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CHARACTERIZING AUTOMORPHISM GROUPS OF
ORDERED ABELIAN GROUPS

RÜDIGER GÖBEL and SAHARON SHELAH

Abstract

A proof is given of the following theorem, which characterizes full automorphism groups of ordered
abelian groups: a group H is the automorphism group of some ordered abelian group if and only if H is
right-orderable.

In this short note we want to characterize the groups isomorphic to full auto-
morphism groups of ordered abelian groups. The result will follow from classical
theorems on ordered groups, adding an argument from proofs used to realize rings
as endomorphism rings of abelian groups; see [1]. Recall that H is a right-ordered
group (RO-group) if (H, ·) is a group and (H,<) is a linear order satisfying the
following compatibility condition

For all h < g, k in H, it follows that hk < gk. (RO)

Similarly, we define (LO), the left compatibility condition. If (H, ·, <) satisfies both
(RO) and (LO), then H is an ordered group. Obviously, abelian RO-groups are
ordered groups, in which case we often replace multiplication by ‘+’. A group H

is right-orderable if it permits a linear order that makes it an RO-group. We do
not distinguish between RO-groups and groups that are right-orderable. From the
fact that cyclic ordered groups are infinite, it is clear that RO-groups are torsion-
free. By an old theorem of Smirnov, a group is an RO-group if and only if it is
(isomorphic to) a subgroup of Aut(A,+, <) of an ordered free abelian group A; see
[4, Theorem 7.1.3, p. 129]. We shall use the obvious representation as a subgroup of
Aut(A,+, <) below.

On the other hand, there are torsion-free groups (in fact, polycyclic groups) that
are not RO-groups, a result due to Smirnov; see [4, p. 127]. Note that torsion-free
polycyclic groups are even finitely generated, iterated extensions of �. Our main
result then reads as follows.

Theorem 1. For a group H , the following statements are equivalent.

(1) H is an RO-group.

(2) There is an ordered abelian group G = (G,+, <) with Aut(G,+, <) ∼= H .

(3) If K is any ordered field, then it has an ordered extension field F such that
Aut(F) ∼= H .
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This result is in sharp contrast to an unpublished classification compiled in 1988
by A. L. S. Corner, giving all the finite groups that are automorphism groups of
torsion-free abelian groups, in which many groups such as �/7� are not listed. The
equivalence between statements (1) and (3) is taken from [2], and (1) follows from
(2) by the above theorem of Smirnov. It remains to show that statement (1) implies
statement (2); in fact, we shall show a stronger implication, as follows.

(2∗) There is an ℵ1-free ordered abelian group G = (G,+, <) with Aut(G,+, <) ∼= H .

Here, G is ℵ1-free if all its countable subgroups are free. Consider the group ring
R = �H , and let B =

⊕
R be a ‘large enough’ free R-module. We shall follow the

convention in [1] and view B as an abelian group as well as a right R-module, and we
let �-endomorphisms act on the right. Hence R ⊆ End� B by scalar multiplication on
the right of B with elements from R; say, End� G = EndG. We shall construct a right
R-module G such that B ⊆∗ G⊆∗ B̂ and EndG=R. Here, B̂ is the S-adic completion
of B with respect to some suitable, multiplicatively closed subset S ⊆ � ⊆ R; for
example, S = {pn | n ∈ ω}. Moreover, ‘⊆∗’ denotes an S-pure submodule. It will be
important that

G =
⋃
α∈λ∗

Gα

is the union of an ascending continuous chain of S-pure right R-submodules Gα ⊆∗ B̂

with G0 = B and Gα+1 = 〈Gα, gαR〉∗, such that AnnR gα = 0, Gα ∩ gαR = 0 and
Gα+1/Gα

∼= S−1R is the S-localization, which is S-divisible.
Note that B is S-dense in B̂ and Gα+1 is S-pure in B̂, so Gα is also S-dense in

Gα+1; hence Gα+1/Gα = 〈Gα, gαR〉∗/Gα is S-divisible of rank 1, and is thus isomorphic
to S−1R.

Here, 〈Gα, gαR〉∗ denotes the smallest subgroup of B̂ which is S-pure and contains
Gα, gαR. This part will follow by arguments that we have used in several earlier
papers; for example, in [1]. As H is assumed to be an RO-group by statement (1)
of Theorem 1, we shall turn R = �H into a linear order satisfying the compatibility
condition (RO) for multiplication with positive elements in the group ring.

Proposition 2. If H is an RO-group, then the group ring R = �H has a natural
linear order satisfying (RO) for multiplication with positive elements. The monoid of
positive elements of R will be denoted by R>0.

We postpone the proof of Proposition 2, and assume here that it holds. It follows
that (R+, <) is an ordered free abelian group and R>0 ⊆ End(R,+, <); thus also

R>0 ⊆ End(B,+, <),

where the linear order will be extended and B becomes an ordered abelian group.
We want to extend the order inductively on to G. If Pα = {g ∈ Gα, 0 < g} denotes

the positive cone of Gα, then we want to define the positive cone Pα+1 of Gα+1 =
〈Gα, gαR〉∗.

If y ∈ Gα+1, there is s ∈ S such that ys = x + gαr for some r ∈ R and x ∈ Gα.
Thus we define

y ∈ Pα+1 ⇐⇒
{
r > 0, or

r = 0 and x ∈ Pα.
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It is easy to see that Gα+1 = −Pα+1 ∪ Pα+1 ∪ {0}, and Pα+1 is well defined. If also
ys′ = x′ + gαr

′, then xs′ + gαrs
′ = x′s + gαr

′s. Hence

xs′ − x′s = gα(r
′s − rs′) ∈ Gα ∩ gαR = 0.

From AnnR gα = 0, it follows that r′s = rs′, and s, s′ > 0 implies that r′ > 0 if and
only if r > 0. Moreover, r = 0 if and only if r′ = 0, and similarly xs′ = x′s implies
that x ∈ Pα if and only if x′ ∈ Pα. Note that gα > 0 follows from the fact that 1 > 0.
If r′ ∈ R>0 and y ∈ Pα+1 as above, then yr′s = xr′ + gαrr

′; hence either r = 0 and
xr′ ∈ Pα by the induction hypothesis, or else rr′ > 0 by Proposition 2, so yr′ ∈ Pα+1

and

R>0 ⊆ End(Gα+1,+, <)

follows from R>0 ⊆ End(Gα,+, <). At limit ordinals β < λ∗ we take unions; thus
Pβ =

⋃
α<β Pα and it follows that (G,+, <) is an ordered abelian group with

R>0 ⊆ End(G,+, <).

If r < 0, then the action of r on B (and hence multiplication on a summand Re

of B) shows that 0e < 1e turns into re < 0e. Together with R = EndG, we obtain

R>0 = End(G,+, <).

We derive the following result, assuming that Proposition 2 holds and that the
presentation of G =

⋃
α<λ Gα, as used above, follows.

Theorem 3. If H is an RO-group, if λ is any cardinal with |H | � λ, and if R>0 is
the monoid of positive elements of the group ring R = �H , then there is an ℵ1-free,
ordered abelian group (G,+, <) of cardinality λℵ0 with R>0 = End(G,+, <).

Proof. First, we want to establish the last claim. We note that R+ is a free
abelian group; in particular, R+ is cotorsion-free (that is, Hom(�̂, R) = 0), which
is needed to apply [1, Theorem 6.3, p. 465]. We need a very special case of that
theorem, putting N = {0} and J1 = J = �. Thus EndG = R is immediate. It is
easy to check that G is ℵ1-free. The group G is obtained by transfinite induction as⋃

α<λ∗ Gα = G over α < λ∗ with |λ∗| = λℵ0 by using a weak version of Shelah’s Black
Box (see [1, Appendix]). Conditions (II0) (IIµ) and (IIIα+1) given there show that
Gα+1 is of the right form (replacing A by R), and [1, Lemma 3.4, p. 456] for Nk

α = 0,
together with Condition (IIIα), implies that Gα ∩ gαR = 0, and AnnR gα = 0. �

It remains to show Proposition 2.

Proof of Proposition 2. If r ∈ R, write r =
∑

h∈H rhh with rh ∈ �; similarly,
r′ =

∑
h∈H r′

hh. We say that

r < r′ ⇐⇒
{

∃ h∗ ∈ H, rh∗ < r′
h∗ , and

∀h > h∗, rh = r′
h.

Let [r] = {h : rh �= 0}; then the positive cone of R is

R>0 = {r ∈ R : ∃ maximal h∗ ∈ [r] and rh∗ > 0}.

It is easy to check that this is a linear ordering on R. From R>0 · R>0 ⊆ R>0, it
follows that multiplication with elements from R>0 satisfies condition (RO); thus
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R>0 ⊆ End(R,+, <). The ordering extends naturally to direct sums (see, for example,
[4, Theorem 2.1.1]), and thus R>0 ⊆ End(B,+, <). �

As in the case of polynomial rings �[x], we can show the following proposition.

Proposition 4. If H is an RO-group, if R = �H is the group ring, and if U(R)
are its units, then U(R) = ±H .

Proof. If

r =
∑
h∈H

rhh ∈ R and r′ =
∑
h∈H

r′
hh ∈ R

are as above, with rr′ = r′r = 1, then the product of the maximal coefficients rh∗ and
r′
h′∗ must be 1. This is possible only if h∗h′∗ = 1 and all other coefficients are 0. It

follows that r = rh∗h∗ and r′ = r−1
h∗ h−1

∗ ; also, rh∗ and rh′∗ are units of the coefficient
ring �. Hence r, r′ ∈ ±H . �

Remark. Proposition 4 also follows from a more general result of Strojnowski
on unique product groups; see [3, Corollary 8.4.8, p. 272].

From Proposition 4, it follows that the units of R>0 are U(R>0) = H . From
Theorem 3 and Aut(G,<) =U(End(G,+, <)) our main result follows, which immedi-
ately proves the implication ‘(1) =⇒ (2)’ of Theorem 1.

Corollary 5. If H is an RO-group of cardinality |H | � λ, then there is an ℵ1-free,
ordered abelian group (G,<) of cardinality λℵ0 with Aut(G,+, <) = H.
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Rüdiger Göbel
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