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Abstract

We show that ℵ2 ≤ b < g is consistent.
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0. Introduction

We show that for every regular cardinal with a definition in the ground model, the statement κ = b < b+
= g is

consistent. In particular this holds for κ = ℵ2. This answers a question of Andreas Blass.
We recall the definitions of the three cardinal characteristics b, g, u. The set of functions from ω to ω is written as

ωω. For f, g ∈
ωω, we say g dominates f and write f ≤

∗ g iff for all but finitely many n, f (n) ≤ g(n). A family
B ⊆

ωω is unbounded iff for every g ∈
ωω there is some f ∈ B such that f 6≤

∗ g. The bounding number b is the
smallest cardinal of an unbounded family B ⊆

ωω.
For X, Y ∈ [ω]

ω we write Y ⊆
∗ X to denote that Y r X is finite. A subset G of [ω]

ω is called groupwise dense if
(∀X ∈ G )(∀Y ⊆

∗ X)(Y ∈ G ) and for every partition {[πi , πi+1) : i < ω} of ω into finite intervals there is an infinite
set A such that

⋃
{[πi , πi+1) : i ∈ A} ∈ G . The groupwise density number, g, is the smallest number of groupwise

dense families with empty intersection.
By an ultrafilter we mean a non-principal ultrafilter on ω. Such an ultrafilter is called a P-point if for any

Ai ∈ U , i < ω, there is an A ∈ U , such that A ⊆
∗ Ai for i < ω. Such an A is called a pseudointersection

of Ai , i < ω. An ultrafilter is called a Q-point if, given a strictly increasing sequence πi , i < ω, of natural
numbers, there is some A ∈ U that for all i < ω, |A ∩ [πi , πi+1)| ≤ 1. For an ultrafilter U the cardinal
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χ(U ) = min{|B| : B ⊆ U ∧ (∀X ∈ U )(∃Y ∈ B)(Y ⊆ X)} is called the character of U . The cardinal u,
the ultrafilter characteristic, is defined as the minimal χ(U ) for all non-principal ultrafilters U on ω.

The bounding number b and groupwise density number g can be in either order. For a regular κ > ℵ1, we get the
constellation ℵ1 = g < b = κ for example after adding uncountably (—their number does not matter, the continuum
can be larger than κ—) many random reals over a model of MA and 2ω

= κ [4] or in a finite support iteration of
Hechler forcings of length κ [13].

Also ℵ1 < g < b is consistent. We sketch a proof given by the referee. Let κ < λ be regular uncountable and
assume CH. We take a finite support iteration 〈Pβ , Q

˜
α : α < λ, β ≤ λ〉 of length λ adding Hechler generics in the

odd steps and going through all c.c.c. partial orders of size < κ in the even steps. Then b = 2ω
= λ and book-keeping

gives MA<κ , so that g ≥ κ . The proof of g ≤ κ is a standard modification of the argument for g = ℵ1 in the Hechler
model.

Recall the latter argument: if all iterands are Hechler forcing, then since Hechler forcing is Suslin, absoluteness
gives us that PA is completely embedded into Pλ for every A ⊆ λ, where PA is defined as Pλ considering only
coordinates from A and ignoring the others. Furthermore, when A is a directed family of subsets of λ such that for
all countable subsets B of λ there is some A ∈ A with B ⊆ A, then Pλ is the direct limit of PA, A ∈ A. This is so
because the conditions in Hechler forcing are reals and hence arise in countable fragments of the iteration.

Now let A be a strictly increasing ω1-chain of subsets of λ with
⋃
A = λ. Then V [G] ∩

ωω =
⋃

A∈A V [G ∩

PA] ∩
ωω, i.e., the reals arise in an ω1-chain of intermediate models. By a standard argument, see [12,4], this yields

g ≤ ℵ1.
Now return to the above situation: Say A ⊆ λ is closed if for all even α ∈ A, supp(Q

˜
α) ⊆ A, where supp(Q

˜
α) is

the union of the supports of the conditions determining what the order Q
˜

α is. By the countable chain condition and
since the supports of the conditions are finite, |supp(Q

˜
α)| < κ for all even α. Then for each B ⊆ λ of size < κ there

is some closed A ⊇ B of size < κ . If A is closed then PA is completely embedded into Pλ. Furthermore, when A is a
directed family of closed subsets of λ such that for all B ⊆ λ of size < κ there is some A ∈ A with B ⊆ A, then Pλ is
the direct limit of the PA, A ∈ A. Now there is a strictly increasing κ-chain A of closed subsets of λ with

⋃
A = λ.

Again we get V [G] ∩
ωω =

⋃
A∈A V [G ∩ PA] ∩

ωω and g ≤ κ .
In all models so far known of the reverse inequality b < g we have had ℵ1 = b < g = 2ω

= ℵ2. The models given
by a countable support iteration of Blass–Shelah, Miller or Matet forcing over a ground model satisfying CH fulfil
even ℵ1 = u < g = 2ω

= ℵ2. Since b ≤ u [11], the latter is stronger than b < g. For the constellation b < g ≤ u one
can for example interweave random reals at the odd steps of a countable support iteration of Miller forcings, see [2,
Model 7.5.5].

The main part of this work is to show that the inequality b < b+
= g can hold above ℵ2. There is nothing

special about ℵ2; any regular cardinal that is definable without parameters can serve. Our construction yields
ℵ2 = b < g = u = 2ω

= ℵ3 and it is open how to keep u small. Moreover, our construction does not allow to
push g strictly above b+. In the last section of this work we show that g ≤ db, and this is possibly a partial explanation
for the obstacles in getting g > b+.

The main part of this paper will be the proof of

Theorem 0.1. ℵ2 ≤ b < g is consistent relative to ZFC.

Here is an outline: In Section 1 we state and prove some properties of Matet forcing with stable ordered-union
ultrafilters and prove a key lemma. In Section 2 we finish the proof of Theorem 0.1. In Section 3 we show g ≤ db.

1. A variant of Matet forcing

We shall define a variant of Matet forcing. For this purpose, we first introduce some notation about ordered-union
ultrafilters. Our nomenclature follows Blass [3] and Eisworth [8].

We let F be the collection of all finite subsets of ω. For a, b ∈ F we write a < b if (∀n ∈ a)(∀m ∈ b)(n < m).
We shall work with filters on F, i.e. subsets of P(F) that are closed under intersections and supersets. A sequence
ā = 〈an : n ∈ ω〉 of members of F is called unmeshed if for all n, an < an+1. The set (F)ω denotes the collection of
all infinite unmeshed sequences in F. If X is a subset of F, we write FU (X) for the set of all finite unions of members
of X . We write FU (ā) instead of FU ({an : n ∈ ω}). We let P l Q denote that P is a complete suborder of Q.
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Definition 1.1. Given ā and b̄ in (F)ω, we say that b̄ is a condensation of ā and we write b̄ v ā if b̄ ⊆ FU (ā). We
say b̄ is almost a condensation of ā and we write b̄ v

∗ ā iff there is an n such that 〈bt : t ≥ n〉 is a condensation of ā.

Definition 1.2. In the Matet forcing, M, the conditions are pairs (a, c̄) such that a ∈ F and c̄ ∈ (F)ω and a < c0. The
forcing order is (b, d̄) ≤ (a, c̄) (the stronger condition is the smaller one) iff a ⊆ b and b r a is a union of finitely
many of the cn and d̄ is a condensation of c̄.

Definition 1.3. A filter F on F is said to be an ordered-union filter if it has a basis of sets of the form FU (d̄) for
d̄ ∈ (F)ω. An ordered-union filter is said to be stable if, whenever it contains FU (d̄n) for d̄n ∈ (F)ω, n < ω, then it
also contains some FU (ē) for some ē that is almost a condensation of each d̄n .

Ordered-union ultrafilters need not exist, as their existence implies the existence of Q-points [3] and there are
models without Q-points [10]. Under MA(σ -centred) stable (even < 2ω-stable) ordered-union ultrafilters exist [3].

It is well known [9,4] that the forcing M can be decomposed into two steps P∗M(U
˜

), such that P is ω1-closed (that
is, every descending sequence of conditions of countable length has a lower bound) and adds a stable ordered-union
ultrafilter U on the set F, and that M(U ) is the Matet forcing with sequences from the ultrafilter (and hence it is
σ -centred).

Definition 1.4. Given a v
∗-descending sequence āα , α < β, the notion of forcing M(āα

: α < β) consists of all
pairs (s, ā), such that s ∈ F and ā is an end segment of one of the āα’s and s < min(a0). The forcing order is the
same as in the Matet forcing.

We shall use M(āα
: α < β) for v

∗-descending sequences of length 1, of length < κ and of length κ . The forcing
M(āα

: α < β) diagonalises (“shoots a real through”)
⋃

{aα
n : n < ω}, α < β.

Note that for a v
∗-descending sequence with a last element, M(āα

: α ≤ β) is equivalent to M(āβ) and this is in
turn equivalent to Cohen forcing. However, M(āγ ) is not a complete suborder of M(āα

: α < β).
We shall show that given a set of κ groupwise dense families, there are āα , α < κ , such that M(āα

: α < κ) adds
a real through all the families. This is similar to the fact shown by Blass [4], that the original Matet forcing M adds a
real that lies in all groupwise dense families from the ground model. By unpublished results of Blass and Laflamme
[4], Matet forcing preserves P-points and hence, by the iteration theorem for preserving P-points [7], it preserves u.
However, our finite support iteration of iterands of the form M(āα

: α < κ) and other iterands will not preserve u, as
the iteration adds Cohen reals in limit steps and also at some successor steps that force a part of MA<κ . We shall only
keep b small.

We write names for reals in c.c.c. forcings P in a standardised form g
˜

= Name(k̄, p̄) = {〈(n, kn,m), pn,m〉 : n, m ∈

ω}, such that {pn,m : m ∈ ω} is predense in P and pn,m 
P g
˜

(n) = kn,m and such that kn,m = kn,m′ if pn,m and pn,m′

are compatible.

Lemma 1.5. Let āα , α < δ, be a v
∗-descending sequence. Assume Q = M(āα

: α < δ) and cf(δ) > ℵ0 and g
˜

is a
Q-name for a member of ωω. Then we can find an α0 < δ such that for every α ∈ [α0, δ) there are pn,m ∈ M(āα) and
kn,m ∈ ω such that {pn,m : m < ω} is predense in Q and pn,m 
Q g

˜

(n) = kn,m .

Proof. We assume that g
˜

= {〈(n, hn,m), qn,m〉 : m, n < ω}. Since cf(δ) > ω, there is some α0 < κ such that all qn,m

are in M(āβ
: β ≤ α). Now, given α ∈ [α0, δ), we take

In = {q ∈ M(āα) : (∃m)(q ≤Q qn,m)}.

Then In is predense in Q. Now let pn,m , m < ω, list In and choose kn,m such that pn,m 
Q g
˜

(n) = kn,m . Then k̄, p̄
describe g

˜

as desired. �

The following lemma will be used in those successor steps of our planned iterated forcing in which we want to add
an infinite set that is in κ groupwise dense sets at the same time.

Lemma 1.6. Assume that κ is a regular uncountable cardinal, 2ω
= κ , MA<κ(σ -centred), {Gα : α < κ} is a set of

groupwise dense subsets and that f̄ = 〈 fα : α < κ〉 is a ≤
∗-increasing and -unbounded sequence of functions in ωω.

Then there is a σ -centred forcing notion Q of size κ such that


Q “ f̄ is unbounded ∧ ∃X ∈ [ω]
ω

∧
α<κ

X ∈ Gα”.
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Proof. We shall build Q = M(āα
: α < κ) by choosing āα

∈ (F)ω by induction on α < κ such that āβ
v

∗ āα for
α < β. Since cf(κ) > ω, each Q-name for a real has an equivalent M(āβ)-name for all sufficiently large β. We shall
show that we can choose Q carefully, with a sealing argument, such that in the end there will be no name for a new
function dominating all the fα , α < κ .

Now we carry out the construction. Let 〈b̄α, g
˜

α
: α < κ〉 list the pairs (b̄, g

˜

) such that b̄ ∈ (F)ω and
g
˜

= {〈(n, kn,m), pn,m〉 : m, n ∈ ω} is an M(b̄)-name for a function in ωω such that each pair (b̄, g
˜

) appears κ

many times.
Now we shall choose by induction on α < κ some āα

∈ (F)ω with the following properties:

(a) If β < α then āα
v

∗ āβ .
(b) If α = 2β + 1, then

⋃
n<ω aα

n ∈ Gβ .
(c) If α = 2β + 2 and for some γ < 2β + 2, b̄β

= āγ and g
˜

β is a M(b̄β)-name of a member of ωω that can be
construed as an M(ā2β+1)-name, then āα guarantees that for some ζα < κ ,


Q g
˜

β
6≥

∗ fζα .

For α = 0 we let ā0
= 〈{n} : n < ω〉.

Let α < κ be a limit ordinal. We apply MA<κ(σ -centred) to the σ -centred forcing notion {(ā, n, F) : ā is a
finite unmeshed sequence of subsets of n and F is a finite subset of α}, ordered by (b̄, n′, F ′) ≤ (ā, n, F) iff n′

≥ n,
F ′

⊇ F , and b̄ = āˆc̄ with ci ∩ n = ∅ and (∀γ ∈ F)(∀k)(bk ⊆ [n, n′) → bk ∈ FU (āγ )), and the dense sets
Iβ,n = {(ā, m, F) :

⋃
ā r n 6= ∅ ∧ β ∈ F ∧ m ≥ n}, β < α, n < ω, and thus we get a filter G intersecting all the

Iβ,n and set āα
=

⋃
{ā : (∃n, F)((ā, n, F) ∈ G)}. Then āα is as desired.

Step α = 2β + 1. We show that, given Gβ and ā2β , there is some condensation ā2β+1
v

∗ ā2β such that⋃
n a2β+1

n ∈ Gβ : We apply the definition of groupwise density to the partition {[min(a2β
n ), min(a2β

n+1)) : n < ω}

and get an infinite set I such that
⋃

{[min(a2β
i ), min(a2β

i+1)) : i ∈ I } ∈ Gβ . Then also
⋃

{a2β
i : i ∈ I } ∈ Gβ . Then

we re-index the sequence 〈a2β
i : i ∈ I 〉 by the natural numbers, so a2β+1

n = a2β
in

for the increasing enumeration
〈in : n < ω〉 of I .

Step α = 2β + 2. We assume that for some γ < 2β + 2, b̄β
= āγ and g

˜

β is a M(b̄β)-name of a member of ωω

that has an equivalent M(ā2β+1)-name. Otherwise we can take ā2β+2
= ā2β+1.

For each n < ω we choose a finite set aα+
n such that a2β+1

n is an initial segment of aα+
n and there is some

un ⊆ {n, n + 1, . . . , `n − 1} such that n ∈ un and

aα+
n =

⋃
{a2β+1

` : ` ∈ un}

and such that for every w ⊆ {0, 1, . . . , min(a2β+1
n ) − 1} there is some mβ

n (w) such that

pβ

n,mβ
n (w)

≥ (w ∪ aα+
n , ā2β+1 � [`n, ω)).

Since there are only finitely many w ⊆ min a2β+1
n , there is such an aα+

n .
Now in order to be able to concatenate the aα+

n and in order to ensure that g
˜

β will not be a dominating function

we thin out: Let k(w, n) be one kβ

n,mβ
n (w)

that is in g
˜

β together with pβ

n,mβ
n (w)

≥ (w ∪ aα+
n , ā2β+1 � [`n, ω)). Now we

take h(n) = max{k(w, n) : w ⊆ min(a2β+1
n )}. By our premise on f̄ there is some ζα < κ such that X = {n ∈ ω :

h(n) < fζα (n)} is infinite. Now we choose an infinite Y ⊆ X such that (∀n ∈ Y )(`n < min(Y \ (n + 1))). Let nβ
i ,

i ∈ ω, enumerate Y . Then we set āα
= 〈aα+

nβ
i

: i < ω〉.

For every n ∈ Y and w ⊆ min(a2β+1
n ) we have that (w ∪ aα

n , āα � [n + 1, ω)) ≤Q (w ∪ aα
n , ā2β+1 � [`n, ω)).

Now we show that Q = M(āα
: α < κ) is as desired. It is σ -centred, because for every w ∈ F, Qw = {(w, āβ �

[`, ω)) : ` ∈ ω, w < aβ
` , β ∈ κ} is centred.

Then the generic W =
⋃

{w : ∃ā(w, ā) ∈ G} is an infinite subset of ω and since every (w, ā) ∈ Q forces in Q
that w ⊆ W ⊆ w ∪

⋃
{an : n < ω}, we have by the choice of the āα in the odd steps, that the generic W is in each

Gα , α < κ .
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Now we show that


Q f̄ is unbounded.

Assume towards a contradiction that there is a Q-name g
˜

for a real and there is p ∈ Q such that p 
Q “g
˜dominates f̄ ”. By Lemma 1.5 there is some γ < κ such that g

˜

is an M(āγ )-name. Then for some β ≥ γ we
have (b̄β , g

˜

β) = (āγ , g
˜

). So at stage α = 2β + 2 in our construction we take care of g
˜

’s equivalent M(ā2β+1)-
name Name(k̄β , p̄β). Let ζα and āα be as in this step. Assume that there are some p ≥ q and some n(∗) such that
q 
Q (∀n ≥ n(∗))(g

˜

(n) ≥
∗ fζα (n)). By the form of Q, q = (s, āα(1)) for some α(1) ≥ α and some s, such that

āα(1) is a condensation of āα . So there is some nβ
i ≥ n(∗) such that there are ri , ri+1 and j such that aα(1)

j ⊆ ri+1 and

aα(1)
j ∩ [ri , ri+1) = aα+

nβ
i

= aα
i . Then we set s′

= s ∪ (
⋃

āα(1)
∩ [0, ri )), and we set q ′

= (s′
∪ aα

i , aα(1)
j+1 , . . . ).

We set mβ

nβ
i
(s′) = m. Then q ′ witnesses that q and pβ

nβ
i ,m

are compatible, because q ≥ q ′ and pβ

nβ
i ,m

≥ q ′. However,

our choice of m yields pβ

nβ
i ,m


Q g
˜

(nβ
i ) = kβ

nβ
i ,m

< fζα (nβ
i ). Contradiction. �

2. A finite support iteration

Now we describe a finite support iteration.

Theorem 2.1. Let κ = cf(κ) > ℵ1 and assume κ<κ
= κ and assume that ♦(S) holds for some stationary

S ⊆ {α < κ+
: cf(α) = κ}. There is some finite support iteration 〈Pβ , Q

˜
α : α < κ+, β ≤ κ+

〉 such that


Pκ+
MA<κ ∧ 2ω

= κ+
∧ g = κ+

∧ b = κ.

Proof. By ♦(S) there is Ȳ = 〈Yδ : δ ∈ S〉, such that Yδ ⊆ δ and for all Y ⊆ κ+ the set {δ ∈ S : Yδ = Y ∩ δ} is a
stationary subset of κ .

As the ground model has κ<κ
= κ , we can fix an enumeration Q′

˜
β , β ∈ κ+ r (S ∪ κ) of all c.c.c. names of partial

orders on all ordinals < κ , such that each name appears cofinally often before each α ∈ κ+ of cofinality κ .
We choose Q

˜
β by induction on β < κ+. In the first κ steps we add κ Hechler reals fα , α < κ , and these will be

the ≤
∗-increasing unbounded sequence whose unboundedness will be preserved through the rest of the iteration.

In the following steps we distinguish two cases: First case: If β ∈ S and 
Pβ
“Yβ is a code for a Pβ -name of a

family {G
˜

ζ : ζ < κ} of κ groupwise dense subsets of [ω]
ω”. Then we take Q

˜
β such that 
Pβ

“Q
˜

β is as in Lemma 1.6”,
and we get 
Pβ∗Q

˜
β

“there is an infinite subset of ω that is in each G
˜

ζ , ζ < κ”.
Second case: Not all the criteria from the first case are fulfilled. Then, as in the usual iteration for Martin’s axiom,

Q
˜

β will be Q
˜

′
β with weights p, where we have p 
Pβ

“Q
˜

′
β is a c.c.c. forcing of cardinality less than κ”, and Q

˜
β will

be the trivial partial order with orthogonal weight.
As κ<κ

= κ also in the final model we have MA<κ , because if P is a c.c.c.-notion of forcing of cardinality < κ

in VPκ+ and if γ < κ and Dα , α < γ , is a sequence of predense subsets of P, then this holds in an initial segment
VPδ for some δ ∈ κ+ r S and hence by what we did in successor steps for δ 6∈ S, there is a directed G ⊆ P such that∧

α<γ G ∩ Dα 6= ∅.
By Lemma 1.6, in each Matet step of the iteration the unbounded family fα , α < κ , is preserved. By [1, 2.1] also

in each extension by Q of size < κ the unbounded family is preserved. By the preservation theorem for finite support
iterations from [2, 6.5.3], the unbounded well-ordered family fα , α < κ , is preserved in all limit steps of the iteration.
Thus we have b = κ in the extension.

Let Gα , α < κ , be a family of groupwise dense sets in V P. As 〈Yδ : δ ∈ S〉 is a diamond sequence and as being κ

groupwise dense families reflects down into a κ-club set in κ+ (a proof for the countable support iteration of proper
forcings is given by [6], and a simpler form thereof works for finite support iteration of c.c.c. forcings), at stationarily
many steps Yδ guesses a name for Gα ∩ VPδ , α < κ , and by the choice of Pδ+1 in the first case, the forcing adds a real
that is in all the Gα . Hence g = κ+. �

Corollary 2.2. ℵ2 ≤ b < g is consistent relative to ZFC.

Proof. We take a ground model of GCH and then we force ♦(S) for some stationary S ⊆ {α < ℵ3 : cf(α) = ℵ2}.
Then we apply the previous theorem with κ = ℵ2. �
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3. An upper bound on g

Definition 3.1. Let κ be a regular cardinal. On κκ we define the almost order f ≤
∗ g iff there is some α < κ such

that for all β ≥ α, f (β) ≤ g(β). A set D ⊆
κκ is called dominating in (κκ, ≤∗) iff for every f ∈

κκ there is some
g ∈ D such that g ≥

∗ f . So we have the dominating number dκ which is the smallest size of a dominating set.

Theorem 3.2. g ≤ db.

Proof. Let D = { fε : ε < db} be a dominating family. We shall build groupwise dense families G f , f ∈ D, such that
their intersection is empty. First we introduce some notation and present a characterisation of b in terms of a slightly
different ordering than ≤

∗ on ωω. �

Definition 3.3. (1) Inc(ω) = {n̄ : n̄ = 〈ni : i < ω〉 is increasing}.
(2) ([5, Def. 2.9]) m̄ ≤

∗∗ n̄ iff (∀∞i)(|{ j : m j ∈ [ni , ni+1]}| ≥ 2).

We thank Boaz Tsaban for telling us that the following lemma was originally proved by Blass. We nevertheless let
our proof stand, since it is self-contained and in contrast to Blass’ elegant proof, does not speak about morphisms and
duality.

Lemma 3.4. ([5, Theorem 2.10])

(1) ≤
∗∗ is a partial order.

(2) (Inc(ω), ≤∗∗) is b-directed.
(3) There is an ≤

∗∗-increasing sequence of length b with no upper bound.

Proof. (1) is easy. (2) Let γ < b and n̄α , α < γ , be given. We first need the twofold iteration operation. For a strictly
increasing function f : ω → ω we define f̃ by f̃ (0) = 0, f̃ (n + 1) = f ( f ( f̃ (n))). We take f ≥

∗ n̄α for all α < γ .
Now we have (∀α < γ )(∀∞i)( f (i) ≥ nα(i)). We show that f̃ ≥

∗∗ n̄α for all α < γ . We fix α and take i0
so that (∀i ≥ i0)( f (i) ≥ nα(i) ∧ f ( f̃ (i)) − f̃ (i) ≥ 2). Then for i ≥ i0 we get: f̃ (i + 1) = f ( f ( f̃ (i))) and
f ( f̃ (i)) ≥ nα( f̃ (i)) ≥ f̃ (i) and f ( f ( f̃ (i))) ≥ nα( f ( f̃ (i)), so at least nα( f̃ (i)), nα( f̃ (i) + 1), . . . , nα( f ( f̃ (i))) are
in the interval [ f̃ (i), f̃ (i + 1)], so at least 2 elements.

(3) Let fα , α < b, be an unbounded family of strictly increasing functions. We let nα,i = fα(i). There is no
n̄ ≥

∗∗ n̄α for all α < b as otherwise n̄ ≥
∗ fα for all α < b. Now we use (2) to choose by induction on α < b an

≤
∗∗-increasing sequence 〈m̄α : α < b〉 by taking for each α < b some m̄α ≥

∗∗ n̄α such that m̄α ≥
∗∗ m̄β for all

β < α. �

Definition 3.5. Let 〈n̄α : α < b〉 be a ≤
∗∗-increasing and -unbounded sequence in Inc(ω).

(1) Let A ∈ [ω]
ω and n̄ ∈ Inc(ω). We let In(A, n̄) = {i : A ∩ [ni , ni+1) 6= ∅}.

(2)

G (〈n̄α : α < b〉) = {A ∈ [ω]
ω

: (∃α)〈nα,i : i ∈ In(A, n̄α)〉 ≥
∗∗ n̄α+1}.

Remark. Since n̄α , α < b, is increasing and unbounded, there is some minimal β ≥ α such that 〈nα,i : i ∈

In(A, n̄α)〉 6≥
∗∗ n̄β . The requirement for n̄β in the definition of G (〈n̄α : α < b〉) goes in the opposite direction:

n̄α ≤
∗∗ n̄β ≤

∗∗
〈nα,i : i ∈ In(A, n̄α)〉 and hence A has to be sufficiently small.

Lemma 3.6. If 〈n̄α : α < b〉 is ≤
∗∗-unbounded and α0 < b, then G (〈n̄α : α0 < α < b〉) is groupwise dense.

Proof. We have that In(B, n̄α) ⊆
∗ In(A, n̄α) if B ⊆

∗ A and thus G (〈n̄α : α0 < α < b〉) is closed under infinite
almost subsets. Now let a partition {[πi , πi+1) : i < ω} be given and set π̄ = 〈π2i : i < ω〉. Then take α ≥ α0 such
that n̄α 6≤

∗∗ π̄ . So there are infinitely many i such that there is at most one element j such that nα, j ∈ [π2i , π2i+2].
Now we inductively choose increasing sequences in , jn , j ′n , n ∈ ω and un ∈ 2. We take i0 such that there is at most

one nα, j ∈ [π2i0 , π2i0+2] and such that there is some nα, j ≤ π2i0+2. We name the largest j such that nα, j ≤ π2i0+2 to
be j0. If nα, j0 ≤ π2i0+1, then let j ′0 = j0, otherwise let j ′0 = j0 − 1.

Now let in and jn be defined. Then we take in+1 > in such that there is at most one nα, j in [π2in+1 , π2in+1+2] and
again we let jn+1 > jn be so that nα, jn+1 is the largest nα, j ≤ π2in+1+2. If nα, jn+1 ≤ π2in+1+1, then let j ′n+1 = jn+1,
otherwise let j ′n+1 = jn+1−1. In addition we take in+1 so large such that [nα, j ′n , nα, j ′n+1

] contains at least two different
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nα+1, j . We let un = 1 − ( jn − j ′n) and finally we let A =
⋃

{[π2in+un , π2in+un+1) : n ∈ ω}. By the construction,
In(A, n̄α) is infinite and 〈nα,i : i ∈ In(A, n̄α)〉 = 〈nα, j ′n : n ∈ ω〉 ≥

∗∗ n̄α+1. �

Proof of Theorem 3.2. Suppose that { fε : ε < db} is a dominating family. We take some fixed ≤
∗∗-increasing and

-unbounded sequence 〈n̄γ : γ < b〉. For each ε < db let

Eε = {α < b : (∀β < α)( fε(β) < α)}.

This is a club in the regular cardinal b, and let 〈ξε,α : α < b〉 be the increasing continuous enumeration of it. We
show that⋂

ε∈db,α0<b

G (〈n̄ξε,α : α0 < α < b〉) = ∅.

Assume towards a contradiction that A is infinite and in this intersection. We define f A : b → b by

f A(α) = min{γ : γ ≥ α ∧ 〈nα,i : i ∈ In(A, n̄α)〉 6≥
∗∗ n̄γ }.

Since fε, ε < db, is a dominating family, there is some ε and some α0 such that for all α ≥ α0, f A(α) ≤ fε(α). Since
A ∈ G (〈n̄ξε,β : α0 < β < κ〉), there is some α0 < ξε,β ∈ Eε such that 〈nξε,β ,i : i ∈ In(A, n̄ξε,β )〉 ≥

∗∗ n̄ξε,β+1 .
Hence ξε,β+1 < f A(ξε,β). But ξε,β+1 ∈ Eε, that means fε(ξε,β) < ξε,β+1 < f A(ξε,β), which contradicts the

choice of ε and α0. �

Remark. So Theorem 3.2 shows that c.c.c. forcing of any length over a model of GCH will give g ≤ db = b+, since
c.c.c. forcing does not increase the value of db if it preserves the value of b.
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