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1. Introduction and statement of results 

The principal results of this paper are as follows: In Mitchell’s model there are 
no thin-thick superatomic Boolean algebras (Theorem 3.2 and Corollary 3.3); if 
ZFC is consistent, then so is ZFC + “there is a thin-very tall superatomic Boolean 
algebra” (Theorems 7.1, 8.1 and 9.12); and (in ZFC) there exist zero-dimensional 
scattered topological spaces of arbitrary height below c+ such that all levels are 
countable (Theorem 10.1). 

A Boolean algebra is superatomic iff every homomorphic image is atomic. See 
[2] for a discussion of equivalent definitions of superatomic Boolean algebra 
(hereinafter abbreviated sBa). In particular, B is an sBa iff its Stone space S(B) is 
scattered. A very useful tool for studying scattered spaces is the Cantor- 
Bendixson derivative A (cr) of a set A cS(B), defined by induction on ar as 
follows. Let A(‘) = A, A(=+l) = the set of limit ponts of A(*, and A(‘) = 
(7 {A? cr < A} if n is a limit ordinal. Then S(B) is scattered iff for some cu, 
S(B)(d = 0. 

When this notion is transferred to the Boolean algebra B, we arrive at a 
sequence of ideals I,, which we refer to as the Cantor-Bendixson ideals, defined 
by induction on (Y as follows. Let IO = (0). Given I,, let 1a+1 be generated by Z, 
together with all b E B such that b/I, is an atom in B/I,. If A is a limit ordinal, let 
IA = U {& : cy < A}. Then B is an sBa iff some ia = B. 

The height of an sBa B, ht(B), is the least ordinal a such that B/I, is finite (so 
then B = I,,,). For a! < ht(B) let wd,(B) be the cardinality of the set of atoms in 
B/Z,. The sequence (wd,(B): LY < ht(B)) is called the cardinal sequence of B. If 
B is given, then wda(B) may be abbreviated to wd,. For an infinite cardinal K, B 
is called K-thin-thick ifE ht(B) = K + 1 and wd, = K for a < K, wd, = K+. B is 
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110 J. E. Baumgartner, S. Shelah 

K-thin-very thick if ht(B) = K + 1, wd, = K for LY< K and wd, 2 K++. B is 
K-thin-tall if ht(B) = K+ and wd, = K for all cy < K+ ; B is K-thin-very tall if 
M(B) = K++ and wd, = K for all a<~++. Following Roitman [8], we call B 
thin-thick if B is o,-thin-thick; B is thin-very tall if B is w-thin-very tall. 

Our set-theoretic terminology is fairly standard, and notions not defined here 
can be found in [4] or [6]. If 3L is a (possibly finite) cardinal and A is a set, then 
[A]‘= {B GA: IBI =h}, [A]<‘= {B GA: IBI <3L} and [A]‘*= {B GA: IBI <An>. 
A A-system is a family F of sets such that for some set A we have A n B = A for 
all A, B E F, A #B. The set A is called the kernel of the A-system. It is 
well-known that every uncountable family of finite sets contains an uncountable 
i-system, and that if the continuum hypothesis (WI) is true, then every 

E [cuJ” of cardinality w2 contains a A-system of cardinality CI)~ in which the 
rnel is an initial segment of every element. 
-We regard forcing as taking place over the universe V of set theory, and thus 

Ne speak of V[G] where G is P-generic (over V), etc. While this is formally 
improper, it provides a convenient notation. The reader uncomfortable with this 
device may simply substitute for V a countable transitive model M of a sufficiently 
large fragment of the set theory in question. 

The countable chain condition is always abbreviated C.C.C. 
The rest of the paper is organized as follows. 
In Section 2 we show that if one does C.C.C. forcing over a model of CH, then in 
e extension there are no o,-thin-very thick sBa’s. This means that Martin’s 

lxiom + “2% large” is consistent with the non-existence of o,-thin-very thick 
;Ba’s, and hence that Roitman’s theorem [8] that MA + 1CH implies the 

istence of thin-thick sBa’s is best possible. 
Thin-thick sBa’s are treated in Sections 3, 4 and 6. In Section 3 we introduce 
e notion of a graded almost-disjoint family and state a combinatorial proposi- 

A GR which implies that there are no thin-thick sBa’s. GR has other 
consequences as well, for example: If (A,: a < 02) is an ordinary almost-disjoint 
family of elements of [ ol] wl, then {A, n A, : ar < /3 < o,} has cardinality 02. In 
Section 6 GR is shown to hold in Mitchell’s model. Section 4 contains a review of 
facts about Mitchell’s model together with some simple new observations. 

Section 5 is a ‘dry run’ for Section 6. It is shown that if many Cohen reals are 
adjoined to a model of CH, then in the extension there is no family F c [ollwl 
such that IFI= w2 and all pair-wise intersections of elements of F are infinite. Such 
families, which we call strongly almost-disjoint families, were used by Roitman [8] 
to construct thin-thick sBa’s. Previously, Weese [9] had used Canadian trees (also 
called weak Kurepa trees), i.e., trees of height w1 and cardinal.@ w1 with at least 
w2 uncountable branches, to construct thin-thick sBa’s. Mitchell [7] showed that 
relative to the existence of an inaccessible cardinal it is consistent that Canadian 
trees do not exist. 

The next three sections of the paper are devoted to the construction by forcing 
of a thin-very tall sBa. Our method requires a double extension: the first by a 
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countably closed notion of forcing and the second by C.C.C. forcing. We do not 
know whether c.c.c forcing alone will suffice. 

Previously it was shown by Just and by Roitman (see [8]) that it is relatively 
consistent with ZFC that the continuum is large and thin-very tall sBa’s do not 
exist. Juhasz and Weiss [S] constructed (in ZFC) sBa’s of arbitrary height /I below 
o2 such that wd, = rCO for all LY < /3. They asked the question whether it is 
consistent that thin-very tall sBa’s exist. 

The final section of the paper is devoted to the proof in ZFC that there are 
zero-dimensional scattered spaces of arbitrary height below cf with all levels 
countable. This answers a question of Juhasz. 

The history of this paper is as follows. The first author originally announced the 
results in the first nine section of this paper, but the definition of property A and 
the attendant forcing construction in Section 9 had a serious error in it. The error 
was discovered by W. Fleissner, to whom the first author wishes to tender his 
thanks. Subsequently it was discovered that in fact there are no functions 
satisfying the original version of property A. A new version of property A and a 
completely new forcing construction to establish its consistency were supplied by 
the second author. The result in the last section is also due to him. 

2. Martin’s Axiom and o&in-very thick sBa’s 

In [8], Roitman showed that Martin’s Axiom implies the existence of a strongly 
almost disjoint family of cardinality w2, and hence the existence of a thin-thick 
sBa. Her method was to begin with an ordinary almost disjoint family of size o2 
and, using an observation of M. Wage, thin out the elements of the family one at 
a time until a strongly almost disjoint family is produced. As long as 2% is large 
enough, this method will work to produce strongly almost disjoint families of 
larger cardinality, provided one begins with a sufficiently large almost disjoint 
family. Unfortunately, as was shown in [ 11, the existence of such a family is not 
guaranteed. 

In this section, we expand the observation in [ 11, with virtually the same proof, 
to o,-thin-very thick sBa’s. 

Theorem 2.1. If ZF is consistent, then so is ZFC + Martin’s Axiom + 2% 
large + there are no ol-thin-very thick sBa’s. 

Thus Roitman’s result is best possible. 
Recall that if K, A, ~1 are cardinals, then the notation 

means that for any j: [K]~+ p there is A E K with IAl = A and jis constant on [Al2 
(we say A is homogeneous for f). One instance of the Erdiis-Rado Theorem [3] 
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asserts that if GCH holds, then 

K +++ (K+); for all K. 

proof of Theorem 2.1. Begin with a model of GCH and force Martin’s 
Axiom + 2% as large as desired with a C.C.C. partial ordering P. Suppose that in the 
extension B is an w&in-very thick sBa. Let (b,: D < w3) be representatives of 
distinct atoms in B/I,,. Thenifcu</?wehaveb,AbsEZ~,soY~=~(~,/3)<w, 
b, A b, E ZE. But since P has the C.C.C. we may assume that the function &a, /3) 
lies in the ground model (there are only countably many possible values for 
E(LY, /?) so we could replace &a, /3) by the supremum of all such values). 

By the Erdijs-Rado Theorem with K = toI there is A G 5u3, IAl = w2 and 6 is 
constant on all (a, /3) E A x A with O! < /3. Say E( Q, /3) = go for all ((Y, /3) E A x A, 
a < /I. But then since b, A b, E ZeO whenever a, /? E A, a # b, it follows that Z?/ZE, 
must contain at least o2 atoms, and this contradicts our hypothesis on B. 

It is straightforward to generalize Theorem 2.1 to larger cardinals. Details are 
left to the reader. 

3. Graded almost disjoint families and GR 

Let us say that a family I: c [o$‘l is graded almost dkjoint if there is a disjoint 
partition ( BLy: a < 0,) of o1 such that 

(1) VA E F { LY: A f7 B, # 0) is uncountable, and 
(2) VAX, A2 E F if Al #A*, then {a: Al n A2 n B, # 0) is countable. 

We will sometimes refer to a family as graded almost disjoint when the 
underlying set is not o1 but some other set of the same cardinality. 

Note that if B, = {a}, then (1) and (2) simply assert that F is an almost disjoint 
family in the usual sense. Thus graded almost disjointness generalizes almost 
disjointness. 

Let GR denote the following hypothesis: Whenever (A, : 5 < oz) is a graded 
almost disjoint family, then {AS n A,: 5 < q c o,} has cardinality w2. 

It is easy to see that GR rules out both Canadian trees and strongly almost 
disjoint families of cardinal&y w2, but we can do even better. 

Theorem 3.1. GR implies that there are no thin-thick sBa’s. 

Proof. Let B be a thin-thick sBa, and let (I,: LY < ol) be the ideals obtained 
from B by the Cantor-Bendixson process. Since B is o&in we have IZ*l< o1 
for all D < ol. Let (bg : 5 < 02) be representatives of distinct atoms in B/Z,,, and 
let A, = {b E Zml: b =S bg}. If B, = Z,+l -I,, then we claim (Ag: 5 C o2) is graded 
almost disjoint relative to the B, (here the underlying set is I,,). 
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First let us check (1). Fix AE. If LX < wl, then there is an atom b/I, E B/I, such 
that b/I, s bE/I,. But then b - bE E I, so b A bE E &+I -I, = B, and b A b, s b,, 
soA$B,fO. 

Nextcheck(2).Suppose~<r7<wz.ThenbS/\b,EI,,=U{I,:a<w,}.Say 
b+b,&, a<~,. But then if b E A, f~ A,, we would have b s b,, b, so 
b s be A b, and b E I, also. Hence {fi: A, n A,, n Bs # 0} c cu, and (2) is verified. 

Finally, note that A, n A, is completely determined by bg A b, E I,,, and since 
II,,( = w1 this violates GR. 

The principal theorem of the next few sections is 

Theorem 3.2. In Mitchell’s model GR holds so there are no thin-thick sBa’s. 

By ‘Mitchell’s model’ we mean the version in [7] in which an inaccessible 
cardinal is collapsed to become o2 (and 2%). Thus we have 

Corollary 3.3. If it is consistent that an inaccessible cardinal exists, then it is 
consistent that there is no thin-thick sBa. 

4. Mitchell% model 

In this section we review some facts about Mitchell’s model from [7] and add 
some simple observations of our own. 

With one or two exceptions, we use Mitchell’s notation. 
Let K be a fixed strongly inaccessible cardinal from V. Let P be the set of finite 

functions mapping subsets of K into 2, the standard partial ordering for adjoining 
K Cohen subsets of o. For &Y< K let P, = (p E P: domain(P) = a+ o}, where 
a + o is the ordinal sum, and let B, be a complete Boolean algebra containing P, 
as a dense subset. Let A be the set of all countable functions f with domain(f) c K 
and such that Va f ((u) E B,. 

If G is P-generic over V, then in V[G] we may define fo for f E A so that 
fo: domain(f)-*2 and VafG(&) = 1 iff 3P E G n P,p <f(a). Let Q = {fo: f E 
A}, partially ordered by 1. Then Mitchell’s model is obtained by forcing first 
with P, then with Q, i.e., with P * Q. 

There is a convenient alternate description of the forcing as well. Let 
R = P X A, with (p, f) SR (4, g) Z p SP q and p kP fG 2 gG. Then forcing with R 
is equivalent to forcing with P x Q. We will usually drop subscripts on the 
orderings when it is unlikely to cause confusion. 

In [7] Mitchell shows that R has the K-chain condition and that if K is R-generic 
then in V[K], 2% = 2’l= H2 = K. 

Let us begin with two variations on Lemma 3.1 of [7]. 
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Lemma 4.1. If (4, g) d (p, f), then 3h E A f E h and (q, g) d (4, h) s (4, g). 

Proof. Set domain(h) = domain(g) and h(a) = f (a) if LY E domain(f), h(a) = 
g(cu) if a E domain(g) - domain(f). It is easy to check that h works. 

By Lemma 4.1, whenever (4, g) d (p, f) we may always assume without loss of 
generality that f c g, and we shall frequently make that assumption. 

The conclusion of Lemma 4.1 also illustrates that sR is not a partial ordering 
but a preordering; that, of course, causes no trouble. 

Lemma 4.2. Suppose f, g,, g2 E A, f E g,, g, and f r f = g, r E = g, 16. Then 

3h EAf c h h f 5 =f r E, and ((5, 0)) it- ho -3 (g& and ((5, 1)) IF hG 2 (g2)c. 

Proof. Here, of course, the forcing is with respect to the Cohen ordering. Let a 
be the Boolean algebra element ((5, 0)). By extending g, and g, we may assume 
they have the same domain D. Define h by h(a) = f(a) if a E D, cy < 5 and 
h(a) = (a * &(a)) v (G * g&)) i cy E D, Q! 2 c. It is straightforward to check f 
that h works. Note that if IY E D, a 3 e and LYE domain(f), then h(a) = (a A 

f(a)) v (G Afta)) =f(@, so h zf. 

The next lemma is well known as a tool for proving chain conditions. 

Lemma 4.3. Suppose S~{~<zc:cf~~til} i.~ stationary and (NE:EeS) is a 
sequence of countable structures. Then there is stationary T c S such that Vg, rl E T 
if 5 < 7, then there is an isomorphism JQ,, : NE + NV such that ;nE, : NE CI K + N,., n K 

is an order-preserving bijection and kc,, 15 is the identity. Moreover, if we assume 
that f E NE always, then JQ,, (Q = q. 

Proof. This is routine. Without loss of generality we may assume K f7 NE and E 
occur as predicates in NE. Since K is inaccessible and there are only 2% 
isomorphism types of these structures we may assume they all have the same 
isomorphism type. Finally, an easy application of Fodor’s Theorem allows us to 
obtain stationary T c S so that the mapping 5 I+ NE t7 f is constant on T. This 
suffices. 

Lemma 4.4. Suppose ( (ps, fs): f < K ) iv a sequence of conditions from Mitchell’s 
ordering R. Then there is S c K cofinal (even stationary) in K such that 
((ps, fr ): g E S) is pairwise compatible, and there is (p, f) E R such that 

(p, f) II- {f ES: (pg,&) E K) is cofinal in K, 

where K denotes the R-generic set. 

Proof. This can be proved directly or derived from Lemma 4.3 by building 
(Pe, fs) into a structure NE for each 5. Details are left to the reader. 
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Let Y be a limit ordinal, Y < K. Let P 1 Y = {p E P: domain(p) 5 Y} and let 
P”={p~P:dornain(p)~~-v}. Let A,={f~A:domain(f)~~} and A’= 
{f E A: domain(f) fl Y = 0}, and let R, = P 1 Y X A,. This yields another way of 
decomposing R as an iteration of two orderings. 

Suppose K is R-generic and K, = K n R,. Let A and R = P x k be the result 
of defining A and R in VI = V[K,,]. 

Lemma 4.5. In the structure above, there is E which is R-generic over VI and is 
such that V,[l?] = V[K]. 

Proof. This is a variation on Lemma 3.7 of [73. 
We know that V[K] = V[G][H], w ere h G is P-generic over V and H is 

Q-generic over V[G]. Let G,=GnP Iv, G’=GnP”, Qv={f,:f~A,}, 
Qv={fG:f EAV}, H,=Q,nH and H’ = Qv fl H. Then it is easy to see that 
VI = V[ Gv][Hv]. It is also clear that G v is Y-generic over VI. 

LetJG:K+K- Y be the order-preserving bijection. If G = (px p E G’}, then 
G is P-generic over VI, since the mapping p ~pn is an isomorphism between P” 
and P. Let Q = {fc: f EA}. 

Let V,= VJG].. Then clearly Vz= V,[G’] so V[K] = VJH”], and H’ is 
Q v-generic over V2. Thus it will suffice to show that in V, (even in V[G]) there is 
an injection carrying Qv onto a dense subset of Q, for if B is determined by the 
image of H” then V[K] = Vl[c][fi] = VJI?], where R is R-generic over VI. 

Thus we must define CT: Q v+ Q. Suppose f E AZ: Define f * E A as follows. Let 
domain(f *) = n-’ domain(f) and for a E domain(f *) let 

f*(m) = sup@ E P: 3q E G, q up& s f@(a))}. 

Then(f*)&)=liff 3p ~Gp~f*(cu)iff 3pI~GVp+~f*(~) iff 3p,~G’3q~ 
G, q Up,~~rt-~ Gf(Jc(a)) iff 3p2~GpZdf(~(cu)) iff fc(n(a))=l. So (f*)e= 
fGn. Let a(fG) = fGn. 

We need only check that the image of CT is dense in Q. Suppose g E A. Since 
domain(g) is countable and g(cw) is determined by a countable antichain in P for 
each & E domain(g), it follows from Corollary 3.2 of [7] that g E V[Gv]. Thus 
ii E V[Gv]. By extending g if necessary we may assume domain(g) E V. Let g be a 
name for g. Now define f E A v so that domain(f) = d’ domain(g) and f (n( a)) = 
sup(p E P: p 1 Y It-, (p -p 1 v)n ~g(a)} for & E domain(g). But now gc(o) = 1 
iff 3q&qsg(cu) iff 3p~G,pIt_q~g(ar) iff 3p~Q~~~,~G’pi~q,3t~~g(a) 
iff 3p E G, 34, E G’p U q1 Gf(x(a)) iff fc(x(a)) = 1, so o(fg) eggs in Q and we 
are done. 

5. Adrymn 

Before entering into the proof of Theorem 3.1, it may be useful to prove a 
similar result in a simpler setting. In [l, pp. 427-4281 it was remarked in 
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particular that if the continuum is enlarged by adding Cohen reals, then in the 
extension there are no strongly almost disjoint families, but the proof was 
omitted. Since the proof has never appeared, and since it is closely related to the 
argument in the next section, we present it here. 

For the purposes of this section, let P be the partial ordering for adjoining A 
Cohen reals, where A 2 02. Thus P consists of all finite functions mapping subsets 
of A. into 2. 

Theorem 5.1. Assume CH. Then in VP there are no strongly almost disjoint 
families of cardinal@ 20~. 

Proof. Suppose on the contrary that 

11~ ( kE : 6 < 01~) is strongly almost disjoint. 

Fix 5, and define a sequence ((p,, pa): a! < 0,) so that pa E P, the PLY are 
increasing elements of 0 1, and pa It- Iqo. E A,. Without loss of generality we may 
assume that (domain&.): LY < ml) forms a A-system with kernel A, and that for 
some P”EP we have pm f A=pE for all cu<oI. We will write A5, pf,, /3: to 
indicate the dependence on e. 

Using CH and the methods of Lemma 4.3 above, it is straightforward to find 
C<T~<W~ so that (/li:n<o)=(/3:: n < o ) and there is an order-preserving 
bijection 

zEl, : U {domain(p,f): n < w } --) IJ {domain@:): n < o} 

so that p$rEo =p z for all n, zE,, 1 lj is the identity, and domain(nE,) n 
range(nE,) G f. Then in particular p E and p ‘I are compatible, and pfif is compatible 
with pz for all n. 

Letp=peUp’%ndset/3,=/3~=~$ Weclaim 

p It- {n: & E A, n k,} is definite, 

and this contradiction will complete the proof. 
Suppose q sp. Since the domain of q is finite, there must be n large enough 

that domain(q) n domain = AE, domain(q) n domain@) = A’! But then 
clearly q ’ = q Up; Up: is a condition, and q’ It- fin E kE f7 A,. Since n could be 
arbitrarily large, this establishes the claim. 

Once again there are easy generalizations of this result, as indicated in [l]. 

6. The proof of Theorem 3.2 

Let us suppose now that K is R-generic over V, and in V[K], (Ag : lj < K) is a 
counterexample to GR. Thus (Ag : f < K ) is a graded almost disjoint family with 
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respect to some (&: LE < ol) and {AE fl A,: 5 < q < K} has cardinal@ GoI. 
Then by the K-chain condition for R and by Lemma 4.5, we may assume without 
loss of generality that (B,: a! < ol) and (Ag n A,: 5 < q -C K) lie in V, and that 
the information above is all forced with respect to R, using (&: c < K) as a 
name for (AE: 5 <K). 

For convenience, if Q( E BP, then we say level( cu) = 6. 
Let 5 <K. We say g is of type A if 3(pE,f5) E R a~$ < o1 3 countable 

2 G K v(4, g) E R VP if (4,g) s (I-+, &), g I&-, level@) 2 q and (4, g) Ik B E& 
then (4 f 2, g) It- /3 E A,; otherwise g is of type B. 

We consider two cases, each of which will lead to a contradiction. 

Case 1: Sl = (5: 5 is of type A) has cardinality K. 

Fix E E SI and pE, fs, LYE, 2 as in the definition of type A. By enlarging 
necessary, we may assume domain&) E 2. 

2, if 

Lemma 6.1. The definition of type A holds for f if “/3 E A,” is replaced by 
“/3 $ A,“. 

proof. Suppose (4, g) It-B $A,. If (4 r 2, g) UL B $ &, then W, h) d (4 12, g), 
h 2 g, (r, h) it- /3 E &, and since g is of type A we may assume domain(r) G 2. 
But since r is compatible with 4 12, it is compatible with 4, and thus 

(rU4, h)il-#I EAE and /3 $A,, 

which is impossible. 
Now let &=min(x: - 2). Then &, < w1 so without loss of generality we may 

assume f. c domain(&). 

Lemma 6.2. If (4, g) s (pi, ft), g If, level(B) a q and (4, g) Ik B E & then 
(4 r &@IME&. 

Proof. We already know (4 12, g) IF j3 E & so we may as well assume that 
4=4 12. If (4,5$03+, then 3(4’,g’)~(q,.&), g’z$ with (4’,g’)IkBe 
A,, and by Lemma 6.1 we may assume domain(4’) E 2 also. But now by Lemma 
4.2 since & I&, = g I& = g’ r &,, there is h z& such that {(fo, 0)) It- hG 2 go and 
{(&,, 1)) It- hG 1 g& But since f. $ Z and domain(4’) E Z we have 

(4’ u MCI, Ok h) IV E& 
while 

(4’ u Go, 1% h) 11 B $ & 

But now since h 2& and go $2 we have since g is of type A that (4’, h) IF j3 E 

A, A /3 $ kg, which is absurd. 
Thus if (pg, fs) E K and level(B) 2 Q, then if /3 eAt there must be 4 <ps, 

domain(q) E 2, with (4, fs) Il- /3 E & Since there are only countably many 4 with 
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domain(q) G 2 it follows that for some q, {level(p): (q, fs) It- /I E &} is cofinal in 
ol. Thus A, must have a subset in the ground model with levels cofinal in ol. By 
Lemma 4.4 and the assumption for this case there is (p, f) E R which will force 
this to happen K times. Since the cardinality of .9(01) n V is only ol, two of the 
AE must contain the same subset with levels cofinal in ol, and this contradicts our 
assumption that the family was graded almost disjoint. This completes Case 1. 

Case 2: & = (5: cf &T a o1 and 5 is of type B} is stationary. 
Suppose E E $. 

Lemma 6.3. Let Z c_ K be countable, (p, f) E R and Q! < ml. Then 3g, ql, q2, #I 
level(B) 3 *, g zf, q19 q29, q1 r z=qz Wand(q,,gWB& (qz,g)Ik/Q . 
4 

Proof. Suppose not. We claim that g is of type A with pE = p, f& = f, a5 = LY. 
Suppose q, g, /3 are as in the definition of type A with (q, g) It- /3 E A,. If 
(q 1 Z g) I# B E & th en there is (r, h)<(q lZ,g), h>g with (r, h)Il-/3$&. 
But now if we let q2 =r, ql=qU(r IZ), then q1 rZ=q, 12 and (ql, h)ll-/k 

&, (q2, h) 11-p $ A,. 
Now, using Lemma 6.3 repeatedly, we may build sequences (h,: t < wl) and 

(q:, qz: z < ol) so that (qi, h,) Ik /Ix E &, (qz, h,) It- & $ A,, and if & = 
U {domain U domain(qi: 6 < z} then qi 1 z = qt 1 i&. We also assume the 
h, are increasing, and that level(&) is increasing as a function of z (although this 
is not strictly necessary). 

Without loss of generality we may assume that {domain U domain( r < 
w,} forms a A-system with kernel A, and that for some fixed qE we have 
qi 1 A = qz r A = qE for all r. (This uses the fact that qi 12, = qt 12, and that 
A c 2, eventually.) 

Let& = h,. 
Fix a regular cardinal A so large that R E H(k), the collection of all sets 

hereditarily of cardinal.@ <A (A = K+ will do), and for each 6 <K let NE 
be a countable elementary substructure of H(A) containing f, qE, h, 
(qa,*: n < o), (2:: N < w) and (6:: n < CO) as predicates, where q&, ZE, Bi 
denote q;, Z,, #$ as defined from 5. 

Now apply Lemma 4.3 to get 5 < YI and an isomorphism nEll : NE + N,, such that 
JQ, : NE n K + N,, fl K is order-preserving and the identity on f, and JQ,, (g) = ?I. 
By taking rl large enough we may also ensure that N$ fl K c rj. 

Then G&m and bJiJ are compatible, for Idgq(qe r 5) = qe r lj = qrl r q and 
domain E NE n K c q, so qe and qq are compatible, and a similar argument 
may be applied to & and fq. 

Suppose now (p, f) G (qs U qv, fg U f,) and X E V is arbitrary. Then we may 
find n so large that domain(p) nU (2;: i< CO} ~2: and domain(p) n 
lJ {Zp: i < w} c 22. But that means that qi,s, qf,tl are all compatible with p. If 
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pn E X, then consider q = &S U &,, Up, which is a condition because JQ,, is the 
identity on 5 and domain G NE c n. But clearly 

(4J)W%l $A, A fin 4, so /$I $A, n A,. 
If pn $ X, then consider q = q& U CJA,~ Up and note that 

In either case it is clear that (4, f) 11X #A, n A,. Since X was arbitrary this 
means 

which completes Case 2 and the proof. 

7. Forcing a thin-very tall sBa 

The remainder of this paper is devoted to the proof that by forcing one can 
produce a thin-very tall sBa. The proof breaks naturally into three parts, and it 
will occupy the next three sections. In an effort to make the proof more 
understandable, we shall present it backwards. 

In this section we define a partial ordering P depending on a special function 
f *, and we show that if P has the c.c.c., then forcing with P adjoins a thin-very 
tall sBa. In the next section we show that if f * satisfies a certain property, then P 
will indeed have the C.C.C. Finally, in Section 9 we show how to force the 
existence of a function f * having the desired property. 

Let T = o2 X o and for (Y < w2 let T, = { cu} x o. The partial ordering P is 
designed to impose a partial Boolean-algebra structure on T. More specifically, P 
will adjoint a partial ordering s of T and a function i on [T12 such that the meet 
s A t of s, t E T is represented as the supremum of the elements of i{s, f} in the 
strong sense that if v d s, t then 3u E i{s, t} II d u. Conditions will consist of finite 
bits of information about d and i, and i{s, t} will always be a finite subset of T. 

Given < and i, we may define a, c w for t E T by a, = {n : (0, n) s t}. If B is the 
subalgebra of 8(o) generated by the a,, then we will show that for each LY < 02, 
{at: t E T,} form a set of representatives of the atoms in B/I.. It will follow that B 
is a thin-very tall sBa. 

Let f * : [0212+ [w21Qo be fixed. Define P as the set of all p = (xP, sP, ip) 
satisfying the following conditions: 

(1) xP E [T]? 
(2) sP is a partial ordering of xP with the property that 

ifs~T,,t~T~ands<,t,thencu<B. 
(3) ip : [xp12* [x,]‘” is such that 

(3.1) ifs~T,, tEq,s#tandas/?, then 
(3.1.1) if cy = /I, then ip{s, t} = 0, 
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(3.1.2) ifs cp t, then ip{s, t} = {s}, 
(3.1.3) if a</3 ands 4, t, then 

i&, t} q, n U (2”: t ~.f*b, B), z< a>; 
(3.2) if {s, t} E [xp12, then VU E ip{s, t} u Sp s, t, 

and if 2r sp s,t, then 3u E ir{s, t} v 6, u. 

Set p d q iff xp 2 xq, 6, / x, = s4 and ip r [+I” = i,. 

Theorem 7.1. Assume P has the C.C.C. Then forcing with P adjoins a thin-very tall 
superatomic Boolean algebra. 

Proof. We need the C.C.C. only to verify that cardinals are preserved. 
Let G be P-generic, and let <=u{~r:p~G}, i=U{i,:pEG}. It is clear 

that < is a partial ordering of T. For t E T let a, = {n E o : (0, n) s t}. Then clearly 
if s < t we have a, c at. Also, if s, t E T, and s # t, then by (3.1.1) and (3.2) we 
must have a, n a, = 0. Thus {a,: t E T,} is a disjoint family. More generally, by 
(3.2) we have a, n a, = U {a,: u E i{s, t}} for all s, t. 

Lemma 7.2. Suppose LY < /3 < o2 and t E T,. Then (s E T,: s s t> is infinite. 

Proof. FixpEPwith tE+. LetsET,,s$+ Wewillfindq<pwiths6qt. By 
an elementary density argument, this will suffice. Let xq = xp U {s}. Put tl sq t2 iff 
tl <p t2 or else tl = s and t sp t2. Then clearly ss is a partial ordering and s ss t. 

Let iq{tl, t2} = i,{tl, t2} unless one of tl, t2, say tl, is s. Let &{s, t2} = {s} if 
s 6-4 t2 and i,{s, t2} = 0 otherwise. Since no element of x, lies strictly below s in 
c4 it is easy to verify (3.2). 

With cy = 0, Lemma 7.2 implies that a, is infinite whenever t E q, /3 > 0. Of 
course, if t = (0, n), then at = {n}. 

Let B be the subalgebra of 9(o) generated by the a, for t E T. 

Lemmp 7.3. B is superatomic. Moreover, if I, is the Cantor-Bend&son ideal 
produced at the arth step, then for all cy C w 2, I, is generated by (at: t E U (TB: /3 < 
a)), and (at: t E T,) is a set of representatives of the atoms of B/I,. Thus B is 
thin-very tall. 

Proof. We proceed by induction on CY. 
It is clear that if {aI: t E T,} is a set of representatives of atoms, then 1,+1 is 

generated by Z, U {a,: t E T,}, so we need only show that B/I, is atomic and 
{at: t E T,} is a set of representatives of atoms assuming the characterization of I, 
in the lemma. 

First we had better check that if t E T, then at $ I,. If this is not true, then 
a,, . . . , t,EU{TB:/3<o} such that a,ca,W.-Ua,. Let /3 be maximal with 
some tj E Te. Then /3<a! so by Lemma 7.2 we cau find sdt, SETH, sf 
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t1, * - - , n- t But then a, c a, and by inductive hypothesis a, is not covered by the a, 
for ti E T,, z < B. Since a, f7 a, = 0 for ti E q, we must have a, $ Z,. 

Next we must show that if b E B, b $ Z,, then 3 E T, a, G b modulo Z,, i.e., 
a, - b E I,. We may put b in disjunctive normal form relative to the a,‘s, and write 
b=b,Ub,U. - U b,, where each bi is the intersection of elements of the form a, 
and their complements. If b $ Z,, then some bi 4 Z,, so without loss of generality 
we may assume b =bi. Thus we may set b=(a,n~~~f3a,)-(b,U~~Bub,), 
where the a’s and b’s are of the form a,. Since we know a, f~ a, = U {a,: u E 

i{s, t )}, it is easy to see by induction that (if n > 0) a1 n - l - fl a, may be written 
as a union of elements of the form at. Thus we may set 

b = (c, U - . ~uck)-(blu~~~ub,) 

=(cl-(b,u~+Jb,))u~~4(c,-(b,u~4Jb,)), 

and, as above, assume without loss of generality that b = c - (b, U - - . U b,) 
where, to allow for the case II = 0, we permit the possibility both that c = a, and 
C = 0. 

We treat the case c = a,; the case c = o may be reduced to this one in a way we 
will describe later. Suppose t E T+ Fix i with 1 c i 6 m. Then bi = a, for s E Tp, 
some /3. 

If & = /3, then either s = t, in which case b = 0 so b E Z,, a contradiction, or else 
s#tinwhichcasea,-a, = a, so bi is redundant, and may be eliminated. 

If ii! < /?, then we cannot have a, E a, lest b = 0, so clearly i{s, t} c {u: u E 
U(T,:z<&}}. Hence we may write a,-a,=a,-(a,,U...Ua,,), where 
u1, - - * 9 z&J{T,: z<&}. 

Thus, again without loss of generality, we may assume 

b = a, - (a,, U - - . U a,,), 

where ul, . . . , u,EU{T,: z<&}. Let rl>. * * > tj enumerate all z such that 
some Ui E Tr . We may assume rj 2 a since we are working modulo Z,. Now 
choose a sequence a,za,, 2 - - - 1 atj inductively as follows. Using Lemma 7.2, 
choose tl E T,, such that tl d t and tl # Ui, all i. Then, again using Lemma 7.2, 
choose t2 d tl such that t2 E T,, and t2 # ui, all i, etc. If rj > a, then we may choose 
i E T,, id tzj; otherwise let i: = trj. But now note that a? 2 b and 1 E T,, as 
desired. 

Finally, if c = o, then choose t E T&, where & is so large that for alI bi we have 
bi E {as: s E n {T,: z < C}}, replace b by a, - (b, U - * l U b,), and proceed as 
above. 

This completes the proof of Lemma 7.3 and Theorem 7.1. 

8. The countable chain condition 

Next we turn to the construction of a function f* which will make the partial 
ordering P of Theorem 7.1 satisfy the countable chain condition. 
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Let US say that f : [w212+ [02]“” has property A iff f{ ar, 6) E min{ a, fi} for all 
my, /I < o2 and for any uncountable set D of finite subsets of 02, 30, b E D a Z b 
andVcuEa-bbVBEb_a~~Eanb 

(a) if a, fi > z, then r ~f{a, p}, 
(b) if B > r, then f{a, r} of{ a, B>, 
(c) if a, > r, then f{B, r} of{ a, B>. 

Theorem 8.1. If f * has property A, then the partial ordering P of Section 7 has the 
countable chain condition. 

proof. Suppose on the contrary that A is an uncountable antichain. If yp = 
{ 1~: T, f~ xp # 0) for p E A, then by thinning out A if necessary we may assume 
that the yp form a A-system with kernel A. Moreover, we may assume that the yp 
all have the same cardinality and that for p, q E A the unique order-preserving 
bijection npcl : yp * yq is the identity on A. We may also assume that xp4 lifts to an 
isomorphism of xp with xq given by xp,( cy, n) = (~dp~ (cu), n). Of course, this may 
require a further thinning out of the antichain A. We may assume in addition that 
s sp t iff JdJs) G4 J& (t). And finally and most crucially, because of the condition 
(3.1.3) in the definition of P and the countability of each f* { cy, /I}, we may 
assume that whenever s, t E xp n x4 then ip {s, t} = i, {s, t} (so in particular zp4 is 
the identity on i*{s, t}). 

Now since f * has property A we may find p, q E A such that ‘da E yp - y4 V/3 E 
YlJ -y,VrEYp nY4 

(a) if (Y, /3 > z, then z ~f*{ar, /3}, 
(b) if B> r, thenf*{a, z} cf*{a, B}, 
(c) if Q > z, then f*{/3, z} c_ f*{q /I}. 

We claim p and 4 are compatible, and this will complete the proof of Theorem 
8.1. 

We must determine r sp, q. Let x, =xpUxq. Put ss,t iff s6,t or sQ,t or 
324 E xp f7 x, either s s, u s4 t or s s4 u 6p t. Note in particular that + 1 xp = So, 
6, f xq = 6,. 

Lemma 8.2. + is a partial ordering. 

Proof. We need only check transitivity. Let s sr t sr u. If s, t, u E xp or s, t, u E xq 
we are done. Suppose s ~/C,t~,u. Then sG,s’<,u so sG,u. If sG,s’Q, 
t +-, t’ sp u, then s sp s’ s9 t’ Gp u. But s’ sp t’ since s’, t’ cxP nx,, so s <p u. 

All other cases are similar to one of these. 

Finally, let i,{s, t} = ip{s, t} if s, t E+ and i,{s, t} = i,{s, t} if s, t E xq. Suppose 
SE+-xXq, bEXq--Xp. Then let ir{s, t} = {u E x,: u + s, t and if u E T,, then 
LY E f*{/3, z}}, where s E Ts, t E T,, unless s sr t or t cr s, in which case we define 
i,{s, t} to make (3.1.2) true. We must check condition (3). 
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Let us begin with (3.1). It is clear that (3.1.1) and (3.1.2) are satisfied, and 
(3.1.3) follows from the definition of i,{s, t} above. Furthermore, the first part of 
(3.2), namely that Vu E i,{s, t} u S r s, t is clear. 

We must check the second part of (3.2). Let {s, t} E [x,]~, v +s, t. If 
(21, s, t} c xP or (21, s, t> c xq, then it is clear that 3u E ir{s, t} v 6, u. For the rest, 
we consider two cases. 

Case 1: s, t E xq, v E xp - x,. 
Case 1.1: s,Mxq-xp. Then ~s’,t’~x~r)x~v~~s’~~~, vs,t'6,t. By 

(3.2) for p, there is u’ E ip{s’, t’} such that u’ sPs’, t’ and v d, u'. But 
u’ EX~ nx, since ip{s’, t’} = &{s’, t’}, so by (3.2) for q there is u E i,{s, t} such 
thatu’~,u(sinceu’$s’, t’wehaveu’<,s,t). Butnowv~,u’~,usov~,u 
and we are done since ir{s, t} = i,{s, t}. 

Case 1.2: s EX, nx,, t tzx, -xp. Then we proceed as in Case 1.1, except that 
we take s’ = s. 

The case s, t E xP, v E x, - xP is exactly similar to Case 1. 

Case 2: s ExP -x,, t EX, - xp. If s sr t or t sr s, then (3.2) is clear since + is a 
partial ordering. So suppose othewise. Say v E xP. The case v E xq is similar. Then 
v sP S, v sp t' Q, t for some t’ EX~ nx,. Let s E T,, t E Ts, t’ E T,. Note that 
r E yP n y,. By (3.2) for p there is u E ip{s, t’} with v sP u. It will suffice to show 
uEi,{s,t}. Say UET& If 6=r, then u=t’, and since z<cuJ, we have 
r ~f*{a, #I}. Hence u E ir{s, t}. If 6 <r, then S E~*{(Y, t} ~f*{ac, /3} (since 
r < /?) so again u E ir{s, t}. 

This completes the verification of (3). Thus P has the countable chain 
condition. 

9. Afunctionwith property A 

Finally, we must establish that the existence of a function with property A is 
consistent with the axioms of ZFC. This we do by forcing. 

Recall that f : [w~]~+ [oJ”” has property A iff f { Ly, /3} c min{cu, /I} for all 
Q, /3 < o2 and for any uncountable set D of finite subsets of 02, 3a, b E D a # b 
andV&Ea-bVj3Eb-aVrEanb 

(a) if LY, j3 > r, then r E f { Ly, /3}, 
(b) if B > r, then f { a, r> sf {a, r6), 
(c) if m> r, tl=nf{B, z} Gf{a, B>. 
In constructing f * it is natural to try to force with countable approximations to 

f *. Let H be the family of all functions h such that for some a E [co21Qm, 
h: [a]“+ [a]“” and h{ Q, /3} c_ min{ a, /I} for all a, /3 E a. We may try forcing with 
H, ordered by reverse inclusion. It is easy to see that H is countably closed and, 
assuming CH, has the 02-chain condition. Unfortunately, this ordering does not 
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work. Roughly speaking, the problem is that if f* is the function adjoined by 
forcing with H, then f*{ CY, fi} is too often small. 

To see this a little more clearly, consider the proof of the @,-chain condition 
for H. Given any A c_ H of cardinality LOB, it is easy by a A-system argument to 
find g, h E A with domain(g) = [a12, domain(h) = [b12, g # h and there are sets X, 
y, z with a=xUy, b =xUz, V~~~xVfi~yV~z~za<f?<z, and there is a 
(unique) order-preserving mapping JK a + b which lifts to an isomorphism of g 
with h. (Note that n is the identity on a Cl b = x since x is an initial segment of 
both a and b.) Now we may amalgamate g and h by defining f 1 g U h on [a U b12 
so that if &E a - b and /3 E b - a, then f{a, /3} is an arbitrary subset of 
(a U b) f~ min{ a; /3}. For our purposes it is best to make f{ a, fi} as large as 
possible, namely f{ar, /I} = (a U b) 17 min{ cy, /I}. We refer to f as the maximal 
amalgamation of g and h. This kind of amalgamation is called a head-tail-tail 
amalgamation because of the order relation between X, y and z. We refer to x as 
the head, y as the first tail and z as the second tail of the amalgamation. 

We would always like to work with head-tail-tail maximal amalgamations, but 
there is no way to express this in a forcing condition unless we include somehow 
the fact that f was obtained by amalgamating g and h. Thus the condition 
involving f would also involve its ‘history’, namely g and h. But when two of these 
more elaborate conditions are amalgamated the resulting condition will be still 
more complicated. In order to treat this process uniformly we make the following 
definitions. 

Our forcing conditions will be certain countable (or finite) subsets p of H with 
the property that Up E p. We refer to Up as the base of p and write 
Up = base(p). If p and 4 are such sets we put p G q iff base(q) E p and 
4 = {h EP: h E base(q)}. It is clear that d is a partial ordering. 

Now, by induction on LY < ol, we define sets Pa c [HI”” which we refer to as 
sets of level CY. At the end we will set P = IJ {Pa: cy < CO,}, and we will force with 
P ordered by s above. 

PO consists of sets of the form {h} where domain(h) = {{a, /I}} for some 
{a, /3} c [w2]” and h{cu, /3} = 0. 

Let a=/?++. Then PEP, iff 3q,rcPg q#r and if g=base(q), h= 
base(r), domain(g) = [u12, d omain(h) = [b12, then there are X, y, z with a = x U y, 
b =x U z, Va E x V#3 E y Vr E z LY c /3 < r and there is an order-preserving bijec- 
tion n : a --, b which lifts to an isomorphism of 4 with r, and p = q U r U cf} where 
f is the maximal amalgamation of g and h. We say p is obtained by amalgamating 
4 and r. 
Finally, if LY is a limit ordinal, then we put p E P, iff p = U (Pn: n < o} U {Up}, 
where p,-,2p1~p22-.., each pn~Por, and (a;,:n<o) is an increasing se- 
quence cofinal in Ly. 

Let P=LJ{P,: cu<w,}, ordered by S. 
If h E H let us deline the support of h, support(h), to be the unique set u such 

that domain(h) = [u12. If p E P, let support(p) = support(base(p)). 
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Lemma 9.1. If p E &+I and p is obtained by amalgamating 

p s 4, r-s 

125 

q, r E P,, then 

proof. By symmetry we need only check p d q. Clearly base(q) up, and 
q E {h E p : h c base(q)}. Suppose h E p, h E: base(q). If h $ r, then h E q and we 
are done. But if h E r, then support(h) c support(q) n support(r), SO h is fixed by 
the isomorphism between q and I and it follows again that h E q. Hence p s q. 

Lemma 9.2. Assume CH. Then (P, G) has the o,-chain condition. 

Proof. If A E P has cardinality w2, then an easy A-system argument will produce 
distinct q, r E A which can be amalgamated into a condition p E P. But then by 
Lemma 9.1 p extends both q and r. 

Lemma 9.3. If p, q, r E P, p s q, r and base(r) E q, then q s r. 

Proof. Easy. 

Lemma 9.4. If p, q E P, p G q, p # q, p E P, and q E Ps, then /3 < CY. 

Proof. By induction on (Y. If a! = 0, this is vacuously true. If a = /3 + 1, then p is 
obtained by amalgamating pl and p2, say, so base(q) eP1 or p2. But then by 
Lemma 9.3, p1 S q or p2 s q and we may apply the inductive hypothesis. If LY is 
limit, then we have p = IJ {p,: n < o} U {Up}, so base(q) up, for some n. But 
again by Lemma 9.3 we have pn s q and we are done by inductive hypothesis. 

Lemma 9.5. (P, G) is countably closed. 

Proof. This is easy from Lemma 9.4 and the definition of P, when Q is limit. 

It follows from Lemmas 9.2 and 9.5 that if CH holds then forcing with P 
preserves cardinals and col?nalities. If G is P-generic, then it is clear that for some 
set A c 012 we have U U G : [A12* [A]“? We do not claim that A = 02. This 
could be arranged, but it would complicate the definition of P. 

Lemma 9.6. IAl = w2. 

Proof. Given any P E P it is easy to fmd an isomorphic condition q such that 

support(q) lies entirely above support(P). But then p and q can be amalgamated. 
Thus A will be c&ml in w2. Since cardinals are preserved, IAl = w2. 

Of course as long as lJ lJ G satisfies all the other requirements of propety A, it 
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is sufficient for its support, namely A, to be cofinal in m2. Now we concentrate on 
checking the other requirements of property A. 

Lemma 9.7. Suppose p E P and h E p. Then q = (g E p : g c h) E P (and of course 

Psq)* 

Proof. By induction on a! we must check the lemma for all p E P,. Details are left 
to the reader. 

Suppose p E P. A sequence ( hE : C$ < 5 + 1) of elements of p is called a, path 
through p if 

(1) &J E PO, 
(2) h5+1 is an immediate s-successor of hE, 
(3) if Zj is limit, then lJ {h,: q < E} = h,, 
(4) h, = base(p). 
If y1 < y2 d c, then we also refer to ( hE: v1 d g < v2) as a path from h,, to h,, 

(in P). 

Lemma 9.8. Suppose p E P and h EP. Then there is a path through p which 
contains h. 

Proof. By induction on Q! we check this for all p E P,. All cases are easy. (If LY is 
limit one must paste together paths between base&) and base@,+i) from some 
point on, but the details are quite simple.) 

Now suppose p E P and s = ( hE: g < c + 1) is a path through p. If LY E 
support(p), then let t(a) be the least ordinal g such that Q! E support( We 
think of t(a) as the time at which & appears. Naturally t(a) depends on both p 
and s. 

By condition (3) in the definition of a path it is clear that t(a) is always a 
successor ordinal (or 0). If f(a) = f + 1, then by Lemma 9.7 and condition (2) in 
the definition of a path it is clear that hE+l is obtained as the maximal 
amalgamation of h, with some other function g. Since t(a) = g + 1 we must have 
ar E support(g) - support( If JK support(g)+ support is the isomorphism, 
then we let a(a), the ancestor of LX, be n(a) E support( If t(a) = 0, then a(a) 
is undefined. Of course t(a(a)) < t(a) so the sequence LY, a(a), a2(cy), . . . is 
iinite. Let t*(a) = {t(a”(a)): n 20). 

Following are the two main lemmas for checking property A. 

Lemma 9.9. Supposep E P, h =base(p)ands=(hE:e<c+l)isapaththrough 
p_ Suppose a, f3 E support(p) with t(a) <t(B) and t(a) $ t*(p). Then h{a, /I} z 
tin{ a, B> n support(h+& 
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Proof. By induction on t(b). Let t(P) = 5 + 1. Then hE+l was produced by a 
head-tail-tail maximal amalgamation and /3 was in one of the tails. If LY is also in 
one of the tails, then it cannot be in the same tail as /3 since t(a) # t(p). Hence 
since h5 +1 is maximal we have 

h{a, r6> = hg+dcc /?I = min(a, /3} n support&+J 

1 min{ a, B> n suppor&& 

So we may assume that LY belongs to the head of the amalgamation producing 
h, +1. By the isomorphism in the amalgamation we have h, +1{ a~, /3} = 

hE+&, a(b)) ( recall (Y is fixed since it lies in the head). Also (Y < a(/?) since a(B) 
is in one of the tails. 

If t(cr) < t(a(&), then we are done by inductive hypothesis. Thus we may 
assume t(a(P)) < t(a). But then a is in a tail of the amalgamation at stage t(a) 
and a(p) must be in the other tail since &<.a@) and t(a@))#t(ar). Hence 
h{a, P> = h@u, a(P)) = min{ a, p} n support(h,(,,) and we are done. 

Lemma 9.10. Suppose p E P, h = base@) and s= (hE: E< c+l) is a path 
through p. Suppose also CY, p, z E support(p), t(z) < t(a), t(p), t(a) $ t*(p) and 
t(P) $ t*(a). Then 

(a) if t< a, j3, then rE h{cu, /3}, and 
(b) ifr</3, then h{a, t} ~h{cv, /3}. 

proof. (a) By symmetry we may assume t(a) < t(p). By Lemma 9.9, h{ cu, /I} 2 
min{ cy, /3} n support(h,(,,). But since t(t) < t(a) we have r E min{ a, /3} n 
supporW+,). 

(b) Suppose t(a) < t(j3). Then since (Y, r E support(h,& we have h{ cv, z} = 
&,){cu, z} c min{ cw, t} n support(h,,,,). But now the conclusion follows from 
Lemma 9.9 and the fact that min{cu, t} d min{a, /I}. 

Suppose t@) < t(a) . Let us attack this case by induction on t(a). If /3 and CY lie 
in different tails of the amalgamation at stage t(a), then we have h{cv, z} = 
h,cm,{ a, z} E htca,( cy, /3} = h{ R, /3} by maximality of h,,,,. Thus we may assume /3 
(and hence also r, since r < /3) lie in the head. But then /3 <a(&) and by the 
isomorphism we have h{a, /3} = h{a(cu), /3} and h{cu, z} = h{a(a). z}. If t(b) < 

t(a(a)), we are done by inductive hypothesis, so we must handle the case 
t(a( a)) c t(B). But since fi < a(a) it must be the case that /3 and a(a) lie in 
different tails of the amalgamation at stage t(j.3). Hence by maximality of http) we 
have h{ac, z} = ht(pj{a(cu), t} c hr(g){a(a+, 6) = h{cr, #J}, and the proof is 
complete. 

Lemma 9.11. Suppose G is P-generic and h = U U G. Let A be the support of h, 
i.e., domain(h) = [A12. Then for any uncountable set D of finite subsets of A, 
ga,bEDa#bandQaEa-bQ@Eb-aQtEanb 
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(a) if a, /3 > z, then z E h{ a, /J>, 
(b) if/3 > r, then h{a, r} &{a, B}, 
(c) if a> r, then h{/3, z} c h{a, /3}. 

&of. Without loss of generality we may assume that D is a A-system. Thus we 
suppose that It“{&: f < al) is a A-system of subsets of A with kernel A”, where 
A is a term for A. Now define a descending sequence {pp : E < ml) of elements of 
p as follows: Choose p. so that for some (real) A E support we have 
pOlt- A = A. Given ps, find pg+l SPY so that for some aE c support(pE+,) we have 
pe+l It- ii, = aE. Finally, if 5 is limit choose pE so that pe = lJ {p,: q < lj} U 

OJ PSI. 
Next let (he: g < q) be a ‘path’ through LJ {pe: E < ol} obtained by taking a 

path through p. and concatenating it with paths from basebE) to base(pE+l) for 
all 5. It is easy to see that for any plr some initial segment of (h,: 5 < wl) is a 
path through p,,. 

Hence for a! E lJ {support( E < ol} we may define t(a) as the least E with 
(Y E support as before. Define t*(a) as before. But now since each t*(a) is 
finite, it is easy to find 5, q < o1 with e < q and 

(1) Vr E A Va E aE n a,, - A t(z) < t(a), 
(2) Va E ag - A V/3 E a,, - A t(a) $ t*(B) and t(p) $ t*(a). 

Of course P,,+~ now satisfies the hypothesis of Lemma 9.10 whenever c! E a$ - A, 

B E a, -A and zEA as well as whenever ayEa, -A, /?Eag-A and TEA. The 
conclusion of this lemma is now forced by pv +1 as one sees immediately from 
Lemma 9.10. 

By mapping A onto w2 in an order-preserving fashion we obtain finally 

Theorem 9.12. Forcing with P produces a function f * with property A. 

10. Tbin4aUtopoIogical spaces 

Let us turn our attention from Boolean algebras to topological spaces. 
Recall that if X is a topological space, then by induction on or we define X4 

by: X0)=X, Xcr+‘) is the set of limit points of x’“‘, and for limit a, 
ti4 = n {X? j3 < (u}. X is scattered if some X4 = 0; the least such a is the 
height of X We refer to X4 -X&l) as the cuth level of X. 

Our purpose in this section is to prove in ZFC the following theorem, which 
anwers a question of I. Juhasz. 

Theorem 10.1. There are regular (even zero-dimensional) scattered spaces of 
arbitrary height below c+, where c denotes the cardinality of the continuum, such 
that all levek are countably infinite. 
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proof. A family F of subsets of w is independent provided that whenever 
al, . . - , a,, h, . . . , b, are distinct members of F, then (a, 13 - - . n a,) - (b, U 
. . . U b,) is infinite. It is well-known that independent families of cardinality c 
exist. Let F denote such a family. 

Fix E < c+ and for convenience assume c s E. Let X = E x o and let f: Xi* F 
be a bijection. For each x = (ct; n) E X let A, = { (/?, m): 6 < (Y and m E f (x)} U 

{x}. We give X the topology determined by declaring each A, to be clopen; thus 
X is clearly zero-dimensional. 

It will suffice to verify by induction on (Y that X4 = (5 - a) x w. This is clear 

for LY = 0 and CK limit. Suppose a = /? + 1 and X(@ = (6 - fl) x w. It is clear that if 
x = (/3, n), then x is isolated in x’@ since A, n x’@ = {x}. We must check that 
these are the only isolated points in tin. 

Lety=(a,m)withar>&andletyl ,..., yk,zl ,..., z,bedistinctpointsofX 
withyEU=(AY,r)...nA,,)-(A,,U.. - U A,,), a basic neighborhood of y. But 
if n E (f(yd n . . * nf(Yk)) - (f(G) u . . * U f(z/)), then clearly (/3, n) E U, and 
since there are infinitely many such n, y cannot be isolated. This completes the 
proof. 

Note added in proof (19 November 1986) 

(1) Using methods developed by S. TodorEevic, Boban VeliEkovic has shown 
that the existence of a function with property A follows from Jensen’s principle 
cl . 

;;) Th ose familiar with Velleman’s simplified morasses will recognize that the 
forcing to produce a function with property A is really just adjoining a certain 
kind of simplified morass. 

(3) We are grateful to Petr Simon for calling our attention to the paper “Long 
chains in Rudin-Frolik order” by Eva Butkovitiva in Comment. Math. Univ. 
Carol. 24 (1983) 563-569, in which she obtains implicitly Theorem 10.1 of this 
paper. 
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