On normal ideals and Boolean Algebras

In [Sh 1] 3.1 we prove: If \mathcal{B} is a Boolean algebra of power $\kappa^+, \kappa = \kappa^{<\kappa}$, and \mathcal{B} satisfies the κ -chain condition then $\mathcal{B} - \{0\}$ is the union of κ ultrafilters (why not " \mathcal{B} of power λ^{++} "? see [Sh 3] mainly 2.4, p.245). We here replace " κ -chain condition" by a weaker condition we introduce here (κ -SD, (see Definition 1), which says that for almost all $\mathcal{B} \subseteq \mathcal{B}$ of power κ , $\mathcal{B} \leadsto \mathcal{B}$ (for the right interpretation of almost).

The other theorem (6) is that $2^{\aleph_0} < 2^{\aleph_1}$ implies \mathfrak{D}_{ω_1} (the club filter on ω_1), cannot be \aleph_2 - dense. We then observe we cannot improve this to $[2^{\aleph_0} < 2^{\aleph_0} \Longrightarrow \mathfrak{D}_{\omega_1}$ not \aleph_2 -saturated] as by Forman Magidor Shelah [FMS], a universe $V, V \models \mathscr{D}_{\omega_1}$ is \aleph_2 -saturated understructibly under c.c.c. forcing" was obtained and discuss the large cardinal needed. For proving Theorem 6 we use normal filters connected with variants of the weak diamonds (see Devlin Shelah [DS], Shelah [Sh 2]) and prove a more general such theorem. Compare with a recent result of Woodin: from $ADR + \mathscr{V}$ regular" he gets the consistency of $\mathscr{D}_{\omega_1} + X$ is \aleph_1 -dense" for some stationary $X \subseteq \omega_1$. The conception of this work is closely connected with Forman Magidor and Shelah [FMS], and also Shelah and Woodin [SW], and [Sh 5]; it was done subsequently to most of [FMS].

Notation: $\mathcal{P}(\lambda) = \{A : A \subseteq \lambda\}$, it is a Boolean algebra and we sometimes say λ instead of $\mathcal{P}(\lambda)$. \mathcal{B} denotes a Boolean algebra; the filter $E \subseteq \mathcal{B}$ generated is $\langle E \rangle_{\mathcal{B}} = \{x \in \mathcal{B}: \text{ there are } n < \omega, x_1 \in E, \ldots, x_n \in E \text{ such that } \bigcap_{i=1}^n x_\ell \leq x\}$, it is proper if $0 \not\in \langle E \rangle_{\mathcal{B}}$; an ultrafilter is a maximal proper filter. Let $\mathcal{B}_1 \Leftrightarrow \mathcal{B}_2$ means \mathcal{B}_1 is a subalgebra of \mathcal{B}_2 , and every maximal antichain of \mathcal{B}_1 is a maximal antichain of \mathcal{B}_2 , or what is equivalent: for

every $x \in \mathcal{B}_2, x \neq 0$ there is $y \in \mathcal{B}_1, y \neq 0$ such that (V $z \in \mathcal{B}_1$)[0 $< z \leq y \rightarrow x \cap z \neq 0$]. Let $\mathcal{B}_1 \Leftrightarrow^* \mathcal{B}_2$ means that \mathcal{B}_1 is subalgebra of \mathcal{B}_2 and $\{x \in \mathcal{B}_2 : \{y \in \mathcal{B}_1 : y \cap x = 0\}$ is dense in \mathcal{B}_1 } is dense below no $z \in \mathcal{B}_1, z \neq 0$.

For a regular $\lambda > \aleph_0$ let \mathcal{D}_{λ} be the filter (on $\mathcal{P}(\lambda)$) generated by the closed unbounded subsets of λ . For I an ideal of \mathcal{B} let \mathcal{B}/I be the quotient algebra, similarly we define \mathcal{B}/\mathcal{D} , \mathcal{D} a (proper) filter on \mathcal{B} .

1 Definition: Let \mathcal{B} be a Boolean algebra of cardinality κ^+ , $\mathcal{B} = \bigcup_{\alpha < \kappa^+} \mathcal{B}_{\alpha}$, \mathcal{B}_{α} increasing continuous, each \mathcal{B}_{α} of cardinality $\leq \kappa$. We say \mathcal{B} is κ -SD if $\{\alpha: \text{if } cf \ \alpha = cf \ \kappa \text{ then } \mathcal{B}_{\alpha} \leq \mathcal{B}\}$ belong to \mathcal{D}_{κ^+} . We say \mathcal{B} is almost κ -SD if $\{\alpha: cf \ \alpha = cf \ \kappa \text{ and } \mathcal{B}_{\alpha} \leq \mathcal{B}\} \neq \phi \mod \mathcal{D}_{\kappa^+}$. We say \mathcal{B} is almost κ -WSD if for some stationary $S \subseteq \{\alpha \ cf \ \alpha = cf \ \kappa\}$, for every $i < j, [i \in S, j \in S \implies \mathcal{B}_i \leq^* \mathcal{B}_j]$. We say \mathcal{B} is κ -WSD if we can choose an S above such that $S \cup \{\alpha: cf \ \alpha \neq cf \ \kappa\} \in \mathcal{D}_{\lambda}$.

1A Remark: 1) We can define naturally κ -SD, κ -WSD for \mathcal{B} of cardinality $> \kappa^+$, see the proof of Theorem 2 and Claim 3.

- 2) if $\kappa = \kappa^{<\kappa}$, $\mathcal B$ satisfies the κ -chain condition, $\mathcal B$ has cardiality κ^+ then $\mathcal B$ is κ -SD.
- **2.** Theorem: If \mathcal{B} is κ -SD, $\kappa = \kappa^{<\kappa}$ then $\mathcal{B} \{0\}$ is the union of κ , ultrafilters.

 $\text{Proof} : \text{Let } \mathcal{B} = \bigcup_{\alpha < \kappa^+} \mathcal{B}_\alpha, \, \mathcal{B}_i \text{ increasing continuous, } \mathcal{B}_i \text{ of cardinality}$ $\leq \kappa.$

As $\kappa = \kappa^{<\kappa}$, and as we can replace $\mathcal B$ by any extension satisfying the same conditions, w.l.o.g. $\mathcal B$ is closed under unions of $<\kappa$ elements.

Let $S = \{i < \kappa^+: i = 0, i \text{ is a successor ordinal or } i \text{ is a limit ordinal with cofinality } \kappa\}$.

By renaming the \mathcal{B}_i we can assume;

(a) if $i \in S$ then $\mathcal{B}_i \Leftrightarrow \mathcal{B}$ and \mathcal{B}_i is $(<\kappa)$ -complete, i.e. if $\alpha < \kappa$, $\alpha_{\gamma} \in \mathcal{B}_i$ for $\gamma < \alpha$, then $\bigcup_{\gamma,\alpha} \alpha_{\gamma} \in \mathcal{B}_i$ (where $\bigcup_{\gamma < \alpha} \alpha_{\gamma}$ is taken in \mathcal{B}).

Let $\chi = (2^{\kappa^*})^+$ and w.l.o.g. $\mathcal{B}_i \in H(\chi)$. Now for each $y \in \mathcal{B}, y \neq 0$ we define by induction on $n < \omega$, an elementary submodel N_n^y of $(H(\chi), \in)$ such that:

- (i) $y \in N_n^y$, $\langle \mathcal{B}_i : i < \kappa^+ \rangle \in N_n^y$.
- (ii) N_n^y has cardinality $\langle \kappa \rangle$ but $N_n^y \cap \kappa$ is an ordinal.
- (iii) $N_n^y \prec N_{n+1}^y$ and $N_n^y \in N_{n+1}^y$ (remember $N_n^y \in H(\chi)$).

Now for every $z,y \in \mathcal{B},y \neq 0$, natural number n and ordinal $\alpha \in S \cap N_n^y$ we define

$$G_{\alpha}^{n}(z;y) = \bigcup \{a \in \mathcal{B}_{\alpha} : a \in N_{n}^{y} \text{ and } (\forall b \in \mathcal{B}_{\alpha})[0 < b \leq \alpha \rightarrow b \cap z \neq 0].$$

Let $y \in \mathcal{B}, m < \omega$ we define by induction on $n, m \leq n < \omega$ a set $\mathcal{P}_y^{n,m}$ of terms $\tau = \tau(t)$:

$$\mathcal{P}_{u}^{m,m}=\left\{ t\right\}$$

$$\mathcal{P}_{y}^{n+1,m} = \{G_{\alpha}^{n}(\bigcap_{\ell=1}^{k} \tau_{\ell}, y) : \alpha \in S \cap N_{n}^{y}, k < \omega \text{ and for } \ell = 1, \ldots, k, \tau_{\ell} \in \mathcal{P}_{y}^{n,m}\}$$

2A Fact: For $\tau(t) \in \mathcal{P}_y^{n,m}$ and $z \in \mathcal{N}_m^y$, $\tau(z)$ is define naturally and it belongs to \mathcal{N}_n^y , and if $\tau(t) = G_\alpha^{n-1}(\cdots)$ then $\tau(z) \in \mathcal{B}_\alpha$.

2B Fact; 1) For any $y \in \mathcal{B}$, $m \le n < \omega$, $z \in N_n^y \cap \mathcal{B}$, $z \ne 0$ and $\tau \in \mathcal{P}_y^{n,m}$ the element $\tau(z)$ is not zero.

2) if $m \le n$, $k < \omega$, $\tau_{\ell}(t) \in \mathcal{P}_{y}^{n,m}$ and for $\ell < k$, $z_{\ell} \in \mathcal{N}_{m}^{y} \cap \mathcal{B}$, $z_{\ell} \ne 0$, and $\bigcap_{\ell < k} z_{\ell} \ne 0 \text{ then } \bigcap_{\ell < k} \tau_{\ell}(z_{\ell}) \ne 0.$

Proof; Clearly 1) follows from 2). We prove 2) by induction on n.

When n=m, necessarily $au_\ell(t)=t$ and there is no problem.

When n>m, let $\tau_{\ell}(t)=G_{\alpha_{\ell}}^{n-1}$ ($\bigcap_{i< i(\ell)} \tau_{\ell,i}(t),y$) (where $\alpha_{\ell}\in N_{n-1}^y\cap S$) so $\tau_{\ell,i}(t)\in \mathcal{P}_y^{n-1,m}$. Let $z_{\ell,i}=\tau_{\ell,i}(z_{\ell})$, so $z_{\ell,i}\in N_y^{n-1}$, (by Fact 2A) and by the induction hypothesis on n, $z\stackrel{\text{def}}{=}\bigcap_{\substack{i< i(\ell)\\\ell < k}} z_{\ell,i}\neq 0$ and clearly $z\in N_{n-1}^y\cap \mathcal{B}$.

Clearly $G^{n-1}_{\alpha_\ell}(z,y) \leq G^{n-1}_{\alpha_\ell}(\bigcap_{i < i(\ell)} \tau_{\ell,i}(z_\ell),y)$ for each ℓ . So it suffices to prove that $\bigcap_{\ell < k} G^{n-1}_{\alpha_\ell}(z,y)$. W.l.o.g. $\alpha_0 > \alpha_1 > \cdots > \alpha_{k-1}$, and we define by induction on $\ell \leq k$, an element s_ℓ of $\mathcal{B} \cap N^{n-1}_y$ as follows:

(a)
$$s_0 = z$$
,

(b)s
$$_{\ell+1} \in \mathcal{B}_{\alpha_{\ell}} \cap N_{n-1}^{y}$$
 is such that;

$$(\forall b \in \mathcal{B}_{\alpha_{\ell}})[0 < b \leq s_{\ell+1} \rightarrow b \cap s_{\ell} \neq 0]$$

We can find such $s_{\ell+1} \in \mathcal{B}_{\alpha_{\ell}}$ as $\mathcal{B}_{\alpha_{\ell}} \leftarrow \mathcal{B}$, and we can choose it in N_y^{n-1} as s_{ℓ}, α_{ℓ} and $\langle \mathcal{B}_{\alpha} : \alpha < \kappa^+ \rangle$ belong to N_y^{n-1} , and N_y^{n-1} is an elementary submodel of $(H(\chi), \in)$.

We can prove that when $i \leq j < k$, $(\forall b \in \mathcal{B}_{\alpha_j})[0 < b \leq s_j \to b \cap \bigcap_{\ell=i}^j s_\ell \neq 0]$. This is done by induction on j; when j=i this is trivial. When j>i, let $b \in \mathcal{B}_{\alpha_j}$, $0 < b \leq s_j$, by the choice of s_j , $b \cap s_{j-1} \neq 0$, so $0 < b \cap s_{j-1} \leq s_{j-1}$ and clearly $b \cap s_{j-1} \in \mathcal{B}_{\alpha_{j-1}}$, so by the induction hypothesis on j, $(b \cap s_{j-1}) \cap \bigcap_{\ell=1}^{j-1} s_\ell \neq 0$ but $b \leq s_j$ so $b \cap \bigcap_{\ell=i}^j s_\ell \neq 0$.

Hence $\bigcap_{\ell < k} s_{\ell} \neq 0$, and also (when $0 \leq i < k$) that (V $b \in \mathcal{B}_{\alpha_{j}}$)[$0 < b \leq s_{j} \rightarrow b \cap s_{i} \neq 0$], now for i = 0 $s_{i} = z$, hence by definition of $G_{\alpha_{j}}^{n-1}(z,y)$, clearly $s_{j} \leq G_{\alpha_{j}}^{n-1}(z,y)$. So $0 \neq \bigcap_{\ell < k} s_{\ell} \leq \bigcap_{\ell < k} G_{\alpha_{\ell}}^{n-1}(z,y)$, so we have proved the induction step for n > m, hence Fact 2B:

2C Fact; If $\alpha \in \bigcup_{n < \omega} N_n^y$, $\alpha \in S$, $y \in \mathcal{B}$, $y \neq 0$, \mathcal{D} an ultrafilter on \mathcal{B}_{α} , and

$$\Gamma = \{ \tau(y) : \tau \in \mathcal{P}_y^{n,m} \text{ for some } m \leq n < \omega \} \text{ and } \Gamma \cap \mathcal{B}_{\alpha} \subseteq \mathcal{D}$$

then $\mathcal{D} \cup \{\Gamma \cap \mathcal{B}_{a+1}\}\)$ generates a proper filter.

Proof: Immediate, because:

2D Fact: When $m \le n < \omega$, $\{\tau(y) : \tau \in \mathcal{P}_y^{n,m}\} \subseteq \{\tau(y) : y \in \mathcal{P}_y^{n,0}\}$,

Proof: This can be proved by induction on n: for n=m>0 choose $a_0>\cdots>a_{m-1}$ in $S\cap N_{\ell}^{\ell}$ such that $y\in\mathcal{B}_{\alpha_{m-1}}$ and define $\tau_{\ell}\in\mathcal{P}_y^{\ell,0}$ by induction on $\ell\leq m$: $\tau_0=\tau_1$, $\tau_{\ell+1}=G_{\alpha_{\ell}}^{\ell}(\tau_{\ell},y)$; the other cases are trivial.

Continuation of the proof of Theorem 2:

Let E^y be any ultrafilter of $\mathcal{B} \cap (\bigcup_{n < \omega} N_y^n)$ which includes $\{\tau(y) : \tau \in \mathcal{P}_y^{n,m}\}$ for some $m \leq n < \omega$; by Fact 2B,2D it is proper. The rest of the proof is as in [Sh 1] 3.1. By Engelking and Karlowicz [EK] there are functions $f_{\xi} : \kappa \to \kappa$ (for $\xi < \kappa^+$) such that for every distinct $\xi_{\beta}(\beta < \beta_0 < \kappa)$ and $\gamma_{\beta} < \kappa (\beta < \beta_0)$ for some $\varepsilon < \kappa$, $\bigwedge_{\beta < \beta_0} f_{\xi}(\varepsilon) = \gamma_{\beta}$. Let $g_{\beta} : \kappa^+ \to \kappa$ be defined by: $g_{\beta}(\xi) = f_{\xi}(\beta)$.

Let $\mathcal{B}_{\xi+1}$ be generated by $\mathcal{B}_{\xi} \cup \{y_{\beta}^{\xi} : \beta < \kappa\}$ (and w.l.o.g. $\mathcal{B}_{0} = \{0,1\}$, and w.l.o.g. $\langle \langle y_{\beta}^{\xi}, \xi, \beta \rangle : \xi < \kappa^{+}, \beta < \kappa \rangle$ belongs to every $N\xi$). Let $\langle Y_{\beta}^{\xi} : \gamma < \gamma \rangle$ list all subsets of $\{y_{\beta}^{\xi} : \beta < \kappa\}$ of cardinality $\langle \kappa$. We define by induction on $\xi < \kappa^{+}$ for each $\beta < \kappa$ an ultrafilter $\mathcal{D}_{\beta}^{\xi}$ of \mathcal{B}_{β} such that:

- (A) \mathfrak{D}_{ξ} is increasing continuous in ξ .
- (B) if $\mathcal{D}_{g}^{\xi} \cup Y_{g_{\xi}(\beta)}^{\xi}$ generates a proper filter then $\mathcal{D}_{g}^{\xi} \cup Y_{g_{\xi}(\beta)}^{\xi} \subseteq \mathcal{D}_{g}^{\xi+1}$.

Clearly this can be done and each $\mathcal{D}_{\beta} = \mathcal{D}_{\beta}^{\kappa}$ is a (proper) ultrafilter of \mathcal{B} . Now if $y \in \mathcal{B}, y \neq 0$ then for each $\xi \in S \cap (\bigcup_{n < \omega} N_n^y)$ $(E_y \cap \{y_{\alpha}^{\xi} : \alpha < \kappa\}) \cup (E_y \cap \mathcal{B}_{\xi})$ generates $E_y \cap \mathcal{B}_{\xi+1}$, [as $\mathcal{B}_{\xi} \cup \{y_{\alpha}^{\xi} : \alpha < \kappa\}$ generates $\mathcal{B}_{\xi+1}$, $\mathcal{B}_{\xi} \in N_n^y$, $\{y_{\beta}^{\xi} : \beta < \kappa\} \in N_n^y$, and $\mathcal{B}_{\alpha} \in N_n^y$ for every n such that $\alpha \in N_n^y$, so there is $\beta < \kappa$ such that for every $\xi \in \bigcup_{n < \omega} N_n^y$, $g_{\beta}(\xi) = \gamma_{\xi}$, and by Fact 2C, $E_y \subseteq \mathcal{D}_{\beta}$.

3 Claim; 1) In Theorem 2 we can replace κ^+ by 2^{κ} (its proof is written so that the changes are minimal, but the set $\{y : \beta < \kappa\}$ should still have

cardinality **k**.

- 2) In Theorem 2 (and Claim 3(1)) we really get that for every $Y \subseteq \mathcal{B}$ of cardinality $< \kappa$ which generates a proper filter, for some $\beta < \kappa$, $Y \subseteq \mathcal{D}_{\beta}$ (define $N_n^Y, \mathcal{P}_Y^{n,m}$ for any such Y, now Fact 2A, 2B have the same proof, and Fact 2C should be modified by having $\Gamma = \{\tau(y) : y \in Y, \quad \tau \in \mathcal{P}_Y^{n,m}, m \leq n < \omega\}$.
 - 4. Remark: We can go beyond 2*, see [Sh 4], Lemma 4.
- 5. Observation: Suppose $\lambda > \aleph_0$ is regular, $2^{\lambda} = \lambda^+$, I an ideal on λ , $\mathcal{B} = \mathcal{P}(\lambda)/I$. Suppose $\mathcal{B} = \bigcup_{i < \lambda^+} \mathcal{B}_i$, increasing continuous. \mathcal{B}_i of power $\leq \lambda$. Suppose further $S_{\mathcal{B}} = \{\xi < \lambda^+ : cf \ \xi = \lambda, \mathcal{B}_{\xi} < \mathcal{B}\}$ is stationary. Then some forcing notion Q of power λ^+ , forcing by it does not add new subsets of λ , (so all relevant properties of I, are preserved), and in V^Q , $S_{\mathcal{B}} \cup \{\xi < \lambda^+ : cf \ \xi < \lambda\}$ contains a closed unbounded set.

This help us to show the consistency of " $\mathcal{P}(\lambda)/I$ is the union of λ ultrafilters" for a suitable ideal I.

Proof: The well known $Q = \{f : f \text{ and increasing continuous function from some <math>\alpha+1 < \lambda^+$ to λ^+ , $[\beta \le \alpha \text{ and } cf(\alpha) = \lambda \Longrightarrow f(\alpha) \in S_R]\}.$

* * *

6. Theorem: If $2^{\aleph_0} < 2^{\aleph_1}$ then \mathfrak{D}_{ω_1} is not \aleph_1 -dense (which means the Boolean algebra $\mathcal{P}(\omega_1)/\mathfrak{D}_{\omega_1}$ is not \aleph_1 -dense.)

This will follow from Conclusion 14.

7. Definition; A Boolean algebra \mathcal{B} is λ -dense if there is $B \subseteq \mathcal{B}$, $|B| \leq \lambda$ which is dense i.e., $(\forall x \in \mathcal{B})[x \neq 0 \rightarrow (\exists y \in B)(0 < y \leq x)]$.

Note in this connection the following two observations.

8. Observation: By [FMS] we can obtain a universe of set theory [starting with a model of ZFC + ' κ is supercompact') in which \mathcal{D}_{ω_1} is \aleph_2 -saturated and this is preserved by forcing satisfying the \aleph_1 -chain condition, so if we add e.g. \beth_{ω_1} Cohen reals, still \mathcal{D}_{ω_1} is \aleph_2 -saturate but $2^{\aleph_0} = \beth_{\omega_1} < \beth_{\omega_1+1} = 2^{\aleph_1}$.

We may be interested in using smaller large cardinals:

- **8A.** Observation: 1) It is consistent with ZFC that $2^{\aleph_0} < 2^{\aleph_1}$ but $2 \Sigma_{\omega_1}$ is \aleph_2 -saturated if we assume the consistency of ZFC + " κ is a suitable hypermeasurable as in [SW]."
 - 2) If in V, $\mathfrak D$ is a normal filter on ω_1 , and $\mathfrak D$ is \aleph_2 -saturated.

Q is the forcing of adding λ -Cohen reals, then in V^Q ;

- a) $\mathcal{D} = \{A \in V^Q : A \subseteq \omega_1 \text{ and } (\exists B \in \mathcal{D}) \ B \subseteq A\} \text{ is } \aleph_2\text{-saturated normal filter } [\text{so } \mathcal{D} = (\mathcal{D}_{\omega_1})^V \Longrightarrow \mathcal{D}' = (\mathcal{D}_{\omega_1})^{V^Q}].$
 - b) $(2^{\aleph_0})^{V^Q} = (\lambda + \aleph_0)^{\aleph_0}$ (the second term is computed in V).
 - c) $(2^{\aleph_1})^{V^Q} = (\lambda + \aleph_1)^{\aleph_1}$ (the second term is computed in V.)

Proof: 1) By 2), starting with a universe of set theory in which \mathcal{D}_{ω_1} is \aleph_2 -saturated, from Shelah and Woodin [SW].

Note that if in V, $\mathbf{a}_{\omega_1+1}(\kappa) > \mathbf{a}_{\omega_1}(\kappa)^{+\alpha}$, κ is supercompact, and P a forcing notion of cardinality κ , such that in V^P , $\kappa = \aleph_2, \mathcal{D}_{\omega_1} \aleph_2$ -saturated; choose in (2) $\lambda = \mathbf{a}_{\omega_1}(\kappa)$, then in $V^{P^*Q}, (2^{\aleph_0})^{+\alpha} < 2^{\aleph_1}$.

2) Straightforward.

Suppose $Q = \{f : f \text{ a finite function from } \lambda \text{ to } \{0,1\}\}$, and $q \in Q$, $q \Vdash_Q " \left\langle \begin{matrix} S_\alpha : \alpha < \omega_2 \end{matrix} \right\rangle$ is a counterexample: Let for $\alpha < \omega_2$, $S_\alpha^0 = \{\delta < \omega_1 : \text{there is } q', q \leq q' \in Q, q' \Vdash_{} " \delta \in S_\alpha " \}$, and for $\delta \in S_\alpha^0$ choose $q_\delta^\alpha \in Q, q \leq q_\delta^\alpha$, $q_\delta^\alpha \Vdash_{} " \delta \in S_\alpha "$, (so $\left\langle \left\langle q_\delta^\alpha : \delta \in S_\alpha^0 \right\rangle : \alpha < \omega_2 \right\rangle$ is in V) Clearly $S_\alpha^0 \neq \phi \mod \mathcal{D}$, hence for each $\alpha < \omega_2$ for some $k_\alpha < \omega$, $S_\alpha' = \{\delta \in S_\alpha^0 : \text{Dom } q_\delta^\alpha \text{ has cardinality } k_\alpha \} \neq \phi \mod \mathcal{D}$ hence for some k, $W = \{\alpha < \omega_2 : k_\alpha < k \}$ has cardinality k_2 . Let m be a natural number such that $m \to (3)_{2^{k^2}}^2$.

As \mathcal{D} is \aleph_2 -saturated there are distinct $\alpha_1, \ldots, \alpha_m \in \mathcal{W}$ suc that $S \stackrel{\text{def}}{=} \bigcap_{m=1}^m S_{\alpha_\ell}^1 \neq \phi \mod \mathcal{D}$. For every $\delta \in S$ for some distinct

 $\begin{array}{l} \ell\left(1\right), \ell\left(2\right) \in \{1, \ldots, m\}, \; q_{\delta}^{\alpha_{\ell(1)}}, q_{\delta}^{\alpha_{\ell(2)}}, \; \text{are compatible. Hence there are distinct} \\ \ell\left(1\right), \ell\left(2\right) \in \{1, \ldots, m\} \; \text{such that} \; \{\delta \in \omega_1 : \delta \in S, \; \text{and} \; q^{\alpha_{\ell(1)}}, q_{\delta}^{\alpha_{\ell(2)}} \; \text{are compatible} \} \; \neq \phi \; mod \; \text{Σ} \; \; \text{Now it is easy to show that for some} \; q', q \subseteq q' \in Q, \\ q' \mid \vdash \{\delta \in S : q_{\delta}^{\alpha_{\ell(1)}} \; \cup \; q_{\delta}^{\alpha_{\ell(2)}} \in \mathcal{G}_{\delta}\} \neq mod \; \text{Σ} \; \text{contradiction.} \end{array}$

Remark: The inaccessible f needed in 8A(8) is $\{\kappa : \kappa \text{ strongly inaccessible with } Pr_2(\kappa)\}$ is stationary is not in the weak compactness ideal) " \mathcal{D}_{ω_i} is indestructible by \aleph_1 -c.c. forcing big hyperinaccessible like in"

- 9. Observation: If \mathcal{D} is a normal filter on a regular $\mu > \aleph_0, 2^{\mu} = \mu^+$ then the following are equivalent:
 - (a) \mathcal{D} is μ -dense.
- (b) there are normal filters \mathcal{D}_i $(i < \mu)$, $\mathcal{D} \subseteq \mathcal{D}_i$, and $[A \neq \phi \mod \mathcal{D} \Longrightarrow A \in \bigcup_{i < \mu} \mathcal{D}_i]$.
- (c) for every $A_i \subseteq \lambda$, $A_i \neq \phi \mod \mathcal{D}$ for $i < \mu^+$, there is $S \subseteq \mu^+$, $|S| = \mu^+$, such that for any distinct $i(\alpha) \in S$ $(\alpha < \lambda)$ the diagonal intersection of $A_{i(\alpha)}(\alpha < \lambda)$ (i.e. $\{\gamma < \lambda : \gamma \in \bigcap_{\alpha \in \Gamma} A_{i(\alpha)}\}$) is $\neq \phi \mod \mathcal{D}$.

Proof: (a) \Longrightarrow (b). Suppose $\{A_i / \mathcal{D} : i < \mu\}$ is a dense subset of $\mathcal{P}(\lambda) / \mathcal{D}$. Let (for $i < \mu$), $\mathcal{D}_i \stackrel{\text{def}}{=} \mathcal{D} + A_i = \{X \subset \lambda : X \cup (\lambda - A_i) \in \mathcal{D}\}$, then the \mathcal{D}_i 's exemplify that (b) holds.

- (b) \Longrightarrow (c): Let $\mathcal{D}_i(i < \mu)$ exemplify (b), and let $A_i \subseteq \mu$, $A_i \neq \phi \mod \mathcal{D}$ for $i < \mu^+$. For each $i < \mu^+$ for some $\gamma(i) < \mu^+$, $A_i \in \mathcal{D}_{\gamma(i)}$. So for some γ $S = \{i : \gamma(i) = \gamma\}$ has power μ^+ . Clearly $\{\gamma(i) : i \in S\}$ is as required.
- (c) \Longrightarrow (a): Assume (a) fails. Let $\{A \subseteq \mu : A \neq \phi \bmod \mathcal{D}\}\$ be listed as $\{A_{\alpha} : \alpha < \mu^{+}\}\$. As for $\xi < \mu^{+}$ $\{A_{\alpha} : \alpha < \xi\}\$ cannot exemplify " \mathcal{D} is μ -dense" there is $\alpha(\xi) < \mu^{+}$ such that for no $\beta < \xi$, $A_{\alpha(\xi)} \subseteq A_{\beta} \bmod \mathcal{D}$. By (c) there is $S \subseteq \mu^{+}$ of cardinality μ^{+} such that for any $\alpha_{i} \in S$ $(i < \mu^{+})$, $\{\gamma < \lambda : \gamma \in A_{\xi(\alpha_{i})} \text{ for every } i < \gamma\} \neq \phi \bmod \mathcal{D}$. Let for $\xi < \mu^{+}$, B_{ξ} be the diagonal intersection of $\{A_{\alpha(\xi)} : \xi < \xi\}$. Note that B_{ξ} is not uniquely determined as a set (it depends on

the enumeration of ζ) but $mod\ \mathcal{D}$ (and even $mod\ \mathcal{D}_{\lambda}$) it is uniquely determined. Clearly $\zeta_1 < \zeta_2 \Longrightarrow B_{\zeta_1} \supset B_{\zeta_2} \ mod\ \mathcal{D}$. Now necessarily for some $\zeta(*)$ for every $\zeta \geq \zeta(*)$ (but $<\mu^+$), $B_{\zeta} = B_{\zeta(*)} \ mod\ \mathcal{D}$, as otherwise there is an increasing sequence $\zeta(i)$ for $i < \mu^+$, such that $B_{\zeta(i+1)} \neq B_{\zeta(i)} \ mod\ \mathcal{D}$, so $\{B_{\zeta(i+1)} - B_{\zeta(i)} : i < \mu^+\}$ show \mathcal{D} is not μ^+ -saturated and clearly contradict (c) which we are assuming.

Now as $B_{\xi(\bullet)} \neq \phi \mod \mathfrak{D}$ for some $\gamma(*) < \mu^+$, $B_{\xi(\bullet)} = A_{\gamma(\bullet)}$. Choose $\beta < \mu^+$, $\beta > \gamma(*)$, $\beta > \xi(*)$. So by the choice of $\xi(*)$ $B_{\beta+1} = B_{\xi(\bullet)} \mod \mathfrak{D}$ but by the choice of $B_{\beta+1}$, $B_{\beta+1} \subseteq A_{\xi(\beta)} \mod \mathfrak{D}$ hence $B_{\xi(\bullet)} \subseteq A_{\xi(\beta)} \mod \mathfrak{D}$ but $B_{\xi(\bullet)} = A_{\gamma(\bullet)}$ so $A_{\gamma(\bullet)} \subseteq A_{\xi(\beta)} \mod \mathfrak{D}$. But remember the choice of $\xi(\beta)$, as $\beta > \gamma(*)$ it implies $A_{\gamma(\bullet)} \not\subseteq A_{\xi(\beta)} \mod \mathfrak{D}$. Contradiction.

- 10. Definition: 1) For a regular uncountable λ and $\mu < 2^{\lambda}$ let
- (a) Dom $(\lambda,\mu) = \{f : f \text{ a function with domain } \omega > \alpha \{\Lambda\} \text{ for some ordinal } \alpha < \lambda, f(\eta) < \mu, \text{ for } \eta \in \omega \geq \alpha \{\Lambda\}, \text{ where } \Lambda \text{ is the empty sequence.}$
 - (b) Dom $^{+}(\lambda,\mu) = \{f : f \text{ a function from } \omega > \lambda \{\Lambda\} \text{ to } \mu\}.$
 - (c) Let $I_{\lambda,\mu}$ be the set of $A \subseteq \lambda$ such that :

for some function F from Dom (λ, μ) to $\{0,1\}$, for every $h: A \to \{0,1\}$ there is $f \in \text{Dom }^+(\lambda, \mu)$ such that for some $C \in \mathcal{D}_{\lambda}$ $(\forall \delta \in A \cap C) [h(\delta) = F(f \upharpoonright \delta)]$.

2) For λ, μ as above and function F from Dom (λ, μ) to $\{0,1\}$ let $I_{\lambda,\mu}^F$ be the set of $A \subseteq \lambda$ such that; for every $B \subseteq A$, there is $f \in \text{Dom } (\lambda, \mu)$ such that for some $C \in \mathcal{D}_{\lambda}$

$$(\forall \delta \in C)[\delta \in B \quad iff \quad F(f \restriction \delta) = 1]$$

3) For λ, μ , F as above let $J_{\lambda,\mu}^F$ be the normal ideal on λ which $I_{\lambda,\mu}^F$ generates.

Remark: This is close by related with the weak diamond, see Devlin and Shelah [SD] and Shelah [Sh, Ch. XIV, §1].

11. Lemma: 1) $I_{\lambda,\mu}$ is a normal ideal on λ (but it may be $\mathcal{P}(\lambda)$) and we could have in the definition of Dom (λ,μ) replace $\alpha > \alpha$ by α .

- 2) If $\kappa < \lambda$, $2^{\kappa} = 2^{<\lambda}$, $\mu = \mu^{<\lambda} < 2^{\lambda}$, $\mu < \lambda^{+\lambda}$ (i.e. $\mu < \aleph_{\alpha+\lambda}$ where $\lambda = \aleph_{\alpha}$) (or even a weaker restriction) then $\lambda \not\in I_{\lambda,\mu}$.
- 3) $I_{\lambda,\mu}^F \subseteq J_{\lambda,\mu}^F \subseteq I_{\lambda,\mu}$, and $I_{\lambda,\mu} = \bigcup \{I_{\lambda,\mu}^F : F \text{ a function from Dom } (\lambda,\mu) \text{ to } \{0,1\}\}.$
- 4) For every function $F: \mathrm{Dom}\ (\lambda,\mu) \to \{0,1\}$, there is a function $F^{\bullet}: \mathrm{Dom}\ (\lambda,\mu) \to \{0,1\}$ such that

$$J_{\lambda,\mu}^{F^*} = I_{\lambda,\mu}^{F^*} = J_{\lambda,\mu}^F$$

5) For any function $F: \text{Dom } (\lambda, \mu) \to \{0,1\}$, for every $C \in \mathcal{D}_{\lambda}$, $\lambda - C \in I_{\lambda, \mu}^F$.

Proof: Part 1) is straightforward. For 2) see [Sh 2, Ch. XIV §1]. Now (3), (5) are trivial and for (4), note that in Definition 10(2) we demand (V $\delta \in C$)[$\delta \in B \Longrightarrow F(f \upharpoonright \delta) = 1$] and not just (V $\delta \in C \cap A$)[$\delta \in B \iff F(f \upharpoonright \delta) = 1$].

12. Lemma : Suppose λ is regular and uncountable, $\mu < 2^{\lambda}$, and $\lambda \not\in I_{\lambda,\mu}$.

Then for no F is $J_{\lambda,\mu}^F$ μ -dense, λ^+ -saturated.

Proof: Suppose F is a counterexample and let $\{A_i/J_{\lambda,\mu}^F:i<\mu\}$ be a dense subset of $\mathcal{P}(\lambda)/J_{\lambda,\mu}^F$. We now define a function H from Dom $(\lambda,\mu)=\bigcup\{f:f \text{ a function from some }\omega>\delta-\{\Lambda\}\text{ into }\mu\text{ where }\delta<\lambda\}$ to $\{0,1\}$.

Suppose $\delta < \lambda$ is limit, $f: (^{\omega}\delta - \{\Lambda\}) \to \mu$, for $\nu \in {}^{\omega}\delta$ let f_{ν} be the function from ${}^{\omega}\delta - \{\Lambda\}$ to $\{0,1\}$ defined by $f_{\nu}(\eta) = f(\nu \uparrow \eta)$. We define H(f) by cases:

Case I: For some $\alpha, \beta < \delta$, $F(f_{<0,\alpha,\beta>}) = 1$.

Then we let H(f), be $F(f_{\langle 1,\alpha,\beta \rangle})$ for the minimal such α,β (lexicographically).

Case II: Not Case I, but for some $\alpha < \delta$, $\delta \in A_{<2,\alpha>}$.

Then $H(f) = f(\langle 3, \alpha \rangle)$ for the minimal such α .

Case III: Not Case I nor II.

Then H(f) = 0.

If $f: \omega > \alpha - \{\Lambda\} \to \mu$, α not limit, let H(f) = 0.

Now we get contradiction by Fact 12A below (as $\lambda \not\in I_{\lambda,\mu}$, $I_{\lambda,\mu}$ is normal and $J_{\lambda,\mu}^H \subseteq I_{\lambda,\mu}$).

12A Fact: $\lambda \in I_{\lambda,\mu}^H$.

Let $B \subseteq \lambda$ and we shall find $f \in \text{Dom }^+(\lambda, \mu)$ such that for some $C \in \mathcal{D}_{\lambda}$, $(V \delta \in C)[\delta \in B \text{ iff } H(f \upharpoonright \delta) = 1].$

Let $P \subseteq \{A_i : i < \mu\}$ be a maximal subset satisfying:

- (a) for every $a \neq b \in \mathcal{P}$, $a \cap b \in J_{\lambda,\mu}^F$ (i.e. \mathcal{P} is $J_{\lambda,\mu}^F$ -disjoint.)
- (b) for every $a \in \mathcal{P}$, $a \subseteq B \mod J_{\lambda,\mu}^F$ or $a \cap B = \phi \mod J_{\lambda,\mu}^F$.

As F is a counterexample, $P(\lambda)/J_{\lambda,\mu}^F$ is λ^+ -saturated hence $|P| \leq \lambda$, so let $P = \{A_{i(\alpha)} : \alpha < \alpha(*)\}$, $\alpha(*) \leq \lambda$. We shall assume $\alpha(*) = \lambda$ (the other case is easier). Let B^* be the diagonal union of the $A_{i(\alpha)}$ i.e. $\{\beta < \lambda : \beta \in \bigcup_{\alpha < \beta} A_{i(\alpha)}\}$, so clearly $a_0 \stackrel{\text{def}}{=} \lambda - B^* \in J_{\lambda,\mu}^F$. For each $\alpha < \lambda$ let $a_{1+\alpha}$ be $A_{i(\alpha)} - B$ if $A_{i(\alpha)} \subseteq B \mod J_{\lambda,\mu}^F$ and $A_{i(\alpha)} \cap B$ if $A_{i(\alpha)} \cap B = \phi \mod J_{\lambda,\mu}^F$. So in any case $a_{\alpha} \in J_{\lambda,\mu}^F$, so there are sets $a_{\alpha,\beta} \in I_{\lambda,\mu}^F$, (for $\beta < \lambda$) such that $a_{\alpha} = \{\gamma < \lambda : \gamma \in \bigcup_{\beta < \gamma} a_{\alpha,1+\beta}\}$. As $a_{\alpha,\beta} \in I_{\lambda,\mu}^F$ there are functions $f_{\alpha,\beta}^0, f_{\alpha,\beta}^1$ from $\beta < \gamma$

$$(\forall \delta \in C_{\alpha,\beta})[\delta \in \alpha_{\alpha,\beta} \cap B \iff F(f_{\alpha,\beta}^1 \upharpoonright \delta) = 1]$$

$$(\forall \delta \in C_{\alpha,\beta})[\delta \in \alpha_{\alpha,\beta} \iff F(f_{\alpha,\beta}^0 \upharpoonright \delta) = 1]$$

Now we can define $f^*: (\omega \lambda - {\Lambda}) \to \mu$

$$f^*(\langle 0, \alpha, \beta \rangle \cap \eta) = f^0_{\alpha, \beta}(\eta)$$

$$f^*(\langle 1,\alpha,\beta \rangle) = f^{1}_{\alpha,\beta}(\eta)$$

$$f^*(\langle 2, \alpha \rangle) = 1$$
 if $\delta \in A_{i(\alpha)}$,
$$f^*(\langle 3, \alpha \rangle) = 1$$
 if $\delta \in A_{i(\alpha)} \subset B \mod I_{\lambda, \mu}$
$$f^*(\eta) = 0$$
 otherwise.

It is easy to check that $\{\delta: H(f^{\bullet} | \delta) = 1 \iff \delta \in B\}$ belong to \mathcal{D}_{λ} . As B was any subset of λ this shows $\lambda \in I^H_{\lambda,\mu}$ but $I^H_{\lambda,\mu} \subseteq I_{\lambda,\mu}$, $\lambda \not\in I_{\lambda,\mu}$, contradiction.

13. Conclusion: Suppose λ is regular uncountable and $\lambda \not\in I_{\lambda,\mu}$ (see 11(1)). Then \mathcal{D}_{λ} is not μ -dense, λ^+ -saturated.

Proof: As \mathcal{D}_{λ} is λ^+ -saturated, and $I_{\lambda,\mu}$ a normal ideal on λ , it is known that for every appropriate F, for some $Y(F) \subseteq \lambda$ $Y(F) \neq \phi \mod \mathcal{D}_{\lambda}$ and $J_{\lambda,\mu}^F = \{A \subseteq \lambda: (Y(F) - A) \cup (\lambda - Y(F)) \in \mathcal{D}_{\lambda}\}$ and so $J_{\lambda,\mu}^F$ is μ -dense λ^+ -saturated too contradicting 12.

14. Conclusion: If $\lambda = \kappa^+, 2^{\lambda} > 2^{\kappa}$, $\mu = \mu^{<\lambda} < Min\{2^{\lambda}, \lambda^{+\lambda}\} < 2^{\lambda}$ then \mathcal{D}_{λ} cannot be λ^+ -saturated, μ -dense.

Proof: By 13 and 11(2) (so we could get a little more).

References

[BHM]

- J. E. Baumgartner, A. Hajnal and A.Mate. Weak saturation propertes of ideals. *Infinite and Finite Sets.* Proc. of a Symp. for Erdos 60th Birthday, Budapest 1973. Colloq. Math. Soc. Jano Bolayi 10 ed. . Hajnal, R. Rado and T. Sos, North-Holland Publ. Co. Vol 11 (1975), 137-158.
- [DS] K. Devlin and S. Shelah, A weak form of the diamond follows from $2^{\aleph_0} < 2^{\aleph_1}$, Israel J. Math. 29 (1978), 239-247.

[FMR]

- M. Forman, M. Magidor and S. Shelah, In preparation.
- [KE] R. Engelking and M. Karlowicz. Some theorems of set theory and their topological consequences. *Fund Math.* 57 (1965), 275-285.

- [Sh1]

 S. Shelah, Remarks on Boolean algebras, Algebra Universalis, 11 (1980), 77-84.

 [Sh2]

 Proper Forcing, Springer Lecture Notes, 940 (1982).

 [Sh3]

 On saturation for a predicate, Notre Dame J. of Formal Logic, 22 (1981), 301-307.

 [Sh4]

 A note on K-freeness, A Springer Lecture Notes, volume here.

 [Sh5]

 From supercompacts to special normal ideals on small cardinal, in preparation.
- [SW]S. Shelah, and H. Woodin, Hypermeasurability cardinals implies every projective set is Lebesgue measurable, In preparation.