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Abstract

Let R be a Dedekind domain. Recently, Enochelusion of the Flat Cover Conjecture was
extended as followsx] If € is a cotorsion pair generated by a class of cotorsion modulesgtigen
cogenerated by a set. We show thgtié the best result provable in ZFC in caBehas a countable
spectrum: the Uniformization Principle URmplies that¢ is not cogenerated by a set wheneder
is a cotorsion pair generated by a set which contains a non-cotorsion module.

0 2003 Elsevier Inc. All rights reserved.

1. Introduction
For any ringR, if S is a class of (rightR-modules, we define
LS =|A: Exty(A, M) =0forall M € S}
and

St ={A: Exty(M, A)=0forall M € S}.
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If S is a set (not a proper class), thé = -{K} where K is the direct product of
the elements ofS, and S+ = {B}+ where B is the direct sum of the elements 6f
(Henceforth, in an abuse of notation, we will writ& instead of-{K}, and B+ instead
of {B}*))

A cotorsion pair (originally called acotorsion theory) is a pair€ = (F, C) such that
F ="1C andC = F*. ¢ is said to begenerated (respectivelycogenerated) by S when
F =18 (respectivelyC = St).

A motivating example (forR a Dedekind domain) is the paff-, C) where F is the
class of torsion-free modules afd= F1; the members of are called cotorsion modules.
Equivalently,K is cotorsion if and only if E)ﬁ(Q, K) =0, whereQ is the quotient field
of R (cf. [8, §XIII.8]. Pure-injective modules are cotorsion, and torsion-free cotorsion
modules are pure-injective.

Cotorsion theories were first studied by Salce [10]; their study was given new impetus
by the work of Gobel and Shelah [9]. (See, for example, [2, Chapter XVI] for an
introduction to these concepts.)

In this paper we are interested in the question of when a cotorsion(fat) is
cogenerated by a set, or, equivalently, when there is a single m@daleé= such that
C = B'. One reason this question is of interest is that, by a result in [5{FifC)
is cogenerated by a set, then itdsmplete, that is, for every modulé/, there is an
epimorphismys: N — M such thatN € F and ke(y) € C; in particular, F-precovers
exist for all R-modules. It is these ideas and results that are involved in the proof of the
Flat Cover Conjecture by Enochs [1]; see the introduction to [6] for the historical sequence
of events. (See also [7] and/or [14] for a comprehensive study of (pre)covers and their
uses.)

The following is proved in [6]:

Theorem 1.1. For any ring R, if € = (F,C) is a cotorsion pair which is generated by
a class of pure-injective modules, then € is cogenerated by a set. Moreover, if R is a
Dedekind domain, the same conclusion holds when € is generated by a class of cotorsion
modules, or, equivalently, when every element of C is cotorsion.

Note that(F, C) is generated by a class of cotorsion modules if and onfy & 7, in
which case every member 6fis cotorsion.

The case whed contains non-cotorsion modules is more complicated, and the results
depend on the extension of ZFC we work in. In [6] it is proved that it is consistent with
ZFC that the conclusion of Theorem 1.3 holds for even more cotorsion pairs:

Theorem 1.2. GAdel’s Axiom of Constructibility (V = L) impliesthat ¢ is cogenerated by
a set whenever € isa cotorsion pair generated by a set and R isaright hereditary ring.

The main result of this paper is that Thiem 1.1 is the best that can be proved in ZFC
(even in ZFCG+ GCH) for cotorsion pairs which are generated by a set—at least for certain
rings, includingz:
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Theorem 1.3. It is consistent with ZFC + GCH that if R is a Dedekind domain with a
countable spectrum and ¢ = (F, C) isa cotorsion pair generated by a set which contains
a non-cotorsion module, then € is not cogenerated by a set.

The assumption that is generated by a set is essential in Theorem 1.3: for example, by
a classical result of Kaplansky, the cotorsion gé@g, Mod-R) is cogenerated by a set (of
countably generated modules), for any riRg(Here,Pg denotes the class of all projective
modules.)

Putting together Theorems 1.1 and 1.3, we have:

Corollary 1.4. Let R be a Dedekind domain with a countable spectrum, and let K be an
R-module. It is provablein ZFC 4+ GCH that thereis a module B such that (1K) = B+
if and only if K is cotorsion.

Proof. If K is cotorsion, it is proved in [6] thaB exists. (This is provable in ZFC
alone.) The other direction follows immediately from Theorem 1.3 for the cotorsion pair
("K.(*K)Y). O

In [4] this result was proved farountabletorsion-free Z-modulesK . It was also proved
there that the cotorsion paitZ, (-Z)1) is not complete.

Theorem 1.3 is proved in the next two sections. In the first one we prove in ZFC
some preliminary results. In the following section we invoke the additional set-theoretic
hypothesis UP.

2. Resultsin ZFC
We will make use of the following result from [5]. (See also [2, XVI.1.2 and XVI.1.3].)

Theorem 2.1. Let B be an R-module and let ¥ be a cardinal > |R| + |B|. Let © bea
cardinal > « such that u* = «. Then there isa module A € B+ such that A = U<y A
(continuous), Ag = 0 (or any given module of size < k), and such that for all v < u,
A,4+1/A, isisomorphicto B.

Moreover, if, for some R-module K, B € K, then A/A, € +K for all v < p.

The continuity condition on thel,, means that for every limit ordinat < u, A, =
Uv<0 AV‘

From now on,R will denote a Dedekind domain an@d will denote its quotient field.
Moreover, we assume thakt is countably generated as &module, or, equivalently, that
R has a countable spectrum.

The conditions o in Theorem 2.1 motivate the hypotheses in the following lemmas.
Recall that a moduld/ is reduced if Homg(Q, M) = 0.

Lemma 2.2. Let B be atorsion-free reduced module. Let 1« be alimit ordinal and suppose
M = UKM M, (continuous), where Mo =0, and for all v < u, M, 4+1/M,, isisomorphic
to B. Then M istorsion-free and reduced.
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Proof. Itis clear thatM is torsion-free. Suppose that there is a non-zero homomorphism,
hence an embedding,: 0 — M. Let t be minimal such thad/; contains a non-zero
elementg(y), of the range of. Thent is not a limit ordinal; say = v+ 1, andd induces

a non-zero map, hence an embeddingQointo M /M, . SinceM/M,1 has no torsion,

this map embed® into M, ;1/M,, which is a contradiction, sinc®,.1/M, = B. O

Definition 2.3. By hypothesis orR we can fix a countable sgb;: j € w} of non-units of
R such that{(]_[,.<j pi)~ L j € )} generate®) as ank-module angp;|pj if i < j.

Lemma2.4. Let B beatorsion-free R-module. Suppose M = | J,,.,, M, suchthat Mo =0,
and for all n € w, M,+1/M, isisomorphic to B. Suppose that for some k € w and all
n € w, a, + M, isan element of M, 1/M,, which doesnot belongto px (M, +1/M,). Then
the system of equations

{onvnt1="vy —ay: n € w}
inthevariables {v,: n € w} doesnot have a solutionin M.

Proof. Suppose, to the contrary, that there is a solutipe= u,, € M. We haveug € M,,
for somem > k. Sincea, € M,, for n < m, and sinceB is torsion-freeu, € M,, for
n < m.Butthenp,u,+1 = u,, —a,, implies thatu,,, 1 + M, belongs taM,,, 11/ M,, (since
M/M,, 11 is torsion-free) and thus; dividesa,, + M,, in M,,1/M,,, which contradicts
the choice ofy,,. O

Recall that a modulé/ is called asplitter if Ext}Q(M, M) = 0. (See, for example, [9,
11], or [2, Chapter XVI].)

Lemma 2.5. If € isa cotorsion pair which is generated and cogenerated by sets, then there
is a torsion-free splitter which generates €.

Proof. Let ¢ = (F,C). Let B, K be modules such thaf = 1K andC = B*. By [5,
Theorem 10]K has a speciaF-precover, i.e., there is an exact sequenee f — N —
K — O suchthatM € C andN € F. SinceK € C, alsoN €C, andN € CN F is a splitter.

We haveF = +N (since clearly7 € *N, and*N € 1K = F). Let T be the
torsion part ofN. ThenT is a direct sum of itg-components? = B ., specr) Tp- If
T, # 0, then Exk(R/p, N) = 0, so Honk(R/p, E(N)/N) = 0, and hence Hog(R/ p,
E(T,)/Tp) =0. Thereforel, is divisible. SoN =T @ L whereL is a torsion-free splitter.
SinceT is divisible, 'L =*N=F. O

Lemma 2.6. Suppose that € is a cotorsion pair which is cogenerated by a cotorsion
module, and generated by a set. Then € is cogenerated by a cotorsion module of the form
B & T where B istorsion-free, T is torsion, and for every prime p such that R/p isa
submoduleof T, pB = B.
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Proof. Let € = (F,C) and letk be a module such thaf = - K. If K is cotorsion, then
by [6, Theorem 16], there is a set of maximal ideBlsuch thatF is the set of all modules
with zero p-torsion part for allp € P. ThenC = B whereB = Q ® @D ¢r R/q-

So we can assume th&tis not cotorsion, and that, by Lemma 26,is torsion-free.

Let C be a cotorsion module such th@dt= C+. We haveC = D @ E where D is
divisible andE reduced. Sinc& is not cotorsionD is torsion. Denote by’ the torsion
part of E. By a theorem of Harrison—Warfield, [8, XII1.8.8], we hake= B & G whereB
is torsion-free reduced and pure-injective, ands a cotorsion hull off’. We claim that
there is an exact sequence97’ — G — Q® — 0 for somes > 0.

Indeed, by [14, 3.4.5); is a cotorsion envelope d@f’ in the sense of Enochs. Now by
Theorem 2.1 there is a cotorsion preenvel6peof T’ such thatG’/ T’ is the union of a
continuous chain with successive quotients isomorphietand hence’/ T’ = Q) for
somey. The claim now follows sinc& /T’ is isomorphic to a direct summand 6f/ T’
by [14, 1.2.2]

SinceKk is torsion-free and; € F, an application of Hom(—, K) yields

0=Homg(T’, K) — Exty (0, K) — Exty(G, K) =0.

Thus, ExtQ®, K) =0, so sinceX is not cotorsion§ =0 and7’ = G. HenceC =B & T
whereT =T’ & D is torsion.

By [7, 5.3.28], there is a seP of maximal ideals ofR such thatB =[] ,.p J,
where J, is the p-adic completion of a free module over the localizationffat p.
In particular,g B = B for all maximal idealsg ¢ P. For eachp € P, there is an exact
sequence 8> J, — E(J,) — I, — 0 wherel,, is a direct sum of copies df(R/p), and
E(J,) = Q@ for somex, > 0.

Let ¢ be a maximal ideal such that/q embeds inT. Assumeq € P. Then an
application of Hom (—, K) yields

0=Exty (I, K) — Exty (0, K) — Exty(J,, K) =0.

The first Ext is zero becaus®/q < T; SO R/q € F =*C and thusE(R/q) € F by [5,
Lemma 1] sinceE(R/q) is the union of a continuous chain of modules with successive
quotients isomorphic t&/q; the last Ext is zero becausg € F. So K is cotorsion, a
contradiction. This proves that¢ P and hencg B=B. O

3. Proof of Theorem 1.3

Let € = (F,C) be a cotorsion pair cogenerated by a set, and generated by a non-
cotorsion modulek . We aim to produce a contradiction by constructiige K (= F)
and A € C such that Ex{(H, A) # 0. We do this assuming GCH plus the following
principle, which is consistent with ZFE€ GCH (cf. [3] or [12]):
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UP™. For every cardinal of the formt*+ wherer is singular of cofinalityw there is a
stationary subsef of x consisting of limit ordinals of cofinalityo and a ladder system
¢ ={¢s: & € S} which has the.-uniformization property for every < t.

Recall that if S is a subset of an uncountable cardipalvhich consists of ordinals
of cofinality w, aladder systemon S is a family ¢ = {¢5: 8 € S} of functionsgs:w — 8
which are strictly increasing and have range cofinad.ifror a cardinal., we say that
¢ has thex-uniformization property if for any functionscs:w — A for § € S, there is a
pair (f, f*) where f:u — A and f*:S — w such that for alls € S, f(¢s(v)) = cs(v)
wheneverf*(8) < v < w. We refer to [2, Chapter XlII] for more details.

We consider two cases: (¢)is cogenerated by a cotorsion module; and (2) the negation
of (1).

The moduleH will be the same in both cases (for a giveh Let¢ = {¢5: 8 € S} be
as in (UP") for this u. We also use the notation from Definition 2.3. Ui¢t= F/L where
F is the free module with the basfss ,: 6§ € S, n e w} U {x;: j < u} andL is the free
submodule with the basisvs ,: § € S, n € w} where

W50 = Ys,n — PnYs.n+1+ Xgz(n)- (1)

ThenH is a module of cardinality. and the uniformization property @f implies that
H e1K. (Infact,H € LK for any modulek of cardinality< . See [2, Chapter XIII] or
[13].)

Assuming we are in case (1), I8t@® T be a cogenerator af as given in Lemma 2.6.
Let « > max(|B|, |R|,|K|) and lety = t+ = 2% wheret > « is a singular cardinal of
cofinality w. Thenu* = . Let A = Uv<,u A, be as in Theorem 2.1 for thi8 and u; so,
in particular,A € B+. Note that them € (B @ T)* = C becausd'* consists of precisely
those moduleds such thappM = M whenevelR/p — T. Note thatd/A; is torsion-free
for all § € u, because is torsion-free.

We need to show that E}g(H, A) # 0; in other words, to define a homomorphism
¥ : L — A which does not extend tB.

SinceB is reduced there islac w such thatpx B # B; then for all§ € S andn € w we
can chooses , € Astn+1 such thats , + Asin & Pk (Asn+1/As+n). We claim that

forall § € S, the family of equations
Es = {Pnvnt1="vn — (@50 + As): n € w} (X
does not have a solution i/ As.

Supposing, for the moment, that this claim is true, we will prove tha}ERlL, A) £0.
Definey : L — A by ¢ (ws ) =as,, forall § € S, n € w. Suppose, to obtain a contradic-
tion, thaty extends to a homomorphism F — A. The set 0B < p such thatp(x;) € A;
forall j < §is aclub,C, in u, so there exist§ € S N C. By applyingg to the relations
(1), and sincep(x;) € A; for all j < 8, we have that, = ¢(y5,,) + As is a solution to the
equations inrA/A;, a contradiction.

Thus it remains to proveX). Suppose that¥) is false for some € S, and that for
some(b,: n € w} C A, v, = b, + As is a solution tcfs. There are two subcases.
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Suppose first thdip+ A5, iS @a non-zero element ef/A;s,,. ThenA/A;,, contains a
copy of O (generated oveR by the cosets of the,, n € w). But this contradicts Lemma 2.2
(With M= A/AzH-wr M, = A5+w+v/A5+w)-

Otherwise we can prove by induction thgte As,, for alln € w becaused/As+, has
no torsion anc, (b, +1 + As+w) = by, + As+w. Thus there is a solution of

{onvns1=vn — (asn + As): n € w}

in As4+/As. But this contradicts Lemma 2.4 (withl = A5y, /As, M, = Asy,/As and
anp = as., + As).

This completes the proofin case (1).

Now supposing we are in case (2), be a module cogeneratig Letx > max(| B|,
IR|,|K]) and lety =t = 27 wheret > « is a singular cardinal of cofinality. Let
A=J,., Ay beasinTheorem 2.1 for thi andu; soA € B*. Let H be as above.

Then for all§ € u, A/As cogenerate€ since the construction af and Lemma 1
of [5] implies thatM e (A/As)* wheneverM € B*. Hence, since we are in case (2),
Exth(Q, A/As) # 0 forall§ € .

Now Q = Fs/Ls whereF; is the free module with the badiss ,: n € w} andL; is the
free submodule with the basjs ,: 8 € S, n € w} wherewj , = v5., — pnys.n+1. Hence
there is a homomorphisms: Ls — A/As which does not extend t6;.

Letns : A — A/As be the canonical projection. Defije: L — A so thatzsy (ws ) =
¥s(w ). In order to prove EXt(H, A) # 0, we will show thaty does not extend to a
homomorphisny : F — A. If it did, there would exist € S N C whereC is the club of all
8 < p such thatp(x;) € A for all j < 8. But thenm;s o (¢ [ F5) would be an extension of
¥s, a contradiction.

This completes the proof of Theorem 1.3.
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