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On normal ideals and Boolean Algebras

In [Sh 1] 3.1 we prove: If £ is a Boolean algebra of power £*.k = <%, and
£ satisfies the k-chain condition then # — {0} is the union of & ultrafilters
( why not "# of power A**"? see [Sh 3] mainly 2.4, p.245). We here replace
"x-chain condition” by a weaker condition we introduce here (x-SD, (see
Definition 1), which says that for almost all & c & of power x, £ < £ (for
the right interpretation of almost).

The other theorem (8) is that 2% < 2 implies &), (the club filter on w,),
cannot be Ry- dense. We then observe we cannot improve this to
[2""(2‘*"=>:b‘,.,l not Mo-saturated] as by Forman Magidor Shelah [FMS], a
universe V, V|=":Z)n1 is Ro-saturated understructibly under c.c.c. forcing' was
obtained and discuss the large cardinal needed. For proving Theorem 6 we
use normal filters connected with variants of the weak diamonds (see Devlin
Shelah [DS], Shelah [Sh 2]) and prove a more general such theorem. Com-
pare with a recent result of Woodin: from ADR + "8 regular” he gets the con-
sistency of "&,l + X is N;-dense” for some stationary X C wy. The conception
of this work is closely connected with Forman Magidor and Shelah [FMS], and
also Shelah and Woodin [SW], and [Sh 5]; it was done subsequently to most of
{FMS].

Notation: fXA) = {4: 4 C A}, it is a Boolean algebra and we sometimes
say A instead of P(‘A). £ denotes a Boolean algebra; the filter E ¢ & gen-
erated is <E>g={z € [ there are n<w, z,€£,...,z, € E such that
n
N zg<z} itis proper if0 ¢ <E>p ; an ultrafilter is a maximal proper
i=1
filter. Let £ < £ means £, is a subalgebra of £, and every maximal

antichain of #; is a maximal antichain of £, or what is equivalent: for
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every z €5 #0  there is y ey #0 such that (v
zeB)0<z=y »z Nz #0] Let £ < f> means that £, is subalgebra
of o and §z € By fy €y Nz =0} is dense in £} is dense below no
AR S Z?l,z # 0.

For a regular A >Ry let 2y be the filter (on JXA)) generated by the
closed unbounded subsets of A. For 7 an ideal of £let £/ 7 be the quo-
tient algebra, similarly we define £/ 2 Da (proper) filter on £

1 Definition : Let & be a Boolean algebra of cardinality ¥, £= B

a<ct

#, increasing continuous, each £, of cardinality <x. We say Kis «-SD if
fa:if cf a=cf x then £, < &£} belong to B+ We say £ is almost &£-SD if
fa:cf a=cf cand B, < £} # ¢ mod ﬂ)ﬂ. We say £is almost x-WSD if for
some stationary Scia cf a=cf ki, for every
i<jli€eSjes=F <" £)] Wesay £is k-WSD if we can choose an S
above such that S (yfa:cf a#cf €} € D).

1A Remark: 1) We can define naturally £-SD, £-WSD for £ of cardinality
> k*, see the proof of Theorem 2 and Claim 3.

2) if & = <%, [ satisfies the x-chain condition, & has cardiality &* then
£ is x-SD.

2. Theorem : If £ is x-SD, & = k< then £ — {0} is the union of «,

ultrafilters.

Proof : Let £= {y B, F; increasing continuous, #; of cardinality
a<c*

As © =«k<*, and as we can replace £ by any extension satisfying the
same conditions, w.l.o.g. #£is closed under unions of < k elements.

Let S ={i <k*:1=0,1is a successor ordinal or i is a limit ordinal with

cofinality &}.

By renaming the £; we can assume;
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(a) ifi € S then £; < £ and £ is ( < k)-complete, i.e. if a<x, a, €B;

for y < a, then (J @, € £; (where | @, is taken in £).
7.a 7L

Let x = (2)* and w.lo.g. £ € H(x). Now for each y € By #0 we
define by induction on n < w, an elementary submodel N¥ of (H(x).€) such
that :

My eM. B i<e*) ey
(ii) N¥ has cardinality < & but N¥ N « is an ordinal.

(iii) N¥ < N¥., and N¥ € N¥,, (remember N¥ € H(x)).

Now for every z,y € £y # 0, natural number n and ordinal a € S N MY

we define
Gi{zy)=yla €B,:a € NY and (Vb € B)[0<b=<a »b Nz #0]

Let vy € £m < w we define by induction on n,m =n <o a set /%"'m of
terms T = 7{t):

prm=te
k
Pprim = {Gﬁ(zﬂ Tey): a€SNNY, k <wandforl =1,...,k, 7 € P™
=1
2A Fact: For 1(f) GP;;""" and z € N¥, 7(z) is define naturally and it
belongs to N¥, andif 7(t) = G271(- - ) then 7(z) € B,

2B Fact; 1) Foranyy € £, m=n <w, z € N¥ N =z ;éOand'rEp;"m

the element 7(2) is not zero.

RYifm=n,k <w 1e(t) € Prmandfor € <k, zg€ N, N 2zg #0 and

N zg # 0then My 7(zg) # 0.
<k <k

Proof ; Clearly 1) follows from 2). We prove 2) by induction on n.

When n = m, necessarily 7¢(t) =t and there is no problem.
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When n >m, let 7p(t) = G%, ' ( N 7Tgs(t).y) (where ag € NY_; N S) so
i<i(€)
Tg,:(t) € ﬁy"“l’m. Let zg; = 7g;(2g), so zg; € N} ™!, (by Fact 2A) and by the
induction hypothesis on n, 2z % n zg; #0 and clearly z € N¥_; N £
i<i(€)
€<k

Clearly G ' (z,y) =< Gl (}z) 7g:(2¢),y) for each €. So it suffices to prove
i<i
that N 02;1 (z,y) Wlog. ag> a;> - >a,_,, and we define by induction on
2 <k

€ <k, an element sg of £ N N7 ™! as follows:
(a) sg =2,
(b)sgs1 € By, N N¥_; is such that;
(Vb € B )[0<b <50,y b nysg # 0]

We can find such sg, € £,, as ,, < £, and we can choose it in N}~! as sg,ag
and <¢f3a fa < ;c+> belong to N}7!, and N}~! is an elementary submodel of
(H(x),€).

7
We can prove that wheni <j <k, (Vb € B, )[0<b=<s; »b n  sg#0]
g=i
This is done by induction on j; when j =4 this is trivial. When j§ > 1, let
b €fh,,0<b=s; by the choice of s;,b ys;_; #0, 50 0<b s,y <5;4

and clearly b nys;_; €4,

Xy_y?

so by the induction hypothesis on j,

J
N sg#0.

i1
(d Ns;_) N N sg#0butbd <s;s0b
@1 g=i

Hence n sg#0, and also {when 0=<i<k) that (v
g<k

b 6/,?0‘1)[0 <b=<s; »>b Ns; #0], now for i =0 s; = 2z, hence by definition of

Ga(2y). clearly s; = G37H(2,y). S0 0# N sg= N G (2.y). so we have
<k <k

proved the induction step for n > m, hence Fact 2B:

2CFact;Ifa€ U NY,a€ S,y € B8,y # 0, Dan ultrafilter on £,, and

n<w

F=i’r(y):1*€/9;’mforsomemsn <wjandT' N B, D
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then DY (T N Baei}) generates a proper filter.
Proof : Immediate, because :
2D Fact: When m <n < w, {1(y) : v €Py"'m; cirly):y € Pg'oi,

Proof: This can be proved by induction on n: for n =m >0 choose
ag> > Ay in S My N¥ such that y €/?am and define 7¢ € Pg'f’ by induc-

tionon€ = m: Ty =Ty, Tgey = ng (1¢.¥); the other cases are trivial.

-1

Continuation of the proof of Theorem 2:

Let EY be any ultrafilter of £ N ( U NJ) which includes {T(y) : 7 ep;'""

n<w
for some m =n < w}; by Fact 2B,2D it is proper. The rest of the proof is as in

[Sh 1] 3.1. By Engelking and Karlowicz [EK] there are functions f,: & » & {for
£ <«*) such that for every distinct £4(B <o < %) and 7g<k (B < Bg) for
some & < K,ﬁ/(\p fé(s) = 75 Let gg: &% -» « be defined by: gglé) = I eB).

(¢]

Let £yyy be generated by £ U fyf : B <x} (and wlog £ =101}, and
w.lo.g. <<y§,£,ﬁ> <kt B < IC> belongs to every N¥). Let <Y.$ Ty <7>
list all subsets of {y§ : B < &} of cardinality < «. We define by induction on
£ < k* for each B < « an ultrafilter Df of £ such that:

(A) D is increasing continuous in £.

(B) if :bﬁ U Ygfi(ﬁ) generates a proper filter then ibé U Yg‘i(p) C :Z}§+1,

Clearly this can be done and each 2 = Jf" is a (proper) ultrafilter of £.
Now if yely#0 then for each teSn(y M)

n<w
(By N E a<xd) U (B NB) generates By, N Beyy, [as B U tyd a <«
generates By, Bee NY, tyf: B <k} eNY, and £, € N for every n such
that a € N¥], so there is § < k£ such that for every § € Y Nj ., gg(é) = 7¢ and

n<w

by Fact 2C, Ey € Dy

3 Claim; 1) In Theorem 2 we can replace &* by 2% (its proof is written so
that the changes are minimal, but the set {yé : 8 < g} should still have
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cardinality «.

2) In Theorem 2 (and Claim 3(1)) we really get that for every Y ¢ & of
cardinality < « which generates a proper filter, for some 8 <k, Y C :Z)p (define
NY.Pp™ for any such Y, now Fact 2A, 2B have the same proof, and Fact 2C
should be modified by having '={r{y):y €Y, 1€ va"‘, m=<n <ol

4. Remark: We can go beyond 2%, see [Sh 4], Lemma 4.

5. Observation: Suppose A >8, is regular, 22 =A* | an ideal on
A B=pPAN)sI1. Suppose £= y ;. £, increasing continuous. #; of power

<At
< A. Suppose further Sp={§ <A*:cf ¢ =A, [5’5 < £9) is stationary. Then some
forcing notion & of power A*, forcing by it does not add new subsets of A, (so
all relevant properties of I, are preserved), and in V9, Sg | (£ <AY:cf € <A}

contains a closed unbounded set.

This help us to show the consistency of "/9()\)/1 is the union of A
ultrafilters” for a suitable ideal /.

Proof : The well known @ = {f : f and increasing continuous function
from some a+1 <A*toA*, [B<a and cf (a) = A => f(a) € Sgl}.

* * *

6. Theorem : If 2% < 2™ then ., is not ¥,-dense (which means the
Boolean algebra Xw,)/ 2, is not §;-dense.)

This will follow from Conclusion 14.

7. Definition ; A Boolean algebra £ is A-dense if there is B¢ &, |B| <A
which isdense i.e, (Vz e [z # 0> (3y € B)(0 <y = z)].

Note in this connection the following two observations.

8. Observation: By [FMS] we can obtain a universe of set theory [start-
ing with a model of ZFC + 'k is supercompact') in which ), is 8-saturated
and this is preserved by forcing satisfying the R{-chain condition, so if we add

e.g. 3,, Cohen reals, still ﬂ)@l is Ng-saturate but Mo = 2, <3441 = M
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We may be interested in using smaller large cardinals:

8A. Observation: 1) It is consistent with ZFC that Mo < Miput :ba, is No-

saturated if we assume the consistency of ZFC + "& is a suitable hypermeasur-
able as in [SW].”

2) If in V, is a normal filter on w,, and J)is ¥,-saturated.
¢ is the forcing of adding A-Cchen reals, then in Ve,

a) D=4 €V?: 4 Cw, and (3B € ) B C A} is Ny-saturated normal
filter [so 5D =(,§Z§m)v =D =(:Z)m1) W]

b) (2“")"0 =(A+ so)ﬂ" { the second term is computed in ¥).
&I VQ —_— 31 . .
e) (™) = (A +8)"" ( the second term is computed in V.)

Proof : 1) By 2), starting with a universe of set theory in which 2, is
R,-saturated, from Shelah and Woodin [SW] .

Note that if in V, 3, 4,{k) >3, (k)**, & is supercompact, and P a forcing
notion of cardinality x, such that in VP k= Nz,ﬂ)&,l 8,-saturated; choose in (2)

A =3,,(x), then in VP (Moj+a < 2N
2) Straightforward.

Suppose @ ={f : f a finite function from A to {0,1}}, and q € @,
q fFe” <S Y B m2> is a counterexample: Let for a<w, SJ ={6<w;:
~a

thereisq,¢g=<qg €@,¢ |[F" 8€S "}, andfor § € S choose g € @, ¢ <q§,
~o
gf IF"d6e€S ", (so <<q§‘ : 8 € SS) T < w2> is in V) Clearly
~e

58 # ¢ mod D, hence for each a < wp for some ky<w,
Se = {6 € SJ :Dom gf has cardinality ko] # ¢ mod 2D hence for some k& ,
W ={a<ws: kg <k} has cardinality 8,. Let m be a natural number such

that m > (3)Ze.

As D is Bj-saturated there are distinct ay,...,a, € ¥ suc that

5% 51 ad F 5 t distinet
= N Sgp # Mo or every €S or some istine
g=1
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£2(1),2(R)ef1,...,mj, q:”(",qg“(z’, are compatible. Hence there are distinct
2(1),£(2) € {1,...,m] such that {§ €w;: 8 € S, and g™ g% are compati-

ble}] # ¢ mod H Now it is easy to show that for some ¢,q Cqg € @,
g IF{6eS:qsu ygs® e Ggi # mod D contradiction.

Remark: The inaccessible f needed in 8A(8) is {x : x strongly inaccessi-

ble with Pry{x)} is stationary is not in the weak compactness ideal) ":wa is

indestructible by ®,-c.c. forcing big hyperinaccessible like in"

9. Observation: If J) is a normal filter on a regular u >84,2# = u* then

the following are equivalent:
(a) Dis p-dense.

(b) there are normal filters D G<w, D, and

[A#¢pmod D=>4e y D]
(247

(c) for every 4; C A, 4; # ¢ mod D for i < u*, there is S Ccu*,|S| = ut,
such that for any distinct i{a) € S (a < A} the diagonal intersection of
Aila <A) (e ¥y <A:7€ N Ayn) )is# ¢ mad D

a<y

Proof : (a) => (b). Suppose {4;/D: i < u} is a dense subset of PJA)/ D
Let (for i <), B YD+ A, =X A X U (A—4) €D, then the Jy’s exem-
plify that (b) holds.

(b) => (c): Let (i < u) exemplify ( b), and let 4; C u , 4; # ¢ mod D for
i < u*. For each i <u* for some y(i)<u*, 4; € ﬂ),(,;). So for some 7
S = {1 :y{i) = 7} has power u*. Clearly {7({) : 1 € S} is as required.

(¢) => (a): Assume (a) fails. Let §4 Cu:4 # ¢ mod P} be listed as
fA4,: a <ut] Asfor £ < u* {4, a < £} cannot exemplify "Dis u-dense” there
is a(€) < u* such that for no B < ¢, Ay € Ag mod D. By (c) there is S ¢ u* of
cardinality pu* such that for any a; € S (i <u*), {7y <A:7 € 4gq,) for every
i<y}#z¢pmod D Let for ¢<u* B, be the diagonal intersection of
iAa(E) : £ < &), Note that Bg is not uniquely determined as a set (it depends on
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the enumeration of ¢) but mod P (and even mod ) it is uniquely deter-
mined. Clearly {; < {g => By, 2 By, mod . Now necessarily for some ¢&(*) for
every { ={(*) (but < pu*), By = Bysy mod B as otherwise there is an increas-
ing sequence ¢(i) for i <pu*, such that By # Bygy mod D so
§Bei+1) — Bewy - & < w*) show Dis not u*-saturated and clearly contradict ( c)

which we are assuming.

Now as Bye) # ¢ mod D for some p(*) < ut, By(+y =Ay+)- Choose
B <u* B>y(*),B>¢(*). So by the choice of &(*) By = Bgsymod D but
by the choice of Bgyy, Bgyy C Agpy mod D hence Bysy € Aggy mod D vut
Beey = Ays) 50 Ayey € Agg) mod D But remember the choice of £(g), as

B >7(*)it implies A ey € Ay mod D Contradiction.

7+
10. Definition: 1) For a regular uncountable A and u < 2 let

@ >

(a) Dom (A,u) = {f : f a function with domain a — {A} for some ordi-

nal a <A f(n) < u, for n € ¥ a — {A}, where A is the emply sequence.
(b) Domn ¥*(A,u) = {f : f afunction from > — {A} to ui.
(c) Let I , be the set of 4 € A such that :

for some function F from Dom {A,u) to §0,1}, for every h : 4 - {0,1}] there is
f € Dom *(A,u) such that for some C € ), (V6 € A N C)[n(d) = F(f 1 6)].

- 2) For A,u as above and function /' from Dom (A,u) to {0,1] let [{ﬂ be
the set of A € A such that ; for every B € A4, there is f € Dom (A,u) such that
for some C € By

(YoeC)seB iff F(f16)=1]

3) For A,u, F as above let J§, be the normal ideal on A which £, gen-

erates.

Remark: This is close by related with the weak diamond, see Devlin and
Shelah [SD} and Shelah [Sh, Ch. XIV, §1].

11. Lemma : 1) I, , is a normal ideal on A (but it may be P(A)) and we
could have in the definition of Dom (A,u) replace ®> a by a .
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R)U <A 25=2% u=pur<2r u< A (ie. pw <R, ,, where A=8,) (or

even a weaker restriction) then A ¢ I, ,,.

3) . €Ip €y and Iy, = UL, - F a function from Dom (A,u) to

{0,143

4) For every function F:Dom (A u) > §0,1}, there is a function
F* : Dom (A,u) = §0,1} such that

=15, =I5,
5) For any function F : Dom (A,u) » §0,1}, forevery C€ D, A—C € [,

Proof : Part 1) is straightforward. For 2) see [Sh 2, Ch. XIV §1]. Now (3),
(58) are trivial and for (4), note that in Definition 10(2) we demand (V
deC)[6eB=>F(ft3d=1] and not just v
seCNnNAeB<=F(f1rd8=1]

12. Lemma : Suppose A is regular and uncountable, u < 2* and A ¢ Ip

Then for no Fis J§ , p-dense, A*-saturated.

Proof : Suppose F is a counterexample and let {4,/ J{“ :1 < ul be a
dense subset of AN/ J{, We now define a function H from
Dom {Au) = Ui{f : f a function from some ©>§ — {A] into u where 8 < A} to
£0,14.

Suppose 6 < A is limit, f : (®?8 — {A}) » u, for v € ¥>8 let f, be the func-
tion from ©%6 — {A} to {0,1} defined by f,(n) = f (v~n). We define H(f) by

Cases!

Case I For some a, < 8, F'(f ¢cgap>) =1 -

Then we let H(f), be F(f <1 44>) for the minimal such a,f (lexicographi-
cally).

Case II: Not Case [, but for some a < &, 6 € A 45

Then H(f) = f (<£3,a>) for the minimal such a.



Sh:237a

257

Case III: Not Case I nor II.

Then H(f )} = 0.
Iff:9%a —§{A} > i, a not limit, let H(f) = 0.

Now we get contradiction by Fact 12A below (as A & I, ,, /), is normal and
J{{“ C [X,p,)'

12AFact: A € ]{{#.

Let B € A and we shall find f € Dom *(A,u) such that for some C € 2, (V
se€C)de Biff H(f 18) =1].

Let /Qg: {4; 11 < p} be a maximal subset satisfying:
(a) foreverya # b € Pa nb € J§, (ie PisJf{,- disjeint.)

(b) forevery a € P, a € Bmod J{, ora N B = ¢ mod J},,.

As F is a counterexample, /9()\)/ J{.u is A*-saturated hence IPI < A, so let
P= {4y @ <a(*)}, a(*) <A. We shall assume a(*) = A (the other case is

easier). Let B be the diagonal union of the Ay le- IB<A:BE Y Ay} 50
a<f

clearly ag®A—RB" € J{“. For cach a <A let a4, be Ayg— B if
Ayay € B mod J{, and Ay N B if Ay N B=¢mod J{,. Soin any case
a, € J{#, so there are sets aag€l{,. (for B<A) such that

Ca =7 <AIYE U Ogniep} AS Qgpg € [{M there are functions faa'p J ,}'p from
: B<y
©>X — {A} to u, such that for some C, g € Dy

(Vo€ Capllb€a,g M B<>F(flgtd) =1]
(Vo€ Capllb€agg<> F(flgtd)=1]

Now we can define f° : (> A —{A}) » pu

T (<0.a.8>~n)=fQg(m)

Fi(<iap>)=fap(n)
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f.(<2,01>) =1 if 6¢ Ai{a)’
Fr(g3,0>) =1 if 8¢ AyqCBmodly,

fim)=o0 otherwise.

1t is easy to check that {§: H(f "1 8) = 1 <= 6 € B} belong to . As B was
any subset of A this shows A € 1{{“ but /ff, € I u A & Iy, contradiction.

13. Conclusion: Suppose A is regular uncountable and A& [ , (see
11(1)). Then ), is not p-dense, A*-saturated.

Proof: As ), is A*t-saturated, and I\, @ normal ideal on A, it is known
that for every appropriate F, for some Y(F) C A Y(F) # ¢ mod Iy and J§,
=4 cn (Y(F)=4) U A-Y(F) € 1y} and so J{, is p-dense A*-saturated

too contradicting 12.

14. Coneclusion: If A =«%2*> 25 u=pu < Hin{22 A < 2* then Dy

cannot be A*-saturated, u-dense.

Proof : By 13 and 11(2) (so we could get a little more).
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