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erkeley, Rer~e~, CA 94720, USA 

, Hebrew Univedy of Jenrssrlem, Jendh, Israel 

a complete solution to, implicatiosrs of the form: ( * ) Every XI-set 
P, ihqdks ewty X*-set of reals has the pmperty Pz, for X1,X, E 

&, II:, 2$ I@, and where PS,P2 are among ‘to be Ramsey’, ‘&-regular’ curd of course 
‘Xdesgue measurable’ and ‘Bake categmicity’. Naturally we are led to iook far characterixa- 
tions of such pmper?ies (by forcing). Not su@ingly, excepting the trivial implications, we get 
ma~y consistency results, but ‘forttmately’ we get quite a number of theorems ( = implications 
proved in ZFC), notably among the ‘to be Ramsay’ and ‘&-regular’. 

1. Tore f&wing m equivalent: 
(a) Every #-set of nx& is Ramey. 

I”, s is P(D,[r])-generic over L[r][DJ. 

~@efinitions are given in Section 0.) For this theorem we develop a forcing P(D) (D an 
ultrafilter on (u) shooting a real ‘through’ the ultrafilter. 

l%e folilowing are equivalent: 
Z$-set of red is Km-regular. 

(b) Eueny A+t of reals is K,-rzs^ulor. 
(c) Every Hi-set of ma& is K,-regular. 

there exists f E o”, f is a u-bound to own L[r]. 

ted by E. Bore1 in 1905. The analytic sets were 

besque measurat9iIky 6f +&c analytic sets is due to in in 1917 and the 
e categoricity of the 
were introduced by 

raMe and has the property of 
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that for every g E ma n L[r] there 

rem, it seems natural to search for some forcing 
tion “Every &set of reals is Ramsej”. 

roved that (ii) follows from “Every A&et of reals is 
minor changes in this proof, we Section 2 by 

i-set of reals is Ramsey, then for every r E R there exis& 
n: [iu]2*2, if Jr E L r], then there exi&ti n E o such 

oerem, that if every A&set of reals is 
-regular, and it seems plausible to find 

assertions “Every &set of reals is 
Our search gives the following: 

are equivalent: 
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A&sets of reals 

This theorem will be proved in Section 2, but prior to this we need to stbJy the 
g forcing notion. 

If D is an ultrafilter over 0, let P(D) be the following partially 

) iff p s w<“’ is a tree and there exists s EP, called the stem of p, 
SuchthatforeverytEp, tcsorsc=tand{nEc&(n)Ep)ED. 

,q E P(D), we say that p G q if q sp. 
(iii) Clearly we can identify a P(D)-generic object with an infinite subset of o 

(= the generic branch = n {p : p E Gr(u)}). 

In Section 1 we prove the following facts about forcing with P(D). 

. (a) Zf x E [a$ is P(D)generic over V, then for every a E D, 
x&a and for every y E [xl”‘, y is P(D)-generic over V. Where x ~*a means 
(38 E 0)(x - n c_ a). 

(b) For every P(D)-sentence #, and for every p E P(D) there exists q E P(D) 
such that 

p s q IF “f#i” or p G q It- ‘W#I” 

and the stem pf p is equal to the stem of q. 
(c) Zf PO is the Silver forcing notion using a Ramsey ultrafilter D, then a E [o]* 

is Pu-generic over V iff a is P(D)-generic over V. 
(d) Zf a E [cJ$’ is P(D)-generic and Pp-generic over V, then D is a Ramsey 

ultrafilter. 

Because Mathias forcing is isomorphic to forcing a Ramsev ultrafilter with 

([~l”&F; 2 ) followed by Silver forcing with the generic ultrafilter, we can 
conclude that P(D) is the natural forcing notion related to the property of ‘to be 
Ramsey’. Also it can be useful to remark that Ramsey ultrafilters do not 
necessarily exist and forcing with ( [o]~/[o]<~; 2 ) can collapse 2% (see [4]), but 
ultrafilters always exist in models of ZFC. 

According to the above, we know that if every A&set of reals is Ramsey, then 
for ever r E aB there exists a E [o]” such that 

{x E [ml* n L[r]: ac*x) 

is an ultrafilter in the Boolean algebra 9$#‘! 
Thinking about this, in Section 2 we define 

s E [WI”, then 0, = {x E [o]“: s~*x). 
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?A last part of on 2 we prove the 

is Ramsey. 
is Ramsey. 

rems we can ask if the measurability of the &ets of reals 
tity of the &-sets of reals. In Section 3 we clear up 

A$set of reals is Lebesgue measurable iff for every real 

property of &ire ii’ for every real r there exists 

is Lebesgue meas le + there exist 
property of Baire, are not Ranrsey and are 

the prr3perty of Baire + there exist 
are not Ramsey and are not 

there exist A$sets which are 

Ai-sets of reals 
Bake, and are 
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A:-sets of reals 211 

From the theorems of this article and the results of [3] and [lo], we have the 
following chart 

Lebesgue Bake 

To be Ramsey K,-regular 

. (1) All directions are proved in ZFC. 
ere are no other possible implications between these propertics. 

All our notation will be standard and can be found in [3]. We recall just the 
following: 

(i) [xlU= {a sx: Ial = K,}. 
(ii) A subset A c [o]” is Ramsey iff there exists u E [w]” such that [a]” E A or 

[alo c -A. 
(iii) Tco- is a superperfect tree iff T is a tree and for every tI E T there 

exists t2 E T such that tI c tz and {n E o: &z) E T} E [co]“. 
(iv) A c o” is &-regular iff there exists a superfect tree T C_ do such that 

the set of branches of T = [T] c A 

or there exists f E o o such that for every g E A there exists n E o such that m > n 
implies g(m) <f(m). 

We say that NkZFC* iff N is a transitive model of some part of ZFC, 
sufficiently rich in order to build the forcing framework. In many cases we need to 
use the fact that there is a C$good well order of L[r]. All this technology can be 
found in Jech [6, Part IV, p. 4933. We assume that the reader is familiar with 

oolean valued model notation, especially in the case of the 
a and the Cohen Algebra. Finishing this section, we w 

modem proof of the Luzin theorem about the measurability of the a 
as inspired by [ 171. The scheme of this proof is a central idea 

) be the Lebesgue measure of 
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denote a non-principal uhfiltet over o. 

denote the following partiaily- ordered set: 
is a subtree u- with the property that there exists s EP 

up, t~sorsct, andifsctep, then 

s Ep, s is an increasing function. 

Ep:t~SOrS~tj. 

P2) ad PI q2- 

ed and less than 
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Let s tzp be such that r!?(s) = *, s(p) ES. e definej$=(tqxl~sor 
s c t and for every k E [ig(s), am), rk’( t 1 k) = m). Clearly p: s p, and by 
deGu.ition of rk’, if s strp,8, then (n: i(n) &@} 45 D. Therefore ~2: E P(D) 
and. as I is dense open in P(D), there exists p** suck that ps* up** E 1. By 
hypothesis s(p**) qP, and implies that r~‘(s(~**)) = m, but clearly 
~~~(S(~~~)) = 0. CI 

We say that A up E P(D) is a front uf p iff ifor every s,t EA, 
5 @ t and for eiery bran& X of p there exists k E m such that X r k E A. 

(a) By ~du~o~ m r~(s(p))* 
(b) We will give 4” by induction on n using (a). Let q” be such that p~Oq* and 

{s E q*: q!j E &} contains a front _ _‘, say, AoW Suispose we have defined q”, A, 

along: A, is a front for q” and qf E In for every s CA,. Every member of A, 
extends some mernbm of A,+ qn c qm+ For each s E A,, let q(s), A(s) be such 
that 43 n s’q(s), A(s) is a front of 4s” and for every t E A(s), q(s)& E In+l. Thea let 
A n+t. = U{A(s): s E A,) and qn+’ = {t: (3s E A,)(t s s v t E q(s))]. Then we de- 
fineq=fkja. U 

[f $ is a P(~)~s~nten~~ and p E P(~), then there exists q E P(D), 

q II- yP or q II- ‘-#“. 

it- ?#P or q k’~~“}. Clearly I is a dense open subset of 
1 prove the theorem by induction lm k’(t) for s s t up. IIf 

k’(t) = 8, then there exists q”“p, such that 

q II- “9” or q II- ‘y@“. 

(t) = cu, then (n: r~~(tn(~)) C a) = cp f 
such that 
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A$sets of reals 215 

Let p E P(D) be given, clearly there exists p’ E ‘(D) such that prop’. 

Let q E P be given, we define q 13 
(i) 49 f-I P’) = a?)~ 

(ii) s(q)ctEqnp’ B teq and the unique SEAR such that ~(@“s=t 
belongs to p’. Clearly 

- Rauge(s(q))) STp” 

and this implies that the set of conditions q E P(D) smh that q 11 
“Range(g) ASTp” is dense in (P(D), G ). 0 

Zf VcV’ are mod& of 2FC a4xE[o]“nV’, and D is an 
then jh P(D)-generic over V iff for every p E P(D), ifs(p) = ( ) 

th x ASTp. 

(*) is Lemma 1.11. 
(e)ForeverynEm, wcn,p~P(D)wedefinep”,~P(D)by 

mge(s(p3) =w and s(p”w)ctEp’:, 

ifl there exists t’ EP such that 

rmge(t’) - n = range(t) - n. 

Let Z be a dense open subset of P(D), Z E V. Then we define 

c = {p E P(D): (3q E Z)(q sp”,)}. 

clearly I”, is a dense opec subset of P(D). Using Lemma 1.6(b) we can find 
p E P(D) such that for every IZ E w, w c n, {s EP: ps E ZL} contains a front. By 
hypothesis, there exists n E o such that 

x-nSTp 

Therefore there exists k E o such that if s =fx-n r k, then 

This implies that there exist q E Z such that 

and it is not hard to verify that x S q. This concludes the groof of the lemma. 0 

In the notation of 1.12, fx is P( )-generic over V iff for every 
p E P’(D), if;(p) = ( ), then there exists n E w sucta that 

x-nsp. 

Sh:321



such that p’ E P’(D), 
erefcxe there exists n E 0 

ric filter generated by every 

m]” is P(D)-generic over V 
+2~(n E V) (3~ E to) (card(x”[r - n]*) = I). I 

part, fix 9t: [0]"+2. 
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(e) Itissuflk nt to show that for every p F 
- 1 G i G w) be witne+g 

e define [m]*+2 by 

=1 iff meA;. 

mere exists n E o such that I$ r-r#1= 1 because &%a E D, JT& - n]” = 
{I} and this implies that fr_,, is a branch of p’. Cl 

r is a Ramsey real over V iff 3 
E D)@n)(t 1 n E a) and 

E V, D is an ultrafilter and 
: [o]** 2, 3k E V, (32 E 0) (Irc”ir - n]*( = 1). Cl 

(Silver forcing). If D is an ultsafilter over o, we define PO by 

(s, a) E PO iff s E [w]‘“, a E D and sup(s) < inf(a), 

( S(C b) iff sst, bcaand t-ssa. 4 

athias). if D is c Ramsey ultrajilter, then r E [ml0 defines a 
generic object to PO iff for every a E D, there exists n E o such that r - n c a. 

If (s, a) E PO, let P(~,~) E P’(D) be defined by (without loss of generality, 
P l n<o) where n-l= 

Ap =a -1 9 AP n-f = a - n. 

Then this proves that PO cm be seen as a dense subset of P(D). Then use the fact 
that r is P(D)-generic. 0 

. (i) If D is Ramsey ultrajilter, then forcing with PO is equivalent to 
forcing with P(D). 

(ii) If there exists r E [o]* such that r is PD-generic over V iff r is P(D)-generic 
over V, then D is a Ramsey ultrajilter. 

(i) Clearly by 1.19 and 1.16. 
(ii) Suppose there exists r E “[o] such that r is PO and P(D)-generic, and 

x;: [ml*+2 belonging to V and such that fm every a E D, there exist nl, n2, ml, 
m2Ea such that z(n,, n2) #lc(ml, m2). It is not hard to show that 

ut, using (1.16), 

IFP,,, “ (an E 4(n r [r - n]” is constant)” 

and this is a contradiction. El 

n a forthcoming wor g facts a . 
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&a). Clearly 0, is a filter over 

sets which are constmctible from 
be translated from L 

met o in L[D,], then D” = Dr. 
y) such rhat for every a, 

ewety i< o, aistlDrlb 
tz &en &(r,, a, b) iff 

roof of the corresponding facts for L 

r E [o]~ there c&s s E [t]” such 
there exis& nuu and s-n is 

: [a~]*_* 0 the canonical 
the following function 

-93 is homogenwus for 3~’ 

naO,s-nisn homogeneous for n 
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(2) For every s E [rlw thele exists nl, . . . . n, ES s that C(s) = 1 i 

{ n-al, . . . . n,)) = 0. 

e define A0 = (s: C(s) = 0) , I= {s: C(s) = 1). n clearly PI0 is a A&et 
2nd A0 is not Ramsey. 

such that 
. A:(Ramsey) implies o]” there exists s e [rim 

L[D”] I= “D” is an ultrajilter over o”. 

A:(Ramsey) implies 
thatfis a a-bckd to o“‘n LIti. 

that for every r , there exists f e “0, such 
Cl 

if r E [a$’ and 
10s of geserali’q 

Dp is an ultrafilter w in L[D’), then 
we can denote (D’) as Pr, and if s G * r, then P, - Pr. 

2*6* Ai(Rarnsey) implies that for every ci [o]O there e&s s E [r]* 
such that s is &generic over LID”]. 

By 2.2 and 1.16. 0 

Zi(Ramsey) $,f A$(Ramsey). 

(*) Cltar. 
(G) Suppose A#Xamsey). kf @(x) be a &formula. Without loss of 

generality, the parameters of e(x) belong to L. Let s E [ml0 be such that: 
(i) D” is an ultra.Glter over o in L[D”]. 
(ii) s is e-generic over L[D”]. 

In L[D”] there exists p E Pi, s(p) = ( ) and 

p It- yS “@(r&” or p IkpS ‘*@(r& 

As s is &generic over L[D”], we know that there exists n E o such that if 
t E [s - n]“, then 

t3p 

and as we know that t is &generic over L[D”], we have that for every t E [s - nl” 

qw I= e(t) or L[D”][t] t= l+(t). 

And t;.is implies that {x: Cp(x)} is Ramsey. 0 

amsey) iff (r E [w]? r is amey real mm L[ 
dense set in the topology introduced in [I] to [o$! 

y 2.2 and 1.17. 0 
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cte tion. 

&J(Baire)“. If there is no Cohen real over L[rb]l, let 
well order of the Bore1 meager set coded in Z&J. 

define the following order on the members of IR: 

*, A={(x,y):xCy}. ThenclearlyA isa 
Kuratowski-Ulam theorem we have that 

enAismeager.But-A=((x,y):y~x}alsois 
A, as well as -A, is a A&)-set of reals 

parameters in L[ro] be Z$fo ulas. Let P be the 
i c P be a maximal antichain satisfying 

), then B*nB*= and BlUB2 is a 
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Suppose that s E B1 n &. Then 

s ii- tap,(r) A &(r)“. 

Pick in V a Cohen real r over L[r,], such that s c_ F. Then 

By the Schoenfield absoluteness lemma, 

v b #1(r) A @2(r) 

a contradiction. 
The second assertion is clear using the fact that the Cohen reals over L[r,] are 

denseinBB. 
NOW working in L[ro], we pick N K H&, E , 6 ) SUCK that llNll= & Bi E N, 

&EN, i=1,2. 

. If S E Bi and s s t is u &hen real over N, then V I= “@i(r)“. 

Clearly on proving the ciaim we have finished. 

AsN-cH(K,, E, s ), in N we have that 

s lb Cohcn(‘44(k)“~ 

Thus N[t] E “@i(r)” but &formulas are up-absolute, therefore V k “@i(r)“‘ Cl 

The following theorem was essentially proved in [3]: 

3. The following assertions are equivalent: 

(ii) A&,)(&-regular), 
(iii) #(Q(K,-reguW 
(iv) qrO]n50 is a-bounded. 

(i)+ (ii)-* (iii) are clear. (iv)+(i), see [3]. 
(iii)+ (iv). If L[r,] n “o is not a-bounded, then in [2] it was proved that there 

exists a non-&-regular #-set of reals. q 

. (i) A&)(Lebesgue) 3 L[r,] n R is meager. 
(ii) A~(rO)(Baire) =5$ L[rj] n IF8 has measure zero 
(iii) A$$(#,-regular) =$ L[ro] n R is meager. 
(iv) A&)(Ramsey) 3 L[r,] n I&! is a meager-nearure zero set. 

(iv), see [3]. 
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) + -A;(Ramsey) -1-14 

e) + -Al(Ramsey) + ~A#S&qgular)“. 

e) + -Ai(Baire) + ~A#hnsey)“. 

besgue) + -rAi(Baire)“. 

ct of x-many random reals, K 3 Xl. Here every new 
ded by an old function. 

countable support. By [S] in this 

as outer measwe one. 

own that in this model no real is 
model answers the question of [2]: 

has measure zero. 

countable support. 0 

sets are Ramsey, J. Syxnbolic 
rejective sets of reals, Israel J. 
tic Logic, to appear. 

zero sets, Trans. A. 
and the Bake 

a chart of Kunen 
: Laver’s reals, 
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