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ABSTRACT

The paper is in two parts. In Part I we describe a construction of a certain kind of subdirect product of
a family of rings. We endow the index set of the family with the partial order structure of an SFP
domain, as introduced by Plotkin, and provide a commuting system of homomorphisms between those
rings whose indices are related in the ordering. We then take the subdirect product consisting of those
elements of the direct product having finite support in the sense of this domain structure. In the
special case where the homomorphisms are isomorphisms of a fixed ring S, our construction reduces
to taking the Boolean power of 5 by a Boolean algebra canonically associated with the SFP domain.

We examine the ideals of a ring obtainable in this way, showing for instance that each ideal is
determined by its projections onto the factor rings. We give conditions on the underlying SFP domain
that ensure that the ring is atomless. We examine the relationship between the L«,,0-theory of the ring
and that of the SFP domain.

In Part II we prove a 'non-structure theorem' by exhibiting 2N| pairwise non-embeddable
Loo(u-equivalent rings of cardinality K, with various higher-order properties. The construction needs
only ZFC, and uses Aronszajn trees to build many different SFP domains with bases of cardinality K,.

Preface

This paper presents a blend of ideas from ring theory, set-theoretic combinatorics
and computer science. It is divided into two parts; Part I will perhaps be of more
interest to algebraists, and Part II to logicians.

In Part I we develop a method of constructing a subdirect product of certain
families of rings. To do this we impose a partial order structure on the index set
of the family. We take this poset structure to be that of an SFP domain, a notion
introduced in [14] and well-known to domain theorists in computer science. The
construction we give is related to the Boolean power construction (see [4]), and
reduces to this in special cases (see Theorem 1.4.2). It tends to produce rings with
many orthogonal central idempotents, so is most at home when constructing
Boolean or von Neumann regular rings.

We analyse the ideals of the resulting subdirect product and show that inter alia
they carry information about the underlying poset structure of the index set. So if
two such rings are isomorphic then their underlying SFP domains must be fairly
similar.

We exploit this in Part II. Using a variant of the construction of Aronszajn
trees in set theory we will construct, using ZFC only, 2N| pairwise 'dissimilar' SFP
domains. If all component rings are assumed to be countable, any subdirect
products obtained with them will be pairwise non-embeddable rings. We can
impose further conditions on the domains or the component rings themselves to
obtain stronger results.
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A 'sample theorem' is:

THEOREM. Let S be a countable Boolean ring. There are 2K| pairwise non-
embeddable Boolean rings R of cardinality X, extending S. Each such ring R is
existentially closed and without non-trivial injective endomorphisms ('rigid'), and
each of its maximal ideals has a countable set of generators.

This is proved in § 6 of Part II. The theorem suggests that there are too many
such rings to classify fully. It is thus a non-structure theorem in the spirit of, for
example, the result of [15] that if T is a non-superstable complete first-order
theory of cardinality K then there are 2A pairwise non-elementarily embeddable
models of T of cardinality A for all regular A greater than K (this has now been
extended to all A > K). The construction is not limited to Boolean rings. Corollary
1.1.4 will show that if K is the class of commutative rings, von Neumann regular
rings, or existentially closed commutative rings, then the resulting subdirect
product also lies in K. If S e K, we can use this to build 2K| pairwise
non-embeddable but L^-equivalent rings R of cardinality N, in K extending S
(by taking a subdirect product of rings in K). Each ring R can be given a degree
of rigidity, and each maximal, prime and irreducible ideal of R will be countably
generated.

The work in this paper simplifies the construction in the doctoral thesis [8] of
the first author, which used the continuum hypothesis. The argument there was
more complicated and less general because SFP domains were not used. The
motivation for [8] came from the paper of Ziegler [17]. Recall that a ring R is
atomless if it has no principal maximal ideals. If R is a countable Boolean ring,
then R is atomless if and only if the injective hull of R regarded as a left
/^-module has no indecomposable direct summand (cf. the example preceding
5.11 of [17]). In this case it is easily seen that R has 2s" (that is, 2|/?l) maximal
ideals. (A generalisation to arbitrary countable rings was given in [17]—see, in
particular, §5 and 7.1(1), 7.2, 8.3.) Our initial objective was to show that this
fails when \R\ = X,. This is established by the 'sample theorem' above. Each R of
the theorem is Boolean and existentially closed, and hence atomless [7, 6.3.9, Ex.
6.3.2]. But every maximal ideal is countably generated, so they are at most 2s" in
number—this can be less than 2Nl = 2|/?l (for example, if we assume the continuum
hypothesis). The construction in [3] gives an atomless Boolean ring of cardinality
N, also illustrating this, but Jensen's 0 (diamond) is used. On the other hand,
unlike our construction, the Boolean algebra constructed in [3] has no uncount-
able set of pairwise incomparable elements. (The Boolean algebras that we build
in Part II have no countable dense subalgebras. By [3, Theorem 3], if B is a
Boolean algebra of cardinality G>, with no countable dense subalgebra, then B
has an uncountable set of pairwise incomparable elements.)

It would be interesting to prove an intrinsic characterisation theorem for rings
arising by our construction, analogous to that for varieties and reduced products.
Possibly the work of Smyth [16] and Jung [11] would be relevant.

The first author would like to thank his Ph.D. supervisor Wilfrid Hodges, to
whom he owes a great debt for detailed comments on a draft of this paper, and
for much help and encouragement both during and after the Ph.D. period.
Amongst many other things he pointed out the connection with Boolean powers.
Thanks for useful suggestions are also due to U. Avraham, U. Feigner, R.
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Grossberg, M. Prest, J. C. Robson, S. J. Vickers and the referee of an earlier
draft of part of this paper. The first author further thanks D. Gabbay, who read a
draft of the paper and made a series of valuable suggestions, and also the U.K.
Science and Engineering Research Council, King's College, Cambridge, and
many friends, for financial and moral support without which the Ph.D. would not
have been completed.

PART I. SFP SYSTEMS

This part of the paper contains the results of a more algebraic nature. We will
define the notion of an SFP system of rings, and study some of the properties of
its limit.

Let us describe the approach in rather more detail than above. Let (P, *s) be a
poset such that for every p e P we have a ring Rp. Suppose further that for every
p,qeP with p^q, we have a ring homomorphism vpq: Rp-*Rq. We require
that the vpq (for p =s q in P) form a commuting system in the usual sense.

Assume that P has a least element, 1 , say. Then the presence of the maps v
allows us to embed the ring R± diagonally into the direct product II (Rp: p e P),
via r>->(v±p(r): p e P) for reRx. We would like to generalise this as follows.
Let iVcP be finite. Can we embed the finite direct product II (Rn: n e N)

'diagonally into the full direct product?
So let re Yl(Rn' neN). We need to define its image r' in U (Rp: p e P). By

analogy with the case N = {!}, for each p e P we would like to define r'(p) to be
vnp(r(n)), where n is an appropriate element of N, depending on p. To force a
unique choice of n for each p we will assume that N has the following property:

for all p e P there is a unique maximal element of {n e N: n^p}.

We call such an N a support. This would hold, for example, if N is linearly
ordered and 1 eN. We write this maximal element asp/A7. We can now define r'
to be (vp/Np(r(p/N)): peP). Then N is in effect a finite support of r' in
U(RP: peP).

So we consider the set R* of all elements of Yl(Rp: p e P) having a finite
support in this sense. We require that /?* be a subring of H(RP'- p e P ) . To
obtain closure under + and — we will need any two finite supports to be
contained in a third, and to avoid redundancy of any Rp we will formally require
that

(*) any finite subset of P extends to a finite support iVcP.

For example, if P is linearly ordered with a least element, this is trivially true. So
we could take P to be (Q U {-«>}, <), each Rp to be the ring Z2 = Z/2Z, and all
vpq to be the identity map. In this case R* turns out to be the countable atomless
Boolean ring. See Remark 4.3(2).

However, the condition (*) holds in much more general cases and is closely
related to the SFP domains of Plotkin [14]. Any P satisfying (*) extends
canonically to an SFP domain by adding where necessary a least upper bound h
for each directed subset D of P. These extra points h turn out to be very useful:
(Rd, vde: d^e in D) forms a direct system and it is technically convenient to
define Rh to be its direct limit, and extend v accordingly. Hence we will work with
SFP domains throughout.
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It is easy to show that if the 'component rings' Rp (p e P) have various
properties then so does R*. Examples of properties preserved in this way are
commutative, Boolean, von Neumann regular, and existentially closed commuta-
tive (see Corollary 1.4). The cardinality of R* is also related to the cardinalities of
P and of the Rp (see Proposition 1.5), and the L^-theory of R* is determined by
the LcoW-theory of P together with the Rp and the maps vpq (§1.6).

So far the construction could be undertaken for any model-theoretic structure.
We consider rings because we can fruitfully study their ideals. See §§ 2-4 below.
(Generalisations to structures such as lattices are probably possible here.) An
important class of ideals arises as follows. If / is a (left) ideal of Rs for some s e P,
then the set / @s = {r e R*: r(s) e /} is a left ideal of R*. Ideals of this form are
called full ideals: they are in a sense 'locally determined'. We can recover / and s
from I @s, so the full ideals are closely related to the poset structure of P. They
are a kind of basis for the set of all ideals of R*. Using the extra elements h of P
we can show that any maximal, prime or irreducible ideal of R* must be full, and
every ideal of R* is the intersection of the full ideals that contain it.

The layout of this part of the paper is as follows. In § 1 we discuss SFP domains
and formally lay out the subdirect product construction. In §§ 2-4 we discuss
ideals of R *, and in § 5 we use these results to enforce that R * has a property
related to atomlessness. Finally, in § 6 we discuss Loo

1. Definition of an SFP system
In this section we give most of the definitions that we will need, plus some

examples and useful lemmas for illustration.

Algebraic dcpos
Recall that a partially ordered set, or poset, is a (usually non-empty) set

equipped with a reflexive transitive binary relation, written here as '=*'. A poset
(D, =s) is directed if for all finite subsets X of D there is d e D with d ^x for all
x e X. Equivalently, D is non-empty (take X = 0 ) and whenever du d2e D, then
there is d2 e D with d3 2= dx and d3 s= d2. It will help to bear in mind that directed
sets are always non-empty.

A non-empty poset P is said to be directed complete (a 'dcpo') if any directed
subset D of P has a least upper bound in P. That is, there is u e P such that for all
v e P we have v 2= u if and only if v 2= d for all d e D. We write this bound u as
lub(D), or more explicitly lubP(£>). It is necessarily unique.

An element p of a dcpo P is said to be finite if whenever D is a directed subset
of P and p s= lub(D) then p ^ d for some deD. We write P° for the set of finite
elements of P. We call P° the base of P, and P is said to be algebraic if for all
peP, the set p[ = {q e P: q^p} is such that p[r\P° is directed and
lub(/?| fl P°) =p. That is, p is the 'lub' of the set of finite elements beneath it. It
follows that in this case P is determined by its base (see below). Algebraic dcpos
P with countable base and a minimum element are usually called domains in the
computer science literature.

Examples of algebraic dcpos are all finite (non-empty) posets and all successor
ordinals. If A' is a non-empty set then its power set fa(X), ordered by inclusion, is
an algebraic dcpo whose finite elements are just the finite subsets of X, whence
the name. The half-open real interval (0,1] has no finite elements and shows that
a dcpo need not be algebraic, as does the dcpo illustrated in Fig. 1.1.
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FIG. l . l

Ideals
Let P be any poset. An ideal of P is a subset I of P that is closed downwards

(that is, if x e P, y e/andx ^_y then* e /) and directed. Clearly if/? e Pthenpjisan
ideal; ideals of this form are said to be principal. It is well known that if P is an
arbitrary non-empty poset, then the set of ideals of P, ordered by inclusion,
forms an algebraic dcpo. Its finite elements are just the principal ideals, and they
are in order-isomorphism with P. Hence any P can be 'completed' to an algebraic
dcpo by taking this 'ideal completion'. Moreover, any algebraic dcpo P is
isomorphic to the ideal completion of its base P°. We will often identify a poset
with the set of finite elements of its ideal completion. (A similar ideal completion
can be undertaken for preorders also.)

Locally directed sets
Let P be a poset. A subset N of P is said to be locally directed in P (written

A ^ P) if p[ fl N is directed for all peP. Equivalently, N^P'ii and only if N n /
is directed for all ideals / of P.

For example, if P is an algebraic dcpo then P°*sP. If P contains a least
element 1, then any linearly ordered subset N of P with JL e N is locally directed
in P. A subset N of fax is locally directed in {frX, c ) if and only if N is closed
under finite (including empty) unions. Since P^P for any P, locally directed
does not imply directed. The converse also fails, since if ± is the least element of
P then N^P => ±eN. So if p e P\{±} then {/?} is directed but not locally
directed in P.

It is easily seen that «g is a reflexive and transitive relation on posets, and that
if N ^ P a n d i V c Q c P t h e n N^Q.

Now assume that P is a dcpo. If N^P and psP, we write p/N for
\ubP(p\, ON). The lub exists since P is a dcpo. Indeed if N is finite, or, more
generally, a dcpo such that lubP(D) = \ubN(D) for all directed DcAf, then
P/NeN. We can view p/N as the best approximation to p in N. We have
p/N^p for all peP. Further, P is algebraic if and only if P°^P and p/P° = p
for all peP. If N*3P, we can define an equivalence relation ~N on P by
x~Ny O x/N = y/N. We will see in §4 that the equivalence classes are related
to the well known 'patch' topology on P.

SFP domains
We can now define the strain of poset of interest to us here. A poset P is said

to be nice if any finite subset X of P can be extended to a finite locally directed
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subset of P. An SFP domain is an algebraic dcpo P such that P° is nice. So the
ideal completion of a nice poset is an SFP domain, and all SFP domains arise in
this way.

An equivalent definition uses the notion of MUB-closure (see Plotkin [14]). If
X c P, define MUB(A') = {p e P: p is a minimal upper bound of X). Also define
an increasing chain U"(X) (n =s ay) by

lf(X) = X, U"+\X) = \J{MUB(Y): Y^U"(X)}, UCO(X)= (J U"{X).
n<0)

We call U'°(X) the MUB-closure of X. Then it is easily seen that P is SFP if and
only if, for all finite X c P°,

(i) for all p e P with X cp[ there is y e M\JB(X) with y^p,

(ii) MUB(^) is finite,

(iii) Ut0{X) is finite.

In fact, in this case Ul0(X) =a P{). Domains satisfying (i) and (ii) are sometimes
called 2/3-SFP. Of course, (iii) implies (ii).

Examples of nice posets are any finite poset, any linear order with a least
element, any Boolean algebra, and any tree with finitely many minimal elements.
The restriction to finitely many minimal elements is necessary. For if P is a nice
poset then take a finite set N=9 P. Every p e P lies above some element of N.
Hence the minimal elements of P are exactly the minimal elements of N.

Figure 1.2 shows the three main kinds of non-nice poset. See [16].

FIG. 1.2

On the left of Fig. 1.2 the two black elements have no minimal upper bound,
violating condition (i) above. In the centre poset they have infinitely many
minimal upper bounds, violating (ii). The right-hand poset satisfies (i) and (ii) but
now the black elements have infinite MUB-closure.

SFP domains were introduced in [14] as those arising as inverse limits of
projective Sequences of Finite Posets. They are of considerable interest in
computer science, where they are used to provide denotational semantics for
programming languages. Any domain P can be equipped with a topology (the
Scott topology): the open subsets X of P are defined to be those such that

(i) X is closed upwards, and
(ii) if D is a directed subset of P and lub(D) e X then D n X =£ 0 .
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If D and E are domains, we write [/)—»£] for the poset1 of Scott-continuous
functions from D to E, ordered by

f^g O f(d)^g(d) for aUdeD.

In [16] Smyth showed amongst other things that if D is a domain with countable
base, then [D-+ D] is also a domain with countable base if and only if D is SFP.
In this case [D—> D] is also SFP. The SFP domains form the largest Cartesian
closed full subcategory of the category of domains (with countable base and a
minimum element), the morphisms being the Scott-continuous maps. The
restrictions of countable base and minimum element were removed by Jung
[11]—in this case there are four such maximal subcategories.

SFP systems
We now give our main algebraic definition. An SFP system is a triple

(P, p, v), where the following hold.
(i) The set P is an SFP domain.
(ii) The map p is a map from P into the class of rings (throughout this paper,

all rings will have a 1, and 1=^0). We will write Rp for p(p), where p is
understood.

(iii) The map v is a map defined on those pairs (p, q) e P2 with p =s#. Each
v(p, q) is a ring homomorphism from Rp into Rq. (All ring homomorphisms in
this paper preserve 0 and 1.) We write v(p, q) as vpq. We require further that

(a) vpp is the identity on Rp for all p e P,
(b) v , / v M = vpr if p =£q ̂  r in P,
(c) if D is a directed subset of P, with least upper bound u e P, then Ru is the

direct limit of the direct system {Rd, vde: d^e in D), and for all d e D,
the map vdu is the canonical ring homomorphism from Rd into Ru.

REMARK 1.1. Let P be a nice poset. Suppose we have a triple (P, p, v)
satisfying (ii) and (iii) (a), (b). Then we can canonically complete it to an SFP
system by

(1) embedding P canonically into its ideal completion Q,
(2) defining Rq for q e Q\P to be the direct limit

\im^(Rp, vpr: p^r in PC\q{),
and

(3) defining vqq- for q ^q' in Q to be the 'limit' of the vpp. for p, p' e P with
p^q,p'^q'.

(Notice that if D is a directed subset of Q with lubg(D) = q, then as
each pePHql is finite in Q, there is d e D with d^p. It follows that
liiru(Rd' deD) = Rq. Hence Condition (iii(c)) holds.) All SFP systems arise in
this way. So an SFP system (P, p, v) is determined by its 'finite' part: by P{), Rp

and vPP' for p ^p' in P°.

Limits of SFP systems
Let (P,p,v) be an SFP system, and let N^P. Recall that if p e P, the

element p/N is defined to be lubP(/?|DN). An element reH(Rp: p e P) is
said to have support N if r(p) = v(p//V),p[r(p/N)] for all p e P. We define the limit
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of (P, p, v), or lim(P, p, v), to be the subdirect product consisting of those
elements of II Rp that have a finite support N for some N^P°. Since P is an SFP
domain, any two finite locally directed subsets of P° are contained in a third, and
it follows that the limit of (P, p, v) is a subring of WRp. Clearly it is also
identifiable with a subring of U(Rp: p eP°), since P° supports any element of
the limit of (P, p, v).

We will generally write RP for the limit of (P, p, v). Obviously, for any pQe P
the projection (r*-*r(pQ)) of RP onto RPn is a surjective ring homomorphism.

As an example, if P° = (Q, <) U {-°°} and all Rp are Z2 then RP is the unique
countable atomless Boolean ring. (A Boolean ring R is atomless if and only if
whenever r¥^0 in R then there is s eR with r^s.r = s^0.) See Remark 4.3(2)
below.

Subsystems
Let P be an SFP domain. If Q c P , we write Q<P, and say that Q is a

subdomain of P, if
(3 is itself an SFP domain under the ordering induced from P,
Q°^P°,
Q is a locally directed subset of P (Q ̂  P),
if D is a directed subset of Q then lubG(D) = lubP(D).

Note that these conditions imply that P° n (2 c Q°, so that we have P° D Q = <2°
in fact. Clearly < is reflexive and transitive, and if AfcP is finite then N =^P if
and only if W^/>°.

PROPOSITION 1.2. Suppose that we have an SFP system (P, p, v). Lef Q^P.
Then (Q, p \ Q, v f (?2) w <m SFP system. Moreover, its limit ring RQ is
canonically isomorphic to the subring of RP consisting of those elements supported
byQ.

Proof. To show that (Q, p \ Q, v \ Q2) is an SFP system we only need to
check that if D c Q is directed then

vde'- d^e in D).

But this is clear, since (P, p, v) is an SFP system and lubG(Z>) = lubP(D).
Now if r e RQ, there is a finite N < Q supporting r. By transitivity of < we have

N <; P, so r extends naturally to an element r' eRP given by

The map r>-»r' is a ring embedding from RQ into RP, and clearly its image is
precisely the set of elements of RP supported by a finite locally directed subset of
Q. We must show that this is the set of all elements of RP supported by Q.

Certainly if s e RP is supported by a finite set N^Q then 5 is supported by Q.
Conversely, let s e RP be supported by Q. Let N < P be a finite support of s. We
show that N HQ^Q, and N H Q is a finite support of s in /?P.

If p eP, define /?, (i < a>) by

PO=P, P2i+\=P2i/Q> P2i+2=Pli+\lN-

Then it is easy to show by induction on / that, for all i<a>,
(a) pi^x for all x € NHQ f lp j , and
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But Po^Pi^•••> s o a s N is finite and p2t^N for all i>0, the sequence p, is
eventually equal to n for some neNHQ. Clearly n = \ub(N C\ Q D p [) and
s(p) = vnp(s(n)). It follows that NHQ^Q, and TVn Q supports s.

Hence the image (RQ)' is precisely the set of elements of RP supported by Q.

In future we identify RQ with the subring {RQ)' of RP, whenever Q<P.
A special case is where Q is finite, that is, Q = N, a finite locally directed

subset of P°. Then clearly RN = I\(Rn: neN), a finite direct product. If N, N'
are finite locally directed subsets of P°, and N c W, then N<N', and so (if we
make the identification) RN is a subring of RN. Since P is SFP, the following is
dear:

PROPOSITION 1.3. The system (R^: N^P° is finite) is a direct system of rings
under inclusion, and its direct limit is naturally isomorphic to RP.

COROLLARY 1.4. Let (P, p, v) be an SFP system.
(i) If P has a least element, 1, say, then R± is a subring of RP.
(ii) The following classes K of rings are closed under SFP systems, in the sense

that ifRpeK for all p e P° then RPeK also:
(a) the class of commutative rings;
(b) the class of von Neumann regular rings (that is, R (= V* 3y(xyx = x));
(c) the class of Boolean rings;

(d) the class of rings that are existentially closed in the class of commutative
rings;

(e) the class of existentially closed rings in the class of Boolean rings.

Proof, (i) Suppose that 1 e P is such that 1 ^p for all p e P. Clearly {1} < P.
The result now follows from Proposition 1.2.

(ii) By Proposition 1.3 it is enough to show that the classes cited are closed
under finite direct products and direct limits—or at least, direct limits of direct
systems with injective morphisms. This is clear for (a), (b) and (c), where there is
no use of injectivity. We prove (d).

Let L be a first-order signature and 2 a class of L-structures that is closed
under isomorphism. Recall (from, for example, [7]) that an L-structure M e 2 is
said to be existentially closed in 2 if whenever M <o.N e 2 and (p(x) is an
existential formula of L, then

for all a eM, if N1= <p(a) then already M t (p(d).

Clearly the class of existentially closed structures is closed under isomorphism. By
considering disjunctive normal forms we need only consider formulas q)(x) of the
form 3yip(x, y) where ip is a conjunction of atomic and negated atomic formulas.

It is easy to see that if 2 is closed under direct limits of the form
lim^(A/(, v,y: /=sy in /> where the v,y are injective, then a direct limit of
existentially closed structures is existentially closed. The class of commutative
rings is closed under such limits, so to prove (d) it suffices to prove that if A, B
are existentially closed commutative rings (that is, they are existentially closed in
the class of commutative rings) then so is A x B.
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Suppose that C is a commutative ring containing A x B. Let ex = (1,0),
e2 = (0, 1) in >l x #. Then since C is commutative, e, is a central idempotent of
C. It follows that the left ideal Cex of C is a commutative ring in its own right,
with identity e,. It has a subring (AxB)ex, which is isomorphic to A via
(a, b)ex*-^a. Similarly, Ce2 is a commutative ring with a subring (AxB)e2

isomorphic to B.
Now since e,e2 = 0 and e, + e2 = 1 we have C = Ce, x Ce2 via c•-»(ce,, ce2). It

follows that
(**) if a(x) is an atomic formula of L and c eC, then

C1= ar(c) « Ce, 1= ar(ce,) for i = 1, 2.

Similarly, if c e >1 x # then

4 x # 1= *(c) « (i4 x fl)e, 1= <*(«?,-) for i = 1, 2.

If oc is an atomic formula, define ocx to be a and ar° to be -iar. Let T/;(i, j>)
above be Ay<™ <*)(•*> JO"'* where the ay are atomic formulas of the signature
{ + , - , x ,0 ,1} of rings, and ny = 0 or 1. Suppose that Ct=i/>(a, c) for a eA x B,
ceC. Then by (**), there are pp q-t e {0, 1} with /?,<7y = ny for all y < m, such that
Ce, 1= Ay <Xj{aex, cexf> and Ce21= /\y »y(fl«2, cc2)*.

As (Ax B)ei=A, we can identify them and regard A as a subring of Ce,.
Because A is existentially closed, there is cxeA such that 4̂ t Ay <Xj{deXi cxy>.
Similarly, we can find c2eB with analogous properties for Z?. Take d eA x B
with rfe, = c,, de2 = c2. Then >l k Ay aj(^e\> dex)

Pi and fi 1= Ay &j{ae2> de2)
q'. Hence

by (**) again, AxBt/\j <Xj(a, d)n>.
Hence A X B is an existentially closed commutative ring, as required.
(e) The proof is the same as that of (d).

Note that for Boolean rings, existentially closed is the same as atomless. See, for
example, [7, 6.3.9, Ex. 6.3.2]. Since many of the SFP domains we use have a least
element 1 , SFP systems can often be used to produce rings extending a given ring
R = R± (Corollary 1.4(i)).

A similar proof gives a slightly more general preservation result, namely that if
all Rp satisfy q) = Vx"By(/\iJii—>x) where xt and JZ are equations, then RP also
satisfies <p. This includes Corollary 1.4(ii)(a)-(c).

There is an easy cardinality result that also follows from Proposition 1.3.

PROPOSITION 1.5. Suppose that (P, p, v) is an SFP system in which each ring Rp

is countable, and P is infinite. Then \RP\ = \P°\.

Proof. If N is finite and N<P then RN is countable. Since P is infinite, so is
P°. Consequently, by Proposition 1.3 we have

| r t p | ^ 2 ( | K " | : N<P,N finite} ^ co . \{N^P: N finite}| ^ |P°|.

Conversely, define finite sets Nf < P (i< \P°\) by induction on / as follows.
Given that Nj have been defined for all j < i, choose /?, e P()\Uy<» Nj and take a
finite set Nt < P containing pt. Define for each /, an element r, € RP by r, e RNj,
r,(/>,) = 1 and r,(q) = 0 for all q e N,\{p,}.
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Suppose that r, = r; = r for some i, j with i =£y < |P°|. Let n =p;/N,. Then as Nt

supports r, we have l = r(pj) = vnp.(r(n)). Hence r(n) = 1 and n=ph so that
Pi ^Pj. Similarly, /?, =S/?,. Hence Pi=Pj, and by choice of p} £ {Jk<JNk we obtain

So if / < / < | P ° | then rti-rr It follows that \RP\^\P°\, which completes the
proof.

2. Ring ideals

In this and the following two sections we examine the relationship between
(ring) ideals of the limit ring RP of an SFP system (P, p, v) and the underlying
SFP domain P of the system. The relationship is close and will be crucial for the
work in later sections and in Part II. Unless otherwise stated, all ring ideals will
be left ideals, though most of our results apply to two-sided ideals as a special
case.

The study has three aspects. In § 3 we examine the class of full ideals of RP. An
ideal is full if it is of the form {r e RP: r(p) e 1} for some p e P and some ideal /
of Rp. So the full ideals are linked naturally to the elements of P, and because of
this they will be used heavily in Part II of this paper. We show that all maximal,
prime and irreducible ideals of RP are full. Then in § 4 we use the correspondence
between full ideals and elements of P to motivate the link between SFP limits and
Boolean powers. Stone duality is involved.

We begin in this section by showing that an ideal of the limit ring RP of an SFP
system o= (P, p, v) is determined by its projections onto the component rings
Rp (p e P). Full ideals are important in the proof. We also obtain a characterisa-
tion of the ideal of RP generated by a given ideal of the limit ring of an SFP
subsystem of o.

Ideals of limit rings of SFP systems

NOTATION. Let P be an SFP domain, and let (P, p, v) be an SFP system with
limit ring RP. We will generally use V to denote an ideal of RP and 7 ' for an
ideal of a component ring Rp (p eP). If / is an ideal of RP and q e <2 < P, we will
write JQ for / D RQ, and JQ(q) for the projection {r(q): r e JQ} of JQ onto the q\h
component ring Rq. We write simply J{q) for JP(q).

Let J be an ideal of RP. Then certainly, J(p) is an ideal of Rp for all p e P, and
so we obtain a family of projected ideals, (J(p): p e P). The main aim of this
section is to prove that this family determines /.

DEFINITION. Let (P, p, v) be an SFP system with limit ring RP and let J ^RP

be an ideal. Define

J$ = {re RP: r(p) e J(p) for all peP}.

Evidently, 7$ is an ideal of RP, and / c / $ = /$$. We will prove the following
theorem.

THEOREM. Let (P, p, v) be an SFP system with limit ring RP and let J ^RP be
an ideal. Then J$ = /.
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That is, if J' is any ideal of RP with J'(p)=J(p) for all peP, then / ' = /. This
is a key result and will greatly simplify our work later.

We establish it in three stages. The case where P is finite is easy and is proved
in Lemma 2.1; it essentially says that in this case, J = Y\(J(p): p e P). Note that
any finite poset is an SFP domain. In Theorem 2.2 we establish some properties
of ideals /$ such that J$(p) # Rp for a unique p e P. These are the full ideals. In
Theorem 2.3 we use them to prove the full version of the theorem.

LEMMA 2.1. Let P be any finite poset and let (P, p, v) be an SFP system with
limit ring RP. Let J be an ideal of RP. Then J = /$.

Proof. It is clear that / c /$. We prove that / 3 /$. For each p e P define a
central idempotent ep e RP by

( \ =
l ifx=P>
O if xeP\{p}.

If reJ$ then r(p)eJ(p) for all peP. So for each p there is speJ with
sP(p) = r{p). Then r = tpeP (ep . sp)eJ, as required.

Now fix any SFP system (P, p, v).

DEFINITION. If p e P and / is a proper ideal of Rp, we write I @p for the set
{reRP: r(p)el}.

Note that I@p is a proper ideal of the limit ring RP. Strictly it depends on P
also, and we will sometimes write 7 @ p in RP. By definition, l@p = (I@p)$.

If p' e P and / ' is an ideal of Rp., then /@p = / ' @p' implies that p = p' and
/ = / ' . For if p ^p', then as P is algebraic, p{ D P()±p'[ n P°. Assume without
loss of generality that there is q e P° C\ (p[\p I). As P is an SFP domain, there is
a finite set N < P (that is, N*3 P°) containing q. Hence p/N^p'/N. We can find
reRN such that r(p/N) = 0 and r(p'/N) = l. Then rel@p\l'@p', a con-
tradiction. Hence p =p', and it easily follows that 1 = 1'.

DEFINITION. If / is a proper ideal of RP, we say that / is full (in RP) ifJ = I@p
for some p, I. Clearly / will be a proper ideal of Rp. Since p and / are unique, we
can define oJ-p (the site of J), and A/ = / (the defect of / ) .

Next we show that full ideals are well-behaved with respect to their intersec-
tions with limits of subsystems.

THEOREM 2.2. Let J c:RP be an ideal. Then the following are equivalent:
(i) / is full in RP;

(ii) JN is full in RN for each finite N < P;
(iii) JQ is full in RQ for each Q<P.

Moreover, if any o/(i)-(iii) hold, and Q <P, oJ = p and o(JQ) = q, then we have

(iv) q=PIQ,
(v) \
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Proof, (i) => (ii). Assume that J is full in RP. Let J = I @p (for some p e P and
/ c /?p). Let N ^ P be finite and let n =p/N. If r e /?N, then

r e / O KP) = V K « ) ] 6 /

O /-e[v; '(/)]@n intf*,

Hence JN = [v~,'(/)] @n in RN. This proves (ii), and also (iv) and (v) in the case
where Q is finite.

(ii)=>(iii). Assume (ii) and take Q <P. Let N<Q be finite. By transitivity of
' « ' , N < P, and so JN is full in RN for all finite N < Q.

Now if N,N'^Q and NcN', then N<N'. It follows from the proof of
(i)=>(ii) that

(t) o(JN) = o(JN.)/N^o(JN.).

So as Q is SFP, the set D = {oJN: N finite, N < Q} is directed. Let 9 = lubg(D).
Claim 1. If N < Q is finite, then oJN = q/N.
Proof of Claim. Clearly q^ oJNeN. Hence oJN^q/N. For the converse

inequality, note that as q/N =£ q and q/N is a finite element of Q, there is a finite
N'<Q such that oJN^q/N. By (t) we may assume that N'^N, and so
oJN = oJN-/N 2= <?/N. This proves the claim.

Now let / = {r(q): r eJQ). Clearly / is an ideal of Rq.
Claim 2. JQ = I @ q in RQ.
Proof of Claim. It is clear that JQ^I@q; we pass to JQ^I@q. Let

reRQ be such that r(q)el. So there is seJQ with s(q) = r(q). Since Rq =
l im^(^ ' : q' eq{ D Q°) and Q is SFP, we can find finite N<Q supporting r
and s, and such that s(q/N) = r(q/N). But s eJN, and, by Claim 1, JN is full with
site q/N. Hence r eJN also. This proves the claim.

So by the claim, JQ is full in RQ) which proves (iii).
(iii)=>(i). This is trivial.
It remains to prove (iv) and (v) for infinite Q < P. Let / c RP be full, and let

oJ = p. Then JQ is full, of the form I @q.
If N < Q is finite then we may already apply (iv), to get q/N = oJN. But also

N<P, so similarly oJN =p/N. Hence p/N = q/N for all finite N<Q. Since Q is
SFP, it follows that pi D Q° = q[ D Q°- Taking least upper bounds on both sides,
we obtain p/Q = q, proving (iv).

For (v), we must show that / = v~p'(A/). Take a e Rq, and choose a finite set
N <Q and an element r e RQ supported by N, such that r(q) = a. By the above,
p/N = q/N. So r(p) = vqp(r(q)), and hence

a el <=> reJ <=> r(p) eAJ O r{q) = ae v~p(AJ).

We now move from full ideals to arbitrary ideals. As before we let P be any
SFP domain and {P, p, v) an SFP system with limit ring RP.

THEOREM 2.3. Let J be any left ideal of RP. Then J = /$ . In other words,
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Proof. We already agree that J <^J%. For the converse it suffices to prove:

(**) / = f| {/ ' :/ ' a full ideal of RP, J' 3 / } .

For assume that r e J$. Let / @ q be any full ideal containing J, where q e P is
arbitrary. Clearly J(q)cl. So rel@q. Hence / $ c / ' for all full ideals J' 3 / .
Given (**) we obtain /$ c 7 as required.

We only need to prove ' 3 ' of (**). Let r eRP\J. It suffices to find a full ideal
J' 3 / with r$J'.

Using Zorn's lemma choose a left ideal / ' of RP which is maximal with respect
to

We show that 7' is a full ideal of RP. If it is not, then, by Theorem 2.2, there is a
finite set N^P such that / ^ is not full in RN. Since it is certainly proper, by
Lemma 2.1 there are distinct nif n2eN such that /^(n,) is a proper ideal of Rn.
(/ = 1, 2). Define e,e/?yv by e,(n,) = l and e,(Ai) = 0 for all neAf\{n,}. Set
e 2 = l - e , . Then e( and e2 are orthogonal central idempotents of RP, and
e]+e2 = l. By our choice of the n, we have ei(ni) = l$J'N(ni) (i = 1, 2). So
certainly e,, e2$J'. By maximality of/' we have

r =/, + r,e, for some;, e 7' and r, e /?P (/ = 1, 2).
So

r = etr + e2r = e,(y2 + r2e2) + c2(y, + #-,«?,) = e,y2 + e2y, e / ' .

This is a contradiction. Hence J' is a full ideal of RP, which completes the proof.

Theorem 2.3 proves that any ideal J of RP is determined by its components
J(p) (for peP). Now let Q^P. Since 7e determines its components / e (^)
(<7 e Q), each /^C^) is determined by the J{p) (p e P). But intuitively, each JQ{q)
should only depend on the J{p) for those p e P with p/Q = q. This is certainly so
in the special case where / is full in RP; for by Theorem 2.2, /Q(<7) is the
intersection of all ideals of Rq of the form v~p(J(p)) for p e P with p/Q = q. We
now show that the same holds for arbitrary left ideals. (This result is an aside; we
will not need it later.)

THEOREM 2.4. Let Q <P and let J be an ideal of RP. Then for each q eQ,

JQ{q) = Pi {y-qP\J{p)Y P e P, P/Q = q).

Proof For qeQ define lq = R {v~p
x (J(p)): peP,p/Q = q}. So Lq is a left

ideal of Rq. We must show that

(•) JQ{q) = lq for all qeQ.

It is easy to prove that JQ(q) <^lq. Let a eJQ(q) for some qeQ. Then there is
r eJQ with r{q) = a. Clearly, vqp(a) = r(p) eJ(p) for all p e P with p/Q = q. So
aelq.

To prove that lq <=.JQ{q), suppose for a contradiction that there exist qeQ and
a eIq\JQ(q). Using Zorn's Lemma as in Theorem 2.3 take a left ideal / ' of RP

that is maximal subject to J' 3 / and a $J'Q(q).
Claim. The ideal J'Q is full in RQ and o(J'Q) = #.
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Proof of Claim. If this is not true, there is a finite N <Q such that J'N is not full
in RN. As before, take orthogonal idempotents e,, e2eRN\J', central in RP and
such that ex + e2 = l. By maximality of / ' there are /, e J' and r, € RP such that

y, + r,.e,e/?e and {ji + ri.ei){q) = a (/= 1, 2).

Consider the element s = el(j2 + r2e2) + e2(jx + rxex). Since ex, e2eRQ, we have
seRQ. Also, s(q) = ex(q).a + e2(q).a = [(ex + e2)(q)].a = a. But also s =
exj2 + e2j\ sJ'. So s eJ'Q and s(q) = a, a contradiction to the choice of / ' . Hence
J'Q is full in /?Q, and clearly oJ'Q = 4. This proves the claim.

Take reRQ with r{q) = a. We will show that r e / ' . Hence we will have
aeJ'Q(q), contradicting the choice of / ' and completing the proof of (*). By
Theorem 2.3, it suffices to show that r(p)eJ'(p) for all p eP. So pick p eP.
Suppose first that plQ = q. Then r(p) = vqp(a). Since aelq, it follows that
r(p)eJ(p)^J'(p). Suppose next that p/Q = q' ¥^q. By the claim, J'o(q') = Rq-.
But by the analogy of the proof of ' c ' of (*) for / ' , we have J'Q(q') c v~>p(J'(/?)).
Hence J'(p) = Rp, so certainly r(p) eJ'(p). So r eJ', as required.

We can add some straightforward corollaries of Theorem 2.3 that will be
needed later. First we extend our previous notation. If X c RP is any set, and
p eP, we write X(p) for the projection (r(p): reX}. Note that if Q <P and
X<^RQ, then by Proposition 1.2 each element of X is supported by Q, so we
have X{p) = vplQf{X{plQ)) for all peP.

We can determine the left ideal of RP generated by a left ideal of RQ, a result
needed in § 3 of Part II. Corollary 2.6 is a special case; it will be used in
Proposition 5.3.

COROLLARY 2.5. Let Q<P and I be a left ideal of RQ.

(i) The left ideal J of RP generated by I is given by

(*) J(p) w tne left ideal of Rp generated by I(p) (for all p e P).

(ii) Suppose that I = / ' @q in RQ (for some q eQ and left ideal / ' of Rq), and
for all p e P with p^q and p/Q =q, the left ideal of Rp generated by vqp(I') is
improper. Then I generates the left ideal / ' @q in RP.

Proof, (i) For each p eP write (/(/?)) for the left ideal of Rp generated by
l(p). Then let J = {reRP: r(p)e(I(p)) for all peP}. Certainly J is a left ideal
of RP. It suffices to show that

(a) J(p) = (/(/?)> for all peP, and
(b) / generates J in RP.
(a) Let p e P. Clearly J(p) c (l(p)). Conversely, we clearly have / c / , so that

I(p)^J(p). But J(p) is an ideal of Rp, so (/(/?)) c/(/ j) .
(b) We know already that / c / . Let / ' be a left ideal of RP containing /; we

show that 7 c 7 ' . Let peP. Clearly I(p)^J'(p), so as before, (/(/?)) ^J'(p).
Using (a), we obtain J(p)c.J'(p). This holds for all p e P, so by Theorem 2.3 we
obtain / c / ' , and the proof is complete.

(ii) This is a special case of (i). We will use it in Theorem II.3.2.
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COROLLARY 2.6. Assume that Q<P and let the left ideal I of RQ generate the
left ideal J of RP. Then

= I(q)forallqeQ,

Proof. Part (i) is a special case of Corollary 2.5(i). Hence for each q eQ we
have I(q)cJQ(q)cJ(q) = I(q), so JQ(q) = I(q)- Part (ii) now follows by
Theorem 2.3.

3. Full ideals and central idempotents

Fix an SFP system (P, p, v) and consider its limit ring, RP. Whilst RP can have
many full ideals with the same site, we now show that this is not so if we restrict
to the elements of RP that take values 0,1 only. (These elements form a Boolean
subring of central idempotents of RP.) Thus we can extract the site of an ideal
from these elements; this will be needed in Theorem II. 1.7.

We will also show that maximal, prime and irreducible ideals of RP are full.

DEFINITION. We write (RP)* for the set {r e RP: r{p) e {0, 1} for all p e P). If
c RP, we write X* for X n R*P.

PROPOSITION 3 .1 . Let I,J be full ideals of R P . Then ol = oJ if and only if

Proof. Assume that ol = oJ. Then if re(RP)*, we have r e / if and only if
r(ol) € A/. But A/ is a proper ideal of Ra/, so this holds if and only if r(ol) = 0.
Since the same holds for /, we have r el if and only if r eJ, so /* =/*.

Conversely, suppose that ol =£ oJ. Since P is SFP, we can find a finite set N < P
such that oI/Ni=oJ/N. Let re(RP)* be supported by N, and given by, for all
n e N, r(n) = 0 if n = oI/N, and r{n) = 1 otherwise. Then r e /*\/* so that

Full ideals include the maximal, prime and irreducible ideals of RP. Let us say
that an ideal / of a ring 5 is whole if 5\ / contains no pair of orthogonal central
idempotent elements (that is, there do not exist x, y e 5\/, commuting multiplica-
tively with every element of S, and such that x2 = x, y2 = y, xy = 0).

PROPOSITION 3.2. (i) / / / is a maximal, prime, or irreducible left {or right) ideal
of a ring S, then I is whole. If I is a maximal two-sided ideal of S, then I is whole.

(ii) If I is a proper whole ideal of RP then I is full.

Proof, (i) This is straightforward. As an example we prove that an irreducible
left ideal / of S is whole. If / is not whole, take orthogonal central idempotents
eue24l- Let r e (/ + 5e,) D (I + Se2). So for some / y e / and SJES, we have
r = ij + Sjej for j = 1, 2. Then rex = (i2 + s2e2).ex = i2ex = exi2 eI. Hence sxex =
ixex +sxe

2 — ixex = rex — exix el. It follows that r = ix +sxex el. Consequently, / is
not irreducible.

(ii) This follows from the proof of Theorem 2.3, or equally from the Claim of
Theorem 2.4.
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REMARK 3.3. Let p e P and let / be a left ideal of Rp.

(1) Clearly, / is prime in Rp if and only if / @p is prime in RP.

(2) If / is an ideal of RP, then evidently / 3 / @p if and only if J is full, oJ =p
and AJ^I. There is thus a one-to-one inclusion-preserving correspondence
between the ideals of Rp containing /, and the ideals of RP containing I@p.
Hence I@p is maximal, maximal two-sided or irreducible in RP if and only if /
has the respective property in Rp.

4. Stone duality and Boolean powers

Here we show that in the special case of an SFP system in which all component
rings are equal to a fixed ring R, and all connecting homomorphisms are the
identity, the limit ring is the Boolean power of R by a Boolean algebra naturally
associated with P. This remains true in the more general construction when the
component structures p(p) need not be rings. We prove the result using Stone
duality in a canonical Boolean ring built as an SFP limit.

Boolean powers have been extensively studied. For information see [4].

FACT 4.1. There is a well-known natural correspondence between Boolean rings
and Boolean algebras. Let R be a Boolean ring. We can turn R into a Boolean
algebra by defining the Boolean complement r* to be 1 — r, r A S to be rs, and
r v s to be r + s — rs. Conversely, we can turn a Boolean algebra B into a
Boolean ring by defining a + b = (a v b) A (a A b)* (symmetric difference) and
ab = a A b. The ideals of a Boolean ring are exactly the ideals of the correspond-
ing Boolean algebra.

Recall that if B is a Boolean algebra, the Stone space S(B) is the set of
maximal ideals of B. It has a natural topology; as a basis of closed and open sets,
we can take the sets of maximal ideals of the form {/: b e 1} for some b e B.
These closed and open sets form a set Boolean algebra which by Stone duality is
naturally isomorphic to B. The isomorphism is b •-» {/: b* el}.

DEFINITION. (1) Let 5 be a ring and P an SFP domain. Write 5<p> for the limit
of the SFP system (P, p, v) where p(p) = 5 for all p e P, and vpq = id5 whenever
p =s q in P.

(2) If Q =9 P, define an equivalence relation ~ G on P by

P~QP' » plQ=p'IQ.

(3) Define BA0(P) to be the set of equivalence classes of the ~N, for finite
N<P. That is,

BA0(P) = U {PI~N- N finite, N < P) c

(4) Define BA(P) to be the Boolean algebra of subsets of P generated by
BAo(P).

For example, if P is linearly ordered then BA(P) is the Boolean algebra
generated by the half-open intervals of P of the form [x, y) (for x ^ y in P°). The
case where P is a tree is similar.

We remark that BA(P) is isomorphic to the Boolean algebra of subsets of P°
generated by U {P°I~N: N finite, N^P0}.
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THEOREM 4.2. Let P be any SFP domain.

(i) The domain P is in canonical bijection with the set of maximal ideals of7L[p\
via p>-+0@p. (As usual, Z2 is the two element ring Z/2Z.)

(ii) We have l\p) = BA(P), regarding the latter as a Boolean algebra (cf. Fact
4.1). The isomorphism is r>-> {p e P: r(p) = 1}.

(iii) Let S be any ring. Then S<p> is the Boolean power S[B(P)]*.

Proof, (i) By Remark 3.3(2), 0@p is a maximal ideal of l\p) for each p e P.
The map (p>-^0@p) is clearly injective. If J is a maximal ideal of ZiP\ then by
Proposition 3.2, J is full, so J = / @p for some p e P and proper ideal / of Z2.
Clearly / = 0, and thus the map (p*-^0@p) is surjective.

(ii) By Stone duality, l\p) (viewed as a Boolean algebra using Fact 4.1) is
isomorphic to the Boolean algebra of those sets of maximal ideals of Z^p> of the
form

(r) := {/: / a maximal ideal of ZiP\ r el}

for r e Z ^ . The isomorphism isr^-»(l — r).
By (i), the maximal ideals are in bijection with P, via their sites. Under this

bijection, (1-r) goes to the set [r] := {p e P: r(p) = l } c i ) . It suffices to show
that the map o: r^[r] is a bijection from l\p) to BA(P).

Let r e l\p\ and let N < P be a finite support of r. Let N' = {n6 N: r(n) = 1}.
Clearly, [r] = {p e P: p/N e N1}. Hence [r] is a (finite) union of —/v-classes, so
[r] e BA(P).

Certainly o is injective. To prove surjectivity, let X eBA(P). Let A/,<P
(i < k) be finite sets such that X lies in the subalgebra of BA(P) generated by the
~yv,-classes (/ < k). As P is SFP, we can take a finite N <P containing each Nt. It
is easily seen that A" is a union of —^-classes. Let r e RN be defined by r(n) = 1 if
neNHX, and r(n) = 0 for n eN\X. Then for all p e P we have

r(p) = l <£> p/NeX O peX.

Hence A" = [r], as required. It is easily checked that o is an isomorphism of
Boolean algebras.

(iii) We can take S[B(P)]* to be the subring of Sp consisting of those reSp

such that there exist k < a> and pairwise disjoint Xt (i < k) in BA(P) with
U/<* X, = P and r(p) = r{q) for all p, q e Xt (all i < A:).

Let reS[B(P)]*. Take k and Xj (i<k) as above. By the argument in (ii)
above, there is a finite N < P such that each Xj is a union of ~yv-classes. Clearly N
is a support for r. Hence reS^K Conversely, if reS^^, let N<P be a finite
support for r. It is clear that the —yy-classes all lie in BA(P) and partition P, and
that r is constant on each class. S o r e S[B(P)]*, which completes the proof.

REMARK 4.3. (1) If P and Q are SFP domains, BA(P) = BA(Q) does not imply
that P = Q. For example, let P be the ideal completion of the tree <u)co (the set of
all finite sequences of natural numbers, ordered by 'initial segment'), and let Q be
the ideal completion of the set Q&0 of non-negative rational numbers with the
usual ordering. Certainly the Boolean algebras BA(P) and BA(Q) are both
countable. We now indicate that each is atomless (that is, for each non-empty S
there is a non-empty 5, properly contained in 5).
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We saw that BA(<2) is the Boolean algebra generated by the half-open
intervals of Q^o; this is clearly atomless. As for P, let N < P be finite, let n e N
and let S = {p e P: p/N = n} be the corresponding —/v-class. As n has co
immediate successors in <lo(o, we can take distinct immediate successors «,, n2 of
n with nun2$N, and find finite A/<P containing N, n, and n2. Then
S, = {/?e/>: p/M = nl}eBA(P) and 0 c 5 , c 5 . It follows that BA(P) is also
atomless.

Hence BA(/>) = BA(<2) — B, the countable atomless Boolean algebra. There is
up to isomorphism a unique such algebra—see [5]. So by Theorem 4.2(iii), for all
rings 5 we have S<P> = S<<2\ although P and Q are not isomorphic posets. This
shows that in general we cannot recover the poset structure of an SFP domain P
from a limit ring RP. We will pursue this in Part II.

(2) Let P be the ideal completion of <a}a> or of Q&0, as above. Then by
Theorem 4.2(ii), l\p)= BA{P), the countable atomless Boolean ring (by Fact
4.1). So we have determined the limit ring in this case.

(3) Topology on P. By Fact 4.1 and Theorem 4.2(i), (ii), P is in natural
bijection with the Stone space S(BA(P)). Hence the topology on the latter
induces a homeomorphic topology on P. It is in fact the 'patch' topology referred
to in, for example, [6], whose construction bears some similarity to ours. The
proof of Theorem 4.2(ii) shows that BA(P) is a basis of closed and open sets. In
fact, BA0(P) is also a basis of closed and open sets, for as in Theorem 4.2(ii),
any finite intersection of elements of BA0(P) is a finite union of elements of
BA0(P). For any Q<P, any ~G-class is closed in the topology. Hence (taking
Q = P) we see that every singleton subset of P is closed: the topology is regular.

(4) By a theorem of Baldwin and Lachlan [2], if S is a finite or countable
co-categorical ring and P is an SFP domain such that BA(P) is the countable
atomless Boolean algebra, then 5<p> = S[B(P)]* is also a>-categorical. (Note that
<w(o is not an a>-categorical poset.)

5. Densely decomposable ideals

Here we develop a way to obtain an atomless Boolean ring as the limit of an
SFP system in the case where all component rings are Boolean. As in [17] we use
densely decomposable ideals to generalise the notion of atomless to arbitrary
rings. Again, unless otherwise stated, all ring ideals will be left ideals.

DEFINITION. Let R be any ring, and / a proper left ideal of R. Then / is said to
be densely decomposable if whenever / is a left ideal of R properly extending /,
there are left ideals 1 , 7 c / properly extending /, with X n Y = I.

EXAMPLE 5.1. Let R be a Boolean ring. Then the ideal 0 is densely
decomposable if and only if R is atomless. So for an ideal of a Boolean ring,
being densely decomposable is the same as having atomless quotient, and is in a
sense opposite to being irreducible.

We wish to find conditions for ideals of the limit ring of an SFP system to be
densely decomposable.
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DEFINITION. Let R be a ring and / c / left ideals of R. We say that Jsplits over I
if there are left ideals X,YcJ with X 3 /, Y 3 /, X n Y = /. If 5 3 / is any subset
of /?, we say that 5 strongly splits over I if J splits over / for all left ideals / with
/c/c5.

Clearly / is a densely decomposable ideal of R if and only if any set 5
containing / strongly splits over /.

Let (P, p, v) be an SFP system. An ideal of RP can be densely decomposable
for two reasons. First, its projections onto the component rings Rp (p e P) might
already make it densely decomposable. For example, if p e P and / is an ideal of
Rp then / @p is densely decomposable if and only if / is densely decomposable in
Rp. Second, it can be densely decomposable because of the SFP system structure
of RP. We now separate the two causes. As in § 2, if / is an ideal of RP and
n eN < P, we write IN(n) for the projection {r(n): r e IN] of IN (= / n RN) onto
Rn.

DEFINITION. Let / be a left ideal of RP. We define /A to be the set

{r e RP: for any finite support N < P of r, there is at most one

neN with/•(«)<£/„(«)}.

So / c /A. If / is a proper ideal of RP, then by Theorem 2.2, / is full if and only
if /A = RP. If reRP and i e/A then clearly rie/A. Hence /A is the union of the
left ideals contained in it.

LEMMA 5.2. Let I be a left ideal of RP. The following are equivalent:
(i) I is a densely decomposable ideal of RP;
(ii) /A strongly splits over I in RP.

Proof. We only need prove that (ii) implies (i). Let / 3 / be a left ideal of RP.
We must prove that / splits over /. If / c /A, this is clear by assumption. Assume
that / £ / A . There exist r eJ and a finite support N < P of r such that for some
distinct y, z e N we have r(_y) £ I/v(y) and r(z) $ /^(z). Define ey 6 RN by ey(x) — 1
if x =y, and ey(x) = 0 otherwise. Let Y be the left ideal of RP generated by / and
ey.r. Define ez and Z similarly. Then ey and ez are orthogonal central
idempotents of RP. We clearly have IczY, / c Z and Y U Z c / . Hence the
following claim proves the lemma.

Claim. YHZ = I.
Proof of Claim. Let s e Y C\ Z. So s = iy + ry(ey.r) = iz + rz(ez.r) for some iy,

izel and ry, rzeRP. Multiplying by ez, we obtain eziy = eziz + rz(ez.r). Hence
rz(ez-r) — ez(iy ~ h) e I- Hence s = iz + rz(ez.r) G /, which proves the claim.

Hence whether / is densely decomposable depends only on /A. Clearly, the
smaller /A is, the more likely / is to be densely decomposable.

Recall from § 4 the definition of the Boolean algebra BA(P) of subsets of P.
By Theorem 4.2, BA(P) = Z^P>. One way to force /A to be small is to require
that BA(P) be atomless. Examples of P such that BA(P) is atomless are the ideal
completion of any dense linear ordering / with a least element, and the ideal
completion of any tree T (with a root) such that every t e T has infinitely many
immediate successors in T (cf. Remark 4.3). We will exploit this in Part II.
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DEFINITION. Let / c / ? P b e a left ideal. We say that / is locally generated if
there is a finite set N < P such that IN generates / in RP.

For example, any finitely generated ideal of RP is locally generated.

PROPOSITION 5.3. Let S be a ring and P an SFP domain such that BA(/)) is
atomless. Let I be any proper locally generated left ideal of S^p\ Then I is densely
decomposable.

Proof. By Lemma 5.2 it is enough to show that /A = /. Let r e RP\I. We show
that r $/A. Take finite N<P supporting r and such that IN generates /. As r $IN,
by Lemma 2.1 there is n e N with r(n) £ IN(n).

Now by assumption the ~yv-class of n is not an atom in BA(P). So we can
choose a finite set M <P containing N and such that the —yv-class of n is the
union of more than one ~M-class. It follows that the set

nM = {m eM: m=£n and m/N = n} =£0.

By Corollary 2.6(ii), the left ideal of RM generated by IN is in fact IM. So by
Corollary 2.5, IM(m) = ^(m/N) c S for all m e M. Now M also supports r. Take
m 6 nM. We have r(n) $ lM{n), and r(m) = r(n) $ IN(n) = IM(m). Hence r <£ /A, as
required.

REMARK 5.4. We can evidently generalise Proposition 5.3 to the case where
(P, p, v) is an SFP system such that if N < P is finite then for each n e N there is
m € P°\N such that m/N = n and vnm is a (surjective) isomorphism.

6. L^-equivalence of SFP systems and their limits

Here we define a canonical model-theoretic structure Ma from an SFP system
o- (P, p, v). We prove that if a, = (Ph ph v,) (/ = 1, 2) are SFP systems and
Mat and MOl are Lxw-equivalent then so are the limit rings of a, and o2. We will
also provide a simple sufficient condition for Mat and MO2 to be LX(O-equivalent,
namely that (P,)0 and (P2)° are L^-equivalent and the a, are sufficiently similar
SFP systems. In Part II we will construct 2N| SFP domains Pf (i < 2tUl) such that
(Pi)0 and (P/)° are L^^-equivalent for all / <j <2to ' , and yet the limit rings of any
SFP systems built on the P, are pairwise non-embeddable. These limits will
none-the-less be LooW-equivalent if the SFP systems are sufficiently similar. This
means crudely that although the limit rings are different, the differences are hard
to detect.

Recall from, for example, [5] the definition of L^-equivalence. Let L be any
signature. The infinitary language L^ is built from L by allowing formulas with
finite strings of quantifiers but conjunctions and disjunctions of arbitrary length.
Two L-structures M, N are said to be Lxw-equivalent (written M =OO(O N) if they
satisfy the same sentences of L^.

We can usefully characterise L^-equivalence in terms of a game between two
players, 'V and ' 3 ' , played on two L-structures M and N. The game G(M, N)
has co moves. At each move in a play, player V chooses an element from one
structure, M or N. Then 3 completes the move by choosing an element from the
other structure. After the play is over, the result is two tuples me M, h € N of
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length 0), possibly with repetitions: the ith elements m,, n, of m, n respectively
consist of the elements chosen in the ith move of the game from M, N
respectively. (No record is kept of which player chose which element.) So m and
h define a relation 6 = {(mh «,): i<co} c A/ x N. Player 3 wins the play of the
game if and only if 6 is a partial isomorphism, that is, 6 is a partial function from
M to N, and for all quantifier-free first-order formulas q>(x) of L and all
a e dom(0), we have M t q>(d) <=> N1= cp(d(d)).

FACT 6.1. The structures M and N are L^a,-equivalent if and only if 3 has a
winning strategy in the game G(M, N). See [12] or [13] for details.

DEFINITION. Let o=(P, p, v) be an SFP system. Define a structure Ma =
(P(), (Rp: p e P°)) in the signature {^, p*, v*, +*, x*, 0*, 1*}. The domain of
Ma is the disjoint union of P° and the Rp (p e P°). The binary relation symbol ^
is interpreted as the partial ordering on P°; Motp^q if and only if p, q e P° and
p^q. Also, p* is a binary relation symbol, and Matp*(p, r) if and only if p e P°
and r eRp. Similarly, v* is a binary relation symbol corresponding to v; we define
Ma t v*(r, s) if and only if r e Rp and s eRq for (necessarily unique) p, q e P° with
p^q and vpq(r) = s. The ternary relation symbols +*, x* for sum and product
are defined on each Rp in the obvious way: MaE +*(r, s, t) if and only if
r, s, t e Rp for some p e P° and r + s = t, and similarly for x*. Also, 0* and 1* are
unary relation symbols and Mot0*(r) if and only if r = 0eRp for some p 6 P°
(and similarly for 1*).

We say that SFP systems ox, a2 are LX(0-equivalent if Max =oow Mar

THEOREM 6.2. Let a, = (Ph p,, v,) be LX(0-equivalent SFP systems with limit
rings Rj (/ = 1, 2). Then /?, =,„,„ R2 in the signature { + , X, 0, 1} of rings.

Proof. By hypothesis and Fact 6.1 we may take a winning strategy for 3 in the
game G(MOl> A/CT2). We will describe a winning strategy for 3 in the game
G(fl,, R2)- We use a play of G(Rlt R2) to generate a play of G(MO], Ma2). Player
3's strategy in this game will then suggest moves for her in the main game
G(fl,, fl2)- The method is well known.

More fully, let V begin by choosing (without loss of generality) r, eR\. Player
V's choice gives rise to the following finite sequence of elements of A/O|: those in
an arbitrary finite support N, ̂  P" for r,, listed in some arbitrary order, together
with the sequence r^ni) of elements of the Rni (/z, e N,). Player 3 treats them as
successive moves of V in a play of G(MOl, Ma2) and uses her winning strategy in
this game to choose corresponding elements of Mai. This correspondence gives a
partial isomorphism from A/O| to MOl. Moreover, as the strategy is winning, the
elements chosen corresponding to the elements n, form a locally directed subset
/V2 of P2. Hence the elements corresponding to the elements ri(«i) give rise to an
element r2 of R2; r2 is supported by N2 and r,(n,) corresponds to r2(n2) for each
corresponding pair («,, n2). Player 3's reply in the main game G{RX, R2) is this
element r2.

In each subsequent move V's choice generates a further finite sequence of
elements of a structure Ma. (i = 1 or 2). We can assume that the set of all
elements so far chosen in each P()i^Ma. (i = 1, 2) is a locally directed subset.
On each occasion 3 continues with her strategy to obtain corresponding elements
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of the other structure. Note that at each stage, all elements so far chosen in MOl

are in partial isomorphism with the corresponding ones in MO2.
After co moves, tuples of co elements fl,eMO|) a2eMa2 will have been

generated. The map a{>-*a2 is a partial isomorphism from MOl to Mav It is now
easy to see that the corresponding elements of the R, (i = 1, 2) are also in partial
isomorphism. Hence the strategy described is winning for 3. The result follows by
Fact 6.1.

COROLLARY 6.3. Let P, and P2 be SFP domains with P°i=X(0 P\, and let Rx, R2

be L^-equivalent rings. Then the limit rings R\Pl) and RiPl) are Lxm-equivalent.

Proof. Define SFP systems o, = (Ph ph v,) (i = 1, 2) by

pi(p) = Rt for all p e Ph

Vj(p, q) = id,?, for all p ^ q in Ph

It is evident that ox and o2 are L^-equivalent, and by definition, lim(a,) = R\Pi)

(i = 1, 2). The result follows by Theorem 6.2.

This shows that under suitable restrictions on the rings and morphisms of the
SFP systems a, and o2, to get the limit rings to be Lm(O-equivalent it suffices to
begin with SFP domains having Lm(1)-equivalent bases. We will apply this in § 4 of
Part II.

The same proof as in Theorem 6.2 shows that if /?, are LX(0-equivalent rings
and Bj are L^-equivalent Boolean algebras (/ = 1, 2) then /?,[#,]* =«,,„ fl2[#2]*-

PART II. NON-STRUCTURE THEOREMS

Here we return to investigating the effect of the SFP domain of an SFP system
on its limit ring. We want, in particular, to find a way of changing the underlying
domain that necessarily changes (the isomorphism type of) the ring. Our
approach is to ask how much of the domain structure gets to be encoded in the
limit ring in such a way that we can recover it purely ring-theoretically. For if we
use two different domains, and they are recoverable intrinsically from the two
limit rings in sufficient detail to reveal their differences, then the rings must be
different as rings.

We saw in Remark 1.4.3 that however we may alter the domain in a system,
there is no guarantee of getting different limit rings in the countable situation—
when the base of the SFP domain and also each component ring is countable.
Suppose, for instance, that we build atomless Boolean rings (as in Remark 1.4.3).
Up to isomorphism there is a unique countable such ring. Hence the domain
structure here cannot exert any effect.

However, we will see that things are different if we allow the base of the
domain to be uncountable. We briefly sketch the 'non-structure theorem' that will
occupy this part of the paper. (Our description here is not accurate in detail.) The
technique is well known. To simplify matters, assume that we have two SFP
domains P, P1 that are in fact a certain kind of tree of height &>,, that all Rp
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(p e P U P1) are the trivial ring Z2, and that all vpq are isomorphisms. We can
express P a s a union U/<o>, Pi, where Pj is the subtree of P consisting of the
elements of height at most /. The Pt are an increasing chain of SFP subdomains of
P. Write R for liP), and (if i < w,) Rt for I{

2
Pi), where the notation S{p) for the

SFP power of 5 by P is as defined in § 4 of Part I. Thus we have R = U;«u, ^/-
Take a full ideal / of R. So / = {r e R: r(s) = 0} for some s eP. It turns out

that IC\Rj is full for all i<o>l. So for each /<<*;, there is S/eP/ such that
inRj = {re/?,: r(st) = 0}, and s, =ssy =£s if / <y < <w,. The same holds for JR',
defined similarly using Pl.

Assume now that 6: R—>Rl is a ring isomorphism. Then the set C =
{i < (ox\ 6(Rj) = Rj} is a club (a large set) in cox. Moreover, for each / e C the
image 6(1 D R() is a full ideal of Rj (because here, as in Theorem I.4.2(i), 'full'
is the same as 'maximal'). So there are s] e P) (ieC) such that d(inRt) =
{r e Rj: r(sj) = 0}. Define P \C = {peP: height(p) e C} (and similarly for Pl).
Then 6 induces a partial map 0 from P \ C to P1 \ C by s^s]. By considering
all full ideals /, we find that 0 extends to a bijection from P \ C to P1 \ C, and it
is order-preserving. Thus the existence of an isomorphism from R to R' forces the
underlying SFP domains to be closely related; there is a club C C M , such that
P \C = Pl \C.

So in order to produce many non-isomorphic rings R, it suffices to find many
trees P such that no two are isomorphic on any club. In [1] this is done for
Aronszajn trees, using the hypothesis of 2K(I<2N| (weak diamond). Our construc-
tion here is in some ways similar, but a weaker result suffices and we do not
need any set-theoretic hypotheses beyond ZFC. (The trees we construct are not
strictly Aronszajn trees; in fact it is consistent with MA + 2X">N, that any two
Aronszajn trees are isomorphic on some club [1].) However, our construction is
made more complicated because we consider the more general case of ring
embeddings 6 and arbitrary rings Rp. In this setting 0 becomes a relation
between the restricted trees.

The layout of Part II is as follows. In § 1 the appropriate form of tree is defined
and the relation 0 discussed. In § 2 we construct many different trees using an
Aronszajn-style argument, and use them to produce many different rings. Finally,
we establish some higher-order properties of the rings. We show that each of
their full ideals can be made countably generated (§ 3), and that the rings
themselves can be made pairwise LX(0-equivalent (§ 4) and to some degree rigid
(§5).

1. Spruce trees and conformal relations

Trees
Most of the following definitions will be familiar but we include them for

convenience. A tree is a non-empty poset (T, ^ ) such that the set t =
{u e T: u<t} of predecessors of any t e T is well-ordered (and hence linearly
ordered). We will refer to the elements of a tree as nodes. The height of a node
t e T, written htT(t) or ht(t), is the order type of i. If / is an ordinal, we write
T(i) for the set of nodes of T of height I, the ith level of T.

More generally, if S c T is closed downwards (that is, if t < u and u e S then
feS), we write S(i) for SDT(i), and htr(5) for the least ordinal i such that
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5(i) = 0 . If X is a set of ordinals, we define S \ X to be {s e S: htT(s) eX}. So
for example, if / is an ordinal then 5 \ i is the set of elements of S whose height is
less than i. (Since 5, if non-empty, is a tree in its own right, the notation S(i) etc.
would be ambiguous if S were not closed downwards in T.)

If t,t'eT, we say that t' is an immediate successor of t if t' > t and
ht(f') = ht(/) + 1. Then also t is an immediate predecessor of t'. A terminal node is
one without any successors in T. A branching node is a node with at least two
immediate successors. A node t e T is said to be green in T if T contains a
branching node b with b 5= t.

A tree T is called normal if whenever t, u eT have limit height and t = u, then
t = u. Our convention is that every ordinal is exactly one of: 0, successor, limit.

A branch of a tree T is a maximal linearly ordered subset of T. A branch f$ is
said (unusually) to be cofinal in T if every node of /? is green in T. If T is
normal, this means that the branching nodes are 'cofinal' in /?: if /<ht()3) then
there is a branching node b e /3 of height at least / in T.

REMARK. Let T be a tree with a least element _L. Then any 5 c 7 with 1 e S is
locally directed in T. If T is a dcpo then T is an SFP domain, the finite elements
being those not of limit height.

Spruce trees
We can now define the type of tree that interests us here. A spruce tree is a

normal tree T satisfying:
(i) every branch of Thas height w,;
(ii) each node of T has exactly one non-branching immediate successor;
(iii) T has no cofinal branches;
(iv) for all i<j< to, and every branching node b of height / in T, there are

exactly Xo branching nodes of T of height j above b;
(v) 7\0) has just one node ' 1 ' , which is a branching node, and hence by (iv),

each higher level of T has exactly Ko branching nodes.
An example of a spruce tree is an Aronszajn tree (cf. [9] and below) but with

each branch and node extended individually by new non-branching nodes up to
height cox. In general, however, not all predecessors of a branching node will be
branching. In § 2 the existence of many spruce trees is established.

Fix a spruce tree T.

DEFINITION. A node of T is said to be basic if
(i) it is a branching node and
(ii) it is finite in the sense of § I.I, that is, its height is not a limit ordinal.

We write B{T) for the set of basic nodes of T; by (v) above, B(T) is non-empty.

Note that B{T) is a poset, by restriction of the ordering of T. Recall from § I.I
that an ideal of B(T) is a downwards-closed directed subset of B{T). The ideal
completion of B(T), written ldl(B(T)), is just the set of ideals of B(T), ordered
as a poset by inclusion. We identify b e B(T) with the principal ideal {b' e
B(T): b'^b} of 16\(B(T)). This identification preserves the ordering on B(T).
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PROPOSITION 1.1. There is a canonical embedding A of the ideal completion of
B(T) into T. The restriction A \ B(T) is the inclusion map from B(T) into T.

Proof. Let / be an ideal of B(T). Then / is non-empty and linearly ordered.
Let /3 be any branch of T containing /. Since T has no cofinal branches, / is
countable. But (3 has height cu, in T. Hence {t e /3: t^i for all iel} is
non-empty. Let t be its least element. Since T is normal, t does not depend on /3,
but only on /. We write t as lubr(/).

We define A: Idl(£(7))-» T by A(/) = lubr(/). Clearly if / c i then A(/) ̂  k(J)
in T. Let / and / be distinct ideals, and take / e I\J (without loss of generality).
Clearly there is no jeJ with j^i. Consequently, \ub(J)^f>i, and since / has
successor height in T, we have lub(7)^/. But lub(/)s=/. Hence A is injective,
and so an order-preserving embedding. Clearly if b e B(T) then the ideal / =
{b'eB(T): b'^b} corresponding to b satisfies k(I) = b. Hence A \ B(T) is
just inclusion.

DEFINITION. We say that a node t of T is a limit node if t = lubr(/) for some
ideal / of B(T). We write L(T) for the set of limit nodes.

REMARK. We have B(T)^L(T). Clearly L(T) = ld\(B(T)) is a dcpo (cf.
§1.1). Since L(T) is a tree with a unique least element, it is in fact an SFP
domain. Notice that B(T)^L(T)^T, and B(T) = [L(T)f. In general, L{T) is
not closed downwards in T.

We will use the SFP domain L(T) to build SFP systems. The remainder of T is
used to keep track of what is going on. To do this we need to deal with the
subtrees of T of countable height.

Recall that if 6 is a limit ordinal and X{ (i < 6) are arbitrary sets, the Xj are said
to form a continuous chain if X, cX} for each i<j<6, and Xj = U {Xj\ i<j}
for each limit ordinal j < 5. The union of the chain is defined to be U {Xj\ i< 6}.

If / < w,, we define L{T)t to be the set of elements of L{T) with height at most
/ in T. Then L(T)j<L(T) (see §1.1 for this notation). Similarly define
B{T)i = B(T) n(T \ i + 1). As B(T) has no nodes of limit height, the £(7),
(i<coi) form a continuous chain with union B(T). The chain (L(T),: /<eo,) is
not continuous, but its union is L{T). We have (L(T)j)0 = B(T)t for each i<coi.

Spruce trees and SFP systems
Now take an SFP system (L(T), p, v) such that each R, (for teB(T)) is

countable. Let its limit ring be R. Writing /?, for RL(T)^ the limit of the subsystem
based on L(T)h we see that the Rj form a continuous chain of countable subrings
of R, with union R.

We define for each i<0)] a projection JT,: R—>Rt, given as follows. If reR,
then by definition r is a function from L(T) into U {Rt- t e L(T)}. Then /r,(r) is
just the restriction r \ L(T)t of r to the set L{T),.

We must show that n^r) e Rj. Let N <L(T) be a finite support of r in R, and
define N' = N D L(T)h Then ± e N' and so N' < L(T)h Clearly if x e L{T)t then
x/N = x/N'. It follows that N' supports JT,(r) in R,-. So Jtj(r) € Rh as required.

Each 3ij is a surjective ring homomorphism and is the identity on R,-.
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Full ideals
The notion of full ideals becomes a little more complicated in this setting, since

now we have X] different rings and we can no longer tell from its site which ring a
full ideal lies in. So we refine the notion of site, using the part of the tree T that
lies outside L(T).

Recall that each teT has a unique non-branching immediate successor, t+ say.
Hence if ht(f) = i, we can define a node t^ for each i ^j < o)u by induction on y:

(
if y is a limit ordinal, t[i] is the unique node of height j with t^>tw for all k
with i^k<j; this is well defined as T is spruce.

Note that although certainly f'yl is not a branching node if y is a successor ordinal,
it may be a branching node if y is limit. If y > /, we have f1'1 £ L{T).

In the light of this we can define a map £: T—> T as follows: £(t) is the lowest
node t' ^ t such that t = f'|ht(/)|. We clearly have the following proposition.

PROPOSITION 1.2. We have £(T) = L(T) and t?{t) = £(t) for all t e T. For all
i<ojlf the restriction £ \ (T(i)): T(i)^> L(T), is a bijection, whose inverse is
given by / »-> fi'\

Now if / < a>] then the set of possible sites for full ideals of Rf is L(T),, and this
is in bijection with T(i) via £. So if / is a full ideal of Rj with site s e L(T)h we
define the tree site of /, written xl, to be s1'1.

Tree sites behave well with respect to subrings. We have:

PROPOSITION 1.3. (i) / / / <j < to, and J is a full ideal in RJ} then J C\ /?, is full in
Ri and x{J D /?,-) =s xJ. {Note that x(J H /?,-) is determined by this inequality, since it
has height i.)

(ii) Ifi<j < 0)i and I is a full ideal of Rh then the ideal J = JtJ~\l) H Rj is full in
Rj, and xJ = (T/)1 ' 1 . We write / m for this ideal.

Proof, (i) Let oJ = p e L(T)j. Since L(T)i<L(T)j, by Theorem 1.2.2 we see
that J D R/ is full in Rj with site q =plL{T)t. We must show that p[J] ^ q[i].

If ht(/?)=s/ then p e L(T)i and q=p, so the result is clear. So suppose that
ht(/?)>/. We show that p^q[k] for all k satisfying ht(^r)^A;^/, by induction
on k.

If k = ht(q) or A: is a limit ordinal then this is trivial. Assume that k + 1 =ss i and
p^qw. If p^q[k+l] then there is b^p with ht(b) = k + l and b±q{k+x\ The
immediate predecessor of b is qw, so b must be a branching node in T. Hence
b e L(T)j and so <? =plL{T)t ^b. As b>q, this is a contradiction. So p ^ tf1*"1"11,
which completes the induction.

(ii) For all r e Rj we have

reJ <?> r\L{T)iEl <=> r{ol)eM.

So J = A/ @ ol in /?y. Hence / and / have the same site and defect, though they
lie in different rings. We have xJ = (ol)in = (a/)[ / ]m = (xl)[j\
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Clubs
Let Ccd) , , We say that Cis a club (in cox) if it is closed and unbounded in a;,.

That is:

(cl) if C() is a countable subset of C, then [JCoeC (of course, U Co is

(ub) for each i< (ox there is Oi with c e C

Examples of clubs are cox itself, and the set of countable limit ordinals. We can
go further. If C is any subset of <y,, we write dC for the set of limit points of C.
Thus, dC is the set of all ordinals of the form U (c/: * < w } for some strictly
increasing sequence c, (i < co) in C. So (cl) above just says that dC c C. We then
have:

FACT. If C is a club then so is dC.

Note that (ub) implies that C is uncountable. We can think of clubs as 'large'
subsets of (O\. We have:

FACT [10, § 7]. Any countable intersection of clubs is a club.

We remark that if T is a spruce tree and C a club in co,, then T \ C is normal
and satisfies all conditions except possibly (ii) and (v) of the definition of 'spruce'.
A node of T \ C is green in T \ C if and only if it is green in T.

We will also use the following lemma on clubs.

FACT [7, Lemma 5.2.2]. Let / : <w,—> (ox be a map. Then

{*•<«,: vy<;(/(/)<;)}

is a club in a)s.

The proofs of these facts are not hard.

Ring embeddings and conformal relations
Now suppose that U is another spruce tree. Take an SFP system

(L(U), p', v'>, and write Su for p'{u) (ueL(U)) and 5 for its limit. Suppose
that each Su is countable. We have a continuous chain 5 = U {S#: i < <w,}, as for
R. We abuse notation by using the symbol £ to refer to the maps on T and on U,
distinguishing them by context. But n always refers to R.

Recall that if X c S then X* = {seX: s(u) e {0, 1} for each u e L(U)}. That
is, X* = ZiL(u)) C\X. Clearly the S? (i<(ox) also form a continuous chain, with
union S*.

PROPOSITION 1.4. Suppose that 6: S^>R is a ring embedding. Then there is a
club C of limit ordinals in o)x such that for each i e C,

(i) 0(Si) = Ri D d(S), and
(ii) if] < i then JT,0(S*) = n}d{S*).
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Proof. If j < cou let /(y) be the least k < o)x such that

We can find such a k because the left-hand side of each of these is countable.
Then by the fact above, C = {i<(ox\ Vy < / ( / ( / )< / )} is a club in o)x. We can
take C=d(C).

Now let 6 and C satisfy the conditions of the proposition. Define a binary
relation 0 c 7 x ( / a s follows. If t, u have equal height / in T, U respectively, and
/ e C, then t 0w if and only if there is a full (left) ideal / of /?, such that

J = 0~\l fl 0(S,)) is a full ideal of 5,, and xJ = u.

We say that the ideal / represents the pair (t, u). We have J = Q~\l) by definition
of C.

DEFINITION. Let T, U be arbitrary trees. A relation O c 7 x (/ is said to be
height-preserving if whenever t $ u then htT(t) = htt/(«). A height-preserving
relation O is said to be homomorphic if whenever tO w, t' ̂  t, u' =£ w and t' and
u' have equal heights, then t' <I> w'.

Clearly, 0 is height-preserving.

PROPOSITION 1.5. The binary relation 0 is a homomorphic relation contained in
T \ C x U I C. Moreover, in the notation above, if i, j eC, i< j and J is a left
ideal of Rj representing (t, u), then J C\ /?, represents (t', u').

Proof. Suppose that i<j in C and that the elements teT(j), u e U(j) are
related by 0 . Take an ideal J representing (t, u). Then J is full in Rj, and has
(tree) site /. By Proposition 1.3, JDRj is full in Rt and has site t'. Similarly,
6~l(J)nSi is full in Si with site u'. But as ieC, we have 0~ ' ( / ) n S ,=
0- '(/n/?,) . Hence t'Qu' holds.

DEFINITION. Let T and U be trees of height to,. A height-preserving relation
4> c T x U is said to be surjective if for all u e U there is t e T such that t <t> u. We
then write that O: 7—» U is a surjective relation.

PROPOSITION 1.6. 77ie relation 0 : 71 f C-» U \ C is surjective.

Proof. Let u e U(i) for / e C, and let £(w) = z. Let / be full in 5, with site z and
defect 0 (that is, / = 0 @z in 5,).

Claim. The set 6(1) generates a proper left ideal of /?,.
Proof of claim. If the claim is not true, there are no< w and an el, rn e R,

(n < «o) such that

2 rn.6(an) = l.
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Now for each n we have an(z) = 0. We can take a finite set N < L(U), such that
each an is supported by N, and an(z') = 0, where z' = z/N. Define deSj as
follows: d is supported by N, d(x) = 1 if x e N, x =£z', and d(z') = 0. Then d =£ 1,
but an.d- an for each n<n0.

Now let e = 6(d) e /?,-. Since 6 is an embedding, e =£ 1. But we have

= 2 ^.(^i.-rf)) = 2 rH.6{an) = 1,

a contradiction. This proves the claim.
By Zorn's lemma there is a maximal left ideal J of R, extending 6(1). By

Proposition 1.3.2, J is full in /?,-. Then 6~\J) is a proper left ideal of 5, and
extends /, so it is full with site z. So if t = r/, we have f 0 w, the pair (f, M) being
represented by J.

Continuity
So far we have shown that a ring embedding 6: S-+R induces a height-

preserving homomorphic surjective relation 0 : T \ C—> U \ C. Such a 0 need
not preserve much structure; for example, the trivial relation U/ec T(i) x ^ (0
has these properties. We need a stronger preservation result.

The key to obtaining one is the following observation. For simplicity identify S
with 6(S), so that S^R. Take two full ideals /,, I2 of /?, for some ieC, and
suppose that /, D S, = I2 H 5, and that this ideal is full in S,. If y > i in C, we know
from Proposition 1.3(ii) that there is a 'canonical' full ideal /'/' of Rj associated
with /,. Similarly, /i/1 is associated with I2. Would we still have /'/' n Sj = I[

2
n D 5y?

In general we would not. However, if /, is itself of the form /C1,'1 for some ideal
K{ of Rk for some k<i, then we might expect /, to be 'determined' by Kx. So if
h = M1 in t n e same way, and /, and I2 'agree' in some way on 5,, we might hope
that /'/' and l2'^ also agree on 5,. In fact we will show in Theorem 1.7 that if
K^HSj and K^HS,- have the same site as full ideals of S,, then the same holds
for K\nC\Sj, K2

nC\Sj. The proof relies on Proposition 1.3(ii) to show that K
determines the site of /, and on Proposition 1.3.1. Theorem 1.7 is needed in the
preservation lemma (2.2 below), which shows that 0 does preserve enough
features to prove anti-structure theorems.

First we need the following definition.

DEFINITION. Let T and U be spruce trees and C a club in o)x. A homomorphic
relation O: T \ C—> U \ C is said to be continuous if for all /, j e C with / <j and
all u e U(i), there is a node M'*1'"1 5= u of height j in U and such that for all t e T(i)
with 13>u and t,(t) < t, if there exists u' e U(j) such that u' > u and f | y '$« ' , then
u> = MI«M. We do not require that ul*Jl = Mm.

Roughly, this says that a small change in nodes in T \ C (viz. going from t^ to
t'\'\ where / and t' are related via <£ to the same node u e U \ C) results in only a
small change (no change) in their <f>-relatives above u in U; if t^ and t'^ are
related to any node above u, then they are related to only one, and the same one.
Hence the name 'continuous'.

THEOREM 1.7. The relation 0 : T \ C—> U \ C is continuous.
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Proof. Suppose that i<j in C and u e U(i), and let tx, t2e T(i) be such that
t,Qu and £(t,)<t, (1 = 1, 2). Suppose that u,eU(j) with u,>u are such that
t\i] 0 u , for / = 1, 2. We must show that ux = u2.

For / = 1, 2 choose a full left ideal // of Rj representing the pair (t\'\ u,). Then
oJi = t,U < h- As / is a limit ordinal, there is k < i such that oJteT \ k for each /.
Set K, = J,nRk. By Proposition 1.3, J, = nk\Ki)nRJt that is, we have J, = K\n

in the notation of Proposition 1.3. Also set // = /C)'1 (which by the proposition is
J,C\R,). These definitions are illustrated in Fig. 1.1.

height

FIG. 1.1

Assume for a contradiction that ux^u2. By Proposition 1.3.1, [Q~\J\j\* =£
[^"•'(y^)]*, so without loss of generality we may assume that there is s e S* with
6(s)eJi\J2. Hence jzkd(s) e Kt\K2. By definition of the club C (cf. Proposition
1.4(ii)), there is s'eS* with jzk6(s') = Jik6{s). Hence 6(s')elx\l2. Conse-
quently, [d-\ix)Y^[d-\i2)f.

But ut^u e U(i), and by Proposition 1.5, 0 is homomorphic. So 6 '(//) is full
in 5, with tree site u, for each /. By Proposition 1.3.1 again, [0~'(/i)]* =
[0~'(/2)]*. This is a contradiction. So M, = u2, as required.

We can now adapt surjectivity to green nodes. A relation <t>: T—> U is said to
be surjective on green nodes if whenever M e U is green then there is a green node
t e 7 with f <$ M.

PROPOSITION 1.8. Suppose that <I>: T-+U is a homomorphic, surjective and
continuous relation, where T and U are spruce trees. Then 3> is surjective on
green nodes.
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Proof. Let u e U be a green node of height /. Using property (iv) of
spruceness we may first choose a branching node u' > u of height / in U, and then
an ordinal k >j and u" e U(k) with u"*u'[*-k].

Now as <l> is surjective, there is t" e T(k) related to u" via O. Let t', t be the
predecessors of t" of heights j , i in T respectively. As O is homomorphic, t' <t>w'
and t <I> u.

If t is not green in T, then £(f') =£ t < t' and also t" = r1*1. So by continuity the
only node related to t" by O is u[<t>k]. This is a contradiction, and proves the
proposition.

DEFINITION. A relation 4>: T—> U on spruce trees is said to be conformal if it is
height-preserving, homomorphic, surjective on green nodes, and continuous.

EXAMPLES. Any tree isomorphism is conformal. The results above show that
0 : T \ C-> U \ C is conformal.

Conformal relations preserve sufficient tree structure for us to prove our
non-structure results. We will see this in the remaining sections; see, in particular,
Theorem 2.7 below.

2. Aronszajn trees

An Aronszajn tree is a tree A of height cou such that each level A(i) (for all
i<Wi) is countable, but without uncountable branches. See [9] or [10] for the
classical construction of an Aronszajn tree. We modify it slightly to obtain a
large family of 'pseudo-Aronszajn' trees such that there is no conformal relation
defined on any club between any pair of the family. Hence by the results of §11.1,
the limits of any SFP systems built on the trees will be pairwise non-embeddable.
We also show how to make the trees fairly rigid with respect to conformal
relations. In § 5 we will use this to produce rings that are also fairly rigid. The
trees we build are spruce and so not strictly Aronszajn, but they retain enough
'Aronszajn-ness' to ensure that rings built on them have the Aronszajn-like
property that every maximal ideal (more generally, every full ideal) is countably
generated.

To make the trees different we will use the devices of 'grids' and 'nests'. We
will define nests later; first we look at grids.

DEFINITION. A grid is a pair r = (G, y), where GcSSw, is a set of limit
limit ordinals, and y: G x co—>- d(o{ is a map that provides for each j e G a
strictly increasing sequence of countable limit ordinals y(y, n)=jn (n<(o) with
(JU,: n<(o}=j.

It will also be useful to define a node t of limit height / in a spruce tree T to be
cofinal if t is a cofinal branch of T \ i; that is, there are branching nodes of
unbounded height in i.

We now present our main construction. The statement of the theorem contains
some terms that will be defined below.
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THEOREM 2.1. Let T = (G, y) be a grid. Then there is a spruce tree A =A(T)
with the following properties:

(a) if i<j< o)\ and £ e A(i) is a sequence node with sup(£) < q eO, then there
is a sequence node 77 eA(j) with £ < 77 and sup(^) < q;

(K) if i<(olt A{i) contains at most Ko sequence nodes;
(v) for all i e d(ox the number of distinct cofinal green nodes of height i in A is

\y-l(i)\.XoifieG,

So, for example, if i e G\im(y) then there are no cofinal green nodes in A(i).

Proof. Unlike in the classical Aronszajn construction the nodes of A will be of
two kinds: sequence nodes or blank nodes.

Sequence nodes are certain elements of <a)|Q = {ry: 3 /< (0,(77: /—»Q)}. So
<a>'Q is the set of countable sequences of rationals. If 77 e <tO|Q, we write len(7?)
for dom(r7), and sup(?7) for sup{7/(/): / < \cn(r])} e R U {00, -00}. Each sequence
node 77 will be a bounded increasing sequence; that is, sup(r7)<<» and
rj(i) > sup(rj f i) for all i < len(»7). The letters 77, £ will denote sequence nodes.

Blank nodes are 'filler' nodes. We can increase the height of a sequence node
in the tree by inserting blank nodes beneath it.

Each node of A will be either sequence or blank, but not both. The sequence
nodes will be precisely the branching nodes. It will be clear that if T = ( 0 , 0 )
then deleting the blank nodes from A(T) gives a classical Aronszajn tree.

We will construct A by induction on levels. We must specify which elements of
A are related in the tree ordering. As in the standard Aronszajn tree, if £, 77 e A
are sequence nodes then £ < 77 will hold in the tree if and only if § is a proper
initial segment of 77. However, blank nodes are not sequences and we will specify
explicitly how the tree ordering relates them. Since blank nodes may occur
beneath sequence nodes, we will have ht(77) 5= len(77) for every sequence node
77 eA, whereas in the classical case we have equality.

We now begin the construction of A. We define A(0), the Oth level of A, to be
{<)}, where () is the empty sequence, a sequence node with supremum —00. if
A{i) has been defined, we construct A(i + 1) as follows. First, for every node
a eA(i) we put a single blank node a+ into A(i + 1) above a. This gives property
(ii) of the definition of 'spruce'. Then for each sequence node 77 eA(i) and every
q eQ with q >sup(7?), we put the sequence node rj*q (the sequence 77 followed
by q) into A(i + 1). This adds countably many sequence nodes above 77. Clearly
(a) and (K) are preserved.

Now assume that j< a)A is a limit ordinal and we have built A(i) for all i<j.
There are two cases.

Case I: j $ G. In this case we follow the classical construction. So for each
sequence node 776̂ 4 \j and each rational g>sup(77), we choose a rational q'
with q>q' > sup(77) and a strictly increasing sequence of ordinals /„ (n < eo) with
/O = ht(77) and U {/„: n<(o}=j. We then define sequence nodes t]neA(in)
(n < (o) by induction on n. We set rjo = rj. If 77,, has been defined, we use (a) to
find a sequence node t]n+x eA(in+l) with 77,,+, > 77,, and sup(77n + 1 ) < ^ ' . Then the
union 77̂  of the sequences 77,, is an increasing sequence of rationals, and
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^q' <q. We put r)w into A(j), so rjw will lie above the branch of A \ j
defined by the 77,,.

We then add a single blank node above each remaining branch of A \ j . This
gives amongst other things property (i) of the definition of 'spruce'. Clearly (a)
and (K) are preserved by the construction.

REMARK. In fact, (a) clearly ensures that there is more than one choice for
7]n+, at each stage. Hence there are 2N° possible choices of ryw.

Case II: j e G. Our aim is to make level j of A 'special' by using the fact that
jeG, whilst all the time preserving (a). Write jm for y(j, m) (m<w). Let
r] eA \ j be a sequence node, let q eQ with sup(r))<q, and let m < co be the
least m such that jm > ht(r^). Since jm is a limit ordinal, we can use the argument
of Case I to choose an increasing series of sequence nodes r\n (n < a>) in A \ jm

with 77,,= r], U {\\\.{r)n)\ n<w} =jm and sup(ryfo) <q, where r],0 is the union of
the sequences r\n.

Now by the Remark above, there are 2N" possible choices of rj(0, so by
property (K) we can choose one such that rjw $ A \ y. It follows that the branch of
A \ jm determined by the r)n has only blank nodes above it in A \ j , so it
determines a branch /3 of A \ j . We then put the sequence node r)w into A(j)
above jS. We do this for all r) eA \ j and all q >sup(^). This preserves (a) and
(K).

We complete the construction by adding a single blank node above each
remaining branch of A [y, as in Case I. The conditions (a), (K) remain
undisturbed.

Let A be the resulting tree of height o)x. We must check that it is spruce. All
clauses of the definition except perhaps (iii) are obviously true. Clause (iii)
follows as in the classical Aronszajn construction, because a cofinal branch of A
would give rise to an uncountable strictly increasing sequence of rationals, which
is impossible as Q is countable.

We finally check that A satisfies (v). For i^j< w, let Y(i, j) = {b eA(i): b is
cofinal and green, and fr|y| is the lowest sequence node above b in A}. Evidently,
the Y(i, j) are pairwise disjoint, and for each / < to, the set of cofinal green nodes
in A(i) is exactly U {Y(i, j): i =Sy < a>,}.

Let iedo)\\ we evaluate \Y(i, j)\ for each ; by referring to the construction.
Firstly, Y(i, i) is the set of cofinal sequence nodes in A(i), so \Y(i, i)\ is 0 if / e G,
and N() if i$G. Secondly, let j>i. If Y(i, j) is non-empty then let beY(i,j).
Since the sequence node b[j] is not cofinal, we must have / ' e C , and as b is
cofinal, we have / = y(j, n) for some n < (o. But if / = y(j, n) for some
j,n, then \Y(i,j)\^i<{), as Y{i,j) gets Ko elements for each sequence node
t;eA \ i\\Jm<nA \ y(j, m). Since the map b>-*blj] is injective, it follows from
property (K) that Y{i,j) is at most countable. So \Y{i,j)\ = K() if i = y(j, n) for
some j e G and n<a>, and \Y(i, y)| = 0 otherwise.

Totting up, we see that the number of cofinal green nodes in A(i) is
|y~'(/)|.K0 for Uy>i y(*\ j)> plus an extra K() for Y(i, i) if i$G. This proves (v)
and completes the proof of Theorem 2.1.

We will use (v) to show that if F and F' are sufficiently different grids then
there is no conformal relation defined on any club between ^4(F) and
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Suppose that C is a club and <I>: A(T) \ C^A(T') \ C is a conformal relation.
We would hope that if i eC then the ith levels of A(T) and A(T') are 'similar'.
For comparison we want to use the cofinal green nodes, because we can control
them using (v) of Theorem 2.1. Suppose that b eA(Y') is a cofinal green node of
height /. As O is surjective on green nodes, A(T) will contain a green node a of
height / with a$>b, but as <I> is a relation, it does not follow that a is cofinal.
However, we can show that if i e dC and A(T') contains uncountably many
cofinal green nodes b of height /, then A(T) contains at least one cofinal green
node a of height / with a&b for some such b. To do this we use our second
device, the nest.

DEFINITION. Let T be a tree. A nest in T is a set N of green nodes of T such that

N c T(i) for some i < ht(7),

N is uncountable,

{t eT: 3ne N(n > t)} is countable.

Note that if T is a spruce tree, C is a club in a>, and iedC, then a set N c T(i) is
a nest in T if and only if N is a nest in T \ C.

LEMMA 2.2 (preservation lemma). Let T, U be spruce trees, let C be a club in
w, and suppose that <I>: T \ C—> U \ C is a conformal relation. Let i € dC be such
that there is a nest N c U(i). Then T(i) contains a cofinal green node m with m<!>n
for some n e N.

Proof. The argument is similar to that of Theorem 1.7. Let N c U(i) be a nest.
Since there are only countably many nodes in U lying below the elements of N,
the set N* = {neN: Vn'<n (n=£/i'l<M)} is also a nest. Take neN*. By
surjectivity for green nodes, there is a green node m e T(i) with m<!>n. Suppose
for a contradiction that m is not cofinal in T. Thus £(m) < m. As / e dC, we may
choose m' eT \ C such that t,{m)<m' <m. Then also £(ra') = t,(m)<m', and
m'[i] = m.

As 4> is homomorphic, we have m' On' for some n' e U(htT(m')) with n' <n.
By continuity of O we must have n = n'[<t>>]$N*. This is a contradiction, which
proves the lemma.

The relationship of cofinal green nodes to nests is given by the following
proposition.

PROPOSITION 2.3. Let T be a spruce tree. Let i < to, and suppose that N c T(i).
Then N contains a nest in T if and only if

(a) / is a limit ordinal, and
(b) there are uncountably many cofinal green nodes in N.

Proof. To prove (a) and (b) we can assume that N is already a nest. Since T is
spruce, every node of Thas countably many immediate successors. It follows that
(a) holds. If (b) fails, then there are uncountably many nodes neN such that
t,(n)<n (cf. Proposition 1.2). By Proposition 1.2, all the £(n) are distinct, so
there must be uncountably many nodes lying below nodes in N, which contradicts
the assumption that N is a nest. Hence (b) holds too.
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Conversely, if (a) and (b) hold then take an uncountable set N' of cofinal
green nodes in N. As T \ i contains only countably many branching nodes, it is
easily seen that N' is a nest.

We now relate this to our construction.

DEFINITION. A grid r = (G, y) is said to be fine if
(i) y~l(/) is uncountable for all / e im(y),

(ii) im(y) = (3cu,)\G.

It is easy to see that if (G, y) is fine then G must be uncountable, and for any
uncountable G c ddw, we can find a y such that (G, y) is a fine grid.

We will usually work with fine grids from now on.

COROLLARY 2.4. Let A =A(T), A' =A(T') be spruce trees, where T = (G, y),
F = (G', y') are fine grids. Suppose that C is a club in a>, and <I>: A \ C—>A' \ C
is a conformal relation. Then G D dC c C H dC.

Proof. Pick i e G C\ dC; we show that i e G'. As T is fine, we have i $ im(y).
So by (v) of Theorem 2.1, there are no cofinal green nodes in A(i). Hence by the
preservation lemma, there is no nest in A'(i). By Proposition 2.3, it follows that
there are at most countably many cofinal green nodes in A'(i). If i' £ G' then as F"
is fine, /eim(y') and so y'"1^) is uncountable. Hence by (v) of Theorem 2.1,
there are uncountably many cofinal green nodes in A'(i), a contradiction. Hence
i eG' (and in fact there are no cofinal green nodes in A'(i)).

Recall, for example, from [10], that a stationary subset of a>, is a set that has
non-empty intersection with every club in w,. We quote:

FACT 2.5 [10, Theorem 85]. There exist K, pairwise disjoint stationary subsets
O f <Wj.

This is usually attributed 'essentially' to Ulam, since the easiest proof uses an
Ulam matrix. The theorem was later strengthened by Solovay. Clearly the
intersection of a club with a stationary set is stationary. Hence we can find
pairwise disjoint stationary subsets 5* (k < to,) of ddcou

Now it is easy to find subsets X' c CD, (/ <2CO') such that if i =tj then X'\Xj is
non-empty. Define G' = \J{Sk: keX'} for each i<2°". We see that each
G' c dda>u and if i =£/ then G'\Gj is stationary. For each G' choose y' such that
r = (G1, y') is a fine grid, and set A' to be A(r). Write LA' for L(A{).

PROPOSITION 2.6. / / i, j<2W] and i^j then there is no conformal relation
<*>: A \ C^>A> \ Cfor any club C in «, .

Proof. Suppose that C is a club in w, and <I>: A'' \ C—>A>' \ C is a conformal
relation. By Corollary 2.4, G'ndC^Gj. But G'\G' is stationary and dC is a
club. This is a contradiction.
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THEOREM 2.7. Suppose that for each i < 2W| we have an SFP system
(LA1, p', v') with each p'(a) a countable ring, and with limit ring R'. Suppose
that i,j<2a)l are distinct. Then there is no ring embedding 6: R'^R1. Hence the
rings R' (i < 2°*') are pairwise non-embeddable.

Proof. By the results of § II. 1, such a 0 would give rise to a conformal relation
0: A' \ C^>A' \ C for some club C c w , . This contradicts Proposition 2.6.

REMARK 2.8. If / < 2°" let G" = (Uy<2<"> G')\G\ Evidently we can weaken part
(ii) of the definition of fine to im(y') = G". See Remark 2.11 below.

Rigidity
It is clear from the proof of Theorem 2.1 that it is not essential to use the same

grid throughout the construction, or indeed even within a single level. We will
now modify the construction accordingly, to produce a spruce tree A such that if
C c da), is a club and O: A \ C-*A \ C is a conformal relation then a $ o for all
green aeA \ C. (That is, A is 'conformally rigid'—but note that there may also
be.b=/=a with a <£>b or b <I>a.) This is enough to produce rigid rings, as we will see
in §5.

First take pairwise disjoint stationary sets Sin c ddco} (for / < a>,, n < at). By
deleting elements, we can assume that min(5',>J) > / for all /, n. Define G =
U {Sin: i<wu n<co}. Now A is built by induction on levels. We assign the set
S() = ^Jn<U)Son to the empty sequence, <>. As each higher sequence node £ is
introduced, we assign a new set Sin to £, where i = ht(£). This is possible as A(i)
contains only countably many sequence nodes. We can then write this Sin as 5§.
We can arrange to use all the sets Sin in this way.

When 5̂  has been defined, we also choose two grids V% = (5?, v%) and
Wg = (Sg, wg). We require that

i =0,

im(f§) D \ §,

v% l(i) is uncountable for all i eS%.

These conditions are easy to arrange.
The construction of A at non-limit levels is as in Theorem 2.1. We build the

limit level j of A as follows. Ifj$G, we apply 'Case I' of Theorem 2.1; this is the
classical Aronszajn case. Suppose instead that jeG. Then jeSin for some i<j
and n<co. Hence we have already defined Sin to be 5? for some unique sequence
node £ eA(i). For each sequence node r\€A \j and rational q>sup(rj), we
want to include a sequence node rj' in A(j) with rj' > rj and sup(ri')<q. We
apply Case II of Theorem 2.1, but using the grid V^\ir]^% and W§ otherwise.

Let A be the result of the construction. We have:

LEMMA 2.9. Let i e Sg for some sequence node § e A. Then:
(i) there is a nest in A(i) above £,

(ii) if a eA(i) is a cofinal green node then a > §.

Proof, (i) As /eSg, we have ieim(v%). Hence there are an uncountable set
/ c 5§ and n < co such that Ug(y, n) = i for all j € I. Let j e I. Choose a sequence
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node rjeA \i with 77 ^ £ and ht(r])^v^(j, m) for all m<n. By construction,
there is a cofinal branch /? of A \ i with rj e jS, such that the sequence node

U/3 : = U{f?': *?' a sequence node, r/' e/3}

is in A(j) (and above /?). Let 0, be the unique node in A(i) lying below {J(i.
Then #y is cofinal and green and a} > £. Since, moreover, every node a < [J jS of
height at least / is a blank node, the fl; (; e 1) are all distinct. Hence by
Proposition 2.3, {af. j e 1} is a nest above £ in /l(i).

(ii) Let 0 6i4(/) be a cofinal green node. Since ieG, Case II was used to
construct A(i), and in doing this, no cofinal green nodes were introduced. So a
must have been made green at some later stage. That is, there are a sequence
node 7] e A, y e {vv, wv}, j e Sn and n<a), such that y(j, n) = i and the sequence
node Ua w a s Put i n t 0 A(j) (above a).

Now /eSgcddcu,. As im(wrj)n dd(ox = 0 , we have y = vt]. Hence by
construction, a>r\. But now i e dd(0xDim(vri) = Sri. As the 5,,- are pairwise
disjoint, we have T) = £. So £ <a, as required.

COROLLARY 2.10. Let O: A \C^>A \C be a conformal relation, for some
club C c 3 « , . Let teA \ C be a green node. Then tOt.

Proof. Choose a sequence node £ ss fin A and / e S% H dC. By Lemma 2.9(i),
there is a nest N above § in /4(i). By Lemma 2.2, there is a cofinal green node
m e A(i) with m O n for some n e N. Hence m > 12= t by Lemma 2.9(ii). Because
<I> is homomorphic, we obtain f 4>f, as required.

REMARK 2.11. Using Remark 2.8, we can combine Corollary 2.10 with
Proposition 2.6 to produce 2N| 'conformally different' rigid trees. The method is
standard and we will not describe it further.

3. Countable generation of full ideals

In the last three sections we study in more detail the limit rings of SFP systems
built on the SFP domains LA, for A as in §2. Already by Proposition 1.5.3, if
each map v of the system is an isomorphism then each of the locally generated
ideals of the limit is densely decomposable. In § 4 below we will show that the
limit rings can all be made LW(O-equivalent, and in § 5 we build in some rigidity
(the rings will have few endomorphisms). In the present section we show that
every full ideal can be made countably generated.

Let A be a spruce tree as built in Theorem 2.1, and let (LA, p, v) be an SFP
system such that p{a) is countable for all a e LA (or equivalently for all
a e B(A)). Let the SFP system have limit ring R, and let R, be the limit of the
system restricted to LA{ (all /<ci>!). By Proposition 1.1.5, R is uncountable, of
cardinality X,. None-the-less we will now use Corollary I.2.5(ii) to show that
every full ideal (either left or two-sided) of R has a countable set of generators.

First we need a technical lemma on the tree structure of L(A).

LEMMA 3.1. Let T be a spruce tree. Then every node of L(T) has either 0 or Ko

immediate successors in L(T).
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Proof. Assume that t e L(T) is not terminal in L(T). If t e B(T) then clearly t
has at least Xo immediate successors in L(T). Assume that 1e L(T)\B(T). There
is b e L(T) with b >t. We can assume that i = htT(b) is least possible, so i is a
successor ordinal, b e B(T) and b has an immediate predecessor b~ in 71. It is
possible that b~ > t; clearly, if b~ > t then 6" e (T \ da)^)\L(T).

Now b~ is the immediate predecessor of a branching node in T. So by (ii) and
(iv) of the definition of 'spruce', b~ is itself branching and has Ko branching
immediate successors c in T. By choice of i, each such c is an immediate successor
of t in L(r). Hence t has at least Ko immediate successors in L(T).

It remains to prove that no t e L(T) has uncountably many immediate
successors in L(T). Assume for a contradiction that t e L(T) is a counter-
example. Let htT(t) = /. As T is spruce, there are arbitrarily large j<0)\ with j > i
such that there is an L(T)-immediate successor b of t of height j in 71. Clearly
j is a successor ordinal; let j =j~ + 1 and let b~ <b have height j ~ in 7. There
is no xeL(T) with r< jc^6~. Hence b~/L(T) = t. It follows that fc~ = / l r l

(cf. the proof of Proposition 1.3). As above, b~ is a branching node of 7. As
this holds for arbitrarily large j ~ , it follows that the branch of T determined by
{t^: i<j< w,} is cofinal in T. This contradicts the spruceness of T.

We now obtain:

THEOREM 3.2. Let A, R, /?, be as above. Let J be a full left ideal of R. Then J is
countably generated.

REMARK. Recall that by Proposition 1.3.2 the full ideals include the maximal,
prime and irreducible left ideals and also the maximal two-sided ideals of R.

Proof. Suppose that J = I@a in R, for some a e LA and some ideal I^Ra.
There is i<a>i such that a e LAh By Lemma 3.1, we can choose / so that all of
the immediate successors of a in LA (if any) are already in LAh It follows that:

LA,<LA, {a'eLA: a'/LA^a} = {a}.

By Theorem 1.2.2, / D R,, = / @ a in /?,. By Corollary I.2.5(ii), / D /?, generates
/ in R. The result follows since by Proposition 1.1.5, Rj is countable.

4. L^-equivalence

Here we prove that if two grids T' ,r2 are 'sparse' enough then BA(rJ) and
BA(r2) are LX(O-equivalent trees. Since the rings of Theorem 2.7 are the limits of
SFP systems of the form (LA(T), p, v), this will prove that in the case of
Boolean powers (cf. Remark 1.4.3) say, the rings /?, (/ <2W|) of Theorem 2.7 are
all LoofO-equivalent.

Formally, Corollary 1.6.3 combined with Theorem 4.5 below will give the
following:

THEOREM 4.1. Let T\ T2 be fine, sparse grids, and let Rx, R2 be L^-equivalent
rings. Then the SFP powers Rl(LA(Ti)) and R2(LA(T2)) are LX(O-equivalent.
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We mentioned LXOi-equivalence in § 1.6. There is another characterisation of
Loo^-equivalence in terms of back-and-forth systems. A back-and-forth system
between structures M and N is a set 0 of partial isomorphisms from M to N such
that:

0*0,
if 0 € 0 and a e M then there is b e N such that 0 U {(a, b)} e 0 ,
if 0 e 0 and b e N then there is a e M such that 0 U {(a, b)} e 0 .

FACT 4.2 (Karp's theorem [12]). The structures M and N are L^-equivalent if
and only if there is a back-and-forth system 0 between M and N.

We will show that LA(r*) and LA(T2) are L^-equivalent for sparse r ' , by
finding a back-and-forth system between them. It will then follow that
BA(r') =m(O BA(r2). Though LA is definable in A by a first-order formula, / t(r ' )
and A(F2) will not in general be LooW-equivalent. (If they were, then for all i<cou

if A(Yl)(i) contained a cofinal green node then so would A(T2)(i). Hence the
A(F) of Theorem 2.7 are not LO0(O-equivalent.) So we must work directly with the
LA, remembering that if teLA then maybe htLA(t)<htA(t), and t may be a
branching node of LA without being branching in A (though it will be green in A).

DEFINITION. An uncountable set C c a>, is said to be sparse if

min{y eC: j>i) >i + i (=i.2)

for each ieC. A grid (G, y) is said to be sparse if G is sparse.

Clearly any uncountable subset of a sparse set is also sparse. If we define an
ft>(-sequence z, (y<w,) inductively by zo= co, zj+x = zy.2+l, and zs =
U{Zj'- ]<&} f°r limit 6<(o], then Z = {zf. j<a)\} is a sparse club. Hence if
S c cOi is stationary then S D Z is sparse and stationary. It follows that in Fact 2.5
we can assume that the 5' are subsets of Z, so that the G' defined prior to
Theorem 2.7 are sparse.

Sparseness is used in the following lemma.

LEMMA 4.3. Let G be a sparse subset of ddcou and let T = (G, y) be a fine grid.
Write A for A(T). Let b be a branching node of LA with htLA(b) = i. Then for all
ordinals j with i<j < <w, and all q e Q, there is a branching node c of LA with
c>b, htLA(c) =j and sup{sup(r/): rj a sequence node, rj^c

Proof Since b is a branching node of LA, it is green in A. Let rj be the lowest
sequence node in A with rj^b. By construction, we may take a sequence node
•q' eA such that r)' is an immediate successor of r] in A and s\\p(T)')>q. Then
T)' e LA and htLA(rj') = / + 1. This proves the lemma in the case where j = i + 1.

Assume that j>i + 1. With r}' as above, any sequence node greater than ry'
already has supremum greater than q. So if we replace 6 by ry', it is enough to
find a sequence node c above b and of height; in LA.

Let g be the least element of G such that g>j and g>htA(b). By (a) of
Theorem 2.1, we can find a sequence node § e A(g) with § > b. Of course, g e G,
so | is not cofinal in A \ g. Consequently, £ $ LA.
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Let %0=%/LA and suppose that htLA(%Q) = k0. There are two cases. If j^k0

then choose f e LA so that If' < § and htL/4(|f')=y. Any branching immediate
successor of If is in Lv4, so If' is not a terminal node of LA. Hence by Lemma 3.1,
it is a branching node in LA, and we have finished.

If, on the other hand, j>k0, then let k be such that ko + k=j, and set
j'=g + k. Using (a) of Theorem 2.1, choose a sequence node £' eA(j') with
£ ' > | . LetS = {ljo}U{f €i4: £ < / < £ ' } . Now k^j<g. As G is sparse, there is
no g' e G with g <g' ^j'. By construction, it follows that every node t e E is a
sequence node, so that S c= Lyl. Clearly S has order type A;. Since §' D L/t =
(£or\LA) U S, we have h t^( | ' ) = k + k' =j, and we can take c to be §'.

COROLLARY 4.4. Under the assumptions of Lemma 4.3, /or a// limits ordinals j
with i <j < a),, f/zere w a terminal node t of LA with t>b and h\.LA{t) = /•

Proof. Take a strictly increasing sequence of successor ordinals ;'„ (n < (o) with
y() > / and Un<U}jn =j. As each ;„ is a successor ordinal, we may use Lemma 4.3 to
define sequence nodes £„ e LA by induction, with htL/4(^) =/„, £0> b, §„+, > §„
and sup(|n)>n (for all n<a>). Let * = lub^-fl-,,: n < co}. Then ^ ^ ( 0 = 7 -
Further, sup{sup(r/): r) a sequence node, 77 < tj = °°. Hence there can be no
sequence node rj^t in A, so t must be a terminal node of LA.

For the rest of this section let G \ G2 be sparse (stationary) subsets of cou and
let P = (C, yl) be fine grids (/ = 1, 2). Consider the trees Ax = A(Tl), A2 = A(T2)
constructed in Theorem 2.1. We will prove:

THEOREM 4.5. (i) The SFP domains LA1 and LA2 are L^l0-equivalent posets in
the signature L = { = , < } .

(ii) The posets BAX and BA2 are also L^-equivalent.

Part (i) of Theorem 4.5 will follow immediately from Lemma 4.6 below. Part
(ii) follows from part (i) here, since there is a first-order L-formula q>{x) such that
for any A as in Theorem 2.1, {a e LA: LA t q)(a)} = BA. The formula q> simply
says that x does not have limit height in LA. Part (ii) is what is required for
Loo^-equivalence of the limit rings.

We begin the proof of the theorem with a definition.

DEFINITION. Let T be any tree. If U c T, we say that U is a full subtree of T if
U is non-empty and closed downwards in T. If 5 c T is non-empty, we write (5)
for the full subtree {t eT: t^s for some s eS} of T generated by 5. Now T is
said to be finitely generated if T — (5) for some finite S c T . Note that no branch
of a finitely generated tree can have limit height.

If U1 is a full subtree of T1 (I = 1, 2), a map 0: UX^U2 is said to be a strong
isomorphism if 6 is bijective and preserves '< ' , and each u e Ul is a branching
node of r 1 if and only if 6(u) is a branching node of T2.

For example, if we write I 1 , ±2 for the unique least element of 7"1 and T2,
then {JL7} is a finitely generated full subtree of each T', and the map ( I 1 *-> I 2 ) is
a strong isomorphism. Hence the set 0 of strong isomorphisms between finitely
generated full subtrees of LA1, LA2 is non-empty. The next lemma shows that 0
is a back-and-forth system between LA1 and LA2, and so proves Theorem 4.5.
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LEMMA 4.6. Let T1 be finitely generated full subtrees of LA1 (/ = 1, 2), and
suppose that 6: Tl—> T2 is a strong isomorphism from Tl to T2.

(i) Let tl e LA'. Then there is t2 e LA2 such that 6 U {(t\ t2)} extends to a strong
isomorphism from (T] U {t'} > to (T2 U {t2} >.

(ii) Exchanging the indices '1 ' and '2' in (i), we have a similar result.

Proof. We will only prove (i), as the proof of (ii) is similar. So let Tl, T2, 6 be
given, and let tl e LA1. We can assume that tl $ Tl; the result is trivial otherwise.
Now T] has no branches of limit height. So there is a unique largest node v eTl

with v<t\ We have Tx ^ LAX and v = t1/Ti in the notation of §1.1. Let
6(v) = weT2 and let htLAi(tl) = h < <y,. It suffices to prove the following:

Claim. There is t2 e LA2 with t2/T2 = w, htLA2(t2) = h, and such that tx is a
terminal node of L-4' if and only if t2 is a terminal node of LA2.

Given the claim, we can finish as follows. Let U' be the full subtree of LA'
generated by T1 U {t1} (I = 1, 2). Since ht(t2) = /i,we can extend 6 canonically to
an order-preserving bijection 6': Ul—>U2. Since by Lemma 3.1 every node of
each LA1 is either branching or terminal, 6' will be a strong isomorphism.

Proof of Claim. Since t' £ Tx, we see that v is not terminal, so v is a branching
node of LA1. As 0 is strong, w is also branching in LA2, with infinitely many
immediate successors. As T2 is finitely generated, we can take an immediate
successor w' of w in LA2 with w' £ T2. It suffices to find t2^ w' in L/l2 with the
required properties.

If t] is a branching node of LA1 then by Lemma 4.3 there is a branching node *2

of Ly42 above w' and of height h in LA2. If /' is terminal in LA1 then /i must be a
limit ordinal, so we can use Corollary 4.4 to choose a terminal node t2 e LA2

above w' of height h. This proves the claim and with it the lemma.

Theorem 4.5 is proved.

5. Rigidity

By imposing restrictions on the homomorphisms vpq in the SFP systems and
using Corollary 2.10, we can make the 2N| limit rings of Theorem 2.7 somewhat
rigid. To conclude our survey we will prove a sample result for Boolean rings. We
will define an SFP system with Boolean limit ring R having no non-trivial injective
endomorphisms. The example will also illustrate the use of SFP systems in which
not all vpq are isomorphisms.

Further cases are discussed in [8]. For example, we may set up an SFP system
with limit ring R so that any injective endomorphism 6: R^>R satisfies
6~\l) = I for every maximal two-sided ideal / of R. (In the case where R is
Boolean, this implies that 6 = idR.)

Take any countable Boolean ring 5, and fix a countable set E of maximal ideals
of 5 such that any proper finitely generated ideal / of 5 is contained in some
KeZ.

Suppose that A is a 'conformally rigid' tree as considered in Lemma 2.9. We
build an SFP system o= (LA, p, v) on LA as follows. First we partition Q into
sets QK (K e S) such that each <Q̂  is dense in Q. For each sequence node 7] e BA
we define R^ to be S. For each q eQ with q>sup(rj) we define vv<r]*q so that

)^q) = K where q e QK. Since S/K = Z2, this defines v,, ̂ q completely.
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Hence if a e LA\BA we will have

Ra = lim (Rv, vn<r,.: r/ < r]' in BA D a) = Z2,

and if b > a then vah must be the unique embedding of Z2 into Rh. We have now
defined o completely.

Let R = lim(cr). Then R is an uncountable Boolean ring. If / < cu,, write /?, for
\im(LAh p', v') as usual, where p' and v' are the appropriate restrictions. Let
6: R—>Rbea ring embedding. As in Proposition 1.4 we can find a club C c 3w,
so that 6 induces a conformal relation 0 : A \ C—>A \ C.

We claim that Q = \dR. Suppose for a contradiction that there is r e R such that
0(r) = r' i^r. Take / e C such that r, r' e /?,-. As /?, is Boolean, it is easily seen that
at least one of the sets {r, 1 - r ' } , {1 - r , r'} generates a proper ideal of /?,
containing just one of r, r'. Assume without loss of generality that {r, 1 - r'} has
this property. Take a finite support N<BAj for {r, 1 - r ' } . The ideal of RN

generated by {r, 1 - r '} is proper, so there are rj eN and KeZ with r(rj),
1 - r'(rj) e K. (Note that r\ is a finite element of L̂ 4 and hence a sequence node
in A.) Choose qeQK with <?>sup(?7) and r)Aq<£N, and then choose a green
node (say a sequence node) a £ A(i) such that a>r)Aq. So a/iV = Y). Write 2 for
^ae LA. Then

r(z) = VizO'M) = ">Wz • vT,,,,^(r(»y)) = 0.

Similarly, (1 - r'){z) = 0.
Now by Corollary 2.10 we have a 0 a . Hence by definition of 0 there are

proper ideals /, / of Rz such that in Rj we have 6~\l@z)=J@z. So

Now reJ@z in /?,-, so r'el@z. But r'(z) = l, which contradicts the
assumption that / is proper. Hence 6 = idR as claimed.

6. Proof of the 'sample theorem'' of the preface

Let R, S, S be as above. We have shown that any injective endomorphism of R
is the identity map. Furthermore, by Theorem 3.2 every maximal ideal of R is
countably generated. By Proposition 1.1.5 and Corollary 1.1.4, |/?| = N, and 5
embeds into R. We can make R atomless by taking S to be the countable atomless
Boolean ring (there is no loss of generality as this ring embeds the original S).
Recall that R is atomless if and only if it is existentially closed [7, 6.3.9, Ex.
6.3.2]. Alternatively, if we include the zero ideal 0 in 3 and require that
vtj.r,A<7= ids whenever q e Qo, then by Remark 1.5.4, R will be atomless. We can
also combine the construction of A with the techniques of Theorem 2.1 and § 4 to
produce 2S| pairwise non-embeddable R. See also [8].
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