this case we write x S p.

(2) x strongly satisfies p iff for every n e @, (x —n) S p. In this case we write
xSTp.

(3) x aimost strongly satisfies p iff there exists n € @ such that (x —n)STp. In
this case we write ¥ AST p.

1.9. Fact. If G c P(D) is generic and g € w® is defined as in 1.2(b), then for every
maximal antichain I ¢ P(D) there exists p € I such that Range(g) S p.

1.10. Definition. (a) We say that p € P(D) is simple ifi there exists (A,,_l n<
o) such that for every s € p the following conditions hold:
() IFs=( )=s(p), thens (m)ep if me A”,.
(i) i s#( ) and n = max(Range(s)), then s (m) ep iff m € A2.
(i) If n = max{Range(s(p)), then AL AP, ,2A",,--
() P’(D)={pe P(D) p is simple}.

1.10. Fact. (a) P'(D) is a dense subset of P(D).

(®) If peP'(D) and xSp and y €|x — Range(s(p))]”, then range(s(p))U
ySp.

(c) If { )=s(p) and x Sp, then x ST p.

Proof. (a) Without loss of generality, s(p)={( ). By induction on @ we will
build (A,_,:n<w). For every sep, we define A,={new:s (n) ep). Set
A_y=A(,. Suppose we have defined A_;DA¢2:--2A,. We try to define
Apir: Let {1k <l), I<(n+1)"*! such that t, ep and . (|t|- 1|=r +1, and
Vm € Range(t;) and m = t,(h): then m € A,,»)—,. Now we define A},, = A,,. If
{#0, then A,,;=A,NA;,, otherwise A,,;=A,. Now let p’ be such that
(Ap-1: n <) witness p’ € P'(D). Clearly p <p’'. Parts (b) and (c) are easy. 0O

1.11. Lemma. If p € P(D) and s(p)={ ), then
I+ p(o)“Range(g) AST p”.



Sh:321

Al-sets of reals 215

Proof. Let p € P(D) be given, clearly there exists p’ € P'(D) such that p<%p’.
Let g € P be given, we define g Np’ € P(D) by
(i) s(gnp’)=s(q),
(i) s(¢9)cteqnp’ iff teq and the unique se€ w<“ such that s(g)'s=¢
belongs to p'. Clearly

q Np' I+ “Range(g) — Range(s(q))) ST p”

and this implies that the set of conditions qe€P(D) scch that qi+
“Range(g) AST p” is dense in (P(D), <). O

1.12. Lemma. If V c V' are models of ZFC aid xe[w]*NV’, and D is an
ultrafilter in V, then fx is P(D)-generic over V iff for every p € P(D), if s{p)=( )
then x AST p.

Proof. (=) is Lemma 1.11.
(&) For every n € w, w cn, p € P(D) we define p}, € P(D) by
range(s(pl))=w and s(p})ctepl
iff there exists ¢' € p such that
range(t') — n =range(t) —n.
Let I be a dense open subset of P(D), I € V. Then we define

I,={p € P(D): (3q e I)(a <p3)}.

Clearly I, is a dense open subset of P(D). Using Lemma 1.6(b) we can find
p € P(D) such that for every ne w, wen, {s €p:p;€ly} contains a front. By
hypothesis, there exists # € @ such that

x—nSTp
Therefore there exists k € o such that if s =f,_, [ k, then

ps€in,.
This implies that there exist q € I such that

4 <(Ps)zrm
and it is not hard tc verify that x S . This concludes the proof cf the lemma. [
1.13. Lemma. In the notation of 1.12, fx is P(D)-generic over V iff for every
p € P'(D), if s(p) = ), then there exists n € w such that

x—nSp.
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Proof. (=) Clear from 1.12.
(&) Let p e P(D), s(p) = ( ), there exists p’ € P'(D) such that
p<"p’. Therefore there exists n € @ such that
x—-nSp'.
Therefore, by 1.10(c), x —n ST P’ and this implies that x ASTp. O
1.14. Theorem. If Vc V' c V" are models of ZFC and D eV is an ultrafilter

over o, and x€ V' is such that fx is P(D)-generic over V, then for every
ye[x]*N V", fy is P(D)-generic over V.

Proof. By 1.13. O

1.1S. Theorem. Let DeV be an ulirafilter. Let ¢ be a Xi-formula with
parameters in V, let g be generic over V. Then

ViglEQ@rx € [0]°)([x]° < {x: ¢(x)} v [x]” < {x: 9(x)}).
Proof. By 1.7, there exists p € P(D), s(p)={ ) and

p+“¢(Range(g))” v p I “7¢(Range(g))”,

without loss of generality p I “¢(Range(g))”. Let p'°=p such that p’ € P'(D).
therefore p' I “¢(Range(g))”. g is generic over V. Therefore there exists n € @
such that g—n Sp’, hence p’ belongs to the generic filter generated by every
y €|g —»]®, and for such y

ViylEe(y)
but V]y]c Vig] and ¢ is =] so

Vigle“lg—n]c{y:¢(»)}>. O

1.16. Theorem. Let D be an ultrafilter in V. Then r € [@]® is P(D)-generic over V
iff (Va € D) (rc*a) and (Vx: [wFF—2) (7 € V) (3n € o) (card(x"[r — n]?) = 1).

Proof. (=) The first part is clear. For the second part, fix z: [w]—2. We
define ¢(x) by ¢(x) iff Vi, k,n,m e x

z(l, k) =n{n, m).
Then clearly ¢(x) is Z3-formula. Then 3n € w such that
Virle“fr = a]® < {x: ¢(x)} v [r — n]” < {x: "¢ (x)}".

If the first possibility holds, then we are done. If th2 second possibility holds, take
y € [r — n]“ such that |7"[y}| = 1, theu ¢(y), 2 contradiction.
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(&) It is sufficient to show that for every p € P'(D), (3n € w) (r —n S p). Fix
such a p and let (A?: — 1<i< ) be witnessing p € P'(D).
We define 7,: [w]*—2 by

m{n,m)=1 iff meA.
There exists n € @ such that |z)[r — n]| =1 because rc*aVa e D, a,[r —nf =
{1} and this implies that f,_, is a branch of p’. 0O

1.17. Definition. r is a Ramsey real over V iff 3D € V, D is an ultrafilter and
(Ya € D)(3n)(r —n ca) and Vz: [wf—2, weV, ([ne w) (Inir—nf|=1). O
1.18. Definition (Silver forcing). If D is an ultrafilter over w, we define Py by
(s,a) e P, iff se[w]"* aeD and sup(s)<inf(a),
(s,a)<(r b) iff sct,bcaandi-sca.

1.19. Theorem (Mathias). If D is a Ramsey ultrafilter, then r € [w]” defines a
generic object to Py, iff for every a € D, there exists n € @ such thatr —nca.

Proof. If (s, a) € Pp, let p(; o) € P'(D) be defined by (without loss of generality,
s=0) (A5_,;: n < w) where

AP, ,=a, Ab_y=a-—n.
Then this proves that P, can be seen as a dense subset of P(D). Then use the fact

that r is P(D)-generic. O

1.20. Theorem. (i) If D is Ramsey ultrafilter, then forcing with Pp, is equivalent to
forcing with P(D).

(i) If there exists r € [w]” such that r is Pp-generic over V iff r is P(D)-generic
over V, then D is a Ramsey ultrafilter.

Proof. (i) Clearly by 1.19 and 1.16.

(ii) Suppose there exists r € “[w] such that r is P, and P(D)-generic, and
7: [@]>—> 2 belonging to V and such that fc - every a € D, there exist n,, n;, m,
m, € a such that x{n,, n,) # w{m,, m,). It is not hard to show that

Ikp, “(Vn € @)(3nnymymyer — n)(z{ny, ny) #x{m,;, my))”.

But, using (1.16),
Fppy “(3n € w)(z | [r — n? is constant)”

and this is a contradiction. [

In a forthzoming work we will prove the following facts about P(D) and Pp.



Sh:321

218 J.1. lkoda, S. Shelah

1.21. Theorem. (a) If there exists an x which is P(D)-generic over V, then there
exists a, b, both P(D)-generic over V such that b ¢ V{a] and a € V[b}.
(b) If x is Pp-generic over V, then there exists a€[w]”NVIx] such that
x ¢ Via].
(c) There exists a forcing notion P such that if G is P-generic over V, then:
(i) (Va e[w]®°nV[G)(Via]=V or V]a] = V[G]).
(ii) There exists a € [@]® such that (Vx e [0]"NV)(ac*x or ac® ~x).

2. On A}(Ramsey)

For a real r € [@]® we define D, = {e¢ € [@]”: rc*a}. Clearly D, is a filter over
. Also we can consider L]D,] the class of all sets which are constructible from
D,. (Definition 0.7 is more general, but all of our results can be translated from L
to L{a].) The {ullowing facts can be checked by the reader.

2.1, Facts. (i) D,NL[D,)clw]*NL,[D]=[w]”NnL]D,}

@ii) L{D,]= LD, N L[D,ll, and we write D" = D, L[D,].

i) LD < Lir}

(iv) If sc*r and D' is an ultrafilter over w in L|D,}, then D° = D".

(v) There exists a Z}-formula ¢y(r, x, y) such that for every a,b € R we have
that: ¢(r, a, b) iff a= (a;:i<w) and for every i <w, a;<y;pb and for every
c €R if c<yypyb then there exists i <w, c=a;, and if r,=*r, then ¢,(n,, a, b) iff
&2, a,B) (n="r iff nc*r, and ,c*n).

(The proof of these facts is similar to the proof of the corresponding facts for L
and references can be found in [6].)

2.2. Lemma. A)Y(Ramsey) implies that for every r € [0]” there exists s € [r]® such
that for every m:[wf—2 if e L[D"), then there exists new and s—n is
ncmogeneous for n.

Proof. If this does not hold, we fix such an r and { , ): [@}]°*— w the canonical
correspondence between [w] and w. Now we define the following function
C:fr]*—2:

C(s) =1 iff there exists x: [w}]*— 2 such that:

(i) = eL[D] (Z2).

(i) For every &' < p, there exists n € w, s —n is homogeneous for 7z’
(22

(iii) For every n € @, s — n is not homogeneous for x (Z3).

(iv) There exists n,, m, €s such that z(»,, m;) =1 and for every n,, m,€s if
n(ny, my) =0, then (n,, m,) <{n,, m,).

The follewing facts are easily checked:
(1) {s: C(s)=0} is a Zi-c=t. ((iv) is an arithmetical relation.)
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(2) For every s €[r]” theie exists n,, ..., n,, €s such that C(s)=1 iff C(s —
{71y s )Y =0.

We define Ag= {s: C(s) =0}, A, ={s: C(s)=1}. Then clearly A, is a Al-set
2nd A is not Ramsey. [

2.3. Corollary. Aj(Ramsey) implies that for every r e [®]® there exists s €[r]”
such that
L[D?)k“Ds is an ultrafilter over ™.

2.4. Corollary. Aj(Ramsey) implies that for every r € R, there exists f € “w, such
that f is a o-bound to w“ N Ljr*. O

2.5. Definition. If r € [w]” and D, is an ultrafilter over w in L[D’], then without
loss of generality we can denote 2(D") as P, and if sc*r, then P, = P,.

2.6. Theorem. Aj(Ramsey) implies that for every rc[w]® there exists s €[r]®
such that s is P,-generic over L[D"}.

Proof. By 2.2 and 1.16. O

2.7. Theorem. Z3(Ramsey) Jff A}(Ramsey).

Proof. (=) Clear.
(&) Suppose A}(Ramsey). Let ¢(x) be 2 Zj-formula. Without loss of
generality, the parameters of ¢(x) belong to L. Let s € [w]“ be such that:
(i) D’ is an ultrafilter over w in L[D*].
(i) s is P,-generic over L[D"].
In L[D?] there exists p € P;, s(p)=( ) and
Pty “9(c)” or plp‘¢(rs) .
As s is P-generic over L[D®], we know that there exists n € @ such that if
tels —n]® then
tSp
and as we know that ¢ is F;-generic over L[D’], we have that for every t € [s — n]”
LID’J[e]E¢(e) or L[D°]r]E—¢(r).
And t; is implies that {x: ¢(x)} is Ramsey. O

2.8. Theorem. A}(Ramsey) iff {r € [®]“: r is Rarisey real over L[D’}} is an open
dense set in the topology introduced in {1] to [w]®.

Proof. By2.2and 1.17. O
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2.9. Definition. We say A}(v)(Ramsey) iff every A} set with the parnmeters of
its definition in L{r,] is Ramsey. Similarly we define Z3(ro)(Ramsey).

2.10. Theorem. Al(r)(Ramsey) iff Z3(ro)(Ramseyy).
Proof. The set given in Proof 2.2 is Aj(rp). O
By this last fact we have the following characterization.

2.11. Theorem. Al(ro)(Ramsey) iff for every r e L[r,) there exists s €[r]® such
that s is P.-generic over Lin)[D°]. O

3. Al(Lebesgue), Al(Baire), AY(K-regular), A;(Ramsey)

3.1. Theorem. (i) Al(r)(Lebesgue) iff (3r e R) (r is random real over L[ry)).
(ii) Al(Lebesgue) iff (Vro € R) (Ir € R) (r is random real over L|[r,)).
(i) Al(ro)(Baire) iff (3r € R) (r is Cohen real over L[r)).
(iv) Al(Baire) iff (Vro € R)(3r €R) (r is Cohen real over Liry)).

Proof. We will prove only (iii).

(>) Suppose that V E*Al(r,)(Baire)”. If there is no Cohen real over L[r], let
{B,: @ <@,) be a =)(r)-good well order of the Borel meager set coded in L[r).
Therefore R =, B,. We define the following order on the members of R:

x<y iff (Ba')(xeB,,Ay¢pU Bp),
x<y iff (Ba)(xeB‘,Ay¢BU Bﬁ).

Then we define the following set A cR? A ={(x, y):x<y}. Then clearly A is a
Z3(ro) set of pairs of reals and using the Kuratowski-~Ulam theorem we have that
if A has the property of Baire, then A is meager. But ~A = {(x, y): y <x} also is
a Z3(rp)-set of pairs of reals. Therefore A, as well as ~A, is a A}(r)-set of reals
and this implies that A is meager. But

RxR=AU~A

and this is a contradiction.

(&) Let ¢,(x), ¢,(x) with parameters in L|r] be Z)-formulas. Let P be the
Cohen real forcing and in L{r] let B; c P be a maximal antichain satisfying

seB; o sk p(r)”.

Claim L If VE(Vx)(¢:(x)o¢x(X)), then B,NB,=% and B,UB, is a
maximal antichain of P.
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Proof. Suppose that s € B, N B,. Then
s ik p “Pi(E) A @o(r)™.

Pick in V a Cohen real r over L|ry], such that s cr. Then
Lirelir} = ¢1(r) A @a(r).

By the Schoenfield absoluteness lemma,
VE@(r) A ¢(r)

a contradiction.

The second assertion is clear using the fact that the Cohen reals over Ljr,] are
dense in R.

Now working in L[r], we pick N <H(R,, €, <) suck that ||N}|=R,, B; €N,
¢.eN, i=1,2

Claim 2. If s € B; and s c r is a Cohen real over N, then V E*“¢,(r)”.
Clearly on proving the claim we have finished.
Proof of the Claim. As N<H(X,, €, <), in N we have that

§ I conen” @i(FG)”-

Thus N[r]E“¢(r)” but X3-formulas are up-absolute, therefore VE“¢,(r)”. O

The following theorem was essentially proved in [3]:

3.2. Theorem. The following assertions are equivalent:
(i) Z3(ro)(K,-regular),
(i) Ax(ro)(K,-regular),
(iii) ITi(ro)(K,-regular),
(iv) L{r)N“» is o-bounded.

Proof. (i)— (ii)— (iii) are clear. (iv)— (i), see [3}.
(iii) = (iv). If L{r] N “o is not o-bounded, then in [2] it was proved that there
exists a non-K,-regular IT;-set of reals. O

3.3. Theorem. (i) A}(ro)(Lebesgue)=> L{rg] N R is meager.
(i) AX(r)(Baire)=> L{ro)] N R has measure zero

(iii) A¥(ro)(K,-regular)= L[ro] N R is meager.
(iv) Ai(ro)(Ramsey)=> L[r,] N R is a meager-measure z2ro set.

Proof. (iv), see [3].

3.4. Theorem. AXro)(Ramsey)=> Z}(: (K, -regular).
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Proof. It is sufficient to show that
Sir)Ramsey) > Lr]N “@ is o-bounded,
but this was proved in [3]. O

This is the sole implication between these properties. More information can be
found in [3]).
Now we describe pure models for each of these properties.

3.5. Theorem. If ZFC is consisient, then:
(i) There exists a mode! V such that

V £« Al(Lebcsgue) + 1AY(Baire) + 1A} (Ramsey) + A)(K,-regular)”.
(ii) There exisis @ mod:. V such that

V £ “Aj(Baire) + Aj(Lebesgue) + 1A3(Ramsey) + 7A3(K,-regular)”.
(iii) There exists @ model V such that

B E“AYK,-regular) + ~Aj(Lebesgue) + A} (Baire) + 1A} (Ramsey)”.
(iv) There exists a model V such that

V E“A}(Ramsey) + A}(Lebesgue) + 1A} (Baire)™.

Proof. (i) Force with a product of x-many random reals, x = R,. Here every new
function from @ to w is bourded by an old function.

(ii) Force x-many Cohen reals, k =R,.

(iii) Force, from L, w,-Laver’s reals with countable support. By [5] in this
model,

L NR has outer meast:re one.

This says that "A}{Ramsey) holds. It is well known that in this model no real is
random or Cohen over L. This model answers the question of [2}:

Z3(K,-regular) = LNR has measure zero.
(iv) Force w,-Mathias reals with countable support. O
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