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Abstract

We show: There are pairs of universes V1⊆V2 and there is a notion of forcing P ∈ V1 such
that the change mentioned in the title occurs when going from V1[G] to V2[G] for a P-generic
�lter G over V2. We use forcing iterations with partial memories. Moreover, we implement
highly transitive automorphism groups into the forcing orders. c© 2000 Elsevier Science B.V.
All rights reserved.
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0. Introduction

In [14] it is shown that some cardinal characteristics can be changed without chang-
ing !-sequences or cardinalities, that is we can have two models V1⊆V2 of ZFC such
that (!V1)V2 ⊆ V1 and such that V1 and V2 have the same cardinalities and such that,
e.g., dV2¡dV1 (d is the dominating number, the minimum size of a subset D ⊆!! such
that every function f∈!! is eventually dominated by some member of D). Since in
such a situation the covering theorem for (V1; V2) fails, there is consistency strength
of at least a measurable cardinal. In [14] a change of a co�nality of a regular cardi-
nal in V1 was the main step when changing all the entries of Cicho�n’s Diagram (for
information on cardinal characteristics and Cicho�n’s Diagram see e.g. [4, 2, 6, 22])
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without changing cardinalities or the reals. In this work, we show that we do not need
to change co�nalities in order to change b; cov(M); cov(N); unif (M) or unif (N)
and both additivities without changing cardinalities or the reals. These are all entries
of Cicho�n’s Diagram that are not norms of transitive relations. In order to cover all
these cases we use two di�erent procedures.
In Section 1, we show how to change b; unif (M) and cov(N) and both additivities

starting from a bare set-theoretic situation. We use an iteration with partial memory.
In [14] it is shown that d; cof (M) and cof (N) cannot be changed if their values

in V1 are regular in V2 and if V1 and V2 have the same cardinalities. At the end
of Section 1, we shall show that if V1 and V2 have the same co�nalities, then these
characteristics (and some more, whose de�nition exhibits a certain syntax) cannot be
changed either when starting from a singular value in V1.
In Sections 2–5, we show how to change unif (N). We work with partial random

forcing as in [20, 18], however, as we need special instances of the methods presented
there, we (try to) make our present work self-contained. We include some comments
on the connections to Shelah (Preprint, 1998, Sh619; Fund. Math., to appear) and give
references to items we use almost literally, so that the reader may also read these.
In Section 6 we shall present a variation of the techniques for a case with countable
co�nality.
In Section 7, we show how to obtain the set-theoretic assumptions made in

Theorems 1.1 and 2.1 from Gitik’s work in [8, 9].

Notation. Our notation is fairly standard, see [11, 13]. However, we adopt the Jer-
usalem convention that the stronger forcing condition is the larger one. We often use
VP for V [G], where G is any P-generic �lter over V . For two forcing notions P;Q we
write PlQ if P is a complete suborder of Q. A forcing notion P is called �-linked
if P=

⋃
n∈! Pn such that each Pn is linked, that is any two p; q∈Pn are compatible.

Martin’s axiom for less than � dense subsets of a �-linked partial order is denoted by
MA¡�(�-linked). We speak of !!, the set of all functions from ! to !, as the reals.
For f; g∈!! we write f6∗g if ∃n ∀k¿n f(k)6g(k). The ideal of Lebesgue null
sets is denoted by N, and the ideal of meagre sets is denoted by M. The bounding
number, b, is the smallest size of a subset B⊆!! such that for any f∈!! there
is some b∈B such that b
∗f. Let I be an ideal on the reals. The uniformity of
I⊆P(!), unif (I), is the smallest size of a subset of the reals that is not a member
of I. The covering number of I; cov(I), is the smallest size of a subfamily of I
whose union covers the reals. The additivity of I; add(I), is the smallest size of a
subset of I whose union is not in I.

1. Changing the uniformity of category

In this section, we show how to change unif (M). Since add(M)6b6unif (M) and
add(N)6cov(N)6unif (M) (for proofs of these inequalities e.g. see [7]), and in the
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beginning, that is in V1[G], everything is large because of an instance of Martin’s
axiom, the other four mentioned characteristics drop as well.

Theorem 1.1. Assume that we have
(a) V1⊆V2; both models of ZFC; (!V1)V2 ⊆V1;
(b) � is a cardinal in V2; C ⊆ �; C ∈V2; I∈V2 is an ℵ1-complete proper ideal on

P(C);
(c) ∃�6� such that ∀B∈V1; if V1 |= |B|¡�; then B ∩ C ∈I;
(d) V1 |= �¿ℵ0 and � is regular.
Then for some P

(�) V1 |= P is a �nite support iteration of �-linked forcing notions; and the cardinality
of P is �¡�;

(�) P is c.c.c. in V2.
For G⊂P generic over V2 we have
(
) (!V1[G])V2[G]⊆V1[G];
(�) V1[G] and V2[G] have the same cardinals if V1 and V2 have;
(�) V1[G] and V2[G] have the same co�nality function if V1 and V2 have;
(�) V1[G] |= MA¡�(�-linked);
(�) in V2[G] there is 〈ri | i∈C〉; ri ∈ (!2)V1[G] = (!2)V1[G]; such that ∀s∈ (!2)V1[G]

∃B⊆ �; B∈V1; |B|V1¡� (so C ∩ B∈I) ∀i∈C\B; ri is Cohen over V2[s].

Proof. In V1 we build a �nite support iteration

〈Pi; Q
˜
j | j¡�∗; i6�∗〉

of length �∗= �+�¡� as follows. For �¡� we let Q�=(¡!2;C), the Cohen forcing.
For �¡�¡� we shall choose Q

˜
�+� such that it is a name built from only part of P�+�.

We �rst need some de�nitions in order to specify good parts of the past. This forcing
technique has also been applied in [18–20] and their predecessors and in [21]. The part
[21, 3.3–3.7] contains some lemmas showing that there are complete embeddings from
speci�ed suborders of the iteration that are not just initial segments. The organisation
of our forcing will be slightly di�erent from that in [21] in as much as we have the
initial Cohen part here at once.
The support of a condition p∈P� is supt(p)= {
∈ � |p(
) 6=1Q

˜


}, where 1Q

˜


is a

name for the weakest element in Q
˜

. In addition to having �nite supports we shall

require that the supports hereditarily stem only from a part of the “past” P�. These
parts of the past can be called memories.
First, we explain how to choose sequences 〈a� | �∈ �¡�〉 which will allow us to

de�ne suitable memories. Given a sequence 〈a� | �∈ �¡�〉= �a of subsets of an ordinal,
we say c is �a-closed, if

c⊆ �∗ and ∀�∈ c a� ⊆ c:
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We regard �¡� as an ordinal and as a set of sequences of length less than �. The
set of all subsets of a set A of size less than � is denoted by [A]¡�. For x∈ �¡� we
can also regard x as a function from some ordinal less than � to � and then write
range(x) for its range, which is a subsets of �. This will be used for referring to a
part of the Cohen reals.
We show that there is some 〈a� | �¡�¡�〉 such that

(1) ∀b∈ [�¡�]¡� ∃� b⊆ a�,
(2) a� ⊆ �,
(3) |a�|¡�,
(4) 
∈ a� → a
 ⊆ a� (i.e. each a� is �a-closed).
This can be seen as follows: Let 〈b� | �∈ �¡�〉 enumerate [�¡�]¡�, where b� ⊆ �.

By induction on � we now choose a�. Suppose a
 is chosen for 
¡�. Then we set

a1� =
⋃
j∈b�

aj ∪ b�;

an+1
� =

⋃
j∈an�

aj ∪ an
�;

a� =
⋃
n∈!

an
�:

This is still in [�¡�]¡� because � is regular and cf (�)¿ℵ0. Now it is easy to see that
�a ful�ls (1)–(4), and we �x such a sequence.
In order to take care of the initial Cohen part, we need shifts and write �⊕ a� for

{� + 
 | 
∈ a�}.
For each �∈ �¡� we de�ne a suborder P∗

�⊕a� of P�+� inductively by

P∗
�⊕a� =

{
p ∈ P�+� | supt(p) ∩ �⊆

⋃
{range(x) | x ∈ a�}

∧supt(p) ∩ [�; � + �¡�)⊆ � ⊕ a�

∧ ∀
 ∈ supt(p) ∩ [�; � + �¡�) p(
) is a P∗
�⊕a
 -name

}
:

If b⊆ �6�¡� then p � (
⋃ {range(x) | x∈ b} ∪ �⊕ b)) denotes the � + �-sequence

de�ned by(
p �

(⋃
{range(x) | x ∈ b} ∪ � ⊕ b

))
(
)

=




p(
) if 
 ∈
(⋃

{range(x) | x ∈ b} ∪ � ⊕ b
)
;

1Q
˜


else:

Now we have for all �∈ �¡�: If b⊆ � is �a-closed, then P∗
�⊕blP�+�. If p∈P�+�, then

(p � (
⋃ {range(x) | x∈ b}∪�⊕ b)))∈P∗

�⊕b and for q¿p � (
⋃ {range(x) | x∈ b}∪�⊕ b)
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(in the Jerusalem notation) we have that q∪p � (�\(⋃ {range(x) | x∈ b}∪�⊕ b))∈P�+�

(for proofs, see [21]).
We choose Q

˜
�+� such that |dom(Q

˜
�+�)|¡�; Q

˜
�+� is a P∗

�⊕a� -name, 1 
P∗
�⊕a�

“Q
˜
�+� is

�-linked”, and with some bookkeeping such that Q
˜
�+� ranges co�nally often over

all P∗
�⊕a
 -names for �-linked forcings for every 
∈ �¡�. In order to allow such a

bookkeeping, we assume that ∀b∈ [�¡�]¡� ∃�¡�
� b⊆ a�, which can easily be reached

by starting with suitable 〈b� | �∈ �¡�〉.
Now we are in a position to check all the items of the theorem:

(�) It follows immediately from our de�nition of P.
(�) If P=

⋃
n∈! Pn witnesses �-linkedness in V1 then it does so in V2 as well. Thus

in V2; P is a �nite support iteration of �-linked forcing notions and hence c.c.c.
(
) (!V1[G])V2[G]⊆V1[G] follows from (!V1)V2 ⊆V1 and the countable chain condi-

tion of P in V2. (There are also proofs in [11, Section 37] and more explicit in
[5].)

(�) and (�) Vi and Vi[G] have the same co�nalities.
(�) Let Q be in V1[G] be a �-linked notion of forcing such that Q⊆ �′¡�. Let

D= {D� | �¡�′} be a set of dense sets in Q. Since the supports are �nite and
since we have c.c.c., there is some A⊆ �+�¡� of size less than � such that there
is a name for (Q;D) that contains only conditions whose support is in A. Then
we take �∈ �¡� such that

x =
⋃

{range(x) | x ∈ a�}⊇A ∩ � and y = � ⊕ a� ⊇A ∩ [�; � + �¡�)

and have that D; Q∈V
P∗
�⊕a�
1 . Hence a Q-generic G⊆Q is added at some stage in

our iteration.
(�) Let 〈ri | i∈ �〉 be the Cohen reals added by P�. We show that {ri | i∈C} is as

claimed. Let s∈ (2!)V1[G]. Say s was added by forcing with Q
˜
�+� (the case when

s was added before stage � is similar), a P�⊕a� -name. We take B= a�. Then
B∈V1; B⊆ �, and |B|V1¡�. As C ∩ B∈I, we have C\B 6= ∅. For i∈C\B ri is
Cohen over V1[s]. Proof: For Qi=(¡!2;C) we have

Qi ∗ P∗
�⊕a� = Qi × P∗

�⊕a� :

Remark. This equation is very crucial: Note that there is “no time-dependence”, i.e.
the location of i in � + �¡� as compared to the location of x∪y does not have
any in
uence. Neither Qi nor P∗

�⊕a� is the “later” forcing, because neither of them
is in
uenced by the extension performed by the other. All the work with the partial
memory was done in order to get this equation. Counting cardinalities of unions of
supports of conditions appearing in nice names seems not to su�ce for it.
The analogue of the crucial equation is true for the subforcing of P∗

�⊕a� that has s
as a generic. Now in product forcing, the factors commute, hence we have V1[ri][s] =
V1[s][ri].
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Putting things together we get

Corollary 1.2. (1) The following are equiconsistent (even (B)⇒ (A); (A)⇒ (B) in
some c.c.c. forcing extension):
(A)(�) there are V1; V2; �; �; �; �; C; such that

V1⊆V2;
V1 |= � regular ¿ℵ0;
(!V1)V2 ⊆V1;
�¿�; �¿�¿�¿ℵ1;
C ⊆ �;
|C|V2 = �;
∀B∈V1 (|B|V1¡� → |B ∩ C|V2¡�).

(�) V1 and V2 have the same cardinals.
(
) V1 and V2 have the same co�nality function on ordinals.

(B)(�) like (A)(�) but in addition
(∗1) V1 |=MA¡�(�-linked)
(∗2) in V2 there are 〈ri | i∈C〉; ri ∈ 2! and a submodel V such that ∀s∈ 2! ∃B∈

[C]¡� such that 〈ri | i∈C\B〉 is Cohen over V [s].
(�) as (�) above.
(
) as (
) above.
(2) We can leave out (�) or ((�) and (
)) in both (A) and (B).
(3) If we strengthen (A)(�) by adding

(!1V1)V2 ⊆V1; then we can get MA¡� (ccc) in (B):

Proof. (A) is as the premise of Theorem 1.1 with I= {C′ ⊂C |C′ ∈V2; |C′|V2¡�}.
Note that � as in (A)(�) is uncountable because we have the condition (!V1)V2 ⊆V1.
For (3), take all names for c.c.c forcing notions, not only for the �-linked ones. The
additional premise ensures that (the new) P has the c.c.c. in V2 as well.

We get the following conclusion for cardinal characteristics in (B) of Corollary 1.2.

Theorem 1.3. Suppose that we have
(�) There are V1; V2; �; �; �; �; C; such that

V1⊆V2;
V1 |= � regular¿ℵ0;
(!V1)V2 ⊆V1;
�¿�; �¿�¿�¿ℵ1;
C ⊆ �;
|C|V2 = �;
∀B∈V1(|B|V1¡� → |B∩C|V2¡�);
V1 |=MA¡�(�-linked);
in V2 there are 〈ri | i∈C〉; ri ∈ 2! and a submodel V such that ∀s∈ 2!∃B∈
[C]¡� such that 〈ri | i∈C\B〉 is Cohen over V [s].
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(�) V1 and V2 have the same cardinals.
(
) V1 and V2 have the same co�nality function on ordinals.
Then (a) bV1¿�; bV26� (and in the construction from the proof of Theorem 1:1;

we have bV1 = �. Moreover; if ∀B∈ ([[�]¡�]¡�)V2 ∃B′ ∈ ([[�]¡�]¡�)V1B⊆B′; then the
construction from Theorem 1:1 gives bV2 = �).
(b) unif (M)V¿�; unif (M)V6�;
(c) cov(N)V¿�; cov(N)V6�.

Proof. The V1-part of (a)–(c): MA¡�(�-linked) implies that the three cardinal char-
acteristics (and add(M), add(N)) are ¿�, because all of them can be increased by
�-linked notions of forcing (see e.g. [2]).
In order to show unif (M); b6�, we take {ri | i∈C′}, C′ ⊂C, |C′|= �. This set

is unbounded and not meagre in V2, because for any s∈V2 (either in !! or as a
name for a meagre (F�-)set) there is some Bs ∈ [C]¡� such that for i∈C′\Bs 6= ∅ we
have the ri is Cohen over V2[s], hence it is not bounded by s nor in a meagre set
coded by s.
Proof of cov(N)6�: This follows from Rothberger’s inequality cov(N)6unif (M)

(see [16, 7]). In order to give a proof not using this inequality, we can take {ri | i∈C′}
as above. We set M (ri)= {m | ri is Cohen over V [m]}. Then (by Fubini) we have that
M (ri) is a Lebesgue null set and for s∈ (2!)V2 we have there is some Bs ∈ [C′]¡� such
that for i∈C′\Bs the real ri is Cohen over V [s], hence s∈M (ri), so {M (ri) | i∈C′}
covers (2!)V2 .
Regarding the part of (a) in parentheses: Any � of the Cohen reals added in

the beginning are unbounded and show that bV16�. Under the additional premises,
we have that bV2¿�: Suppose that M ⊂ (!2)V2 and |M |V2¡�. We take M1⊆ � and
M2⊆ �¡� such that each member of M has a name containing only conditions from
{Ci | i∈M1}∪ {P∗

�⊕a� | �∈M2}. Then B= {{i} | i∈M1}∪ {a� | �∈M2}∈ ([�¡�]¡�)V2 .
Hence, there is some B′ ∈ ([�¡�]¡�)V1 such that B′ ⊇B. We take � such that a� ⊇

⋃
B′.

Hence at some later stage Hechler forcing over V
P∗
�⊕a� will be done in the iteration

and add a real that dominates all reals in M .

Remark on the violation of covering: Assume that for some �rst-order sentence
�=�(P; ∈ ), where ∈ is a two place predicate and P is a unary predicate, we have
that

` ∀xPx → �;

� is preserved by increasing P:

Then we de�ne

inv� = min{|A| | (H (ℵ1);∈; A) |= �}:
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H (�) is the set of all sets that are hereditarily of cardinality less that �. Now, if we
have two models V1, V2 of set theory such that

V1⊆V2; and

V1 and V2 have the same cardinals and the same H (ℵ1)
(which is the same as having the same reals); and

C is of minimal cardinality such that (H (ℵ1);∈; C) |=� and

(inv�)V1 = �¿|C|¿(inv�)V2 ;
then we have that C is not covered by any set in V1 of cardinality less than �.
Remark on changing d; cof (M) and cof (N): Assume that for some �rst-order

sentence �=�(∈), where ∈ is a two place predicate, we have that

∀xyz ∈ H (ℵ1) (�(x; y) ∧ �(y; z)→ �(x; z)) ∧
∀x ∈ H (ℵ1) ∃y ∈ H (ℵ1) �(x; y):

Then we de�ne for B⊆H (ℵ1), B∈V :

invV�;B = min{|A| | for all x ∈ B exists y ∈ A such that (H (ℵ1);∈) |= �(x; y)}:
Note that d; cof (M) and cof (N) are characteristics of this type.
Now we have

Theorem 1.4. If V1 and V2 are two models of ZFC; such that V1⊆V2 and such that
they have the same co�nalities and the same reals; and if B∈V1; B⊆H (ℵ1); then

invV1�;B6inv
V2
�;B:

Corollary 1.5. If V1 and V2 are two models of ZFC; V1⊆V2 and they have the same
co�nalities and the same reals then their dominating numbers and their co�nalities
of the ideals of Lebesgue null sets and meagre sets coincide.

Proof of Theorem 1.4. Given V1 and V2 and � we carry out an induction over invV1�;B
simultaneously for all B⊆H (ℵ1), B∈V1.
If invV1�;B=1, then the premise H (ℵ1)V1 =H (ℵ1)V2 and the requirements on � im-

mediately yield the claim.
Now suppose that the claim is proved for all �, B such that invV1�;B¡� and that we

have some �, B such that invV1�;B= �.
Case 1: � is regular in V1 and hence in V2. In this case, Blass’ Proposition 2:3

of Mildenberger [14] applies. For completeness’ sake we repeat the argument here:
Suppose that invV2�;B= �6�.

Let Z = {z� | �¡�} witness invV1�;B= �, and Z ′= {z′� | �¡�} witness invV2�;B= �. Since
RV2 ⊆RV1 , in V2 there is a function h : �→ � such that for �¡�,

H (ℵ1) |= �(z′�; zh(�)):
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If � were less than �, then range(h) would be bounded in �, say by a bound �∈ �.
Then ∀a∈RV1∃�∈ ��(a; z′�)∧�(z′�; zh(�)). Hence {z� | �6�} were a witness for

invV1�;B6card(�)¡�, which contradicts the premise.
Case 2: � is singular in V1 and hence in V2.
Let �= limi→ cf (�) �i and �i¡�.
Let Z = {z� | �¡�} witness invV1�;B= �.
Set

Zi = {z� | � ∈ �i}

and

Bi = {b ∈ B | ∃z ∈ Zi�(b; z)}:

Now we have that

invV1�;Bi
6�i

and

sup
i∈cf (�)

invV1�;Bi
= �:

The second equation is easy to see: If supi∈cf (�) inv
V1
�;Bi

= �¡� then we would have

that invV1�;B= � · cf (�)¡�.
By induction hypothesis

invV1�;Bi
6invV2�;Bi

:

Since any witness for the computation of invV2�;B is a union of witnesses of the

computation of invV2�;Bi
, we get that invV2�;B¿ sup{invV2�;Bi

| i∈ cf (�)}= �.

2. Changing the uniformity of Lebesgue measure

In this and the next three sections, we show how to change unif (N) (and cov(M),
which comes for free, because of the inequality cov(M)6unif (N), see [7]) under
our given side conditions. In this section, we start to de�ne the forcings we are going
to use and look at automorphisms of forcings. We carry out the proof of the changing
procedure up to some point in the proof of item (�) of our main Theorem 2.1 at which
techniques about transferring information about !-tuples of conditions (in [20] called
“whispering”) are needed. We try to give some motivation for this fact by proving a
lemma about a pure Cohen situation (Lemma 2.12), of which a weakened analogue
for iterations of partial random reals and small c.c.c. forcings will be used later. This
weakened analogue is the statement (∗∗) �Q introduced in Lemma 2.11 and proved only
by the end of Section 5.
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These technical parts are then carried through in Sections 3–5.

Theorem 2.1. Assume that we have
(a) V1⊆V2; both models of ZFC; (!V1)V2 ⊆V1 [and (�) or ((
) + (�)) from

Corollary 1:2(A)];
(b) C ∈V2; |C|¡�; C ⊆ �; �6�;
(c) ∀B∈V1; if V1 |= |B|¡�; then sup(C\B)= �);
(d) cf V1 (�)¿ℵ0 and cf V1 (�)¿ℵ0;
(e) in V1; there are uncountable cardinals �¿2� and � such that �¡� and 2�¿�.
Then for some c.c.c. P in V1 we have

(�) V1 |=P is a �nite support iteration of �-linked forcing notions;
(�) P is c.c.c. in V2; and
for G⊂P generic over V2 we have
(
) (!V1[G])V2[G]⊆V1[G]; [and (�) or ((
) + (�)) from Corollary 1:2(A)];
(�) unif (N)V[G]6|C|V[G];
(�) unif (N)V[G]¿�.

Proof. We work in V1 (and often write V instead of V1). For �¿2� we let g�: �→
[�]¡� increasing with �, that is for �6�′ we have that g�′ � �= g�, and

∀B ∈ [�]¡�∃��¡�g�(�) = B:

For �¡� let

E� = E�
� = {�¡� | � =∈ g�(�)}

and

A�
�+� = E�

� ∪ [�; � + �):

We take � and � as in the premises of Theorem 2.1. We also �x �¿ℵ1 and some
�¿2� as above such that cf (�)¿� (used in Lemma 2.11) and 2�¿� and such that
�¡� (for our special iteration where all Q� of cardinality ¡� are already countable,
�6� would su�ce, see at Lemma 5.2 and the remarks in Lemma 2.11, if you like to
work with weaker premises). Note for use in Theorem 5.5: the de�nition of g� and
E�, A

�
�+� makes sense also if 2

�¡�.

De�nition 2.2. (1) K is the class of sequences

�Q = 〈P�; Q
˜
�; A�; ��; �

˜�
| �6�∗; �¡�∗〉

satisfying
(A) 〈P�; Q

˜
� | �6�∗; �¡�∗〉 is a �nite support iteration of c.c.c. forcings. We call �∗=

lg( �Q) the length of �Q, and P�∗ is the limit.
(B) �

˜�
⊆ ��¡� is a name of the generic of Q

˜
�, i.e. over V

P� from GQ
˜
�
we can compute

�
˜�
and vice versa.
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(C) A� ⊆ �.
(D) Q

˜
� is a P�-name of a c.c.c. forcing notion that is computable from 〈�

˜

[G
˜
P� ]

| 
∈A�〉.
(E) �∗¿� and for �¡� we have that Q�=(!2;C) (the Cohen forcing) and ��=ℵ0

(identify ¡!2 with !).
(F) For each �¡�∗ one of the following holds (and the case is determined in V ).

(�) |Q
˜
�|¡�, |A�|¡� and (just for notational simplicity) the set of elements of

Q�=Q
˜
�[GP� ] is ��¡� (but the order not necessarily the order of the ordinals)

and Q� is separative (i.e. � 
 �∈G
˜Q�

⇔Q� |= �6�).

(�) Q�=Random
V [ �
˜

[GP� ] | 
∈ A�]

and |A�|¿�.
(2) For the proof of Theorem 2.1 we shall be using the following instance of (1):

For �, �, A�
� as above we de�ne a �nite support iteration:

�Q
�
= 〈P�

� ; Q
˜
�
� ; A

�
�;ℵ0; �˜� | �6� + �; � ¡ � + �〉;

P�=P�
�+�. For �¡� we let Q�

� =(¡!2;C), the Cohen forcing. For �= �+�, �¡�, we
let

Q
˜
�
� = Random

V [�
˜
�
� | �∈A�

�]
;

where �
˜
�
� is Q

˜
�
� -generic over V

P� .

Thus, the �Q
�
from (b) is a member of K (and of Shelah [20, De�nition 2:2; 18,

De�nition 1:4]) of a special form: A�= ∅ if �¡�, and A�
�+�=E� ∪ [�; �+ �) for �¡�.

The reader may wonder why we do not really �x �. The reason is that in Section 5
we use a L�owenheim Skolem argument and work simultaneously with �; �+; �++;
: : : ; �+(n−1), n the size of some heart of a �-system, in order to expand �Q

�
to a richer

structure that will be used for the proof of part (�) of Theorem 2.1.

The Lebesgue measure is denoted by Leb and for a tree T ⊆ 2¡! we de�ne lim(T )
= {f∈ 2! | ∀n∈!f � n∈T}. Similar to Shelah [20, 2.2], we specify dense suborders
of Random and call them Random again.

De�nition 2.3. (a) Random
V [ r
˜�

| �∈ A]
= {p | there is in V a Borel function Bp=B

with variables ranging among {true; false} and range perfect subtrees r of ¡!2 with
Leb(lim(r))¿0 such that ∀�∈ rLeb(lim r[�]¿0) (where r[�] = {�∈ r | �E �∨ �E �})
and there are pairs (
‘; �‘) for ‘∈!, such that 
‘ ∈A; �‘ ∈!; and such that p=Bp

((truth value (�‘ ∈ r
˜
‘
))‘∈!)}.

(b) In this case we let supt(p)= {
‘ | ‘∈!}.
(c) P′

�= {p∈P� | ∀
∈ dom(p); if |A
|¡�; thenp(
)∈ �


(not just a name for a member of �
), and if |A
|¿�, then p(
)∈RandomV [ r
˜�

| �∈ A
]}:

Sh:684



218 H. Mildenberger, S. Shelah / Annals of Pure and Applied Logic 106 (2000) 207–261

(d) For A⊆ �, we set

P′
A = {p ∈ P�|dom(p)⊆A ∧ ∀
(
 ∈ dom(p)→ supt(p(
))⊆A)}:

(e) A⊆ � is called �Q-closed or called 〈A
 | 
∈ �∗〉-closed if

∀� ∈ A (|A�| ¡ � → A� ⊆A):

So, in our situation of De�nition 2.2, where all non-empty A� have size �¿�, any
A⊆ � + � is 〈A� | �¡� + �〉-closed.

Fact 2.4. Let �Q
�
be in K from De�nition 2:2.

(1) If �6�+� and X
˜
is a P�-name of a subset of �¡�+� then there is a set A⊆ �

such that |A|6� and 
P� “X˜
∈V [�

˜

| 
∈A]”. Moreover; for each �¡� there is

in V a Borel function B�(x0; x1; : : :) with domain and range the set {true; false}
and 
‘ ∈A; �‘¡�‘ for ‘∈! such that


P� “� ∈ X∼
i� true = B�((truth value(�‘ ∈ �

˜
‘
[GQ
‘

]))‘∈!)”:

(2) For �Q∈K and A⊆ � every real in V [�
 | 
∈A] has the form

(Bn((truth value(�‘ ∈ �
˜
‘
[GQ
‘

]))‘∈!))n∈!

with Bn as in (1); and “true” interpreted by 1 and “false” interpreted by 0.

Proof. (1) Let X
˜
be a name for a subset of �. Let � be a regular cardinal, and let the

relation ¡∗
� be a well-ordering of H (�) such that x∈y implies that x¡∗

�y. Take �
such that ( �Q; �; X

˜
)∈H (�); let M be an elementary submodel of H(�)= (H (�);∈;¡∗

�)

to which { �Q; X
˜
; �} belongs and such that �⊆H (�).

Thus, 
P�∗ “M [G˜
P�∗ ]∩H (�)=M”. Since VP� =V [�

˜�
| �∈ �] we have that M [G

˜
P�∗ ]

=M [〈�� | �∈ �∩M 〉]. So X ∈M [〈�� | �∈ �∩M 〉], and we may choose a name for X
˜

of the form X
˜
= {(�; p) | �∈ �; p∈C�}; where C� is a maximal antichain in V [�

˜

| 
∈ �

∩M ] and from that we can build a Borel function B� in V such that


P� “� ∈ X
˜

⇔ B�(〈truth value(�‘ ∈ �
˜�‘
)|‘ ∈ !〉) = 1”;

where all the �‘ ∈ �∩M .
Hence we have that 
P� “X˜

∈V [�
˜


| 
∈M ∩ �]”.

(2) is a special case of (1) with �=!. We may clue the Bn; n∈!, together to one
Borel function is this case, and write all the arguments into all Bn.

We are going to combine the techniques of Shelah [20, 18]. We use automorphisms
of P�∗ that stem from permutations of lg( �Q)= �∗.
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De�nition 2.5. (1) For �Q∈K of the special form of De�nition 2.2 Part (2), �¡�∗,
we let

AUT( �Q � �) = {f : � → �|f is bijective; and;

(∀� ∈ �)(∀
 ∈ [�; �))
((� ¡ � ↔ f(�)¡ �) ∧ (� ∈ A
 ↔ f(�) ∈ Af(
)))}:

(2) We let for f : �→ � the function f̂ :P′
� →P′

� be de�ned by p1 =f̂(p0) if
dom(p1)= {f(�) | �∈ dom(p0)}, p1(f(�))=B

�
p0 ((truth value(f(�‘)∈ �

˜f(
‘)
))‘∈!),

where p0(�)=B
�
p0 ((truth value(�‘ ∈ �

˜
‘
))‘∈!). (Here, we write B for (B�)�∈� when

Q�= �.)
We can also naturally extend f̂ onto the set of all P′

� -names and name this extension
f̂ as well.

Now we have for �Q∈K.

Lemma 2.6 (cf. Shelah [18, Fact 1:6 parts (4) and (5)]). (1) For f∈AUT( �Q � �) we
have that f̂ is an automorphism of P′

�.
(2) Let ⊗( �Q;A) be the following

⊗( �Q; A)

For every � ∈ A ∩ [�; � + �) and for every countable

B⊆ � there is some f ∈ AUT( �Q � �) such that

f � (A ∩ B) = id; f′′(B)⊆A; f′′(B ∩ A�)⊆A ∩ A�:

If A is �Q-closed and ⊗( �Q;A); then P′
A l P′

lg( �Q)
; and ∀q∈P′

lg( �Q)
we have

(a) q �A∈P′
A;

(b) P′
lg( �Q)

|= q �A6q;

(c) if q �A6p∈P′
A; then q′=p∪ q � (lg( �Q)\A) belongs to P′

lg( �Q)
and is the lub of

p; q.

Proof. (1) is easy. (2) is carried out as in [18], but since we promised to write the
proofs in a self-contained style, we write down a proof here.
We prove by induction on �6lg( �Q) that for A′=A∩ � and q∈P′

�, clauses (a)–(c)
hold.
In successor stages �= � + 1, if � =∈A or A�= ∅ it is trivial. So assume that �∈A

and A� 6= ∅. By induction hypothesis, P′
A∩�lP� and the analogues of (a)–(c) hold for

stage �. It is enough to show

(∗) if in VP′
A∩� , I is a maximal antichain in RandomV

P′
A∩�∩A� , then in VP′

� the set I

is a maximal antichain in RandomV
P′
A� .
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By the c.c.c. this is equivalent to
(∗)′ if �∗¡!1; {p� | �¡�∗}⊆P′

A∩(�+1); p∈P′
A∩�; and p 
P′

A∩�
“{p�(�) | �¡�∗ and

p�� �∈GP′
A∩�

} is a predense subset of RandomV
P′
A∩�∩A� ”,

then p 
P′
�
“{p�(�) | �¡�∗and p� ��∈GP′

�
} is a predense subset of RandomV

P′
A� ”.

Assume that (∗)′ fails. So we can �nd q such that

p6q ∈ P′
� ;

q 
P′
�
“{p�(�)|� ¡ �∗ and p� � � ∈ GP′

�
}

is not a predense subset of RandomV
P′
A� ”:

So for some GP′
A�
-name r

˜

q 
P′
A�
“r
˜
∈RandomV

P′
A� (=Q

˜
�) and is incompatible with every p�(�)∈Q

˜
�”. Possibly

increasing q w.l.o.g. r
˜
=B((truth value(�
 ∈ �

˜

))
∈w) with a suitable countable w⊆A�.

Now we choose

B= dom(q) ∪
⋃

�¡�∗
dom(p� � �) ∪

⋃
{supt(q(�))|� ∈ dom(q)}

∪
⋃

{supt(p�(�))|� ∈ dom(p� � �) and �¡�∗} ∪ w:

Since B is a countable subset of � and since we have ⊗( �Q;A) there is an f∈AUT( �Q � �)
such that

f � (B ∩ A) = the identity;

f′′(B)⊆A;

f′′(B ∩ A�)⊆A ∩ A�:

As f̂ is a automorphism of P′
� and is the identity on PA∩B we have that

f̂(p) = p;

f̂(p�) = p�;

p6f̂(q) ∈ P′
A∩�;

f̂(r
˜
) = B((truth value(�
 ∈ �

˜f(
)
))
∈w);

f′′(w)⊆f′′(B ∩ A�)⊆A ∩ A�;

hence 
P′
�
f̂(r
˜
) ∈ RandomV

P′
A∩A� ;

f̂(q) 
P′
A∩�

“in Q
˜
�; f̂(r

˜
) and p�(�) are incompatible for � ¡ �∗

and thus get a contradiction to the fact that we started with a maximal antichain.
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Lemma 2.7. For A = E�∪ [�; �+�); and for �Q as in De�nition 2:2 Part (2); we have
that ⊗( �Q;A) is true.

Proof. Let �∈A and B⊆ � be countable. W.l.o.g., we treat here the case when �¿�.
We have to show that there in an f such that

f : �→ � bijective,
f � � : � → � bijective,
∀�; 
¡� (�∈A
 ↔f(�)∈Af(
)).

(These �rst three items ensure that f∈AUT( �Q � �), and next we write the conditions
in ⊗( �Q;A):)

f � ((E� ∩B)∪ ([�; �)∩B))= id,

f′′(B)⊆E� ∪ [�; �),
∀�∈ [�; � + �) f′′(B∩ (E�−� ∪ [�; �)))⊆ (E� ∩E�−�)∪ [�; �).

Next, we require that the f preserves slightly more
f � [�; �)= id and hence
∀�∈ [�; �] f �E�−� :E�−� → E�−�.

So, f has to map (B\E�)∩E�−� into E� ∩E�−� and ((B\E�)\E�−�)∩ � into E�\E�−�.
For 
∈ �; �′ ∈ � + 1 we write tp�′(
)= {�∈ �′ | 
∈E�}= {�∈ �′ | g(
) 63 �}. All

subsets T ⊆ �′ such that |�′\T |¡� are realised as the type of � elements because for
each B∈ [�]¡� we have � many 
 such that g�(
)=B. Since �− �¡�, the relation E�

does not play a rôle in tp�+1−�(
) and so we have that for all such �+ 1− �-types T

|{
|tp�+1−�(
) = T}|
= |{
|tp�+1−�(
) = T ∧ 
 ∈ E�}|
= |{
|tp�+1−�(
) = T ∧ 
 =∈ E�}| = �:

Hence, there is a bijection f′ of � preserving the (� + 1 − �)-types and being the
identity on (E� ∩B)∪ [�; �) but mapping (B∩ �)\E� into E�. Then f=f′ ∪ id[�; �) is
as required.
Now we return to the conclusion of Theorem 2.1.

(
) If G⊆P is generic over V2, then
V1[G] and V2[G] have the same reals, indeed (!V1[G])V2[G]⊆V1[G];
V1[G] and V2[G] have the same cardinals if (V1; V2) have,
V1[G] and V2[G] have the same co�nality function if (V1; V2) have.

Since Cohen forcing and random forcing are �-linked, the proof of Theorem 1.1
applies here as well.

Next we show
(�′) V2|= 
P�+� “{��+i | i∈C} is not null”.

Proof. Let n
˜
∈V2 be a P�+�-name for a Borel null set. Since (!V1)V2 ⊆V1 we may

assume that n
˜
∈V1. By 2:4(2), for some Borel function B∈V1 for some countable
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X = {x‘ | ‘∈!}⊆ �; Y = {y‘ | ‘∈!}⊆ �; �‘; ‘∈!, �′‘; ‘∈!, we have that

n
˜
= B((truth value(�‘ ∈ �

˜x‘
))‘∈!; (truth value(�′‘ ∈ �

˜�+y‘
))‘∈!):

Let i(∗)¡� be such that i(∗)¿ sup(Y ). (Here we use that cf V1 (�)¿ℵ0.) Since
cf V1 (�)¿ℵ0, we have that B :=

⋃
�∈X g�(�)∈ ([�]¡�)V1 . Since sup(C\B)= �, there is

some i¿i(∗); i∈C\B. We claim, that r�+i is random (in the sense of V1 and hence
also in the sense of V2 as Random and all maximal (countable) antichains of the ran-
dom forcing are the same in V1 and in V2) over an extension of V1, in which N

˜
[G]

has a name. Then the proof will be �nished, because then r�+i =∈N
˜
[G] in V1[G] and

also in V2[G]. By our construction, we have

��+i is the Random
V [�
˜�
|�∈Ei∨�6�¡�+i]

-generic over VP�+i

1 :

Since i∈C\B, we have that ∀�∈X g�(�) 6= i, hence ∀�∈X�∈Ei, so X ⊆Ei. Moreover
� + Y ⊆ [�; � + i), as i¿i(∗)¿ sup(Y ). Since, by Lemmas 2.6 and 2.7, PA�+i l Plg( �Q)
the name N

˜
is evaluated in the right manner in V

PA�+i

1 . Thus the claim is proved.

(�) V2[G] |= unif (N)6|C|. This follows from (�′).
Now comes the part whose proof will be �nished only at the end of Section 5.

(�) V1[G] |= unif (N)¿�.

Proof. Suppose the contradiction. In V1 there is i(∗)¡� and p∈P�+� such that

p 
P�+� “�
˜
i ∈ !2 for i ¡ i(∗) ∧ {�

˜
i | i ¡ i(∗)} is not null”:

A name of a real in V1[G] is given by

�
˜
i = Bi((truth value(�i; ‘ ∈ r

˜ji; ‘
))‘∈!)

for suitable 〈�i; ‘; ji; ‘ | ‘∈!〉, �i; ‘ ∈!; ji; ‘ ∈ � + �.
We set

X = {ji; ‘ | i ∈ i(∗); ‘ ∈ !} ∩ �;

Y = {ji; ‘ | i ∈ i(∗); ‘ ∈ !} ∩ [�; � + �):

We show the main point.

In V1[G]; (!2)
V [{ �
˜�

| �∈ X ∪ Y}]
is a Lebesgue null set.

Since ∃�� g�(�)=Y − � we can �x such an �∈ �\X that is not in E� for every
�∈Y − �. It is important to note that therefore the premises of Lemma 2.8 and or
Lemma 2.11 can be ful�lled for our any X; Y as above, with a suitable choice of �.

Lemma 2.8. In VP�∗
1 ; the set (!2)V1[�� | �∈ X ∪ Y ] has Lebesgue measure 0; and a witness

for a de�nition for a measure zero superset can be found in VP�+1 (a forcing name
is already in VP�) for any �∈ �\X that is not in E� for every �∈Y − �.
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Proof. Explanation: This proof will be �nished only with the proof of Lemma 2.11,
which will, as we already mentioned, only be �nished by the end of Section 5. The
proof of this lemma requires reworking of almost the whole [20]. The lemma is also
stated in [18, 1.11, 1.12], where a proof assuming the knowledge of Shelah [20] is
given.
First, we introduce some paradigm null sets (see also [20, 2.4, 2.5]):

De�nition 2.9. (1) Suppose that �a= 〈a‘ | ‘∈!〉 and �n= 〈n‘ | ‘∈!〉 are such that for
‘∈!
(a) a‘ ⊆ n‘2,
(b) n‘¡n‘+1¡!,
(c) |a‘|=2n‘¿1− 1=10‘.
Then we set N [ �a] = {�∈!2 | ∃∞‘ ∀�∈ a‘� 6E �}.
(2) For �a as above and n∈!, we let treen( �a)= {�∈¡!2 | n‘¿max(n; lg(�))→

� � n‘ ∈ a‘}.

Then N [ �a] =! 2\⋃n∈! lim treen( �a) and Leb(N [ �a])= 0. The de�nitions N [ �a] and
lim treen( �a) may be intepreted in any model V such that �a∈V . We indicate the model
of set theory in which we evaluate them by superscripts.

De�nition 2.10. For �¡� we identify Q�, the Cohen forcing, with{
〈(a‘; n‘) | ‘¡k〉 | k ∈ !; n‘¡n‘+1¡!; a‘ ⊆ n‘2;

|a‘|
2n‘

¿1− 1
10‘

}
:

If GQ� is Q�-generic, let

�a� = �a
˜
�[GQ� ] = {(‘; a) | ∃k¿‘ + 1∃〈(aj; nj) | j¡k〉 ∈ GQ�∃j¡k(‘; a) = (j; aj)}

and de�ne �n
˜
�[GQ� ] analogously. We let �a˜

�= 〈a
˜
�
‘ | ‘∈!〉 and �n

˜
�= 〈n

˜
�
‘ | ‘∈!〉 be the

names for the corresponding objects.

Lemma 2.11. If �∈ �\X is such that ∀�∈Y − �� =∈E�; then

(!2)V [r� | �∈X∪Y ]⊆(N [ �a�])V [G]:

Proof (Beginning). In this section, we shall only show that

(∗∗) �Q
in V [G]; for E ∈ [�]�+ we have⋂
�∈E

tree‘∗( �a�) does not contain a perfect tree

is a su�cient condition for Lemma 2.11. For certain members �Q of K; (∗∗) �Q will be
proved in the next three sections. Let �∈ �\X be such that ∀�∈Y − �� =∈E�.
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We show by induction on 
¿� that

(∗∗) �Q�

in VP
 ; for E ∈ [�]�+ we have⋂
�∈E

tree‘∗( �a�) does not contain a perfect tree

implies

(∗) �Q�

∀X ⊆ �∀Y ⊆[�; � + �)

∀� ∈ �\X (∀� ∈ Y − �� =∈ E� → (!2)V [r�|�∈(X∪Y )∩
]⊆(N [ �a�])V
P

):

Preliminary remarks: Assuming ¬(∗) �Q�
 we get a P
-name b
˜
referring only to r�,

�∈ (X ∪Y )∩ 
 such that

p 
P
 b˜
=∈ N [ �a

˜
�]:

Since ∀�∈Y−�� =∈E�, we have for all �′= �+�∈Y , � =∈E� ∪ [�; �+�)=A�
�′ . Since

all r�′ , �′ ∈Y are RandomV
PA�′
-generic there are automorphisms f� ∈AUT ( �Q), �∈ �,

leaving b
˜
and every point from [�; � + �) �xed and moving � to �� =∈{��′ | �′¡�}.

Hence, we get

p� = f̂�(p) 
P
 b˜
=∈
⋃
�∈�

N [ �a
˜
�� ]

for �¿�+ pairwise di�erent ��’s.
Now we start the induction.
For 
= � the proof is easy, because (!2)V [r� | �∈(X∪Y )∩�] contains only Cohen reals:

if there is one real b
˜
[G
] not in (

⋃
�∈�+ N [ �a�� ])V

P
 , then this real is Cohen and gives

rise to a perfect tree of Cohen reals not in (
⋃

�∈�+ N [ �a�� ])V
P
 . So we have that ¬(∗) �Q�


implies ¬ (∗∗) �Q�
.
Now let 
¿� be a limit. Assuming ¬(∗) �Q�
 we get a P
-name b

˜
referring only to

r�, �∈ (X ∪Y )∩ 
 such that

p 
P
 b˜
=∈ N [ �a

˜
�]:

By automorphisms leaving b
˜
and moving � to �� and p to p� we get

p� 
P
 b˜
=∈
⋃
�∈�

N [ �a
˜
�� ]

for � pairwise di�erent ��’s.
Because of the induction hypothesis we may assume that p 
P
 b

˜
=∈ VP� for �¡
,

and hence by the properties of c.c.c. iterations that cf (
)=ℵ0.
So for each �¡� there are p�, m� such that

p6p� ∈ P
; p� 
 b
˜
∈ lim treem�( �a˜

��):
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By properties of c.c.c. forcing notions 〈{�¡� |p� ∈P�} | �∈ 
〉 is an increasing se-
quence of subsets of � of length 
6�. In the beginning on the proof of Theorem 2.1
we chose �¡�. So for some 
1¡
 there is E ∈ [�]�+ such that p� ∈P
1 for �∈E and
m�=m for �∈E. Note that for all but ¡�+ of the ordinals �∈E we have that

p� 
 |{� ∈ E|p� ∈ GP
1
}|= �+:

Fix such an �, and let GP
1
be P
1 -generic over V so that p� ∈GP
1

. In V [GP
1
],

let E′= {�∈E |p� ∈GP
1
}, so |E′|= �+. Let T ∗=

⋂
�∈E′ treem( �a��). In VP
 , T ∗ is a

subtree of ¡!2 and by (∗∗) �Q�
, T ∗ contains no perfect subtree. Hence lim(T ∗) is
countable, so absolute: T ∗ is a P
1 -name and (lim(T

∗))V [GP
 ] = (lim(T ∗))V [GP
1
]. But

p� 
 b
˜
∈ lim(T ∗), hence p� 
 b

˜
∈VP
1 , a contradiction.

Assume now that 
= � + 1 and that ¬(∗) �Q�
. Choose p�=p′
� ∗ q

˜
�(�) as in the

preliminary remark such that p� ∈P�, q
˜
�(�)∈Q�, and additionally such that the q

˜
�(�)

all coincide (because we may assume that f�, chosen as in the preliminary remarks,
does not move �), say that all q

˜
�(�)= q

˜
�. Choose E, p�, GP
 analogous to the above.

We have E′= {�∈E |p′
� ∈GP�}= {�∈E |p′

� ∗ q
˜

 ∈GP�}, and similarly to the above,

together with (∗∗) �Q�
 we get the contradiction p� 
 b
˜
∈VP� .

Since we have covered the cases 
= � and 
¿� limit and 
¿� successor, we have
�nished the proof that (∗∗) �Q implies the statement in Lemma 2.11.
Our proof of (∗∗) �Q will in some parts be similar to Shelah [20]. However, the

di�erence to Shelah [20] is that the our A�
�; �∈ [�; �+�) (from De�nition 2.2, Part 2) are

large in cardinality, namely the same as the iteration length, and hence some techniques
of Shelah [20] are not applicable here. We also take the technique of automorphisms
of �Q taken from Shelah [18], and additionally, like there as well, we are going to
work �Q

�
for many �’s at the same time. Tomek Bartoszy�nski [1] gives a simpli�ed

exposition of some of the results of Shelah [20], that the reader might want to consult
�rst.
The proof of Lemma 2.11 will be �nished only at the end of Section 5.
In the next lemma, which stems from Winfried Just, we show (∗∗) �Q in the special

case that all the p� are Cohen. It serves as a motivation for the rest of our work: it
shows that the main point is to get something similar to the premise no. 3 of Just’s
lemma for the partial random conditions. We may (and later do) weaken the conclusion
of Just’s lemma: Instead of requiring the intersection to be empty we derive only that
the intersection does not contain a perfect tree, that is (∗∗) �Q.

Lemma 2.12 (Winfried Just [12]). Suppose that {p� | �∈Z} is a set of conditions in
P�+� such that
1. Z is in�nite.
2. {dom(p�) | �∈Z} forms a �-system with root u.
3. ∃q ∀�∈Zp� � u= q.
4. �� ∈ dom(p�)\u for all �; p�(��) is Cohen.
5. ∃k∗; n∗ such that ∀�∈Z , if p�(��)= 〈(n�

‘; a
�
‘) | ‘∈ k�〉 then k�= k∗ and n�

k�−1
= n∗.
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We set E
˜
= {�∈Z |p� ∈G}. Then we have for every ‘∗ ∈! that

q 

⋂
�∈E
˜

lim tree‘∗( �a
˜
��) = ∅:

Proof. Suppose the contradiction. Then there exist some ‘∗ and some q1¿q and some
name b

˜
for an in�nite branch such that

q1 
 b
˜
∈
⋂
�∈E
˜

lim tree‘∗( �a
˜
��):

Let n¿max{k∗−1; n∗} and such that 2−n¡10−k∗ . There are some r¿q1 and some
� such that

r 
 b
˜
� n = �:

Now take some � such that dom(p�)∩ dom(r)= u. Since Z is in�nite and all con-
ditions are bounded in size by k∗; n∗, such a � exists. Finally, we set n�

k∗ = n and
a�
n=2

n\{�} and
p+� = p� � (dom(p�)\{��}) ∪ {(��; 〈n�

‘; a
�
‘|‘6n〉)}:

Since � =∈ a�
n, we get

p+� 
 b
˜
∈ lim tree‘∗( �a

˜
��)→ b

˜
� n 6= �:

However, p+� and r are compatible. Contradiction.

3. About �nitely additive measures

In order to prove the existence of a condition p⊗ that forces that many of the
p‘’s (where the p‘, ‘∈! are the �rst ! of some thinned out part of the p� from
Lemma 2.11) are in G�∗ we use names (�

˜
t
�)t ∈T; �∈ �+� for �nitely additive measures.

We shall have that for every �¡� + �, 
P� “�˜
t
� is a �nitely additive measure on

P(!)”. The superscript t ranges over some set of blueprints (see De�nition 4.1) and
indicates the type of the ! conditions p‘ that are taken care of by �

˜
t
�, and there are

some coherence requirements regarding di�erent �’s. The �
˜
t
� are an item in the class

of forcing iterations K3 that we are going to de�ne in De�nition 4.2. Certain members
of K can be expanded to members of K3, and these expandible members of K are
the notions of forcing for which we show (∗∗) �Q is Sections 4 and 5.
For the expansion of a �Q in K to a member of K3 some requirements linking the

A� and the �
˜
t
� need to be ful�lled (called “whispering” in [20, De�nition 2:11(i)]).

By increasing the A� these can be satis�ed. Another way is to use the requirements
only at �nitely many points that are determined at a later stage in a proof. We shall
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work according this latter method: In our case, where we have also automorphisms as
in Fact 2.4, we shall �rst specify som 〈p‘ | ‘∈!〉, and only thereafter we shall de�ne
su�ciently many �

˜
t
� (see Theorem 5.5).

Anyway, the “su�ciently many �
˜
t
�” need the same lemmas about extensions of

�nitely additive measures to longer iterations that are also used to proof that our class
K3 of forcings has enough members. These will be Lemmas 4.5–4.7.
This short section collects some facts about �nitely additive measures, that can be

presented separately before we return to the iterated forcings in K and come to the
mentioned lemmas. All statements of this section, however only few of their proofs,
can also be found in [20].

De�nition 3.1. (1) M is the set of functions � from some Boolean subalgebra P of
P(!) including the �nite sets to [0; 1]R such that
• �(∅)= 0, �(!)= 1,
• � is �nitely additive, that is: If Y; Z ∈P are disjoint, then �(Y ∪Z)=�(Y ) +�(Z),
• �({n})= 0 for n∈!.
Members of M are called partial �nitely additive measures.
(2) Mfull is the set of �∈M whose domain is P(!), and the members of Mfull

are called �nitely additive measures.
(3) We write “�(A)= a” (or ¿a or whatever) if A∈ dom(�) and �(A)= a (or ¿a

or whatever).

For extending �nitely additive measures we are going to use

Theorem 3.2 (Hahn Banach). Suppose that � is a partial �nitely additive measure
on a algebra P and that X =∈P. Let a∈ [0; 1] be such that

sup{�(A) |A⊆X; A ∈ P}6a6 inf{�(B) |B⊇X; B ∈ P}:

Then there exists a �nitely additive measure �∗ extending � and such that �∗(X )= a.

Proposition 3.3. Let �∗ be an ordinal. Assume that �0 ∈M and that for �¡�∗;
A� ⊆! and 06a�6b�61; a�; b� reals. Then we have that
• (1)⇒ (2)
• (2)⇒ ((3:A) with all b�=1)
• (3:A)⇔ (3:B);
where

(1) If A∗ ∈ dom(�0); �0(A∗)¿0 and n∈! and �0¡ · · ·¡�n−1¡�∗ then A∗ ∩ ⋂‘¡n
A�‘ 6= ∅.

(2) ∀�¿0; ∀A∗ ∈ dom(�0) such that �0(A∗)¿0; n∈!; �0¡ · · ·¡�n−1¡�∗ we can
�nd a �nite non-empty u⊆A∗ such that for ‘∈ n

a�‘ − �6
|A�‘ ∩ u|

|u| :
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(3.A) There is �∈Mfull extending �0 such that ∀�¡�∗�(A�)∈ [a�; b�].
(3.B) for all �¿0; for all k∈!; for all 〈A∗

0 ; : : : ; A
∗
m−1〉 partition of ! and A∗

i ∈dom(�0)
such that �0(A∗

i )¿0, n∈!; �0¡ · · ·¡�n−1¡�∗ we can �nd a �nite non-empty
u⊆!\k such that for ‘∈ n and i∈m

a�‘ − �6
|A�‘ ∩ u|

|u| 6b�‘ + �;

�0(A∗
i )− �6

|A∗
i ∩ u|
|u| 6�0(A∗

i ) + �:

Proof. (1) ⇒ (2): Given �; A∗; �0; �1; : : : ; �n−1 we take k ∈A∗ ∩ ⋂‘¡n A�‘ and u= {k}.
(2) ⇒ (3.B) with b�=1: Given �; k; A∗

0 ; : : : ; A
∗
m−1, pairwise disjoint with positive �0

measure, �0; �1; : : : ; �n−1 then we can �nd �nite ui, i¡m such that

ui ⊆!\k;

ui ⊆A∗
i ;

|ui|
|⋃i∈m ui| ∈ (�0(A

∗
i )− �; �0(A∗

i ) + �);

a�‘ − �6
|A�‘ ∩ ui|

|ui| :

It is now easy to check that u=
⋃

i¡m ui is as required.
(3.B) ⇒ (3.A): This is the special case of a symmetrized variant of Fact 3.6 with

a�
‘=1 i� ‘∈A� and a�

‘=0 else. This is the most important implication. Its proof is
not circular, it just more economic to do De�nition 3.4, Proposition 3.5, and Fact 3.6
�rst.
(3.A) ⇒ (3.B): Fix �′ such that 2‘m�′6�. We put for i¡m and ‘¡n the �rst⌈

�(A∗
i ∩ A�‘)
�′

⌉

elements of A∗
i ∩A�‘ into u (and nothing else). It is important to see that the tasks for

the di�erent A�‘ can be simultaneously ful�lled. Best look for each i¡m at the atoms
in the Boolean algebra generated by the A�‘ ∩A∗

i ; ‘¡n.
For a real x, dxe is the least integer greater than or equal x. Then it is an easy

computation that the |A∗
i ∩ u|=|u| and the |A�‘ ∩ u|=|u| are in the right intervals of

width 2�.

In order to convey information to later stages of our forcing iteration, we are going
to use averages. These are integrals of functions from ! to with respect to �nitely
additive measures. If the average of some function is large then we can go back to
some �nite subset of ! where the function takes large values.

Sh:684



H. Mildenberger, S. Shelah / Annals of Pure and Applied Logic 106 (2000) 207–261 229

De�nition 3.4. (1) For �∈Mfull and a sequence �a= 〈a‘ | ‘∈!〉 of reals in [0; 1]R (or
just sup‘∈! |a‘|¡∞) we let

Av�( �a) = sup

{∑
k¡k∗

�(Ak) inf ({a‘ | ‘ ∈ Ak}) | 〈Ak | k ¡ k∗〉 is a partition of !

}

= inf

{∑
k¡k∗

�(Ak) sup({a‘ | ‘ ∈ Ak}) | 〈Ak | k ¡ k∗〉 is a partition of !

}
:

(Think of Ak = {‘ | a‘ ∈ [(k=2n; (k + 1)=2n)} and n → ∞, then it is easy to see that
both are equal.)
(2) For �∈M, A⊆! such that �(A)¿0 de�ne �A(B)=�(A ∩ B)=�(A) and

Av�(〈ak | k ∈B〉)=Av�B(〈a′k | k ∈!〉) with

a′k =

{
ak if k ∈ B;

0 if k =∈ B:

Proposition 3.5. Assume that �∈Mfull and ai
‘ ∈ [0; 1]R for i¡i∗ ∈!; ‘∈!; B⊆!;

�(B)¿0 and Av�B(〈ai
‘ | ‘¡!〉)= bi for i¡i∗; m∗¡! and lastly �¿0. Then for some

�nite u⊆B\m∗ we have: if i¡i∗ then

bi − � ¡
∑{ai

‘ | ‘ ∈ u}
|u| ¡ bi + �:

Proof. Let j∗ ∈! and 〈Bj | j¡j∗〉 be a partition of B such that for every i¡i∗ we
have(∑

j¡j∗
sup{ai

‘ | ‘ ∈ Bj}�(Bj)

)
−
(∑

j¡j∗
inf{ai

‘ | ‘ ∈ Bj}�(Bj)

)
¡

�
2
:

Now choose k∗ large enough such that there are kj satisfying k∗=
∑

j¡j∗ kj and for
j¡j∗,∣∣∣∣ kjk∗ − �(Bj)

�(B)

∣∣∣∣¡ �
2
:

Let uj ⊆Bj\m∗, |uj|= kj for j¡j∗. Now let u=
⋃

j¡j∗ uj and calculate

∑
‘∈u

ai
‘

|u| =
∑
j¡j∗

∑
‘∈uj

ai
‘

|u|6
∑
j¡j∗

sup{ai
‘ | ‘ ∈ Bj} kj

k∗

6
∑
j¡j∗

sup{|ai
‘ | ‘ ∈ Bj}

(
�(Bj)
�(B)

+
�
2j∗

)
6bi +

�
2
+

�
2
= bi + �;
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∑
‘∈u

ai
‘

|u| =
∑
j¡j∗

∑
‘∈uj

ai
‘

|u|¿
∑
j¡j∗

inf{ai
‘ | ‘ ∈ Bj} kj

k∗

¿
∑
j¡j∗

inf{|ai
‘ | ‘ ∈ Bj}

(
�(Bj)
�(B)

− �
2j∗

)
¿bi − �

2
− �
2
= bi − �:

Fact 3.6. Assume that � is a partial �nitely additive measure and �a� = 〈a�
k | k ∈!〉

is a sequence of reals for �¡�∗ such that lim supk→! |a�
k |¡∞ for each �. Then

(B) ⇒ (A).
(A) There is �∗ ⊇�; �∗ ∈Mfull such that Av�∗( �a�)¿b� for �¡�∗.
(B) For every partition 〈B0; : : : ; Bm∗−1〉 of ! with Bm ∈ dom(�) and �¿0; k∗¿0 and

�0¡ · · ·¡�n−1¡�∗ there is a �nite u∈!\k∗ such that
(i) �(Bm)− �¡|Bm ∩ u|=|u|¡�(Bm) + �;
(ii) 1

|u|
∑

k∈u a
�‘
k ¿b�‘ − � for ‘¡n.

Proof. We take

� = [{partitions 〈B0; : : : ; Bm∗−1〉 of dom(�)} × (0; 1]× !× [�∗]¡!]¡!

and take a �lter F⊆P(�) such that for each

�c ∈ {partitions 〈B0; : : : ; Bm∗−1〉 of dom(�)} × (0; 1]× !× [�∗]¡!

we have that

{F ∈ � | �c ∈ F} ∈ F:

For each F ∈� we choose u(F) ful�lling the tasks (B) simultaneously for all �c∈F ,
i.e. (i) and (ii) of (B) hold for u(F)= u; �c(0)= 〈B0; : : : ; Bm∗−1〉; �c(1)= �, �c(2)= k∗,
�c(3)= {�0; : : : ; �n−1}.
Then we take an ultra�lter U⊇F and set for A in the algebra A generated by

{{k | a�
k ∈ [q; q′]} | �¡�∗; 06q6q′61} ∪ dom(�)

�∗(A) = the standard part of
(〈 |u(F) ∩ A|

|u(F)| |F ∈ �
〉/

U

)
:

By the Hahn Banach theorem, there is an extension of �∗ to P(!).

An important application of Proposition 3.3 (and the hard part thereof, which is only
proved in Fact 3.6) is

Claim 3.7. Suppose that Q1; Q2 are forcing notions in V; �0 ∈Mfull in V; 
Q‘ “�˜‘
is a �nitely additive measure extending �0 for ‘=1; 2;”. Then 
Q1×Q2 “there is a
�nitely additive measure extending �

˜1
and �

˜2
(and hence �

˜0
)”.
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Proof. We are going to show, that 
Q1×Q2 “�˜1
(in the rôle of �0 of Proposition

3.3) and {A∗
� |A∗

� ∈VQ2 ∩ P(!)} (in the rôle of 〈A∗
� | �¡�∗〉 of 3.3) ful�l (3.B) of

Proposition 3.3”.
First, we show that


Q1×Q2 dom(�˜1
) ∩ dom(�

˜2
) = dom(�0) = �V ∩P(!):

So assume that we have an Q1-name X
˜
and a Q2-name Y

˜
such that 
Q1×Q2 X˜

=Y
˜
.

Let Z = {n∈! | ∃p∈Q1 p 
Q1 n∈X
˜
}. The set Z is in V and 
Q1 X˜

⊆Z . It is easy

to see that 
Q2 Z ⊆Y
˜
. So we get


Q1×Q2 X˜
⊆Z ⊆Y

˜
= X
˜

and our �rst claim is proved.
Now we check (3.B). Let �, k, 〈A∗

i ∈VQ1 | i¡m〉 a partition of ! and �‘, ‘¡n be
given. W.l.o.g. the A�‘ ∈VQ2 are a partition of ! as well.
If for some i; ‘


Q1×Q2 A˜
∗
i ∩ A

˜�‘
is �nite;

then A∗
i and A�‘ can be separated by some A∈V . This is shown in a manner similar

to the proof of the �rst claim.
We choose a separator Ai; ‘ ∈V for each i; ‘ such that 
Q1×Q2 A˜

∗
i ∩ A

˜�‘
is �nite and

let Aj, j¡j∗ be the partition of ! in V that is generated by all the Ai; ‘.
Then, we set �′= �=mnj∗ and put for each i; ‘; j such that


Q1×Q2 A˜
∗
i ∩ A

˜�‘
∩ �A

j
is in�nite;

in the forcing extension VQ1×Q2 , the �rst⌈
�1(A∗

i ∩ Aj)× �2(A�‘ ∩ Aj)
�′ × �0(Aj)

⌉

elements of A∗
i ∩ A�‘ ∩ Aj (and no further points) into u.

4. The �rst part of the proof of (∗∗) �Q : introduction of K3

In order to prove (∗∗) �Q, we need that for suitable �Q= 〈P�; Q
˜
�; A�; �

˜�
; ��; | �¡lg( �Q),

�6lg( �Q)〉 from K (see De�nition 2.2) we have almost (in the sense explained in the
proof of Theorem 5.5) an expansion of the form

�Q
exp
= 〈P�; Q

˜
�; A�; �

˜�
; ��; ��; (�

˜
t
�)t∈T | � ¡ lg( �Q); �6lg( �Q)〉

such that �Qexp is in a special class K3, which we shall de�ne in De�nition 4.2.
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In order to introduce K3, we shall �rst de�ne and (try to) explain the set T of
blueprints (De�nition 4.1). For each blueprint t and �¡�∗ the �

˜
t
� will be P�-name for

some �nitely additive measure on P(!) that conveys some information about !-tuples
〈pk | k ∈!〉 of conditions that �t well to the blueprint t, from stage � to later stages
in the iteration.
Let us tell more about the ideas of the proof of (∗∗) �Q: In Lemma 2.12, if the p�

are not all Cohen, the premise 3 is hard to ful�l. Think of �+ many p� being given,
so that we can do many thinning out procedures and have them similar, i.e. similar
partial random conditions and Cohen conditions. Then we keep only the �rst ! of the
�’s and the �rst ! conditions 〈p� | �∈!〉. We try to strengthen them a little bit (to p′

�)
and then get that the strengthened conditions allow to de�ne one condition p⊗¿p∗

such that

p⊗ 
 “
⋂

�∈E
˜
={� |p′

�∈G
˜
}
tree‘∗( �a

˜
��) has �nitely many branches”

and hence cannot contain a perfect tree. There are some requirements on 〈p� | �∈!〉,
as they have to predict some probabilities about the branches of the tree‘∗( �a

˜
��) and

about the subset of the {p′
� | �∈!}, that lies in G.

The technical means to allow these predictions is the use of �nitely additive measures
and the properties (e)–(i) in the de�nition of K3. These items in the de�nition have
long premises by themselves. However, the premises are su�ciently often ful�lled if
we start with �+ many p�, thin out, and choose an appropriate t ∈T.
We embark with the de�nition of a blueprint t. The set of all blueprints is denoted

byT. The reader may think that t describes some relevant information about the chosen
tuples 〈p� | �∈!〉. Later, it will turn out that sequences described by the same t are
compatible forcing conditions (though we have �nite supports and are not interested
in taking the union of countably many conditions). This will be used in Lemma 4.8.
In the case of iterations where all Cohen forcings are just those forcings in an initial

segment of the iteration (as in De�nition 2.2, Part (2)), we can dispense with the
parameter m in the next de�nition. This simpli�cation is not worthwhile because the
generality allows another application of the method. In Section 6, we shall work with
a type of iteration where Cohens are added co�nally often.
However, we could simplify De�nition 4.2 slightly and leave out (f) there in the

special case that the f� of Lemma 2.11 move only one � in the Cohen part and leave
the indices at which partial randoms are attached �xed. We do not simplify because
we hope for future applications.

De�nition 4.1. We �x a � such that 2�¿� (from 2.2). The set T of blueprints is the
set of tuples

t = (wt; nt;mt; ��t; ht
0; h

t
1; h

t
2; �n

t)

Sh:684



H. Mildenberger, S. Shelah / Annals of Pure and Applied Logic 106 (2000) 207–261 233

such that
(a) wt ∈ [�]ℵ0 . (What is the purpose? Think of the latter as [�]ℵ0 disguised. Suppose

that |dom(p�)|= nt for all �, dom(p�)= {
i� | i¡nt}, 〈
ik | k ∈!〉 ∈ �! for each �xed
i¡nt, but �62� and we can �x an injection and keep as relevant information
certain parts of � coming from of certain f∈ 2�. Look at the wt in Subclaim 5:3.)

(b) 0¡nt¡!, 06mt6nt . (nt will be the cardinality of the heart of the �-system built
from many p� and mt will be the cardinality of the part of the heart that is lying
below �.)

(c) ��t = 〈�t
n; k | n¡nt; k ∈!〉, �t

n; k ∈ wt
2. (�t

n; k codes the nth element of the support of
pk for k ∈! and these k are the �rst ! of the �.)

(d) ht
0 is a partial function from [0; nt) to �. 3 (dom(ht

0) is the part of those � in the
heart of the �-system where Q

˜
� is the Cohen forcing. In the somewhat simpler

case of De�nition 2.2, Part 2), this domain coincides with the part of the heart
that lies below �).

(e) ht
2 is a function from [0; n

t)\dom(ht
0) to

¡!2. (Think of ht
2 giving some information

of a partial random condition attached at some point of the heart.)
(f) ht

1 is a function from [0; n
t) into the rational interval [0; 1)Q, such that {n | ht

1(n) 6=
0}⊆ dom(ht

2). Furthermore, we have that
∑

n¡nt
√

ht
1(n)¡

1
10 . (Think of h

t
1 giving

some information about the Lebesgue measure of the limit of the partial random
condition attached at some point of the heart intersected with dom(ht

2).)
(g) �t

n1 ; k1= �t
n2 ;k2⇒ n1= n2. (This is some compatibility requirement, which is useful in

4.5.)
(h) For each n¡nt we have that 〈�t

n; k | k ∈!〉 is either constant or with no repetitions
(that is: either in the heart of the system or among the moved parts of the domains
of the 〈pk | k ∈!〉).

(i) �nt = 〈nt
k | k ∈!〉 where nt

0 = 0, n
t
k¡nt

k+1¡! and the sequence 〈nt
k+1 − nt

k | k ∈!〉
goes to in�nity. (This last ingredient does not describe p‘ but is just an additional
part handling the �nitely additive measures �

˜
t
�. The sequences �n

t shall allow to

compute intersections of sets of branches from lim tree, and for these computations
(see Subclaim 5:3) the p‘ are grouped together for ‘∈ [nt

k ; n
t
k+1).)

There are �! many blueprints. (Remember we also require that 2�¿�, otherwise the
choice of the � in the following de�nition would fail.)
Explanation: We continue the explanations begun in the parentheses in order to

explain how the conditions shall work together:
As mentioned, (∗∗) �Q follows from the fact that in VP�∗, if E ∈ [�]�+ and m∈!,

then
⋂

�∈ E treem( �a
�) is a tree with �nitely many branches. Suppose some p forces the

3 We do carry out the simpli�cation suggested in a footnote in [20] and take � instead of !� here. This
does not bring any disadvantages, because when choosing 〈p� | �∈!〉 we have initially �+ many p�, and
hence can thin out such that for each �, |domp�| is the same, say nt, and that for auch n¡nt, the p′

� (nth
element of dom(p′

�))= ht0(n) are independent of �, if they lie in some notion of forcing with conditions in

some Q� with |Q�|¡�.
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contrary. We take p�¿p such that p� 
 “�� ∈E” for � ∈ � and such that �� =∈
{�� | �¡�}.
We can assume that the p� are in some given dense set (will be I�� of Lemma 5.1

in our case) and that the 〈p� | �∈ �+〉 form a �-system with some additional thinning
demands, putting �+ many objects into less than � many pigeonholes. (See our earlier
remarks about working with �+ many � and the proof of Lemma 5.2.)
We assume that dom(p�)= {
n; � | n¡nt}, 
n; � is increasing in n and 
n; �¡� i� n¡mt

and that �� is one of the 
n; �. We let p′
� be p� except that p�(��) is increased a little.

It su�ces to �nd some p⊗¿p such that p⊗ 
 “A
˜
= {�∈! |p′

� ∈G
˜
} is ‘large enough’

such that
⋂

�∈A
˜
treem( �a

˜
��) has only �nitely many branches”.

The ‘large enough’ is interpreted in terms of a �t
�-measure.

The n¡nt such that Q
n; � is a forcing notion of cardinality ¡� (in our forcings,
then it is just the Cohen forcing) do not cause problems because ht

0(n) tells us exactly
what the condition is. Still there are many cases of such 〈p� | �∈!〉 which fall into
the same t, and we will get contradictory demands if 
n1; �1 = 
n2 ; �2 and n1 6= n2. But
the wt; ��t are built in order to prevent this. That is we have to assume that 2�¿�
in order to be able to choose 〈�� | �∈ �〉; �� ∈ 2� with no repetitions and such that
for v⊆ �; |v|6ℵ0 (in the applications, we shall have v= {�n; � | �∈!}) there is some
w=wt ∈ [�]ℵ0 such that 〈�� �w | �∈ v〉 is without repetitions.
So the blueprint t describes such a situation giving much information, though the

number of blueprints is �!.
If Q�n; � is partial random, we get many di�erent possibilities for p�(
n; �), too many

to apply a pigeonhole principle. We want that many of them will lie in the generic
set. Using (ht

1(n); h
t
2(n)) we know that in the interval (!2)[h

t
2(n)] the set lim(p�(
n; �))

is of relative measure ¿1 − ht
1(n). Still there are too many (possibly incompatible)

p�(
n; �) and �nally, in Lemma 5.2 and Subclaim 5:3, the existence of many compatible
candidates is ensured by the �nitely additive measures.
The �nt = 〈nt

k | k ∈!〉 are going to be used in the end of Section 5, where we show
that {� |p′

� ∈G} is large by showing that for in�nitely many k we have that

|{� | nt
k6� ¡ nt

k+1 and p′
� ∈G}|

nt
k+1 − nt

k

is large, say ¿�¿0.
The nt

k will be chosen such that they are increasing fast enough with k and 〈p′
�(
n; �) |

�∈ [nt
k ; n

t
k+1)〉 will be chosen such that for each �¿0 there is some s∈! such that for

k large enough: if the above fraction is above � then

k2 ∩
⋂

{treem( �a
˜
�‘) | nt

k¿‘ ¡ nt
k+1 and p′

‘ ∈ G}

has ¡s members, hence the tree has fewer than s branches.
Comment on simpli�cations: Now we �nally de�ne the kind of iteration we use

for the proof of (∗∗) �Q. The reader who is longing for some simpli�cation may omit
condition (f) in De�nition 4.2, Lemma 4.5 and Subclaim 5:3 and work just with
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conditions p� that do not di�er at any index in the iteration where a partial random
real is attached to it, but only at those indices where a forcing of size less than � is
attached, or even work with p� that di�er only at ��¡� (from Lemma 2.11). A look
at the beginning of Lemma 5.2, where the p� and p′

� are chosen, and a look AUT ( �Q)
shows that the restriction to this simpli�ed situation is always possible when forcing
with a member of the restricted class described in De�nition 2.2 Part 2.

De�nition 4.2. K3 is the class of sequences

�Q = 〈P�; Q
˜
�; A�; ��; �

˜�
; ��; (�

˜
t
�)t∈T | �6�∗; � ¡ �∗〉

(we write �∗= lg( �Q)) such that
(a)

�Q = 〈P�; Q
˜
�; A�; ��; �

˜�
; | �6�∗; � ¡ �∗〉

is in K from De�nition 2.2.
(b) �� ∈ �2 and for �¡�¡�∗ we have that �� 6= ��.
(c) T is the set of all blueprints, and �

˜
t
� is a P�-name for a �nitely additive measure

in VP�, increasing with �.
(d) We say the 〈�‘ | ‘∈!〉 satis�es (t; n) for �Q, if

(Think of p‘ being the �rst ! of the p� and 〈�‘ | ‘∈!〉= 〈
n; � | �∈!〉, and
in particular, 〈�‘ | ‘∈!〉= �‘ | ‘∈! from 2:10. (�‘ is for some n always the
nth element in dom(p‘).) Further think that the following items also mean that
〈p‘ | ‘∈!〉 being su�ciently described by t ∈T.)
1. 〈�‘ | ‘∈!〉 ∈V,
2. t ∈T; n¡nt,
3. �‘¡�‘+1¡�∗,
4. n¡mt ⇔∀‘(�‘¡�)⇔∃‘(�‘¡�) (the moved positions �‘ are in the Cohen
part),

5. �t
n; ‘= ��‘ �w

t . (��‘ describes where �‘ really is, and �t
n; ‘ describes a part of

it of size !. For a given t, the n such that �Q satis�es (t; n) is unique by
De�nition 4.1 (g).),

6. if n∈ dom(ht
0) then ��‘¡� and 
P�‘

“|Q�‘ |¡� and (ht
0(n))(‘)∈Q

˜
�‘”,

7. if n∈ dom(ht
1) then ��‘¿�, so 
P�‘

“Q�‘ has cardinality ¿�” (hence it is
partial random),

8. if 〈�t
n; k | k ∈!〉 is constant, then ∀‘�‘= �0,

9. if 〈�t
n; k | k ∈!〉 is not constant, then ∀‘�‘¡�‘+1.

(e) If ��= 〈�‘ | ‘∈!〉 satis�es (t; n) for �Q;
∧

‘∈!(�‘¡�‘+1); n∈ dom(ht
0) and

C = {k ∈ ! | ∀‘ ∈ [nk ; nk+1)ht
0(n)(‘) ∈ GQ�‘

};
then


P�∗ �
˜
t
�∗(C˜

) = 1:
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(f) If ��= 〈�‘ | ‘∈!〉 satis�es (t; n) for �Q;
∧

‘∈!(�‘¡�‘+1); n∈ dom(ht
1), �p

˜
=

〈p
˜
‘ | ‘∈!〉 is such that p

˜
‘ is a P�‘ -name for a member of Q

˜
�‘ , and for every

‘,

(∗) 
P�‘
1− ht

1(n)6
Leb({� ∈ !2 | ht

2(n) C � ∈ lim(p
˜
‘)})

2lg(h
t
2(n))

and if �¿0 is such that

C =


k ∈ !

∣∣∣∣∣∣
|{‘ ∈ [nt

k ; n
t
k+1) |p

˜
‘ ∈ GQ�‘

}|
nt
k+1 − nt

k
¿(1− ht

1(n))(1− �)


 ;

then


P�∗ �
˜
t
�∗(C˜

) = 1:

(g) If ��= 〈�‘ | ‘∈!〉 satis�es (t; n) for �Q;
∧

‘∈! �‘= �; n ∈ dom(ht
1); r

˜
and �r

˜
= 〈r
˜‘
| ‘

∈!〉 are P�-names for members of Q� such that

(∗∗)

in VP� : ∀r′ ∈ Q� if r′¿r; then

Av�t
�

(〈ak(r′) | k ∈ !〉)¿1− ht
1(n); where

ak(r′) = ak(r′; �r) =


 ∑

‘∈[nk ; nk+1)

Leb(lim(r′) ∩ lim(r‘))
Leb(lim(r′))


 · 1

nt
k+1 − nt

k
;

then

P�∗ “if r

˜
∈Q�; then

1− ht
1(n)6Av�

˜
t
�∗

(〈 |{‘ ∈ [nt
k ; n

t
k+1) | r˜‘ ∈ GQ�‘

}|
nt
k+1 − nt

k

∣∣∣∣∣ k ∈ !

〉)
”:

(h) P′
A�
lP�.

(i) For t ∈T; �∈ �∗: If 
 P� |Q�|¿�, then �
˜
t
� �P(!)

VPA� is a PA� -name.
4

De�nition 4.3. (1) For �Q∈K3 and for �∗¡lg( �Q) let

�Q � �∗ = 〈P�; Q
˜
�; A�; ��; �

˜�
; ��; (�

˜
t
�)t∈T | �6�∗; �¡�∗〉:

4 This is where the information is whispered, showing that Q
˜
�, the random forcing over V [�� | �∈A�],

behaves in the sense of �t
� instead of the Lebesgue measure in a certain sense generic: r� hits sets of large

�t
� measure.
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(2) For �Q1; �Q2 ∈K3 we say

�Q
1
¡ �Q

2
if �Q

1
= �Q

2
� lg( �Q

1
):

In the next three steps, we show that K3 is su�ciently rich: that is, if we have
some �Q in K3 then we can �nd an extension. The successor step and the limit step of
co�nality ! require some work, whereas the limits of larger co�nality are easy because
no new reals are introduced in these limit steps.

Fact 4.4. (1) If �Q∈K3; �6lg( �Q); then �Q � �∈K3.
(2) (K3;6) is a partial order.
(3) If a sequence 〈 �Q� | �¡�〉 is increasing; cf (�)¿ℵ0; then there is a unique

�Q∈K3 which is the least upper bound; lg( �Q)=
⋃

�¡� lg( �Q
�) and �Q

�
6 �Q for all �¡�.

Proof. Easy.

Lemma 4.5. Suppose that �Qn¡ �Qn+1; �Qn ∈K3; �n= lg( �Qn); �= sup(�n). Then there
is some �Q∈K3 such that lg( �Q)= � and �Qn¡ �Q for n∈!.

Proof. We have to de�ne (�
˜
t
�)t∈T, such that (e) and (f) of the de�nitions of K3 hold.

Items (g) and (i) do not produce no new tasks in the limit steps, and we proved (h)
in Lemmas 2.6 and 2.7.
So, we look again at (e) and (f) of De�nition 4.2.

(e) If ��= 〈�‘ | ‘∈!〉 satis�es (t; n) for �Q;
∧

‘∈!(�‘¡�‘+1); n∈ dom(ht
0) and

C = {k ∈ ! | ∀‘ ∈ [nk ; nk+1)ht
0(n)(‘) ∈ GQ�‘

};
then


P�∗ �
˜
t
�∗(C˜

) = 1:

(f) If ��= 〈�‘ | ‘∈!〉 satis�es (t; n) for �Q;
∧

‘∈!(�‘¡�‘+1); n∈ dom(ht
1), �p

˜
= 〈p
˜
‘ | ‘

∈!〉 is such that

(∗) 
P�‘
1− ht

1(n)6
Leb({�∈ !2 | ht

2(n) C �∈ lim(p
˜
d‘)})

2lg(h
t
2(n))

and �¿0 and

C =


k ∈ !

∣∣∣∣∣∣
|{‘ ∈ [nt

k ; n
t
k+1) |p

˜
‘ ∈ GQ�‘

}|
nt
k+1 − nt

k
¿(1− ht

1(n))(1− �)


 ;

then


P�∗ �
˜
t
�∗(C˜

) = 1:
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By Theorem 3.2 it su�ces to show

 P� “if B

˜
∈ ⋃�¡� dom(�˜

t
�)=

⋃
�¡�(P(!))

VP� and �t
�(B˜
)¿0 and j∗ ∈! and

C
˜ j
; j¡j∗, are sets from (e) or (f) (whose measure is required to be 1 there),

then B
˜
∩⋂j¡j∗ C

˜ j
6= ∅”.

Towards a contradiction, assume q∈P� forces the negation. So possibly increasing
q we have: for some B

˜
and for some j∗ ∈!, for each j¡j∗ we have �¿0, and

n(j)¡nt ; 〈�j
‘ | ‘∈!〉; 〈p

˜

j
‘ | ‘∈!〉 involved in the de�nition of C

˜ j
(in (e) or (f) of

De�nition 4.2), and q forces:

B
˜
∈
⋃
�¡�

dom(�
˜
t
�) =

⋃
�¡�

P(!)V
P�
;

⋃
�¡�

dom
(
�
˜
�t(B
˜
)
)

¿ 0;

C
˜ j
comes from (e) or (f );

B
˜
∩
⋂
j¡j∗

C
˜ j
= ∅:

There is some �(∗)¡� such that B
˜
∈ dom(�

˜
t
�(∗)) is a P�(∗)-name. The C

˜ j
have n(j)¡nt ,

〈�j
‘ | ‘∈!〉; 〈p

˜

j
‘ | ‘∈!〉 as witnesses as required in (e) or (f) above. W.l.o.g. q∈P�(∗)

and q∈GP�(∗) ⊆P�(∗), GP�(∗) generic over V .
We can �nd k ∈B

˜
[GP�(∗) ] such that

∧
j¡j∗

∧
‘∈ [ntk ; ntk+1)(�

j
‘¿�(∗)) and moreover such

that nt
k+1 − nt

k is large enough compared to 1=�; j∗, in order to allow us to apply the
Tchebyshev inequality and the law of large numbers for nt

k+1 − nt
k random choices.

(The nt
k come from item (f) of the de�nition of a blueprint, and are not the n.)

Let {�j
‘ | j¡j∗ and ‘∈ [nt

k ; n
t
k+1)} be listed as {�m |m¡m∗}, in increasing order

(so �0¿�(∗)) (possibly �j1
‘1 = �j2

‘2 ∧ (j1; ‘1) 6=(j2; ‘2)). We now choose by induction on
m6m∗ a condition qm ∈P�m above q, increasing with m and such that dom(qm)= dom
(q) ∪ {�0; �1; : : : ; �m−1}. We stipulate �m∗ = �.
During this de�nition we throw a dice probability of success (i.e. q
 “k ∈C

˜ j
” for

j¡j∗) is positive, and hence qm∗ will show that our assumption on q is false.
Case A: m=0. Let q0 = q.
Case B: We are to choose qm+1 and for some n¡nt we have n∈ dom(ht

0) and 

and: if j¡j∗ and ‘∈! then (�j

‘ = �m ⇒ n(j)= n ∧ pj
‘ = 
(= ht

0(n(j))(‘))∈Q�m).
In this case dom(qm+1)= dom(qm) ∪ {�m}, and

qm+1(�) =
{

qm(�) if � ¡ �m;

 if � = �m:

The choice of (j; ‘) is immaterial as for each �m there is by the de�nition of
“satisfying (t; n) for �Q”, item 5, a unique n¡nt , such that there is some ‘ such that
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��m �w
t = �t

n; ‘ and conditions (g) of De�nition 4.1 and (d)8 of De�nition 4.2 imply
that if �t

n; ‘ is not constant then (�m= �i1
‘1 = �i2

‘2 → ‘1 = ‘2). Hence 
=pj
‘ is well de�ned.

Case C: We are to choose qm+1 and for some n¡nt we have n∈ dom(ht
1) and: if

j¡j∗ and ‘∈! then �j
‘ = �m ⇒ n(j)= n.

Work �rst in V [GP�m
]; qm ∈GP�m

, GP�m
generic over V. The sets

{lim(p
˜

j
‘[GP�m

])|�j
‘ = �m; ‘ ∈ [nt

k ; n
t
k+1); j ¡ j∗)}

are subsets of (!2)[h
t
2(n)] = {�∈ !2 | ht

2(n) C �}. We can de�ne an equivalence relation
Em on (!2)[h

t
2(n)]:

�1Em�2 i� (∀(j; ‘) s:th: �j
‘ = �m : �1 ∈ lim(p

˜

j
‘[GP�m

])⇔ �2 ∈ lim(p
˜

j
‘[GP�m

])):

Clearly Em has �nitely many equivalence classes, call them 〈Zm
i | i¡i∗m〉. All are

Borel hence are measurable; w.l.o.g. Leb(Zm
i )= 0 ↔ i∈ [i⊗m; i∗m). For i¡i⊗m there is

r= rm; i ∈Q
˜
�m
[GP�m

] such that

lim(p
˜

j
‘[GP�m

])⊇Zm
i ⇒ r¿p

˜

j
‘[GP�m

];

lim(p
˜

j
‘[GP�m

]) ∩ Zm
i = ∅ ⇒ lim(r) ∩ p

˜

j
‘[GP�m

] = ∅:

We can also �nd a rational am; i ∈ (0; 1)R such that

am; i ¡
Leb(Zm

i )
2lg(ht

2(n))
¡ am; i +

�
2i∗m

:

We can �nd q′m ∈GP�m
; qm6q′m such that q

′
m forces all this information (so for Z˜

m
i ; r
˜m; i

we shall have names, but am; i; i⊗m; i∗m are actual objects). We then can �nd rationals
bm; i ∈ (am; i; am; i + �=2) such that

∑
i¡i⊗m

bm; i=1.
Now we throw a dice old die choosing im¡i⊗m with the probability of im= i being

bm; i, and �nally we choose qm+1 as follows:

dom(qm+1) = dom(qm) ∪ {�m};

qm+1 =

{
q′m(�) if � ¡ �m;

r
˜m;im if � = �m:

This covers all cases. Basic probability computation (for nt
k+1 − nt

k independent ex-
periments, using (∗) of (f)) shows that for each j coming from clause (f), by the
law of large numbers the probability of success, i.e. having qm+1 
P� k ∈C

˜ j
∩B
˜
, is

¿(1− 1=j∗)(1− �−2(nt
k+1 − nt

k)
−1). For j coming from clause (e) we surely succeed.

In the following lemma, the whispering conditions (i) of De�nition 4.2 are crucial
for building K3.

Sh:684



240 H. Mildenberger, S. Shelah / Annals of Pure and Applied Logic 106 (2000) 207–261

Lemma 4.6. (1) Assume that
(a) �Q∈K3; �Q= 〈P�; Q

˜
�; A�; ��; �

˜�
; ��; (�

˜
t
�)t∈T | �6�∗; �¡�∗〉;

(b) A⊆ �∗; �6|A|;
(c) �∈ (�2)V\{�� | �∈ �};
(d) PAlP�∗; Q

˜
�∗ is the P�∗ -name from De�nition 2.2 (F)(�) and

if t ∈ T then �
˜
t
�∗ � VPA is a PA-name:

Then there is �Q+ = 〈P�; Q
˜
�; A�; ��; �

˜�
; ��; (�

˜
t
�)t∈T | �6�∗ + 1; �¡�∗ + 1〉 from K3;

extending �Q such that A�∗ =A; ��∗ = �.
(2) If clauses (a)–(c) of part (1) hold then we can �nd A′ such that A⊆A′ ⊆ �∗;

|A′|6(|A|+ number of blueprints)ℵ0 such that �Q; A′; � satisfy (a)–(d).

Proof. (1) As before the problem is to de�ne �
˜
t
�∗+1. We have to satisfy clause (g) of

De�nition 4.2 for each �xed t ∈T. Let n∗ be the unique n¡nt such that � �wt = �t
n; ‘

for some ‘∈!. If n∗ ∈ dom(ht
0) or if 〈�t

n∗; ‘ | ‘∈!〉 is not constant or if there is no
such n∗ then we have nothing to do.
So assume that �‘= �∗ for ‘∈! and that �t

n∗; ‘= � �wt for ‘∈!. Let � be the set
of all pairs (r

˜
; 〈r
˜‘
| ‘∈!〉) which satisfy the assumption (∗∗) of De�nition 4.2(g). In

VP�∗+1 we have to choose �
˜
t
�∗+1 taking care of all these obligations.

We work in VP�∗. By assumption (d), which says that �
˜
t
�∗ �PA (hence in particular

the �
˜�

∗(X ), where X is built from the r
˜
; r
˜‘
) is a PA-name, and by Claim 3.7 it

su�ces to prove it for �
˜
t
�∗+1 � (PA ∗Q

˜
) (as �

˜1
there) and for �

˜
t
�∗+1 �P�∗ (as �

˜2
there)

separately, and for the latter there is nothing to prove.
By Fact 3.6 it is enough to prove condition (B) of Fact 3.6. So suppose that fails.

Then there are 〈Bm |m¡m∗〉, a partition of ! from VPA such that �t
�∗(Bm)¿0 for

m¡m∗ and (r
˜
i; 〈r
˜
i
‘ | ‘∈!〉)∈� and n(i)= n∗¡nt for i¡i∗¡! and �∗¿0; k∗ ∈! and

r ∈Q�∗ which forces that there is no �nite u⊆!\k∗ with (i) and (ii) of Fact 3.6(B).
W.l.o.g. r forces that r

˜
i ∈GQ� for i¡i∗, otherwise we ignore such an r

˜
i. So r¿r i for

i¡i∗.
By our assumption (∗∗) of De�nition 4.2(g) we have that for each i¡i∗ and r′¿r,

Av�t
�∗
(〈ai

k(r
′) | k ∈ !〉)¿1− ht

1(n);

where

ai
k(r

′) =
1

nt
k+1 − nt

k

∑
‘∈ntk ; n

t
k+1

Leb(lim(r′) ∩ lim(r i
‘))

Leb(lim(r′))
:

Now VPA plays the rôle of the ground model (V in Fact 3.6) and RandomV [�� | �∈A]

=RandomVPA
is the full random forcing over this ground model. So by Fact 3.6 is

su�ces to prove
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Lemma 4.7. Assume that � is a �nitely additive measure; 〈B0; : : : ; Bm∗−1〉 a partition
of !;�(Bm)= am; i∗¡! and r; r i

‘ ∈Random for i¡i∗; ‘∈! are such that
(∗) for every r′ ∈Random such that r′¿r and for every i¡i∗ we have

Av�(〈ai
k(r

′) | k ∈ !〉)¿bi;

where

ai
k(r

′) =
1

nt
k+1 − nt

k

ntk+1−1∑
‘=ntk

Leb(lim(r′) ∩ lim(r i
‘))

Leb(lim(r′))
:

Then for each �¿0; k∗ ∈! there is a �nite u⊆!\k∗ and r′¿r such that
(1) am − �¡|u∩Bm|=|u|¡am + �; for m¡m∗;
(2) for each i¡i∗ we have

1
|u|
∑
k∈u

|{‘ | nt
k6‘ ¡ nt

k+1 and r′¿r i
‘}|

nt
k+1 − nt

k
¿bi − �:

Proof. Let for i¡i∗; m¡m∗:

ci;m(r′) = Av� � Bm(〈ai
k(r

′) | k ∈ Bm〉) ∈ [0; 1]R:
So clearly

bi 6Av�(〈ai
k(r

′) | k ∈ !〉) =
∑

m¡m∗
Av� � Bm(〈ai

k(r
′) | k ∈ Bm〉) · �(Bm)

=
∑

m¡m∗
ci;m(r′) · am:

Since for each z ∈!\{0} there are only �nitely many equivalence classes in the
equivalence relation Ez where

〈ci;m | i ¡ i∗; m ¡ m∗〉Ez〈c′i;m | i ¡ i∗; m ¡ m∗〉
i�

(for z′ ¡ z; i ¡ i∗; m ¡ m∗)ci;m ∈
[
z′

z
;
z′ + 1

z

)
↔ c′i;m ∈

[
z′

z
;
z′ + 1

z

)
;

we have that there is a condition r∗z such that each class is either dense above r∗z or
does not appear above r∗z .
We apply this with some z¿1=� and get an r∗¿r and a sequence 〈ci;m | i¡i∗;

m¡m∗〉 such that
(a) ci;m ∈ [0; 1]R,
(b)

∑
m¡m∗ ci;m · am¿bi;

(c) for every r′¿r∗ there is r′′¿r′ such that

(∀i ¡ i∗)(∀m ¡ m∗)[ci;m − � ¡ ci;m(r′′)¡ ci;m + �]:
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Let k∗ ∈! be given. We now choose s∗ ∈! large enough and try to choose by in-
duction on s6s∗ a condition rs ∈Random and natural numbers (ms; ks) (
ipping coins
along the way) such that

r0 = r∗;

rs+1¿rs

ci;m − � ¡ ci;m(rs)¡ ci;m + � for i ¡ i∗; m ¡ m∗;

ks ¿ k∗; ks+1 ¿ ks;

ks ∈ Bms :

In stage s, given rs we de�ne rs+1; is, ms; ks as follows: We choose ms¡m∗

randomly with the probability of ms being m being am. Next, we can �nd a �nite set
us ⊆Bms\max{k∗ + 1; ks1 + 1 | s1¡s} such that
(+) if i¡i∗ then ci;ms − �=2¡ 1

|us|
∑

k∈us a
i
k(rs)¡ci;ms + �=2:

We de�ne an equivalence relation es on lim(rs) by
�1es�2 i� (∀i¡i∗) (∀k ∈ us) (∀‘∈ [nt

k ; n
t
k+1)) [�1 ∈ lim(r i

‘)↔ �2 ∈ lim(r i
‘)]:

The number of equivalence classes is �nite. If Y ∈ lim(rs)=es satis�es Leb(Y )¿0
choose rs;Y ∈Random such that lim(rs; Y )⊆Y . Now choose rs+1 among {rs; Y |Y ∈
lim(rs)=es and Leb(Y )¿0} with the probability of rs+1 = rs; Y being Leb(Y ). Lastly,
choose ks ∈ us with all k ∈ us having the same probability.
Now the expected value (in the probability space of the 
ipping coins), assuming

that ms=m of

1
nt
k+1 − nt

k
× |{‘ | nt

k6‘ ¡ nt
k+1 and rs+1¿r i

‘}|

belongs to the interval (ci;m − �=2; ci;m + �=2) because the expected value of

1
|us|

∑
k∈us

1
nt
k+1 − nt

k
× |{‘ | nt

k6‘ ¡ nt
k+1 and rs+1¿r i

‘}|

belongs to this interval (which is straightforward).
Let r′= rs∗; u= {ks | s6s∗}. Hence the expected value of
1
|u|
∑
k∈u

1
nt
k+1 − nt

k
× |{‘ | nt

k6‘ ¡ nt
k+1 and r′¿r i

‘}|

is ¿
∑

m¡m∗ am(ci;m − �=2)¿bi − �=2.
As s∗ is large enough with high probability (though just positive probability su�ces),

the (rs∗; {ks | s6s∗}) are as required for (r′; u). Note: We do not know the variance,
but we have an upper bound for it not depending on s. There is also a strong law of
large numbers that does not require a bound on the variance (see [3]).

Ad 4:6, Part 2: The proof is an easy counting argument, just enrich A successively
such that everything required becomes an PA-name.

Sh:684



H. Mildenberger, S. Shelah / Annals of Pure and Applied Logic 106 (2000) 207–261 243

Remark. We do not use Lemma 4.6(2) in our work, nor do we need here that the
number of blueprints is small compared to � (which is important in [20]), because we
shall never use that K3 is not empty. In Subclaim 5:3, Lemma 5.4 we need only small
parts of the properties of elements in K3. So we shall keep the parts needed in mind
and, in Theorem 5.5 we shall show that an arbitrary member �Q of the subclass of K
given in De�nition 2.2 Part (2) behaves similar to a member of K3 as far as (∗∗) �Q
is concerned.

The following is needed later to show that su�ciently often the clause (g) of
De�nition 4.2 is not trivial, that is, the premise (∗∗) there holds.

Lemma 4.8. Assume
(a) � is a �nitely additive measure on ! and b∈ (0; 1]R;
(b) nt

k¡! for k ∈!; nt
k¡nt

k+1; and lim(n
t
k+1 − nt

k)=∞;
(c) r∗; r‘ ∈Random are such that (++) (∀‘∈!)[Leb(lim(r∗)∩ lim(r‘))=Leb(lim(r∗))

¿b]:
Then for some r⊗¿r∗ we have that
⊗(r⊗) for every r′¿r⊗ we have Av�(〈a(r′; k) | k ∈!〉)¿b where ak(r′)= a(r′; k)=
ak(lim(r′)) and for X ⊆ 2! we have that

ak(X ) =
1

nt
k+1 − nt

k

∑
‘∈ntk ; n

t
k+1

Leb(X ∩ lim(r‘))
Leb(X )

:

Proof. Let

I = {r ∈ Random | r¿r∗; and Av�(〈ak(r′) | k ∈ !〉)¡ b}:
If I is not dense above r∗ there is some ⊗¿r∗ (in Random) such that for every
r¿r⊗; r =∈I, so r⊗ is as required.
So suppose that I is dense above r∗. We take a maximal antichain {si : i6i∗}⊆I.

Because I is dense above r∗ we have that {si : i6i∗} is a maximal antichain above
r∗. Hence Leb(lim(r∗))=

∑
i¡i∗ Leb(lim(si)). Since Random has the c.c.c. we have

that i∗ is countable and we assume that i∗6!.
For any j¡i∗ let s j =

⋃
i∈j si. Note that lim(

⋃
m¡i sm)=

⋃
m¡i lim(sm) and

ak(s j) = ak

( ⋃
m¡i

sm

)
=
∑
i¡j

Leb(si)
Leb(

⋃
m¡j sm)

ak(si):

Hence we compute

Av�(〈ak(s j) | k ∈ !〉) = Av�
(〈

ak

( ⋃
m¡j

sm

)
| k ∈ !

〉)

=
∑
i¡j

Leb(si)
Leb(

⋃
m¡j sm)

× Av�(〈ak(si) | k ∈ !〉)
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6
Leb(s0)

Leb(
⋃

i¡j si)
(b− �) +

∑
0¡i¡j

Leb(si)
Leb(

⋃
m¡j sm)

· b

= b− Leb(lim(s0)) · �;

where �= b− Av�(〈ak(s0) | k ∈!〉), so �¿0.
Now let j be large enough such that Leb(lim(r∗)\ lim(s j))=Leb(lim(r∗))¡Leb

(lim(s0)) · �. Then

Av�(〈ak(r∗) | k ∈ !〉)

=
Leb(lim(r∗)\ lim(s j))

Leb(lim(r∗))
· Av�(〈ak(lim(r∗)\ lim(s j)) | k ∈ !〉)

+
Leb(lim(s j))
Leb(lim(r∗))

· Av�(〈ak(lim(s j)) | k ∈ !〉)

6
Leb(lim(r∗)\ lim(s j))

Leb(lim(r∗))
· 1 + Leb(lim(s j))

Leb(lim(r∗))
· (b− Leb(lim(s0)) · �)

¡ Leb(lim(s0)) · �+ (b− Leb(lim(s0)) · �) = b

contradicting assumption (c).

Lemma 4.5 took care of the successor step in the case of |A|¿�. We close this
section with the successor step for |A|¡� (which means empty A for the iterations
from De�nition 2.2 Part (2). Everything in this section applies to De�nition 2.2 Part (1).
Only at the end of the next section we shall make use of the particularly good additional
features of the narrower class in De�nition 2.2 Part (2): Small forcing conditions,
orderly separation between Cohen part and random part, etc.

Claim 4.9. Assume that
(a) �Q∈K3; �Q= 〈P�; Q

˜
�; A�; ��; �

˜�
; ��; (�

˜
t
�)t∈T | �6�∗; �¡�∗〉;

(b) A⊆ �∗; �¿|A|; and �̂ ¡ �;
(c) �∈ (�2)V\{�� | �∈ �};
(d) Q

˜
is the P�∗ -name for a forcing notion with set of elements �̂; and is de�nable

in V [〈�� | �∈A〉] from 〈�� | �∈A〉 and parameters from V .
Then there is

�Q
+
= 〈P�; Q

˜
�; A�; ��; �

˜�
; ��; (�

˜
t
�)t∈T | �6�∗ + 1; � ¡ �∗ + 1〉

from K3; extending �Q such that Q
˜
�∗ =Q

˜
; A�∗ =A; ��∗ = �; ��∗ = �̂.

Proof. De�nition 4.2 gives no requirements on the �
˜
t
�∗+1.
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5. The last part of the proof of (∗∗) �Q

In this section we shall �nish the proof of (∗∗) �Q for K3, and then we shall �nish
the proof of Lemma 2.11 and Theorem 2.1.
We give an outline of the proof of (∗∗) �Q for K3: We assume that we have a

counterexample p∗; T
˜
(for a perfect tree ⊆ (⋂�∈E

˜
lim treem(a�))V [G]), m (for the treem),

E
˜
to it. We thin out the p� that are forced to be in E

˜
. Thus, we get a in some sense

indiscernible set of conditions. Some features the �rst ! of these indiscernibles are
described well by a blueprint t ∈T; and this description allows us to de�ne some
p⊗¿p∗ such that p⊗ forces that T =T

˜
[G] cannot be a perfect tree because the subset

A⊆E
˜
[G] over which we build the intersection is ‘too large’, and thus we have a

contradiction. Having �t
�-measure non-zero ensures in�nity, and indeed the measure

�t
� will lead to the notion of ‘too large’ that we are going use (see Lemma 5.2 and
Subclaim 5:3).
Then we show (∗∗) �Q for the members of the subclass of K that is given in

De�nition 2.2 Part (2). We start looking for �nitely additive measures only after
p�; �∈! and t∈T (remember: T is the set of blueprints for � from De�nition 4.1)
are chosen and do it only for one suitable t. We want to have some �t

�∗ that satis�es
just the requirements in De�nition 4.2 (with true premises in (e)–(g) for our chosen
〈�‘ | ‘∈!〉!) that speak about our p′

�, in order to jump into the proofs of Lemma 5.2
and of Subclaim 5:3, which work with K3, and go on like there.
It turns out that only requirements about p′

�(� + 
n); n¡n∗ ∈!; n∗ the size of the
part of the heart of a �-system lying above �, are relevant. We shall look at �Q� for
several � (and the same �; �; 
0; : : : ; 
n∗−1) and use a L�owenheim Skolem argument
to provide the (�

˜
t

n)n¡n∗; t∈T good for these requirements. Besides some elementary

embedding, we shall use the automorphisms for the �Q from De�nition 4.2, Part (2) in
order to make su�ciently many instances of (e), (g), (i) of De�nition 4.2 true. (We
already mentioned that (f) is ad libitum.)

Lemma 5.1. Suppose that ��= 〈�‘ | ‘∈!〉 is a sequence of positive reals and that
�Q∈K3 has length �. Recall that P′

� was de�ned in De�nition 2:3(c). Then the
following I�� ⊆P� is dense:

I �� = {p ∈ P′
� | there are m and a‘; �‘ for ‘ ¡ m such that

(a) dom(p) = {�0; : : : ; �m−1}; �0 ¡ �1 ¡ · · · ¡ �m−1 ¡ �;
(b) if |Q�‘ | ¡ �; then p(�‘) is an ordinal;
(c) if |Q�‘ | is partial random; then 
P�‘

“p(�‘)⊆(!2)[�‘]
and Leb(lim(p(�‘)))¿(1− �‘)=2lg(�‘)′′}:

Proof. By induction on � for all possible ��. Use the Lebesgue density theorem [15].

Lemma 5.2. If P�= lim( �Q); �= lg( �Q) and �Q∈K3; then (∗∗) �Q from Lemma 2.11
holds.
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Proof. Suppose that p∗ 
P� “T˜
; m; E

˜
form a counterexample to (∗∗) �Q”. Let ��=〈�‘ | ‘∈!〉

be such that �‘∈(0; 1)R and such that
∑

‘∈!

√
2�‘¡1=10. For each �¡�+ let p′

�¿p�

¿p∗ be such that p′
� ∈I�� is witnessed by 〈��� | �∈ dom(p′

�)∧ |Q�|¿�〉 and

p′
� 
P� “�� is the �th element such that T

˜
⊆N [ �a

˜
�� ]”:

Call the p′
� now p� again. By thinning out we may assume that there are i∗; v0; v1; �;

z; 
�i ; �i; s
∗ such that

(1) dom(p�)= {
�i | i¡i∗} with 
�i increasing with i, let v�0 = {i¡i∗ | |Q
�i
|¡�}, then

v�0 = v0 is �xed for all �; v1 = i∗\v0,
(2) dom(p�)(�¡�+) form a �-system with heart �⊆ dom(p∗),
(3) �� ∈ dom(p�); ��= 
�z for a �xed z¡i∗,
(4) (dom(p�); �; �;¡) are isomorphic for �¡�+,
(5) if i∈ v0, then p�(


�
i )= 
i for �¡�+,

(6) if i∈ v1, then ��

�i
= �i (recall �

�

�i
∈¡!2 is given by the de�nition of I��),

(7) p�(��)= s∗ for �¡�+; s∗= 〈(n‘; a‘) | ‘¡m∗〉, w.l.o.g. m∗¿m (where m is from
the counterexample to (∗∗) �Q) and m∗¿10 (this is a similar but not the same as
in Lemma 2.12),

(8) for each i¡i∗ the sequence 〈
�i | �∈ �+〉 is constant or strictly increasing,
(9) the sequence 〈�� | �∈ �+〉 is with no repetitions (since, if p�1; p�2 are compatible

and �1¡�2¡�, then ��1 6= ��2 ).
Now we keep only the �rst ! conditions p�, �¡!. For every such � let p′

�¿p�

be such that dom(p′
�)= dom(p�), p′

�(
)=p�(
) except for 
= �� in which case we
extend p�(��)= s∗ in the following way.
We put lg(p′

�(��))= lg(s∗) + 1=m∗ + 1 and set p′
�(��)= s∗ 〈̂(j0�; a�)〉.

Before we de�ne (j0�; a�) we choose an increasing sequence of integers �s=〈s‘ | ‘∈!〉;
s0 = 0, such that

sk+1 − sk = |(2jk )(2jk (1−8−m∗ ))|;

where

j∗ = 3nm∗−1 + 1

(recall from (7) that nm∗−1 is the �rst coordinate of the last pair in s∗) and we let
jk = j∗ + k!! and let j0� = jk when �∈ [sk ; sk+1). Now for �∈ [sk ; sk+1) de�ne a� such
that

{a� | � ∈ [sk ; sk+1)} = [jk2]2
jk (1−8−m∗ ):

For �∗¿0 we de�ne a P�-name by

A
˜ �

∗ =


k ∈ !

∣∣∣∣∣∣
|{� ∈ [sk ; sk+1) |p′

� ∈ G
˜
P�}|

sk+1 − sk
¿ �∗


 :
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For the proof of Lemma 5.2 we need

Subclaim 5.3. There is a condition p⊗¿p∗ that forces that for some �∗¿0 the set
A
˜ �

∗ is in�nite.

Explanation: The p⊗ is an analogue to the premise no. 3 of Just’s Lemma 2.12. The
condition p⊗(
) is roughly spoken “as compatible as possible with many, in the sense
of the �t


(A�∗)¿0, of the 〈p′
�(
) | �∈!〉”. The coding with the �t

n; � and the �
 � wt; wt

from (5.1), ensures that p⊗ is well de�ned by the de�nition below.

Proof. We may choose any �∗¡1−∑‘∈!

√
2�‘ (where the ��= 〈�‘ | ‘∈!〉 was chosen

at the beginning of Lemma 5.2). First, we de�ne a suitable blueprint t ∈T,

t = (wt; nt;mt; ��t; ht
0; h

t
1; h

t
2; �n

t):

We let

wt = {min{� ∈ � | �
�(1)i(1)
(�) 6= �
�(2)i(2)

(�)} | �(1); �(2)¡ !

and

i(1); i(2)¡ i∗ and 
�(1)i(1) 6= 
�(2)i(2) }; (5.1)

where the �� come from the de�nition ofK3. (wt is well de�ned because � is injective.)
Let nt = i∗; dom(ht

0)= v0; dom(ht
1)= dom(h

t
2)= v1 and nt

‘= s‘.
We set �t

n; �= �
�n
� wt . Note that the �t

n; � satisfy the requirements from 4:1(g) and
(h): By Lemma 5.2 item (4), we have that 
�n= 
�

′
n′ implies n= n

′. Hence we have
that �t

n; �= �t
n′; �′ implies that �
�n

�wt = �
�
′
n′
�wt and hence by the de�nition of wt , that


�n= 
�
′
n′ and hence n= n

′.
If n∈ v0, then ht

0(n)(‘)= 
n so it is constant independent of ‘.
If n∈ v1 then ht

1(n)= �n and ht
2(n)= �n. Finally, we set mt = max{k | ∀� 
�k¡�}+1.

Note that by our choice of t; 〈
�n | �∈!〉 satis�es (t; n) for �Q for every n¡i∗.
We now de�ne a condition p⊗ such that it will be in P�; dom(p⊗)=�; p∗6p⊗.

Remember that dom(p∗)⊆�, because for each � we have that p∗6p�. If 
∈� then
for some n¡nt , we have that

∧
�∈! 
�n= 
.

Case: n∈ v0. If n∈ v0 we let p⊗(
)= ht
0(n), so in VP


p⊗ 
Q
 “�
˜
t

+1({� ∈ ! | ht

0(n) ∈ GQ
}) = 1 if n ∈ dom(ht
0)”:

Case: n∈ v1. If n∈ v1, then we de�ne a P
-name for a member of Q
 as follows.
Consider r

˜
n
� =p

˜
′
�(
) for �¡!. Let r

˜
=p
˜
∗(
)∩ (!2)[ht2(n)] if 
∈ dom(p∗) and otherwise

we let r
˜
be just (!2)[h

t
2(n)]. Now the premise (c) (++) of Lemma 4.8 is true with

b=1− 2�n. Thus by Lemma 4.8 there is some r∗
¿r such that for every r′¿r∗
 in Q


we have that

Av�t
�
(〈ank(r′) | k ∈ !〉)¿1− 2ht

1(n) = 1− 2�n;
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where

(∗∗)r′; ��

ank(r
′) =

1
nt
k+1 − nt

k

∑
‘∈[ntk ;ntk+1)

Leb(lim(r′) ∩ lim(rn‘))
Leb(lim(r′))

:

Since 〈
�n | �∈!〉 is constant since, by (∗∗)r′; �� the assumption (∗∗) of condition (g)
of De�nition 4.2 holds, we get that in VP


r∗
 
Q
 “Av�
˜
t

+1


〈 |‘ ∈ [nt

k ; n
t
k+1) |p‘(
) ∈ G

˜Q

|

nt
k+1 − nt

k

∣∣∣∣∣∣ k ∈ !

〉¿1− 2�n”:
For every �′¿0 we have: if Av�(〈ak | k ∈!〉)¿1 − �′ then for every �¿0 such that
�+ �′¡1,

�({‘ | a‘61− �′ − �}) (1− �′ − �)

+�({‘ | a‘ ¿ 1− �′ − �})1¿Av�(〈a‘ | ‘∈!〉)¿1− �′

and hence

�({‘ | a‘61− �′ − �})6 �′

�′ + �
:

Now we put �′=2�n and get for every �¿0

r∗
 
Q
 “�
˜
t

+1


k ∈ !

∣∣∣∣∣∣
|‘ ∈ [nt

k ; n
t
k+1) |p‘(
) ∈ G

˜Q

|

nt
k+1 − nt

k
61− 2�n − �




6
2�n

2�n + �
”:

We take �=
√
2�n − 2�n and thus get

r∗
 
Q
 “�
˜
t

+1


k ∈ !

∣∣∣∣∣∣
|‘ ∈ [nt

k ; n
t
k+1) |p‘(
) ∈ G

∼ Q
 |
nt
k+1 − nt

k
61−

√
2�n


6

√
2�n ”:

So there is a P
-name r
˜
∗

 of such a condition. In this case let p⊗(
)= r

˜
∗

 . So we

have �nished the de�nition of p⊗, and it clearly has the right domain.
(Notice for later generalisation: Property (g) is used here only for 
 in the heart of

a �-system. Moreover, in order to establish (g) for 
 as in Lemma 4.6, property (i) is
needed only for 
.)
Now suppose that n¡nt is such that 
�n =∈�. (Note that this case can be avoided

by an appropriate choice of p′
�, see our earlier remarks on simpli�cations.) De�ne

��= 〈�� | �∈!〉; ��= 
�n; rn� =p′
�(


�
n). Then �� satis�es (t; n) for P�. If n∈ v1, by our

assumption that p′
�(
)∈I�� and �n= ht

1(n), we get that the premise of clause (f) of
De�nition 4.2 is ful�lled, hence in VP� .
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For each �¿0


P� “�
˜
t
�




k

∣∣∣∣∣∣
|{‘ ∈ [nt

k ; n
t
k+1): p‘(
‘n) ∈ G

∼ 
‘n
}|

nt
k+1 − nt

k
¿(1− �n)(1− �)




 = 1”:

Putting both cases of n∈ v1 (the one with 
�n ∈� and the latter, complementary one)
together and assuming that p⊗ ∈G we get in VP� for every n∈ v1

√
2�n¿�t

�

({
k ∈ !

∣∣∣∣1−√2�n¿ |{‘ | nt
k6‘ ¡ nt

k+1 and rn‘ ∈ GP�}|
nt
k+1 − nt

k

})
:

Let

A
˜
′
�∗ = {k ∈ ! | if �∈ [nt

k ; n
t
k+1) and i ∈ v0 then p� � {
�i } ∈ G

˜
P�}:

Then, by De�nition 4.2(e), �t
�(A

′
�∗)= 1.

So

A�∗ ∪ (!\A′
�∗)

⊇
{
k ∈ !

∣∣∣∣ if n ∈ v1 then
|{‘ | nt

k6‘ ¡ nt
k+1 and rn‘ ∈ GP�}|

nt
k+1 − nt

k
¿1−

√
2�n

}

= !

∖⋃
n∈v1

{
k ∈ !

∣∣∣∣ |{‘ | nt
k6‘ ¡ nt

k+1 and rn‘ ∈ GP�}|
nt
k+1 − nt

k
¡ 1−

√
2�n

}
:

Hence �t
�(A�∗ ∪ (!\A′

�∗))¿1−
∑

n∈v0

√
2�n¿�∗¿0, but

�t
�(!\A′

�∗) = 1− �t
�(A

′
�∗) = 1− 1 = 0;

hence necessarily A�∗ is in�nite.

Let p⊗ be as in Subclaim 5:3. Let GP� be a generic subset of P� to which p⊗

belongs. So A=A
˜ �

∗ [G] be in�nite. For k ∈A, let bk = {�∈ [sk ; sk+1) |p′
� ∈G}. We know

that |bk |¿(sk+1 − sk)�∗. Let T
˜
[G] =T .

If k ∈A, then there are (sk+1 − sk)�∗ many �∈ [sk ; sk+1) such that p′
� ∈G and p′

� 

T
˜
∩ jk2⊆ a�, hence T ∩ jk2⊆ ⋂�∈bk a� as lg(s∗)=m∗¿m. To reach a contradiction it is

enough to show that for in�nitely many k ∈A there is a bound on the size of T ∩ jk2
which does not depend on k.
Now |bk |=(sk+1 − sk) is at most the probability that if we choose a subset of jk2

with 2jk (1 − 8−m∗
) elements, it will include T ∩ jk2. If k ∈A (and these are in�nitely

many k, because A is in�nite) this probability has a lower bound �∗ not depending on
k, and this implies that 〈|T ∩ jk2| | k ∈!〉 is bounded and that hence T is �nite.
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More formally, for a �xed k ∈! we have

|bk | = |{a� | � ∈ [sk ; sk+1); � ∈ bk}|
6 |{a� | � ∈ [sk ; sk+1); T ∩ jk2⊆ a�}|

6 |{a
jk⊆ 2 |T ∩ jk2⊆ a and |a| = 2jk (1− 8−m∗

)}|

= |{a
jk⊆ 2\(T ∩ jk2) | |a| = 2jk × 8−m∗}|

=

(
2jk − |T ∩ jk2|
2jk · 8−m∗

)
:

By de�nition we have that sk+1 − sk =
(

2jk

2jk · (1− 8−m∗
)

)
=
(

2jk

2jk · 8−m∗

)
.

Hence

|bk |
sk+1 − sk

6

(
2jk − |T ∩ jk2|
2jk · 8−m∗

)
(

2jk

2jk · 8−m∗

) =
∏

i¡|T∩ jk 2|

(
1− 2jk8−m∗

2jk − i

)
:

Let ik(∗)= min(|T ∩ jk2|; 2jk−1), so

�∗6
|bk |

sk+1 − sk
6

∏
i¡|T∩ jk 2|

(
1− 2jk8−m∗

2jk − i

)

6
∏

i¡ik (∗)

(
1− 2jk8−m∗

2jk

)
= (1− 8−m∗

)ik (∗):

So we can �nd a bound on ik(∗) not depending on k:

ik(∗)6 log(�∗)
log(1− 8−m∗)

:

Remember m∗¿10, so 1− 8−m∗ ∈ (0; 1)R. So for k large enough,

|T ∩ jk2| = ik(∗)6 log(�∗)
log(1− 8−m∗)

:

This �nishes the proof.

So, how do we get a proof of Lemma 2.11 from Lemma 5.2? We have to show
that our members of K as de�ned in De�nition 2.2, Part (2) behave like members of
K3 at su�ciently many points in the domain of the iteration, that is we have to de�ne
suitable �

˜
t
� and �.
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Now we shall look at several iteration lengths � at the same time. Recall the de�-
nitions of g�; E�

� ; A�
�+� from the beginning of the proof of Theorem 2.1.

For �Q= �Q
�
as in De�nition 2.2, Part (2) we set �Q

�
=P�=P� (of length � + �!);

for A⊆ � + �, we let P′
A =P′

�;A.
Recall our choice of memories from the beginning of the proof of Theorem 2.1:

g� : � → [�]¡� such that g� ⊆ g�′ for �¡�′ and such that every point has � preimages
uner g�. From the g�’s we de�ned

for � ∈ � E�
� = {� ¡ � | � =∈ g�(�)};

A�
�+� = E�

� ∪ [�; � + �):

We have that A�
�+� ∩ �=A�′

�′+� ∩ �.
First we need the following.

Lemma 5.4. (1) If �6
¡� then in �Q�

(a) P′
(�∩ A�+
)∪ [�;�+�) =P′

E�

 ∪ [�;�+�)lP′

�+�.
(b) If q∈P′

�+� and q � (E
 ∪ [�; � + �))6p∈P′
E
 ∪ [�;�+�) then

p ∪ q � (lgQ) \ (E
 ∪ [�; � + �)) ∈ P′
�+�

is the least upper bound of p and q.
(2) If �6�′; then

P′
�′;�∪[�′ ;�′+�) l P′

�′ ;�′+�

and P′
�;�+� is isomorphic to P′

�′;�∪ [�′ ;�′+�) by ĥ where h= h�;�′ is the canonical mapping;
i.e. h : � + � → �′ + � be the identity below � and h(� + �)= �′ + � for �¡�.

Proof. (1) By Lemmas 2.6 and 2.7. For (2): Like in Lemma 2.7, it is easy to see that
P′
�′;�∪ [�′;�′+�)lP′

�′;�′ ∪ [�′;�′+�) as enough types (see Lemma 2.7) are realised in �.

Theorem 5.5. For �Q� as in De�nition 2:2; Part (2) we have that (∗∗) �Q� holds.

Proof. Given p∗; T
˜
; m; E

˜
as in Lemma 5.2, we choose �� and p′

� as in Lemma 5.2
(at the end of Lemma 5.2), t as in Subclaim 5:3. We let w�=dom(p′

�), and w be
the heart of the �-system. Note that we may choose p′

� such that w�\�=w\�, which
allows us to avoid De�nition 4.2(f). We now do so. We even might choose p′

� such
that w�\{��}=w, but this does not lead to a further simpli�cation.
Let

w \ � = {� + 
n | n ∈ n∗}; 
0 ¡ 
1 ¡ · · · ¡ 
n∗−1:
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We can replace � by �+k using �E�+k
and thus (by Lemma 5.4) get counterexamples

to (∗∗) �Q�+k with the same t, ��, and with h�;�+k
(p′

�),

h�;�+k ′′(w) \ �+k = {�+k + 
n | n ∈ n∗}; 
0 ¡ 
1 ¡ · · · ¡ 
n∗−1;

and with A�+k+1

�+k+1+
 ∩ �+k =A�+k

�+k+
 ∩ �+k for 
¡�.
Now, �xing 〈
n | n¡n∗〉 and ��, we prove by induction on n¡n∗ that for every k ∈!

(k6n∗ would su�ce), for �Q�+k
and for 
0; : : : ; 
n∗−1, �, and 〈p′

‘ | ‘∈!〉 as above, we
can �nd a suitable modi�cations P(n) of our original forcing P� and P(n)�

+k

�+k+
n+1
-

names for a �nitely additive measures (�
˜
t
�+k+
n+1

)t∈T such that

• demand (e) of De�nition 4.2 holds for 〈�‘ | ‘∈!〉= 〈fn ◦ · · · ◦f0 ◦h�;�+k
(
‘i ) | ‘∈!〉,

i¡i∗ (from Lemma 5.2(1), only the part before � is considered). The fi are the
“shu�ing” maps coming from the L�owenheim Skolem argument below and such that

• (f) and (g) of De�nition 4.2 hold for every n¡n∗ for 〈�‘ | ‘∈!〉= 〈�+k+
n | ‘∈!〉
(so �‘ is constant) and thus to get the next step in the iteration according to
Lemma 4.6, and

• though De�nition 4.2(b) is not ful�lled for �∗= �+k + �, k¿1, the original �� ∈ �2
are still strong enough to code the arguments of fn ◦ · · · ◦ f0 ◦ h�;�+k

(p′
�), �∈!,

according to the (5.1) in Subclaim 5:3. Look at the 
�i to be treated there and at
f0; : : : ; fn∗−1 and at h�;�+k

, how they shift the supports of the p′
�.

Then we can carry out the proof of Lemma 5.2 and of Subclaim 5:3. In the end we
shall �rst show (∗∗)P(n∗)� for some modi�ed P(n∗)� and mapped p′

�, however with the
same �, same 
0; : : : ; 
n∗−1, and possibly modi�ed ��; T

˜
; t. Thereafter, we shall read the

automorphisms and bijections in the reverse direction in order to get (∗∗) �Q� .

In order to prove the claim “for all k ∈!, �Q�+k
can be extended by (�

˜
t
�)�∈�+k+
n; t∈T

respecting the whispering conditions at �+k+
0; : : : ; �+k+
n and such that 〈�‘ | ‘∈!〉=
〈�+k+
n | ‘∈!〉 satis�es (t; nn) (for the same �xed t ∈T, n¡n∗, with nn= |�∩ �|+n,
not depending on k) (let us call this: stage n+1)” , we shall use “for all k ∈!, �Q�+k+1

can be extended by (�
˜
t
�)�∈�+k+1+
n respecting the whispering conditions at �

+k+1 + 
0,

: : : ; �+k+1+
n−1 and such that 〈�‘ | ‘∈!〉= 〈�+k+1+
n | ‘∈!〉 satis�es (t; nn) for n¡n∗

(let us call this stage n)”, a L�owenheim and Skolem argument and the uniqueness of
n in (d) of De�nition 4.2.
To carry out the induction: For the stage n=0, k ∈! (k = n∗ would su�ce, because

we need to be able to descend n∗ steps in the k’s) we stipulate that 
−1+1=0 and just
let �

˜
t
�+k be a P�+k -name for a �nitely additive measure on ! such that condition (e) of

De�nition 4.2 is ful�lled for the blueprint t and the interesting instances of 〈�� | �∈!〉.
In the step from stage n to stage n + 1, for �+k , we apply the induction hypothesis
to 
0¡ · · ·¡
n−1 and �+k+1 and 〈fk+2

n−1 ◦ · · · ◦fk+2+n−1
0 ◦ h�;�+k+1+n

(p′
�) | �∈!〉, (the fj

i

are got from the induction hypothesis, see below, where we get fk+1
n ) and thus we get

a P�+k+1

�+k+1+
n−1+1
-names (�

˜
t
�+k+1+
n−1+1

)t∈T for �nitely additive measures as required, i.e.

the whispering conditions hold for A�+k+1

�+k+1+
m
, m¡n.
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Though we only have 2�¿�, the injective coding of the indices in the iteration
length �+ � by �index ∈ 2� works not only for the original �Q but also for fk+2

n−1 ◦ · · · ◦
fk+1+n
0 ◦ h�;�+k+1+n ′′( �Q), which is isomorphic to a complete suborder of �Q��

.

There is a P�+k+1

�+k+1+
n
-name �

˜
t
�+k+1+
n

for a �nitely additive measure on ! extending
�
˜
t
�+k+1+
n−1+1

: this is proved as in Lemmas 4.5 and 4.6, because there are no “whispering

tasks” (i) of De�nition 4.2 about the A�+k+1

�+k+1+
n
in the stretch between �+k+1 + 
n−1 + 1

and �+k+1 + 
n and no new instances of (g) of De�nition 4.2 as well.
Now we come to the crucial step from �+k+1 + 
n to �+k + 
n + 1. Let

M0 ≺ M1 ≺ (H ( );∈;¡∗
 );

where  =i2(�+!)+.
For abbreviation, set f′=fk+2

n−1 ◦ · · · ◦ fk+2+n−1
0 ◦ h�;�+k+n+1

, and we use f′ also for
the function which arises by putting hats over all objects on the right-hand side.
(∗)1 the objects 〈
0; : : : ; 
n∗−1〉, 〈g�+l | l∈!〉, 〈h�+k ;�+k+1 | k ∈!〉, �; �; 〈f′(p′

�) | �¡!〉,
〈 �Q�+k | k∈!〉; 〈P�+k

n−1 | k∈!〉(�
˜
t
�+k+1+
n

)t∈T, f′(T
˜
)=B(〈truth value(f′(�‘)∈�

˜f
′(
‘))|

‘∈!〉) belong to M0.
(∗)2 ‖M0‖= ‖M1‖= �+k , �+k+1⊆M0, M0 ∈M1, max(�;�)(M0)⊆M0, max(�;�)(M1)⊆M1.

Claim. There is an injective function fk+1
n from (�+k+1 + 
n+1)∩M1 to �+k + 
n+1

such that
(a) fk+1

n (�+k+1 + 
)= �+k + 
 for 
6
n;

(b) fk+1
n maps (�+k+1 + 
n)∩M0 onto A�+k

�+k+
n
and

(c) g�+k (fk+1
n (�))∩ 
n= g�+k+1(�)∩ 
n for �∈ �+k+1 ∩M1; i.e. for 
∈ 
n; �∈ �+k+1 ∩

M1 : (fk+1
n (�) =∈A�+k

�+k+
 ↔ � =∈A�+k+1

�+k+1+
).

Proof. Since M0 ∈M1 we have that |�+k+1 ∩ (M1\M0)|= |�+k+1 ∩M1|= |�+k+1 ∩M0|,
and considering types as in the proof of Lemma 2.7 we get for any c∈ n+12, with
E0 =E, E1 = �+k\E,∣∣∣∣∣M1 ∩

⋂
m¡n+1

(E�+k+1


m )c(m)
∣∣∣∣∣ = �+k ;

∣∣∣∣∣
⋂

m¡n+1

(E�+k


m )
c(m)

∣∣∣∣∣ = �+k ;

∣∣∣∣∣M0 ∩
⋂

m¡n+1

(E�+k


m )
c(m)

∣∣∣∣∣ = �+k

and

|M0 ∩ �+k+1| = �+k :
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Hence, we can �nd an fk+1
n ful�lling the requirements (a)–(c). Hence the claim is

proved.

Now we change the forcing orders accordingly: We set P(0)�
+k
=P�+k

. As in De�-
nition 2.5 we can de�ne a structure P(n)�

+k
by

[fk+1
n : (P(n− 1)�+k+1

) ∩M1
∼= P(n)�

+k

and can extend [fk+1
n onto the space of (P(n− 1)�+k+1

)∩M1-names.
From fk+1

n ◦f′ ◦ h�; �+k+n+1
(� + 
m))= �+k + 
m we get that 〈�‘ | ‘∈!〉= 〈�+k +


m | ‘∈!〉 still satis�es (t; nm) (see De�nition 4.2(d)) for P(n)�
+k
for every m6n∗.

Moreover, fk+1
n ◦f′ ◦ h�;�+k+n+1

(� + 
n)= �+k + 
n is the argument where 〈fk+1
n ◦f′ ◦

h�;�+k+n+1
(p′

�) | �∈!〉 is treated as in Lemma 5.2.
Now we prove that P(n)�

+k
satis�es the conditions at 
0; 
1; : : : ; 
n:

First, for m= n, we have that �
˜
t
�k+1+
n

is in M1 a P(n − 1)�
+k+1 ∩M1-name, and

its restriction to P(!)V
P(n−1)�

+k+1

�+k+1+
n ∩Mi is a P(n − 1)�+k+1

�+k+1+
n
∩Mi-name. We get that

[fk+1
n (�

˜
t
�k+1+
n

)�M1 =:�
˜
t
�k+
n+1

(=�
˜
t in the next paragraphs) is as required: We write

only f for fk+1
n in the proof of this claim so that the notation be slightly less clumsy.

We show that it is a P(n)�
+k

�+k+
n+1
-name for a �nitely additive measure on ! such

that its restriction to P(!) in V
P(n)�

+k

A�
+k

�+k+
n is a P(n)�
+k

A�+k

�+k+
n

-name, so condition (i) of

De�nition 4.2 is satis�ed: Let A
˜
be a P(n)�

+k

A�+k

�+k+
n

-name:

f̂(�
˜
t)(A
˜
) = f̂(�

˜
t)(f̂n(f̂

−1
(A
˜
)));

where f̂−1(A
˜
)∈M0.

Hence

f̂(�
˜
t)(f̂n(f̂

−1
(A
˜
))) = f̂(�

˜
t(f̂

−1
(A
˜
)))

and where �
˜
t(f̂−1(A

˜
))∈M0. Hence f̂(�

˜
t(f̂−1(A

˜
))) is an f′′(M0 ∩ (�+k+1 + 
n))=

A�+k

�+k+
n
-name.

For m¡n the claim that �
˜
t
�k+
m+1

:=�
˜
t
�k+
n+1

� (P(!) in V
P(n)�

+k

�+k+
m+1) is a

P(n)�
+k

�+k+
m+1
-name for a �nitely additive measure on ! such that its restriction to P(!)

in V
P(n)�

+k

A�
+k

�+k+
m is a P(n)�
+k

A�+k

�+k+
m

-name, follows from f′′
n (A

�+k+1

�+k+1+
m
)=A�+k

�+�+
m
for m¡n.

Hence we have �
˜
t
�+k+1+
m+1

, which are P(n)�
+k

�+k+
m+1
-names respecting the whispering

conditions 4:2(i) at �+k + 
0; : : : ; �+k + 
n (which where needed in the premises of
Lemma 4.6(1)), and the inductive proof is �nished.
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Now we perform the induction with starting point h�;�+n∗
(P) and get fn∗

0 , f
n∗−1
1 ; : : : ;

fn∗−n
n ; : : : ; f1n∗−1 and k :=f1n∗−1 ◦ · · · ◦fn∗

0 , f := k ◦ h�;�+n∗
. After n∗ induction steps,

we have that the mapped forcing k̂ ′′P�+n∗
=P(n∗)� is expanded by measures �t

�+
n+1,
n6n∗.
So the proofs of Lemma 5.2 and Subclaim 5:3 go through for the modi�ed forcing

and the mapped objects: f̂(T
˜
), f̂(p′

�), f̂(t) (blueprints), 〈f̂(
�i ) | i¡i∗〉 (the domain
of f̂(p′

�)). Hence the proofs of Lemma 5.2 and of Subclaim 5:3 show that there is

no perfect tree in the intersection of the mapped trees. So f̂(T
˜
) is not perfect in the

generic extension VP(n∗)� .
We have that h�;�+n∗

is a complete embedding, and that in each step P(n)�
k
is

isomoprhic to P(n − 1)�
+k+1 ∩M1, which is is a complete suborder of P(n − 1)�

+k+1

(because M1≺H and all antichains are countable and !M1⊆M1.) Being a perfect
tree is absolute for ZFC models and hence n∗ + 1 applications of Kunen [13, VII,
Lemma 13] the condition

p 
P(n∗)� “f̂(T
˜
) isnot perfect in the generic extension VP(n∗)�”

implies that some condition in G forces that T
˜
is not a perfect tree in VP . Thus (∗∗) �Q

is also proved for the original �Q.

6. The case of cf (�)=!

In this section, we show a version of Theorem 2.1 for the case of cf (�)=!. The
main technical point is: the part of the iteration as in De�nition 2.2, Part (2) lying
before � and the part thereafter now are going to take shifts !1 often.
This means a slight increase of the complexity of our notation. We are going to

rework the previous three sections and bene�t from the fact that we did some (but
not all) work for the class of forcings of De�nition 2.2, Part (1). We shall often
only hint to the parallels and give an informal description of the modi�cations and
strengthenings.

Theorem 6.1. In Theorem 2:1; we can replace (cf (�)¿ℵ0 and sup(C)= �) by

cf V1 (�) = !; and there is some � such that

!16|C|V2 ¡ � ¡ �;

cf V1 (�)¿!1

and

∀B ∈ V1 (|B|V1 ¡ � → C * B):
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Proof. We �rst give an outline: We de�ne a member of K (of De�nition 2.2) that we
are going to use. Then (after adapting Lemmas 2.6 and 2.7) we get the items (�) to
(�) of the conclusion of Theorem 2.1 and of Theorem 6.1. For item (�), we begin with
the analogon of the end of Section 2. Then we slightly modify the blueprints. Again
we can deal with automorphisms of the iteration length. We take those automorphisms
moving only some element � within one of our !1 intervals [� · 
; � · (
+ 1)). So we
basically do the old proof in some interval of the longer iteration. We use that we
never required that there are only partial random forcings after �.
We take �¿2� and � such that 2�¿�. Then we de�ne

�Q� = 〈P�
� ; Q
˜
�; A

�
�; ��; �

˜�
| � ¡ � · !1; �6� · !1〉 ∈ K

as follows.
We take for �6�′

g�;!1 : � · !1 → (� × !1)¡�;

g�;!1 (�
+ �) = ∅ for �6�¡�;

g�′ ;!1 (�
′
+ �) = g�;!1 (�
+ �) for � ¡ �; 
 ∈ !1

∀
 ∈ !1 ∀B ∈ (� × !1)¡� ∃�′� ∈ [�′ · 
; �′ · (
+ 1))g�′ ;!1 (�) = B:

For �= �
+ �, 
∈!1, �∈ � we set

A�
� =

{ ∅ if 
 = 0 or � ¿ �;
{� ¡ �
 | (�; 
) =∈ g�;!1 (�)} else;

Q
˜
� =

{
(!2;C); ifA�

�= ∅;
Random

V [ �
∼

�|�∈ A�]�

; else:

We adopt Fact 2:4 as follows.

De�nition 6.2. For �Q∈K of the special form of Theorem 6.1, �¡� · !1, we let

AUT( �Q
�
� �) = {f : � → � |f is bijective; and;

(∀�; �∈ �)

((|Q
˜
�| ¡ � ↔ |Q

˜
f(�)| ¡ �)

∧ (�∈A� ↔ f(�) ∈ Af(�)))}:

Then we have that f̂ is an automorphisms of P� and of P′
� (from De�nition 3:2(c)),

and Fact 2:5 holds for K.
Now we get the analogues of Lemma 2.6 and of Lemma 2.7 (consider types, similarly

to there) and are ready to prove
(�′) V2 |= 
P�·!1 “{��·
+i | i∈C; 
∈!1} is not null”.
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Proof. Let N
˜
be a P�·!1 -name for a Borel null set. Hence for some Borel function

B∈V1 and for some countable

X = {x‘ | ‘ ∈ !}⊆ � ∪
⋃


∈!1\{0}
[� · 
+ �; � · (
+ 1));

Y = {y‘|‘ ∈ !}⊆
⋃


∈!1\{0}
[� · 
; � · 
+ �);

�‘; ‘∈!; �′‘; ‘∈!, we have that

N
˜
= B((truth value(�‘ ∈ �

˜x‘
))‘∈!; (truth value(�′‘ ∈ �

˜y‘
))‘∈!):

Let i(∗)¡!1 be such that � · i(∗)¿ sup(Y ). Since cf V1 (�)¿ℵ0, we have that B :=⋃
�∈ X ∪ Y g�;!1 (�)∈ ([� × !1]¡�)V1 .
Since C\��(B) 6= ∅, there is some i∈ �; i∈C\��(B). We claim, that ��·i(∗)+i is

random over a universe, in which N
˜
[G] has a name. (Moreover regarding V1 and V2,

the same remarks as in the proof of (�′) of Theorem 2.1 apply.) Then the proof will
be �nished, because then ��·i(∗)+i =∈N

˜
[G] in V2[G]. By our construction, we have

��·i(∗)+i is the Random
V [�
˜
�|�∈A�

�·i(∗)+i] -generic over VP�·i(∗)+i :

Since i∈C\��(B), we have that ∀�∈X ∪Y ∀
∈!1 that g�(�) 63 (i; 
), hence ∀�∈X ∪
Y �∈A�·
+i, so X ∪Y ⊆A�

�·i(∗∗)+i. Since PA�·i(∗)+i l Plg( �Q) the name N
˜
is evaluated in

the right manner in VPA�·i(∗)+i . Thus the claim is proved.

(�) V2[G] |= unifN6|C|.
This follows from (�′).
(�) V1[G] |= unif (N)¿�.
Again the item (�) will be the longest part. However, it is almost the same as our

previous work. Put all the �� of an analogue of Lemma 2.11 into one [�·
+�; �·(
+1)).
Also the extension of � to �′ now can be done either only in the relevant interval where
the �� lie, or just all over, thus leading to h�; �′ .
More explicit, we start as in the corresponding proof in Theorem 2.1: Suppose that

(�) is not true. In V1 there is i(∗)¡� and p∈P�·!1 such that

p 
P�·!1 “�
˜
i ∈ !2 for i ¡ i(∗)∧{�

˜
i | i ¡ i(∗)} is not null”:

A name of a real in V1[G] is given by

�
˜
i = Bi(〈 truth value (�i; ‘ ∈ r

˜ji; ‘
) | ‘∈!〉)

for suitable 〈�i; ‘; ji; ‘ | ‘∈!〉; �i; ‘ ∈!; ji; ‘ ∈ � + �.
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We set

X = {ji; ‘ | i ∈ i(∗); ‘ ∈ !} ∩ (� ∪
⋃

{� · 
+ �; � · (
+ 1)) | 
 ∈ !1\{0}};
Y = {ji; ‘ | i ∈ i(∗); ‘ ∈ !} ∩

⋃
{� · 
; � · 
+ �) | 
 ∈ !1\{0}}

We show the main point

In V1[G]; (!2)
V [{ �
˜�

| �∈ X ∪ Y}]
is a Lebesgue null set.

Since ∃�� g�;!1 (�)= {(
; y) | � · 
+ y∈Y} we can �x such an �∈ (� ·!1)\X that is
not in A�

�·
+y for � · 
+ y∈Y .

Lemma 6.3 (See Lemma 2.8). In VP�∗
1 ; the set (!2)V1[�� | �∈ X ∪ Y ] has Lebesgue mea-

sure 0; and a witness for a de�nition for a measure zero superset can be found in
VP�+1 for �∈ �\X that is not in E� for every �∈Y − �.

Now proceed through the analogues of Sections 2 and 3. In the de�nition of a
blueprint we allow mt and nt to indicate in which intervals [� · 
; � · (
+ 1)) the heart
of the delta system (intersected with the Cohen parts for mt) lies, hence mt ; nt ∈ [!1]¡!

and mt ⊆ nt in general not as an initial segment, but inserted according to the type of
the heart. (The old nt would be just the length of our new nt .)
Then we modify De�nition 4.2 as follows: In (d) (2) we say n¡|nt | and in (d) (4)

we say
if n¡dom(mt)⇔ ∀‘(�‘ ∈ [�·mt(n); �·mt(n)+�))⇔ ∃‘(�‘ ∈ [�·mt(n); �·mt(n)+�)),

and
if n¡dom(nt)\dom(mt) ⇔ ∀‘(�‘ ∈ [� · mt(n) + �; � · (mt(n) + 1)) ⇔ ∃‘(�‘ ∈

[� ·mt(n) + �; � · (mt(n) + 1)).
The rest of Section 4 shows that the new K3 has the desired members. In

Subclaim 5:3, the choice of the blueprint has to be modi�ed accordingly. Thus we
get (∗∗) �Q for the modi�ed class K3.
Since the analogue of Lemma 2.7 holds, we also get analogues to Lemma 5.4 and

to Theorem 5.5 and hence can �nish the proof of Theorem 6.1.

7. Getting the premises of Theorems 1.1 and 2.1

In this section, we discuss how to get the bare set-theoretic premises of
Theorems 1:2 and 2:1.
If we do not insist on (V1; V2) having the same cardinals but just require (!V1)V2 ⊆

V1, then we can get the situation in the premise of Theorem 1:2 for example as follows.
Take for V1 any model of ZFC and let ℵ16�¡�′ be regular cardinals in V1. We

extend V1 by forcing with P=({f |f : �→ �′; |dom(f)|V16ℵ0}; ⊆ ). Since P is !-
closed we have that (!V1)V2 ⊆V1. We set

N = {(�; �′) ∈ V1 | ∃f ∈ V2f : �
co�nal→ �′; �; �′ regular in V1; �¡�′}:
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Let �= min(�0(N )), where �0 denotes the projection onto the �rst coordinate. Then
we have that cf V2 (�) is uncountable. Let �′= �′(�) a minimal witness that �∈ �0(N )

and let f∈V2, f : �
co�nal→ �′. Let C = range(f)∈V2. Then |C|V2 = |�|V2 = �. Let I∈V2

be the set of all bounded subsets of C. For any B∈V1 such that |B|V1¡�′ we have
that B∩C is not co�nal in �′.
If we allow co�nalities to be changed, there is the following constellation with

consistency strength ∃� o(�)=!1: Gitik [18] shows that assuming ∃� o(�)=!1 there
is some V (got with a preparatory forcing) such that in V , there is a regular cardinal
�¿!1 and a notion of forcing P that adds a co�nal sequence of length !1 to �
and does not add any countable sequences and does not add any bounded subsets
of �. Now we have V1 =V; V2 =VP; C = the range of the new co�nal sequence,
�= �; �=ℵ1; I= {C′ ⊆ � |C′ ∈V2; |C′|¡ℵ1}.
In order to get (V1; V2) with the same co�nality function, we take a model announced

in the “Added in proof” in Gitik [9]:

Theorem 7.1 (Gitik). Assume that there is a measurable � of Mitchell order �+++�;
� regular and �¿!1. Then the singular cardinal hypothesis can be violated in the
following manner: There is some model V such that 2�= �+ in V and such that
there is a notion of forcing P such that P does not change co�nalities above � and
such that in VP; � is a singular strong limit; ℵ0¡cf (�)= �; 2�= �++ and such that
∀x(x∈VP ∧ x⊆Ord∧ |x|VP

¡�+→∃y∈V (y∈Ord∧ |y|VP
¡�+ ∧ x⊆y)).

Remark. By Gitik and Mitchell [10] the lower bound for the consistency strength is
of such a failure of SCH is between ∃� o(�)= �++ and ∃� o(�)= �++ + �, and if
�¿ℵ1 then the strength is o(�)= �++ + �.

Theorem 7.2. Suppose that we have that 2�= �+ in V and that there is a notion of
forcing P such that P does not change co�nalities above � and such that in VP; � is
a singular strong limit; ℵ0¡cf (�)= �; 2�= �++ and such that ∀x(x∈VP ∧ x⊆Ord∧
|x|VP

¡�+→∃y∈V (y∈Ord∧ |y|VP
¡�+ ∧ x⊆y)).

Then there are V1; V2 such that
(1) V ⊆V1⊆V2⊆V [G];
(2) (H (�))V1 = (H (�))V2 = (H (�))V [G];
(3) (¡�V1)V2 ⊆V1;
(4) V1 and V2 have the same co�nality function;
(5) in V2 there is a subset C of � of size � such that C is not covered by any set

in V1 of size less than �.

Proof. Let A=H (�)V [G].
By the “cov versus pp (= pseudo-power) theorem” [17, II, 5.4] we get that pp(�)=

2� = �++ in V2, and hence by the de�nition of pp there is a 〈�i | i¡�〉 ∈V [G] be
a sequence of regular cardinals co�nal in � and an ideal I on � containing all the
bounded sets in � such that tcf (

∏
�i=I)= �++. That means: there is a ¡I -co�nal scale
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〈f� | �∈ �++〉 in V2, i.e. for �¡�∈ �++ we have

f� : � → �;

f�(
) ∈ �
 for 
 ∈ �;

f� ¡I f� for � ¡ � ∈ �++

∀g ∈
∏
i∈�

�i ∃� ∈ �++ g ¡I f�;

where f¡I g i� {i¡� |f(i)¿g(i)}∈ I . (By [17, VIII, Section 1] that there is even a
scale with respect to the ideal J bd� of the bounded subsets of �.)
We set

V1 = V [A; 〈�i | i ¡ �〉]:

Then we have that there is some f� ∈VP that ¡I -dominates V1:

Proof. In V , in the subalgebra P′ of the Gitik algebra P that is generated by H (�)V [G] ∪
{〈�i | i¡�〉} there are only 6�+ elements (since the Gitik algebra P hat the �+-c.c.)
and it has the �+ c.c. Hence there are only �+ many P′-names for subsets of � in V ,
so we have that in V1 =VP′

; 2�= �+.
Since C�= {f∈ ��∩V1 |f �I f�} is decreasing, of length �++ and has empty

intersection, there is some �¡�++ such that C�= ∅ and hence f� that ¡I -dominates
��∩V1.
We �x such an f� and set

V2 = V1[f�]:

For C we take range(f�). Now all the items claimed in Theorem 7.2 are true.
We give a proof of item 5, the others are easier. We show that range(f�)=C is a

set in V2 that is not covered by any set B in V1 of size less than �.
Suppose the contrary: B⊇C; B∈V1 and |B|¡�. We show that these premises imply

f� ∈V1. We have that 〈sup(B∩ �i) | i¡�〉 ∈V1. Since |B|¡�, there is some �0¡� such
that for i¿�0 we have that sup(B∩ �i)¡�i.
We set

g(i) =
{
sup(B ∩ �i) + 1 if i ¿ �0;
0 else:

But we have that f�(
)¡g(
) for 
¿�0. Since that latter is in V1 and since I contains
all the bounded subsets of � and is proper, this is a contradiction to f� being ¡I -
unbounded and hence to being ¡I -dominating over V1.

Remark. Unboundedness with respect to ¡I instead of being dominating w.r.t. ¡I

would su�ce for the proof of item 5 and all other items.
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