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ALMOST GALOIS �-STABLE CLASSES

JOHN T. BALDWIN, PAUL B. LARSON, AND SAHARON SHELAH

Abstract. Theorem. Suppose that k = (K,≺k ) is an ℵ0-presentable abstract elementary class with
Löwenheim–Skolem number ℵ0, satisfying the joint embedding and amalgamation properties in ℵ0. If K
has only countably many models in ℵ1, then all are small. If, in addition, k is almost Galois �-stable
then k is Galois �-stable. Suppose that k = (K,≺k) is an ℵ0-presented almost Galois �-stable AEC
satisfying amalgamation for countable models, and having a model of cardinality ℵ1. The assertion thatK
is ℵ1-categorical is then absolute.

§1. Introduction. This paper concerns two aspects of pseudoelementary classes
in L�1,� , the reducts to a vocabulary � ⊆ �+ of models of an L�1,�(�+)-sentence.
In the first two sections we investigate the relationship among the number of count-
able models of such a class, Scott ranks, and the number of small (i.e., having
a countable L�1,�-elementary submodel) models and large (not small) models of
the class in ℵ1; this yields some technical information about putative counterex-
amples to Vaught’s conjecture. Building on this material, in the third section, we
treat such classes as abstract elementary classes and investigate variations onGalois
�-stability. In the final section we use the results presented here and in [5] to prove
a theorem on the absoluteness of ℵ1-categoricity for pseudoelementary classes in
L�1 ,� that are also abstract elementary classes.
We call an abstract elementary class (AEC) almost Galois �-stable if for every

countable model M , EM (the equivalence relation of ‘same Galois type over M ’
see Definition 3.1) does not have a perfect set of inequivalent members. An AEC is
strictly almost Galois�-stable if in addition it is not Galois�-stable. The immediate
impetus for this paper was [5], which studied what Baldwin and Larson called
analytically presented abstract elementary classes. These classes are called by many
names: pseudoelementary classes in L�1,� , ℵ0-presentable classes, PC(ℵ0,ℵ0) or
PCℵ0 [24], PCΓ(ℵ0,ℵ0) [1] or, in the language of Keisler [13], PC� in L�1,� . In
this paper we will most often refer to them as ℵ0-presented. The term ‘analytically
presented’ emphasizes that one can deduce from Burgess’s theorem on analytic
equivalence relations (see [8], Theorem 9.1.5, for instance) that if such a class is
almostGalois�-stable then each equivalence relationEM has atmostℵ1 equivalence
classes. This topic first arose in [24] and several of the arguments here just expand
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764 JOHN T. BALDWIN, PAUL B. LARSON, AND SAHARON SHELAH

ideas Shelah mentioned there; for further background on the context see [1, 5,
26]. Our main goal, Theorem 3.18, is to prove that an almost Galois �-stable
ℵ0-presentable abstract elementary class with only countably many models in ℵ1 is
Galois�-stable. This extends earlier work by Hyttinen–Kesala [11] andKueker [16]
proving the result for sentences of L�1,� with no requirement on the number of
uncountable models.
Each class ofmodels in this paper isℵ0-presented.Amajor tool for this investigation
is to expand models of set theory by predicates encoding relevant properties of the
models (for some vocabulary �) being studied. This approach appears in Shelah’s
analysis in [22], Section VII, connecting the Hanf number for omitting families of
types with the well-ordering number for classes defined by omitting types. In [21],
expanding the vocabulary to describe an analysis of the syntactic types allowed the
construction of a ‘small’ (Definition 2.2) uncountable model in an ℵ0-presentable
class K from an uncountable model that is small with respect to every countable
fragment of L�1 ,�. In Lemma 2.7, we use this method to show that if, in addition,
there are only countably many models in ℵ1, then each is small. In Section 3, we
combine this technique with constructions using iterated models of set theory to
prove Theorem 3.18. In Section 4, we give sufficient conditions of categoricity in ℵ1
of an ℵ0-presented AEC to be absolute.

§2. Small Models. We refer the reader to [1, 26] for the definition of abstract
elementary class (AEC).

Assumption 2.1. k = (K ,≺k) is an AEC which is ℵ0-presented. Specifically, K
is the class of reducts to � of a class defined by a sentence φ ∈ L�1 ,�(�+), where �+ is
a countable vocabulary extending �.

If � is a cardinal, we let K� be the class of models in K of cardinality �.
This section deals with syntactic L�1,�-types in ℵ0-presentable classes. As such
the arguments are primarily syntactic and are minor variants on arguments Shelah
used in [21, 23, 24]. In particular, no amalgamation assumptions are used in this
section.

Definition 2.2.

1. A �-structure M is L∗-small for L∗ a countable fragment of L�1,�(�) if M
realizes only countably many L∗-types (i.e., only countably many L∗-n-types
over ∅ for each n < �).

2. A �-structureM is called locally �-small if for every countable fragment L∗ of
L�1,�(�),M realizes only countably many L

∗-types.
3. A �-structure M is called small or L�1,�-small if M realizes only countably
many L�1,�(�)-types.

Note that ‘small’ is a much stronger requirement than ‘locally small’. If � ⊆ �′
and N ∈ �′, we say that N is locally �-small when N�� is. We emphasize � when
the ambient larger vocabulary plays a significant role. The following standard fact
plays a key role below (see also pages 47, 48 of [1]).

Fact 2.3. Each small model satisfies a Scott sentence, a complete sentence of
L�1,� .
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ALMOST GALOIS �-STABLE CLASSES 765

We quickly review the proof of this fact, as the details will be important later. For
any model M over a countable vocabulary �, we can define for each finite tuple a
(of size n) fromM the n-ary formulas φa,α(x) (α < |M |+) as follows.

• φa,0(x) is the conjunction of all atomic and negated atomic formulas satisfied
by a,

• φa,α+1(x) is the conjunction of the following three formulas:
– φa,α(x)
–
∧
c∈M ∃wφac,α(x,w)

– ∀w∨
c∈M φac,α(x,w)

• for limit � < |M |+, φa,�(x) =
∧
α<� φa,α.

The apparent uncountability of the conjunctions in the previous definition is
obviated by identifying formulas φac,α and φa′c,α when they are equivalent in M .
Working by induction on α, one gets that if M is L∗-small for each countable
fragment L∗ of L�1 ,�(�), then the set of formulas φa,α is countable for each α,
letting a range over all finite tuples from M . Finally, if M is small there exists an
α < �1 such that

M |= ∀x(φa,α(x)→ φa,α+1(x))
for all finite tuples a. Then

φ〈〉,α ∧
∧

a∈M<�
∀x(φa,α(x)→ φa,α+1(x))

is a Scott sentence forM . Fixing the least such α, we say thatM has Scott rank α.
Wewill also use the following fundamental result (see [13] or Theorem 5.2.5 of [1];

the notion of fragment is explained in both books). Roughly speaking, the fragment
generated by a countable subset X of L�1 ,�(�) is the closure of X under first order
operations. We preserve Keisler’s terminology to emphasize that the theorem deals
only with the number of models and does not involve the choice of ‘elementary
embedding’ on the class.

Theorem 2.4 (Keisler). If a PC� over L�1,� classK has an uncountable model but
less than 2�1 models of power ℵ1 then K is locally �-small. That is, for any countable
fragment L∗ of L�1,�(�), eachM ∈ K realizes only countably many L∗-types over ∅.
By just changing a few words in the proof of Theorem 6.3.1 of [1], (originally in

[21]) one can obtain the following result, which was implicit in [24].

Theorem 2.5. If K is an ℵ0-presentable AEC and some model M ∈ K
of cardinality ℵ1 is locally �-small, then K has a L�1,�(�)-small model N of
cardinality ℵ1.
Proof. Let φ be the �+-sentence whose reducts to � are the members of K .

Without loss of generality we may assume the universe of M is �1. Add to �+ a
binary relation<, interpreted as the usual order on�1.Using the fact thatM realizes
only countably many types in any �-fragment, define a continuous increasing chain
of countable fragments Lα for α < ℵ1 such that

• for each quantifier free (first order) n-type over the empty set realized in M ,
the conjunction of the type is in L0, and

• the conjunction of each type in Lα that is realized inM is a formula in Lα+1.
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766 JOHN T. BALDWIN, PAUL B. LARSON, AND SAHARON SHELAH

Extend the similarity type further to �′ by adding new (2n + 1)-ary predicates
En(x, y, z) and (n+1)-ary functions fn for each n ∈ �. LetM satisfy En(α, a, b) if
and only if a and b realize the same Lα-type, and let the interpretation of fn map
Mn+1 into � in such a way that En(α, a, b) if and only if fn(α, a) = fn(α, b) for all
suitable α, a, b. Then the following hold.
1. The equivalence relations En(�, x, y) refines En(α, x, y) if � > α;
2. En(0, a, b) implies that a and b satisfy the same quantifier free �-formulas;
3. If � > α and En(�, a, b), then for every c1 there exists c2 such that
En+1(α, c1a, c2b), and

4. fn witnesses that for any a ∈ M , each equivalence relation En(a, x, y) has
only countably many classes.

All these assertions can be expressed by an L�1,�(�
′) sentence 	. Let L∗ be the

smallest �′-fragment containing 	 ∧φ. Now by the Lopez–Escobar bound on L�1,�
definablewell-orderings, Theorem 5.3.8 of [1], there is a �′-structureN of cardinality
ℵ1 satisfying 	 ∧ φ such that there is an infinite decreasing sequence d0 > d1 > . . .
in N (alternately, one could use Lemma 2.5 of [5] for this step). For each n, let
E+n (x, y) denote the assertion that for some i , En(di , x, y).
Using 1), 2), and 3) one can prove by induction on quantifier rank (for all n ∈ �
simultaneously) that for all n-ary L�1,�(�) formulas 
, and all finite tuples a, b
from N , if E+n (a, b) holds then N |= 
(a) if and only if N |= 
(b). To see this,
suppose that this assertion holds for all n and all � with quantifier rank at most �.
Let 
(z) be an n-ary formula of the form (∃x)�(z, x), where � has quantifier rank
�. Let a, b be n-tuples from N for which E+n (a, b) holds and N |= 
(a). Then for
some i , En(di , a, b) and for some a, N |= �(a, a). By condition 3) above there is a
b such that En+1(di+1, a, a, b, b). By our induction hypothesis we haveN |= �(b, b)
and so N |= 
(b).
Now, for each n, En(d0, x, y) refines E+n (x, y) and by 4) En(d0, x, y) has only
countably many classes, so N�� is small. �
Definition 2.6. We say a countable structure is extendible if it has an L�1,�-
elementary extension to an uncountable model.

Lemma 2.7. Suppose that K is the class of reducts to � of a class defined by a
sentence φ ∈ L�1 ,�(�+), where �+ is a countable vocabulary extending �. If some
uncountableM ∈ K is locally �-small but is not L�1,�(�)-small then
1. There are at least ℵ1 pairwise-inequivalent complete sentences ofL�1 ,�(�) which
are satisfied by uncountable models in K ;

2. K has uncountably many small models in ℵ1 that satisfy distinct complete
sentences of L�1,�(�);

3. K has uncountably many extendible models in ℵ0.
Proof. Suppose thatM is amodel inK with cardinalityℵ1 that is is locally �-small
but is notL�1,�(�)-small. LetM

+ be an expansion ofM to a �+-structure satisfying
φ. We construct a sequence of �+-structures {N+α : α < �1} each with cardinality
ℵ1 and an increasing continuous family of countable fragments {L′

α : α < �1} of
L�1,�(�) and sentences 	α such that:
1. L′

0(�) is first order logic on �;
2. all the models N+α satisfy φ;
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ALMOST GALOIS �-STABLE CLASSES 767

3. for each α < �1, N+α �� is L�1,�(�)-small;
4. 	α is the L�1,�(�)-Scott sentence of Nα ;
5. L′

α+1(�) is the smallest fragment of L�1,�(�) containing L
′
α(�) ∪ {¬	α};

6. For limit �, L′
�(�) =

⋃
α<� L

′
α(�);

7. For each α, Nα ≡L′
α(�)
M .

Working by recursion, suppose that we have constructed Nα for all α < � , for
some countable ordinal � . This determines each 	α (α < �) as the Scott sentence
of Nα and also determines L′

�(�). SinceM is not small,M |= ¬	α for each α < � .
Apply Theorem 2.5 to M and the restriction of K to models L′

�(�)-elementarily
equivalent toM to construct N� .
Now the Nα are pairwise nonisomorphic since each satisfies a distinct complete

sentence 	α of L�1 ,�(�), so conclusions 1) and 2) are satisfied. And each Nα has
a countable elementary submodel with respect to L′

α+1(�), so there are at least ℵ1
nonisomorphic extendible models in ℵ0 as well. �
Putting together Theorem 2.4 and Lemma 2.7, we have the following.

Corollary 2.8. If an ℵ0-presented AECK has only countably manymodels in ℵ1,
then every model in K is small.

Lemma 2.7 leads to several corollaries connected to the Vaught conjecture. First
we recall the following result of Harnik and Makkai [9].

Theorem 2.9 (Harnik–Makkai). If 
 ∈ L�1,� is a counterexample to Vaught’s
Conjecture then it has a model of cardinality ℵ1 which is not small.
Corollary 2.10. If φ ∈ L�1,� is a counterexample to the Vaught conjecture then

φ has ℵ1 extendible countable models.
Proof. If φ ∈ L�1,� is a counterexample to Vaught’s conjecture, then every

uncountable model of φ is locally small. The result then follows from Theorem 2.9
and Lemma 2.7. �
Remark 2.11. Clearly, ifK has only countably many models in ℵ1 thenK has at

mostℵ0 nonisomorphic extendible countablemodels (since each uncountablemodel
isL�1,�-equivalent to atmost onemodel inℵ0). The three conclusions of Lemma 2.7
are easily seen to be equivalent; we separated them in the statement because both
the countable and uncountable models arose naturally in the proof. The converse
of Lemma 2.7 asserts that if K has uncountably many extendible countable models
and a locally small model in ℵ1 then it has a nonsmall model in ℵ1. Theorem 2.9
shows this is true if the hypothesis is changed to ‘uncountably many countable
models, but not a perfect set of countable models’, without requiring extendibility,
and the class of countable models is Borel, as opposed to analytic. In general, the
converse is false. The empty theory in a vocabularywith ℵ0 constants has 2ℵ0 models
(depending on which constants are identified) in each of ℵ1 and ℵ0; all are small.
But joint embedding and amalgamation fail even under first order elementarity.
Example 2.1.1 of [4] is a sentence of L�1,� giving rise to an AEC, with a particular
notion of ≺k (weaker than first order), which satisfies amalgamation and joint
embedding and is ℵ1-categorical, and for which the model in ℵ1 is small. In this case
there are 2ℵ0 countable models, but only one of them is extendible.
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Definition 2.12. A sentence 
 of L�1 ,� is large if it has uncountably many
countable models. A large sentence 
 is minimal if for every sentence φ either 
 ∧ φ
or 
 ∧ ¬φ is not large.
As part of their proof of Theorem 2.9, Harnik and Makkai showed that any
counterexample to Vaught’s conjecture can be strengthened to a minimal coun-
terexample. We call a model of cardinality ℵ1 large if it is not L�1,�-small in the
sense of Definition 2.2. Lemma 2.7 implies that if φ has a large model in ℵ1 then φ
is large.

Corollary 2.13. If φ is a minimal counterexample to Vaught’s conjecture then
φ has a large model in ℵ1, and all large models of φ in ℵ1 are L�1,�-elementarily
equivalent.

Proof. Theorem 2.9 says that φ has a large model N . Suppose that � ∈ L�1,�
holds in N . The fact that φ ∧� has a large model implies by Lemma 2.7 that φ ∧�
has uncountably many models in ℵ0. By minimality, φ ∧ ¬� has only countably
many models in ℵ0 and so by Lemma 2.7 again, all uncountable models of φ ∧ ¬�
are small. �
Harrington1 showed that any counterexample to Vaught’s conjecture has models
in ℵ1 with Scott ranks (using sentences in L�2,�) cofinal in ℵ2.
Question 2.14. Can one say anything about the embedability relation on the large
models of a counterexample to Vaught’s conjecture?

2.1. Connections with the Morley Analysis. We pause to connect this analysis in
Section 2.2 with a related but subtly distinct procedure.

Definition 2.15.

1. Morley’s Analysis: Let K be the class of models of a sentence of L�1,�.
(a) Let LK0 be the set of first order �-sentences.
(b) Let LKα+1 be the smallest fragment generated by L

K
α and the sentences of

the form (∃x)∧p(x) where p is an LKα -type realized in a model in K .
(c) For limit �, LK� =

⋃
α<� L

K
α .

2. K is scattered if and only if for each α < �1, LKα is countable.

Recall Morley’s theorem, which is key to his approach to Vaught’s conjecture.

Theorem 2.16 (Morley). If K is the class of models of a sentence in L�1,� that
has less than 2ℵ0 models of power ℵ0 thenK is scattered.
Remark 2.17. We cannot conclude thatK is scattered from just countingmodels
in ℵ1, even from the hypothesis thatK is ℵ1-categorical. Again, Example 2.1.1 of [4]
(Remark 2.11) is ℵ1-categorical and has joint embedding for ≺k . But there are 2ℵ0
first order types that give models that are not even first order mutually embeddible
and the class K is not scattered.

Remark 2.18. The sequence of languages in Theorem 2.5 might be labeled LMα .
They come about by applying the Morley analysis solely to the types realized in

1See [18] for an account of Harrington’s proof, Larson [17] for his proof using Scott processes and
[3, 19] for a proof that encompasses the construction of an uncountable atomic model of a first order
theory in a vocabulary of size ℵ1. Another proof of Harrington’s Theorem appears in [15].
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ALMOST GALOIS �-STABLE CLASSES 769

M . So this gives a slower growing sequence of languages than the Morley analysis.
Clearly if K is scattered, every model of K is locally small. So from Theorem 2.16
and Theorem 2.4, we conclude. If K has either less than 2ℵ0 models in ℵ0 or less
than 2ℵ1 models in ℵ1, then every uncountable model of K is locally small.
Remark 2.19. The arguments of Morley and Shelah have different goals. Being

scattered is a condition on all models of (in the interesting case for the Vaught
conjecture) an incomplete sentence in L�1,� . The Shelah argument contracts K to
a smaller class where every model is small and thus finds a K ′ ⊂ K that is small
and is axiomatized by a complete sentence. The hard part is to make sureK ′ has an
uncountable model. In the most used case, K and a fortioriK ′ is ℵ1-categorical.
2.2. Alternate proofs using Scott sentences. In this subsection we prove alternate

versions of Theorem 2.5 and part of Lemma 2.7. Theorem 2.20 has essentially
the same proof as Theorem 2.5 and was proved (by the third author, modulo the
fragment of ZFC used) at essentially the same time. It can be used in place of
Theorem 2.5 in all of our applications of Theorem 2.5. An ill-founded model as
in the statement of the theorem can be obtained either by Lopez–Escobar or by
iterated ultrapowers of models of set theory. For convenience we use the theory
ZFC◦ from [5]. Any theory strong enough to carry out the construction of Scott
sentences should be sufficient.

Theorem 2.20. Let � be a countable vocabulary, letM be a �-structure, and let N
be an �-model of ZFC◦ with �N1 ill-founded. Let � be the ordinal isomorphic to the
longest well-founded initial segment of �N1 . Suppose that, in N ,M is locally �-small
and either large or small with Scott rank in the ill-founded part ofN . ThenM is small,
and the Scott rank ofM is exactly � .
Proof. Let t be the Scott rank ofM in N if N thinks thatM is small, and �N1

otherwise. Let
〈φa,s : a ∈M<�, s < t〉

be the set of formulas defined inN in the first t many steps of the search for a Scott
sentence forM . Then

〈φa,α : a ∈M<�,α < �〉
is also the set of formulas defined in V in the first � many steps of the search for a
Scott sentence forM . Since the Scott rank ofM in N is in the ill-founded part of
N if it exists, the Scott rank ofM in V is at least � .
We claim that for any n ∈ � and any pair a, b of n-tuples fromM , if φa,s = φb,s

for any ill-founded s < t, then a and b satisfy all the same L�1,�(�)-formulas inM
(from the point of view of V ). To see this, suppose that this assertion holds for all
n and all formulas � with quantifier rank at most �. Let 
(z) be an n-ary formula
of the form (∃x)�(z, x), where � has quantifier rank �. Let a, b be n-tuples from
N , let s < t be an ill-founded ordinal of N such that φa,s = φb,s , and suppose that
M |= 
(a). Then there is an ill-founded r < s , and for any such r, φa,r = φb,r. Since
M |= 
(a), there is a c ∈ M such thatM |= �(a, c). Since r < s and φa,s = φb,s ,
φa,r+1 = φb,r+1, which means that there is some d ∈M such that φbd,r = φac,r . Thus
by our induction hypothesis,M |= �(b, d ) and thusM |= 
(b).
For each n ∈ � and each pair a, b of n-tuples fromM , if φa,α = φb,α for all α < � ,

then φa,s = φb,s for some ill-founded s < t, since if φa,r �= φb,r for any r < t, thenN
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thinks that there is a least such r, and there is no least ill-founded ordinal of N . It
follows then that the Scott rank ofM (in V ) is exactly � . �
Lemma 2.21 will make up part of the proof of our main theorem (Theorem 3.18).
The proof is in fact a simplified part of the main argument in the proof of that
theorem.

Lemma 2.21. Suppose that K is the class of reducts to � of a class defined by a
sentence φ ∈ L�1,�(�+), where �+ is a countable vocabulary extending �. If K has a
model inKℵ1 that is locally �-small, but is notL�1,�(�)-small thenK has small models
in ℵ1 of club many distinct Scott ranks.
Proof. Suppose that M is a model in K with cardinality ℵ1 that is is locally
�-small but is not L�1,�(�)-small. Fix a regular cardinal � > 2

2ℵ1 . It suffices to
show that for every countable elementary submodel X of H (�) with �, φ, andM
in X , there exists a small model in K of cardinality ℵ1 whose Scott rank is X ∩ �1.
Fix such an X . Let P be the transitive collapse of X , and let � : X → P be the
corresponding collapsing map. Then �(�1) = �P1 is the ordinal X ∩ �1.
By iterating the construction in [14], one can find an elementary extensionP′ ofP
with corresponding elementary embedding � : P → N , with critical point �P1 , such
that �N1 is ill-founded and uncountable, and such that the well-founded ordinals of
N are exactly the members of �P1 . Since �

N
1 is ill-founded, Theorem 2.20 implies

that �(�(M )) is L�1,�(�)-small, with Scott rank equal to the longest well-founded
initial segment of �N1 , which is X ∩ �1. �
Theorem 2.20 gives part of the proof of the following fact, which is used in the
proof of Theorem 4.2.

Lemma 2.22. Let k = (K ,≺k) be an ℵ0-presented AEC with Löwenheim–Skolem
numberℵ0, having an uncountablemodel. The statement that every uncountablemodel
inK satisfies the same Scott sentence in L�1,� can be expressed as both a Σ

1
2 sentence

and a Π12 sentence, each in a given real parameter for K .

Proof. First consider the statement that there is a complete sentence � in L�1,�
such that wheneverM is a countable model in K and N is a countable �-model of
ZFC◦ with � ∈ N andM uncountable in N ,M |= �. By Theorem 8.9 in Marker’s
appendix to [2], being a complete sentence in L�1,� is Π

1
1, so this sentence is Σ

1
2.

If there is a nonsmall uncountable model in K , or if there are uncountable small
models with distinct Scott sentences in L�1,� , then this Σ

1
2 statement can be shown

to be false by taking the transitive collapses of a suitable countable elementary
submodels (note that a nonsmall model satisfies the negation of each complete
sentence in L�1,�). On the other hand, for any sentence � of L�1 ,�, if there exist a
countable model M in K and a countable �-model N of ZFC◦ with � ∈ N , M
uncountable in N and M |= ¬�, then one can find an uncountable model in K
satisfying ¬�, by taking an iterated generic elementary embedding of length �1
(as in the proof of Theorem 2.1 of [5]).
Now consider the statement that whenever M and N are countable models in
K and P andQ are countable �-models of ZFC◦ withM an uncountable model in
P andN an uncountablemodel inQ, thenM andN are isomorphic. This statement
is easily seen to be Π12 in a code forK . As above, if there is a nonsmall uncountable
model in K , or if there are uncountable small models with distinct Scott sentences
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in L�1,�, then this Π
1
2 statement can be shown to be false by taking the transitive

collapses of suitable countable elementary submodels of H (κ), for any regular κ
greater than 22

ℵ1 .
In the other direction, suppose first that there exist a countable model P of

ZFC◦ with�P1 wellfounded, and amodelM ∈ K in P which P thinks has uncount-
able Scott rank. Then we can produce two uncountablemodels inK of distinct Scott
ranks by taking elementary extensions of P. We start by finding two elementary
embeddings, k1 : P → R1 and k2 : P → R2, each with critical point �P1 , where
the well-founded part of R1 is exactly �P1 , and the well-founded part of R2 is at
least �P2 (for the first of these, use the construction in [14]; for the second use [10]
or [5]). We can then iteratively extend R1 and R2 each �1 many times (iterating
either the construction in [14] or the one in [5]), producing elementary embeddings
j1 : R1 → R∗

1 and j2 : R2 → R∗
2 , where �

R∗
1
1 and �

R∗
2
1 are uncountable. By Theorem

2.20, j1(k1(M )) will have Scott rank �P1 . By the elementarity of j2 ◦ k2, the Scott
rank of j2(k2(M )) will be at least �P2 (and uncountable if �

R∗
2
1 = �1).

Supposing now that there exists no pair (M,P) as in the previous paragraph,
suppose that we have two�-modelsP andQ of ZFC◦, containing countable models
M and N (respectively) in K which they think are uncountable, and suppose that
M andN satisfy different Scott sentences inV . Then eitherP thinks thatM is small,
or�P1 is ill-founded, and the same holds forQ andN . Using the constructions from
either [14] or [5], iterate P and Q each �1 times, producing models M ′ and N ′ of
cardinality ℵ1. ThenM andM ′ have the same Scott sentence, as do N and N ′. To
see this, note that the Scott rank ofM as computed inP is either in the well-founded
part of P (in which case it must be countable in P, since we are not in the case of
the previous paragraph) or not. In the first case, M and M ′ have the same Scott
sentence by elementarity. In the second case, they have the same Scott sentence by
Theorem 2.20. Since this applies to Q and N also, M ′ and N ′ are uncountable
models in K satisfying distinct Scott sentences in L�1,�, and we are done. �

§3. Almost Galois Stability. The section is concerned about stability and almost
stability with respect to Galois types.

Definition 3.1. Given anAECk = (K ,≺k),wedefine a reflexive and symmetric
relation∼0 on the set of triples of the form (M,a,N), whereM,N ∈ Kℵ0 ,M ≺K N ,
and a ∈ N \M . We say that (M0, a0, N0) ∼0 (M1, a1, N1) if M0 = M1 and there
exist a structure N ∈ K and ≺k-embeddings f0 : N0 → N and f1 : N1 → N such
thatf0|M0 = f1|M1 and f0(a0) = f1(a1). We let∼ be the transitive closure of∼0.
The equivalence classes of ∼ are called Galois types.
Note that if K satisfies the amalgamation property then ∼ = ∼0. This identity

is used crucially in proving the equivalence of model-homogeneity and Galois-
saturation. When we use this equivalence we will assume amalgamation.
Fixing a coding of hereditarily countable sets by subsets of�, the notion ofGalois

types naturally induces an equivalence relation on P(�).2 For eachM ∈ Kℵ0 we
let EM denote the corresponding equivalence relation for Galois types over M

2Alternately, letting � be the vocabulary associated to K , the set of �-structures with domain � can
be viewed as a Polish space, with the set of codes for members of Kℵ0 as an analytic subset. See [8].
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(This notation was used in [5]3.). The domain of EM is then the set of subsets of �
coding triples of the form (M,a,N), where N ∈ Kℵ0 ,M ≺K N and a ∈ N \M .
If k is ℵ0-presented, then each EM is an analytic equivalence relation, and by
Burgess’s trichotomy for analytic equivalence relations, EM has either countably
many equivalence classes, ℵ1 many, or a perfect set of inequivalent reals. Because
there are two notions of weak-stability in the literature of AEC ([11,26], we call the
following notion almost Galois �-stability.

Definition 3.2. K is almost Galois �-stable if there do not exist a countable
model M in K and a perfect subset P of the domain of EM whose members are
EM -inequivalent.

Galois types are very much a property of the monster model. That is, given
M ≺k N and a ∈ N \M , the Galois type of a over M cannot be determined
by just looking at automorphism of N fixingM in isolation; one must consider an
embedding of N into the monster model.

Remark 3.3 (Amalgamation, joint embedding, and maximal models). This
remark collects a number of easy and well-known observations about the properties
in its title. These observations should provide a background for understanding the
choice of some ‘background hypotheses’ below. If an AEC has no maximal models4

then it has arbitrarily large models. In general the converse fails; but the converse
holds under joint embedding with one exception: an AEC with a unique maximal
model may satisfy joint embedding (See part (1) of Corollary 3.6). The class of well-
orders of order type≤ �1, with≺k as end extension is a standard example of part 1
of Theorem 3.7: an AEC with a unique maximal model in ℵ1 but amalgamation
in ℵ0.
Assuming amalgamation, the relation ‘M and N can be ≺k-embedded into a
common model’ is an equivalence relation and each equivalence class is an AEC
with joint embedding. Often we will assume amalgamation and joint embedding
to avoid assuming only amalgamation and then having to restrict to one joint
embedding class. Failure to make this assumption yields trivial counterexamples.
There are no universal models for the class of algebraically closed fields (because
of characteristic) but fixing the characteristic (that is the joint embedding class)
yields a family of classes each with the joint embedding property. The technique of
restricting to an equivalence class is illustrated by the generalization of Theorem3.18
to Corollary 3.22.

We record some additional observations about amalgamation, joint embedding
and maximal models. Lemma 3.4 is Lemma 2.11 on page 134 of [26], in the case
κ = ℵ0 (the relevant case for this paper). It shows that joint embedding and
amalgamation in κ implies members ofK with cardinality κ+ can be amalgamated
over submodels of cardinality κ. It is an open question (usually conjectured to be
false) whether amalgamation in κ implies amalgamation in κ+. Note that (1) of
Lemma 3.4 is an easy consequence of part (2).

3It might be natural to write E1M instead, as we are referring to the Galois 1-types. Recent work
of Boney [6] shows that for an AEC satisfying amalgamation for countable models, the set of Galois
n-types overM has the same cardinality for each n ∈ �.
4Maximal means there is no proper≺k -extension, even one isomorphic to itself.
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Lemma 3.4. Let k = (K ,≺k) be an AEC with Löwenheim-Skolem number ℵ0
which satisfies amalgamation for countable models.
1. If M,N ∈ Kℵ0 and P ∈ Kℵ1 , with M ≺k P and M ≺k N , then there exist
Q ∈ Kℵ1 with N ≺k Q, and a ≺k-embedding f : P → Q such that f is the
identity function onM .

2. If M ∈ Kℵ0 , P,Q ∈ Kℵ1 with M ≺k P and M ≺k Q, then there exist
R ∈ Kℵ1 with P ≺k R and a ≺k-embedding f : Q → R such that f is the
identity function onM .

In Part (1) of Lemma 3.4, we have not asserted thatQ is a proper extension of P;
the first example in Remark 3.3 shows that is too strong.

Definition 3.5.

1. M is 
-model homogeneous if for every N ≺k M and every N ′ ∈ K with
|N ′| < 
 and N ≺k N ′ there is a K-embedding of N ′ intoM over N .

2. M is strongly 
-model homogeneous if it is 
-model homogeneous and for any
N,N ′ ≺k M and |N |, |N ′| < 
, every isomorphism f from N to N ′ extends
to an automorphism ofM .

3. M is strongly model homogeneous if it is strongly |M |-model homogeneous.
Lemma 3.4 implies that for AEC’s with Löwenheim-Skolem number ℵ0 satisfying

amalgamation for countable models, maximal models of cardinality ℵ1 are strongly
ℵ1-model homogeneous. By Theorem 8.3 of [1], ℵ1-model homogeneous models are
isomorphic for AEC’s with Löwenheim-Skolem number ℵ0 satisfying joint embed-
ding for countable models. We note two additional consequences of Lemma 3.4 for
maximal models.

Corollary 3.6. Let k = (K ,≺k) be an AEC with Löwenheim-Skolem numberℵ0 which satisfies amalgamation for countable models.
1. If k satisfies joint embedding for countablemodels, andM andP are elements of
K , withM countable and P maximal and of cardinality ℵ1, thenM ≺k-embeds
into P.

2. If M , P and Q are elements of K , with M countable, P and Q maximal of
cardinality ℵ1,M ≺k P andM ≺k Q, then there is an isomorphism of P and
Q fixingM .

Amalgamation with some form of joint embedding easily allows one to show the
following (see Corollary 8.23 of [1]); we give two variants. Note that in the second
case the Galois-saturated model may not be unique. Furthermore, there may be
countable models that are not extendible, even when there is a unique Galois-
saturated model in ℵ1.
Theorem 3.7. Let k = (K ,≺k) be an AEC which is almost Galois �-stable and

satisfies amalgamation in ℵ0.
1. IfK satisfies joint embedding in ℵ0 then there is a unique Galois-saturatedmodel
M in Kℵ1 .

2. If N ∈ Kℵ0 has an uncountable extension in K , then there is a Galois-saturated
modelM in Kℵ1 with N ≺k M .

Proof. For the first part, carefully construct an interweaving enumeration the
Galois types over an increasing chain of countable models in order type �1 so that
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each Galois type over each model in the chain is realized. For uniqueness, suppose
thatM andM ′ are Galois-saturated models in Kℵ1 . Choose countableM0 ≺k M
andM ′

0 ≺k M . By joint embedding there is a countableM1 that ≺k-extends both
M0 andM ′

0. Applying Galois saturation, a countable recursive construction shows
thatM1 is ≺k-embeddable into bothM andM ′. Then a recursive construction of
length �1 using Galois saturation showsM andM ′ are isomorphic (overM1).
For the second part, let KN be the equivalence class under joint embedding of
the models that are jointly embeddable with N . Apply the first argument to this
class. �
For any AEC k = (K ,≺k), if M,N ∈ K and M ≺K N , then M is a sub-
structure of N , but the definition of AEC does not require even that M be a
first-order elementary submodel ofN . Before proving themain result of this section,
Theorem3.18,weprove a lemmawhich reduces the proof to the casewhereM ≺K N
implies L�1,�(�)-elementarity. A similar reduction appears in Theorem 3.6E of [24]
and Lemma 2.5 of [21].

Definition 3.8. Let K be an AEC in a countable similarity type �, with
Löwenheim-Skolem number ℵ0, such that K has a unique Galois-saturated model
M in ℵ1, which is small.
1. ForN0, N1 ∈ K , defineN0 ≺k∗ N1 to mean thatN0 ≺k N1 andN0 ≺∞,� N1.
2. Let K∗ be the set of N ∈ Kℵ0 which satisfy the Scott sentence ofM .
3. Let (K ′,≺k′) be the closure of (K∗,≺k∗) under isomorphism and direct limits
of arbitrary length.

To discuss the relationship between (almost) Galois stability of K and K ′, we
introduce some notation. We first give a standard equivalent for the definition of
Galois type, but parameterized for the comparisons we need here. The class K0
below will be K or K ′ in our applications. This construction is implicit in [24]
and in the extension of those arguments towards the construction of examples of
a good frame in [27] and chapter III of [26]. The next lemma shows the properties
of the induced class K ′. We describe a slightly more general situation from [26] in
Remark 3.12.
Notation 3.9. Let K0 be an AEC with a (K 0,ℵ1)-homogenous-universal model
M in ℵ1.
1. If M0 ≺K 0

M , SK 0
(M0) is the collection of orbits of elements of M under

autM0(M) (the automorphisms ofM fixingM0 pointwise).
2. α(K0) = sup{|SK 0

(M0)| :M0 ∈ K0, |M0| = ℵ0}.
We need to require the joint embedding property to guarantee that (K ,ℵ1)-
homogeneous-universal5 is equivalent to Galois saturated. Most of the argument
for the next lemma would work if we just assume there is a unique Galois saturated
model (which is small); but it might not be universal (in either K or K ′). (See
Chapter 16 of [1] or Remark 1 of [25] for more detailed remarks.)
Lemma 3.10. Let K be an AEC in a countable similarity type �, with Löwenheim-
Skolem number ℵ0, with joint embedding and the amalgamation property in ℵ0.
5M is (K ,ℵ1)-homogeneous-universal it is universal for countable structures in K and ℵ1-model-

homogenous.
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Suppose further that unique Galois-saturated model M in ℵ1 is small. Then the
following hold.

1. (K ′,≺k′) is an AEC with Löwenheim-Skolem number ℵ0.
2. M is (K ′,ℵ1)-homogenous-universal.
3. (K ′,≺k′) satisfies amalgamation in ℵ0.
4. For everyM0 ∈ K ′

ℵ0 , SK (M0) = SK ′(M0).
5. α(K) = α(K ′).
6. K ′ is ℵ0-categorical.
Proof.

1) The coherence and unions of chains axioms are immediate on K∗. For
Löwenheim–Skolem, note that M can be written as an increasing chain of
K ′-submodels. Thus,K∗ is a weak AEC in the sense of Definition 16.10 of [1]
and so (K ′,≺k′) is an AEC applying either Exercise 16.12 of [1] or Lemma
II.1.12 of [26].

2) Let M0≺k′M1 be countable. Then there are K
′-maps f and g such that

f(M0)≺k′M and g(M1)≺k′M by the definition of K ′. But since M is
(K ,ℵ1)-homogenous-universal, there is an h in aut(M) such that h ◦g �M0 =
f. Since both ≺k and ≺k′ are preserved by automorphisms, h is a K ′-map.
So h ◦ g is a K ′ embedding of M1 into M extending f. This shows M is
(K ′,ℵ1) homogeneous and it is clearly K ′-universal.

3) SupposeM0≺k′M1,M2. Then there are K
′-embeddings ofM1 andM2 over

M0 intoM . So amalgamation holds.
4) The Galois types are determined by autM0M which does not depend on the
choice of AEC.

5) We have that α(K) ≥ α(K ′) since the supremum is taken over a smaller set.
But for each M0 ∈ Kℵ0 , there is anM1 ∈ K ′

ℵ0 with M0 ≺k M1≺k′M and
by the extendability ofK-Galois types, and part 4, |SK (M0)| ≤ |SK (M1)| =|SK ′(M1)| so α(K) = α(K ′).

6) Let �′ and �′′ = �′ ∪ {P} be the vocabularies which witness that K is ℵ0-
presented. Let �1 be the �′ sentence whose reducts are the models in K ; let
�2 be the �′′ sentence whose reducts are pairs (N,M ) withN ≺k M . Further
suppose thatφ is the Scott sentence ofM . The following sentences witness that
(K ′,≺k′) is ℵ0-presented: �̂1 = �1 ∧ φ and �̂2 = �2 ∧ 	 where (M,N) |= 	
ifM ≺L∗ N where L∗ is least countable fragment containing φ.

7) This is evident since N is small. �
Conclusion 5 immediately yields.

Corollary 3.11. Under the hypotheses of Lemma 3.10,

• (K ,≺k) is Galois �-stable if and only if (K ′,≺k′) is;
• (K ,≺k) is almost Galois �-stable if and only if (K ′,≺k′) is.

Moreover, the hypothesis of joint embedding is in some ways only a convenience;
see Corollary 3.22. If K has the amalgamation property then joint embedability is
an equivalence relation and each of the equivalence classes is an AEC with joint
embedding preserving the other properties defining AEC’s. At least one class fails
Galois�-stability ifK does. But some classesmay not have any uncountablemodels.
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Remark 3.12. In chapters I and II (e.g. II.3.4) of [26], Shelah makes a somewhat
more general argument. Add to Definition 3.8 a third clause: For each countable
M ∈ K , let KM = {N ∈ K : |N | = ℵ0 ∧M ≺k′ N}, where ≺k′ is defined as
before. It is again straightforward to see that each KM is an ℵ0 categorical AEC.
If there are less than 2ℵ1 models in ℵ1 of K and a fortiori of each KM then under
2ℵ0 < 2ℵ1 , KM has the amalgamation property and since all models are extension
of a single one, the joint embedding property. Then Shelah argues that by way of
the notion of ‘materialization of types’ (Chapter 1 of [26]) one can deduce almost
Galois stability.
The following variants on an example of Jarden and Shelah [12] will illustrate the
situation and also provide some context for Theorem II.3.4 of [26]. That theorem
aims to construct a good frame from an ℵ0-presentable class that has few models
in ℵ1, is ℵ0-categorical, has amalgamation in ℵ0 and is �-Galois stable or at least
�-almost Galois stable. We show several of these conditions are necessary. In par-
ticular, these examples are not ℵ0-categorical. Note that one use of Lemma 3.10 is
to extract an ℵ0-categorical AEC from a given AEC with few models in ℵ1. Recall
that there are only ℵ1 countable linear orders that are one transitive (any two points
are automorphic) [20].
Here is the basic example
Example 3.13. Let � contain equality and a binary symbol <. Let (K ,≺k) be
the class of � structures such that eachM ∈ K is a partially ordered set such that
each component is a countable 1-transitive linear order.M ≺k N meansM ⊆ N
but each element of N −M is incomparable with all elements ofM .
K is an ℵ0-presentable AEC. It has exactly ℵ1 countable models and 2ℵ1 in ℵ1.
It is almost Galois�-stable but not Galois�-stable.Kℵ0 satisfies the amalgamation
property and the joint embedding property. Thus there is a unique Galois saturated
model in ℵ1.
Nowwe vary the example so there areℵ1 nonisomorphicGalois-saturatedmodels
in ℵ1.
Example 3.14. Let � consist of a binary symbol < and another binary relation
symbol E. Let (K ,≺k) be the class of �-structures such that each M ∈ K is a
partially ordered set such that each component (maximal connected component)
is a countable 1-transitive linear order. Further E is an equivalence relation; each
class intersects each component in exactly one point.MoreoverE induces an order-
isomorphism between each pair of components.M ≺k N meansM ⊆ N but each
element of N −M is incomparable with all elements ofM .
K is an ℵ0-presentable AEC as it is describable in L(Q) using only assertions of
the form ‘φ(x) is countable’. It has exactly ℵ1 models in each infinite cardinality. It
is almost Galois �-stable but not Galois �-stable. Kℵ0 satisfies the amalgamation
property but does not satisfy the joint embedding property. There are in fact ℵ1,
pairwise nonisomorphic Galois saturated models in ℵ1; each model is ℵ1 copies of
a particular 1-transitive order.
There is no countable fragment L∗ such that syntactic type in L∗ is the same as
the Galois type in K .
Because the joint embedding property fails, Lemma 3.10 does not apply to
this example. Applying the construction in Definition 3.8 gives rise to ℵ1 distinct
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ℵ0-presentableAEC; each is categorical in every infinite cardinality; each is�-stable.
In each derived AEC, Galois type is equivalent to syntactic type.
The refined AEC, where all components have the same order type, are indexed by

φα for α < �1, which list the Scott sentences of countable transitive linear orders.
Exercise 14.28 of Rosenstein [20] shows that the transitive order Zα has Scott rank
� · α + 1.
Neither Lemma 3.10 nor II.3.4 (page 285) of [26] applies to either of these exam-

ples because there are toomanymodels inℵ1 in the first case and theGalois saturated
model is not locally small in the second. Nevertheless there are ℵ1 restrictions of K
to AEC Kα , where models in Kα contain only components satisfying φα. Each of
them is Galois �-stable. In each Kα , Galois types are equivalent to syntactic types
in an appropriate fragment Lα .

Question 3.15. Find an example of an ℵ0-presentedAECwith the joint embedding
and amalgamation properties that has fewer than 2ℵ1 manymodels in ℵ1 and is strictly
almost Galois �-stable.
ByTheorem 3.18 below,K must fail joint embedding or have at leastℵ1models inℵ1.
Given a �-structureM and a fragment L of L�1,�(�), we say thatM is L-atomic

if for each finite sequence a fromM there exists an |a|-ary formula 	a(x) ∈ L such
thatM |= 	a(a), and, for each |a|-ary formula �(x) of L�1,�(�), ifM |= �(a), then
M |= (∀x)[	a(x)→ �(x)].
Remark 3.16. It follows from the Scott analysis (in Section 2) that a �-structure

M is small if and only if there is a countable fragment L of L�1,�(�) such thatM is
L-atomic (for instance, any fragment containing the Scott sentence ofM ).

Lemma 3.17. Suppose that k = (K ,≺k) is an AEC over a vocabulary �, and that
M0 ∈ Kℵ0 . Suppose thatM ∈ Kℵ1 is Galois saturated, withM0 ≺k M . Let �̂ be the
union of � with a countably infinite collection of new constant symbols, and letM ′ be
an expansion ofM where these new symbols are used to enumerateM0. Suppose that
M ′ is L�1,�(�̂)-small. Then for someL

∗(�̂),M ′ is L∗(�̂)-atomic. It follows that (in k)
there are only countably many Galois types overM0.

Proof. By Remark 3.16 applied in the vocabulary �̂,M ′ is atomic in L∗(�̂), the
countable fragment in which M ′ has a Scott sentence; this is Theorem 3.18.1. We
will show that for any a ∈M theL∗(�̂)-type of a determines the Galois type (inK)
of a over M0. Since M ′ is L�1,�(�̂)-small, it follows that only countably many
Galois types over M0 are realized in M . Suppose that some a, b ∈ M realize the
same L∗(�̂)-type in M ′. Then this type is given by a formula in L∗(�̂), by L∗(�̂)-
atomicity. There exists a countable M̂ ∈ K such thatM0ab ⊂ M̂ ≺L∗(�̂) M , and,
as M̂ is L∗(�̂)-atomic, there exists an automorphism g of M̂ , fixingM0 pointwise
with g(a) = b. Thus, a and b have the same Galois type over M0. So M realizes
only countably many Galois types overM0. �
We turn to the main result. Corollary 3.22 derives a slightly weaker conclusion

than Theorem 3.18 in the absence of the joint embedding property. By Corol-
lary 2.8, the hypotheses of Theorem 3.18 imply that all models in K are small.
By Theorem 3.7, K1 contains a unique Galois-saturated model.
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Theorem 3.18. Suppose that K is an ℵ0-presented AEC (over a countable vocab-
ulary �) which satisfies amalgamation, and JEP for countable models, such that that
K is almost Galois �-stable, and |Kℵ1 | ≤ ℵ0. LetM be the unique Galois-saturated
model in Kℵ1 , and let k

′ = (K ′,≺k′) be as in Definition 3.8. Let �̂ be formed by
adding � many new constant symbols to �. Then

1. for eachM0 ∈ K ′
0 such thatM0 ≺k′ M , ifM ′ is a �̂-structure expandingM in

which the interpretations of the new constant symbols in �̂ enumerateM0, then
M ′ is small. This implies,

2. K is Galois �-stable.

Proof. There are three cases, as follows.

1. For some countable fragment L∗(�̂) of L�1,�(�̂) and some n, there are
uncountably many L∗(�̂)-n-types realized inM ′.

2. For every countable fragment L0(�̂) of L�1,�(�̂) and every n, only countably
many L0(�̂)-n-types are realized inM ′. Then one of the following holds.
(a) The modelM ′ is not L�1,�(�̂)-small.
(b) The modelM ′ is L�1,�(�̂)-small, so for some countable fragment L

∗(�̂),
M ′ has a Scott sentence in L∗(�̂).

We will show that case 1) contradicts the assumption of almost Galois�-stability
of k′ (which by Corollary 3.11 is equivalent to that of k), and that case 2a) contra-
dicts the assumption that |Kℵ1 | ≤ ℵ0. We are reduced to case 2b) and Lemma 3.17
gives that k is Galois �-stable.
For case 1, we use the following fact6.

Fact 3.19. If for some n, there is a fragment L1 of L�1 ,�(�̂) such that there are a
perfect set of L1- n-types over a countable model N , then there is a fragment L∗ of
L�1,�(�̂) containing L1 such that there are a perfect set of L

∗-1-types over N .

Proof. From the hypothesis there must be an n − 1-type p such that there are a
perfect set {q�(x, y) : � ∈ 2�} of n-types extending p. So q′�(x) = {(∃y)[φ(x, y) ∧∧
p(y)] : φ(x, y) ∈ q�(x, y)} for � ∈ 2� is the required collection ofL∗-1-types over
N , where L∗ adds the conjunction of p to L1. �
By Fact 3.19, in Case 1 there exists a perfect set of syntactic 1-types in L∗(�̂)
that are realized in countable �̂-structures whose �-reducts are inK ′

ℵ0 and for which
the interpretation of the ci ’s enumerates M0 in the same manner that M ′ does.
Since ≺k′ implies L�1,�(�)-elementarity, this implies the existence of a perfect set
of Galois 1-types overM0, contradicting the almost Galois �-stability of k

′.

The bulk of the proof derives a contradiction from Case 2a. Let φ be the Scott
sentence forM . Let M = 〈Mα :α < �1〉 be such that (as above)M0 is the model
introduced in the statement of the theorem,M =

⋃
α<�1

Mα and the following hold
for each α < �1:

• Mα is a countable element of K ;
• Mα ≺k M ;• Mα |= φ;
6We just note that there is no need here for the Boney result, discussed in footnote 3 [6], although it

could have been applied directly.
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• Mα is a proper subset ofMα+1;
• if α is a limit ordinal, thenMα =

⋃
�<α M� .

The models Mα are all isomorphic, as they satisfy the same Scott sentence. AsM
is Galois saturated, there is a set F = {Fα : α < �1} such that each Fα is an
automorphism ofM mappingM0 setwise toMα . For each pair α, � < �1, let Fα,�
denote F� ◦ F−1

α .
Let �+ be the expansion of our vocabulary �′ to the �′ of Theorem 2.5 (i.e., add

the symbols En, fn (n ∈ �), and a binary relation ordering the domain of M in
order type�1; alternately, using Theorem 2.20 we could skip this step). Fix a regular
cardinal � large enough so thatM ′, �+,M , and F are elements of H (�) (to apply
the methods of [5], we need � to be larger than 22

ℵ1 ).
Let 〈Xα : α < �1〉 be a ⊆-increasing continuous chain of countable elementary

submodels of H (�) such thatM ′, �+,M , and F are elements of X0, and such that
for each α < �1 there is a countable ordinal � ∈ Xα+1 − Xα. For each α < �1,
let Pα be the transitive collapse of Xα , and let �α : Xα → Pα be the corresponding
collapsing map. Then �α(�1) = �

Pα
1 is the ordinal Xα ∩ �1.

The following is a paraphrase of Theorem 2.1 of [10] (Hutchinson built on work
of Keisler and Morley [14]; Enayat provides a useful source on this work in [7]).
It can be proved via iterated ultrapowers as in [5]. Section 4 of [10] describes the
fragment of ZFC needed for Fact 3.20; this fragment is easily seen to follow from
the theory ZFC◦ of [5].
Fact 3.20. Let B be a countablemodel ofZFC and c a regular cardinal in B. Then

there is a countable elementary extension C of B such that each a such thatB |= a ∈ c
is fixed (i.e. has no new elements in C) but c is enlarged and there is a least new element
of C.
Construct a family {P′

α : α < �1} of uncountable models of set theory so that,
for each α < �1, there is an elementary extension of Pα to P′

α (with corresponding
elementary embedding 	α : Pα → P′

α) such that

1. the critical point of 	α is �
Pα
1 , so �

Pα
1 is an initial segment of �

P′
α

1 ;

2. �P
′
α

1 is ill-founded;
3. in V , there is a continuous increasing �1-sequence 〈tα� : � < �1〉 consisting of
elements of �P

′
α

1 .

Item 3 above implies in particular that each �P
′
α

1 is uncountable. Each P
′
α can be

realized as the union of an increasing elementary chain of models 〈Pα� : � < �1〉,
where Pα0 = Pα ,

P′
α =

⋃

�<�1

Pα�

for limit α, and each Pα�+1 can be obtained by applying Fact 3.20 to P
α
� . Then each

tα� (the c of Fact 3.20) can be taken to be �
Pα�
1 .

Recall thatM is the union of the continuous ⊆-increasing chain 〈Mα : α < �1〉.
It follows then for each α < �1, that M�Pα1 = �α(M ) ⊂ Pα , and that M�Pα1
has cardinality ℵ1 in Pα . For each α < �1, let Nα = 	α(M�Pα1 ) and let N

′
α =

	α(�α(M ′)). Then eachN ′
α is an expansion ofNα via the given enumeration ofM0

by the constants ci , and it has cardinality ℵ1 in P′
α .
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In the argument for Theorem 2.5 replace the appeal to Lopez–Escobar
(Theorem 5.3.8 of [1]) with the observation that the induced ordering on N ′

α

is not well-founded by construction. The rest of the argument for Theorem 2.5
(or Theorem 2.20) shows that, in V , each N ′

α is small for L�1,�(�
′). Nevertheless,

by the elementarity of 	α ◦ �α , each P′
α thinks thatN

′
α is not L�1,�(�

′)-small.
SinceM is a sequence indexed by �1 in V (or in Xα), 	α(�α(M )) is a sequence
indexed by �P

′
α

1 in P
′
α . So, in P

′
α , for each element t of its �1, there is a t-th element

of the sequence, which we denote byMαt . Furthermore, in P
′
α , 	α(�α(F )) is a set

{F αt : t ∈ �P
′
α

1 } consisting of automorphisms of Nα , such that each F αt ∈ P′
α is an

automorphism ofNα sendingM0 setwise toMαt . Each F
α
t is then an automorphism

of Nα in V also.
Since each N ′

α is small, each Nα is as well. Since we are assuming that there
are only countably many models in K of cardinality ℵ1, there exists an uncountable
set S ⊆ �1 such that Nα0 and Nα1 are isomorphic (in V ) for all α0, α1 in S. Fix
for a moment a pair of elements α0, α1 of S and an isomorphism � : Nα0 → Nα1 .
Applying item 3 above and the continuity (in the sense of P′

αj , for j = 0, 1) of the

sequences 〈Mα0t : t ∈ �
P′
α0
1 〉 and 〈Mα1t : t ∈ �

P′
α1
1 〉, there must be s0 ∈ �P

′
α0
1 and

s1 ∈ �P
′
α1
1 such that � mapsMα0t0 setwise toM

α1
t1 . To see this, start with �0 = 0 and,

for each n ∈ �, let �n+1 be large enough so that
�[Mα0

t
α0
�n

] ⊆Mα1
t
α1
�n+1

and
�−1[Mα1

t
α1
�n

] ⊆Mα0
t
α0
�n+1
.

Then let s0 = tα0supn∈� �n and let s1 = t
α1
supn∈� �n

. By the continuity in item 3, the sj ’s are

in the respective P′
αj , for j ∈ {0, 1}. So, for each j, by the continuity in P′

αj ofM
αj
t ,

M
αj
sj =

⋃

n<�

M
αj

t
αj
�n

.

Then (F α1s1 )
−1 ◦� ◦F α0s0 is an isomorphism ofNα0 andNα1 fixingM0 setwise, though

not necessarily pointwise.
Finally, we show that for each α0 < �1 such an isomorphism is impossible for
sufficiently large α1 < �1.
Each model P′

α thinks thatN
′
α is small for every countable fragment of L�1,�(�

′)
but not L�1,�(�

′)-small. Thus, from the point of view of P′
α , there is no ordinal t

such that φa,t(x) ≡ φa,t+1(x) (in the terms of the Scott construction) for all finite
tuples a of N ′

α . For each well-founded ordinal � of P
′
α (this includes the members

of �P
′
α

1 = �1 ∩ Xα , by item 1 above), and each finite tuple a of N ′
α , P

′
α sees the

same formula φa,�(x) that the true universe V does, which means that the Scott
sentence for N ′

α has rank at least �1 ∩ Xα (and slightly more than this, in fact, in
the approach from [5])7.
Now choose α0, α1 ∈ S such that�1∩Xα1 is greater than the Scott rank (in V) of
N ′
α0 . Since permuting the constants ci in terms of their enumeration ofM0 has no

7Alternatively, Lemma 2.21 implies that the Scott rank ofN ′
α is exactly the well-founded part of�

P′α
1 .
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effect on the rank of the Scott sentence forN ′
α1
, there cannot be then an isomorphism

of Nα0 andNα1 fixingM0 setwise, since this would imply thatN
′
α0 andN

′
α1 have the

same Scott rank (Indeed, their Scott sentences would differ only by a permutation
of the ci ’s). Thus we have a contradiction in case 2a.

We have ruled out cases 1) and 2a) and are left with case 2b). Again, Lemma 3.17
gives the second conclusion of the theorem. �
Remark 3.21. Note that argument ruling out case 2a) uses the set theoretic

argument to find ℵ1 �′-small models in ℵ1 with distinct �′-Scott rank. By the auto-
morphismargument, this contradicts the assumption that there are onlyℵ0 �-models
in ℵ1.
We return to the slightly more complicated situation where joint embedding is

not assumed.

Corollary 3.22. SupposeK is an AEC satisfying the hypotheses of Theorem 3.18
except the joint embedding property. Then K is the union of a countable family of
sub-AEC K i , which each satisfy Theorem 3.18.

Proof. Since there are only countably many models in ℵ1, the equivalence rela-
tion of common extension has at most countably many classes. Each satisfies the
hypothesis and therefore the conclusion of Theorem 3.18. �

§4. Absoluteness of Categoricity. In this section we show that ℵ1-categoricity
is absolute for an ℵ0-presented almost Galois �-stable AEC with an uncountable
model that satisfies amalgamation for countable models. While we rely on Theo-
rem 6.1 of [5], there are two key differences in the argument here; we do not assume
any form of joint embedding and we give a different proof than in [5] that such a
class is Galois �-stable using Lemma 3.18

Remark 4.1. Suppose that k = (K ,≺k) is an analytically presented AEC,
and that M ∈ K is countable. Then there exists an uncountable N ∈ K with
M ≺k N if and only if there exists a countable �-model P of ZFC◦ (containing a
real parameter for K) such thatM ∈ P and P thinks there exists an uncountable
N ∈ K withM ≺ N . This follows from the same argument as for Theorem 2.1 of [5]
(one direction consists of taking the transitive collapse of a countable elementary
submodel; the other consists of building an iterated generic elementary embedding
of length �1). Note that the latter clause is Σ11 in the given parameter for K , and
therefore absolute.

Similarly, the statement that K is almost Galois �-stable is Π11 in a real coding
K (this is Theorem 6.6. of [5]), and therefore absolute. Amalgamation of countable
models for such aK is easily seen to be Π12 in a code forK . In this section we apply
Theorem 3.18 to prove the following theorem.8

Theorem 4.2. Suppose thatK is anℵ0-presented almost Galois�-stableAECwith
Löwenheim–Skolem number ℵ0, satisfying amalgamation for countable models and
8In [5], it is shown using the methods of that paper that for an almost Galois �-stable ℵ0-presented

AEC k satisfying amalgamation, ℵ1-categoricity is equivalent to a Π12 statement in a code for k. The
proof of that result was found after the result given here.
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having an uncountable model. The assertion thatK is ℵ1-categorical is then absolute,
as it is equivalent to a statement of the form φ1 ∧ φ2, where φ1 and φ2 are Π12 and Σ12,
respectively, in a code for K .

We rely on the following fact from [5].

Fact 4.3. Suppose that k = (K ,≺k) is an ℵ0-presented AEC. The following
assertion is equivalent to a Σ12 statement in a parameter for k: There existM ∈ Kℵ0
andN ∈ Kℵ1 such that

1. M ≺k N ;
2. the set of Galois types overM realized in N is countable;
3. some Galois type overM is not realized in N .

Proof of Theorem 4.2. Let K ′ be the result of removing from K all countable
models lacking uncountable ≺k-extensions in K . Then k′ = (K ′,≺k) is an AEC :
the first part of Lemma 3.4 guarantees closure under increasing ≺k chains, and the
remaining clauses are clear. ByRemark 4.1 k′ is still ℵ0-presented, with the same real
parameter as k. The first part of Lemma 3.4 implies that k′ satisfies amalgamation
for countable models. Thus, two points which realize the same Galois type for k
realize the same Galois type for k′, and k′ is almost Galois �-stable. It suffices then
to prove the theorem for K ′.
Let φ1 be the conjunction of the following statements.

1. Joint embedding holds for K ′
ℵ0 .

2. There do not existN ≺k M withN countable andM uncountable (N,M ∈ K
and hence in K ′), such that only countably many Galois types over N are
realized inM , and some Galois type over N is not realized inM .

Clause (4) is easily seen to be Π12 in a code for k, and Clause (4) is as well, by
Fact 4.3. If k is Galois �-stable, then clause (4) is equivalent to the assertion that
every element of Kℵ1 is Galois saturated. We will show that k (and k

′) are Galois
�-stable in both directions of the proof below.
Let φ2 be the conjunction of the following statements.

3. All uncountablemodels inK (equivalently,K ′) satisfy the same Scott sentence
in L�1,�.

4. There exist a countableN ∈ K ′ and a countable fragment L1 of the expanded
language where constants are added for each member ofN such that for every
M ∈ K ′ with N ≺k M and N ≺∞,� M ,M is L1-atomic.

Clause (3) is equivalent to a Σ12 statement in parameter for k, by Lemma 2.22.
Clause (4) is easily seen to be Σ12 in a parameter for k.
Suppose now thatK (and thusK ′) is ℵ1-categorical. Then clause (4) clearly holds
for k′.
Corollary 2.8 implies that all uncountable models of any ℵ1-categorical

ℵ0-presented AEC satisfy the same Scott sentence in L�1,� , giving clause (3).
Theorem 3.7 implies that there is a Galois saturated model of cardinality in K ′

ℵ1
(which is unique since we have JEP and amalgamation in K ′). But then a fortiori,
the same model is the unique Galois-�-saturated model of K . (Note however, that
it may not be universal for models Kℵ0 .)
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By the first part of Lemma 3.18, we have clause (4) for all countable N ∈ K ′.
The second part of Lemma 3.18 implies Galois �-stability for K ′. Now the ℵ1-
categoricity of K (hence K ′) and the Galois �-stability of K ′ imply clause (4).
For the other direction, since K and K ′ have the same uncountable models, it

suffices to show that K ′ is ℵ1-categorical. From clause (4) and the first part of
Theorem 3.7, we get that K ′ has a unique small uncountable Galois saturated
model. Applying Lemma 3.17 to K ′, clause (4) implies that K ′ is Galois �-stable.
Then clause (4) implies that the Galois saturated model is the only model in K ′

(a fortioriK) of cardinality ℵ1. �
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