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THE JOURNAL OF SyMBoLIC LoGic
Volume 48, Number 3, Sept. 1983

ON THE EXPRESSIBILITY HIERARCHY
OF MAGIDOR-MALITZ QUANTIFIERS

MATATYAHU RUBIN! AND SAHARON SHELAH?

Abstract. We prove that the logics of Magidor-Malitz and their generalization by
Rubin are distinct even for PC classes.

Let M = Q%x, - -+ x, ¢(x, -+ + x,) mean that there is an uncountable subset 4 of |M |
such that for every a,, ..., a,€ A, M &= ¢la,, ..., a,).

THEOREM 1.1 (SHELAH) (O y,). For every n € w the class K,,, = {(A, R) | {4, R) =
= Q" x; vre Xpey R(xy, ..., Xgiy)} @S not an By-PC-class in the logic &*, obtained by
closing first order logic under Q% ..., Q" lLe. for no countable £"-theory T, is Ku,, the
class of reducts of the models of T.

THEOREM 1.2 (RUBIN) (0 ,,).> Let M = QFx y p(x, y) mean that thereis A = |M | such
that E4, = {{a, b) | a, be A and M = ¢la, b)) is an equivalence relation on A with un-
countably many equivalence classes, and such that each equivalence class is uncountable.
Let KE = (A, R)| {4, R) = — QFxyR(x, 3)}. Then K% is not an 8- PC-class in the
logic gotten by closing first order logic under the set of quantifiers {Q"|n € w} which were
defined in Theorem 1.1.

§1. Introduction. In [MM] Magidor and Malitz define for every 0 < n < o the
quantifier Q». The g-interpretation of Q” is defined as follows: M = Q»x; - --
xp(x1, ..., x,) iff there is 4 = |M| such that [4]| = £ and for every aq;, ...,
a,€ A M E glay, . ..,a,]. Let £~ be the logic obtained by closing first order logic
under @7, and #MM be the logic obtained by closing first order logic under {Q=|
ne a)}.

Magidor and Malitz prove in [MM] that if ¢ is assumed, then #M¥ is count-
ably compact in the 8y-interpretation; i.e. if every finite subset of a countable set of
sentences T of MM has a model, then T has a model. They also prove a complete-
ness theorem for the 8;-interpretation of #MM,

Also in [MM] the <& compactness for the s-interpretation is proved when &
is weakly compact.

Shelah in [S1] proved, assuming ¢, and .+, that $MM is g-compact in the
gt-intepretation.

In two yet unpublished theorems Shelah proved: (1) It is consistent with ZFC
and even with CH that #M¥ is not countably compact in the 8;-interpretation
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(this continues work of U. Avraham); (2) Consider MM in the §,-interpretation.
If P is the partially ordered set for adding a Cohen real, then no matter what V
is, MM js countably compact in V7 and it has the same validities as in any universe
satisfying O ,.

Clearly if m > n then 2™ is more expressible than &##; i.e. every % formula is
logically equivalent to an 7 formula. J. Malitz asked whether %~ is indeed
strictly more expressible than .#». More precisely, whether there is an #”-ele-
mentary class which is not an %,-8,-PC class. In Theorem .1 Shelah gives a
positive answer to this question assuming ¢ .

Shelah (unpublished), and independently Garavaglia [G], proved in ZFC that
for every n € w there are models M,, M, which are .## equivalent but not ¥»+1
equivalent.

Theorem 1.2 is a generalization of Theorem 1.1 for a larger hierarchy of quanti-
fiers. QExyg(x, y) can be expressed as a sentence using one of the new quantifiers
to be defined in the sequel.

Forn > Olet M, = (A, Ey, ..., E,>, where |4| = §,, each E; is an equivalence
relation on A4, for every 1 < i < n — 1 E;, refines E; in such a way that every
equivalence class of E;is partitioned into ®; equivalence classes of E;.;, E; has
N, equivalence classes, and every equivalence class of E, has power R;.

Now we define the quantifier Q#m. Let ¢, ..., ¢, be the set of complete types
with m variables in M,. Q=™ will bound m variables and will be applied to an
r-tuple of formulas. M = Q#mxy - -- x,(¢fn, - .., ¢,) means that there is a function
h:|M,| — |M|such that for every @ € |M,|”: if & has the type t,, then M k= ¢,[h(a)].
Here we described the ®;-interpretation of Q7.7 the g-interpretation is defined in
a similar way. Note that Q™1 is just the cardinality quantifier and that Q0% is just
Q. Clearly

QExy(x, }’) = Ql‘zx}’(‘P(x’ y)’ x # YA ‘P(x’ y): X # YA "‘QD(x, y))

where 1., 15, t3 are the types x = y, x # y A Ei(x, y), and —E(x, y) of M, re-
spectively. Q1.2 is probably more expressive than QF in the sense defined in this
work, but we do not know how to prove this. It seems that the class of models of
012 xy(R(x, ¥) A S(x, y), R(x, »), S(x, y)) is not an R;-PC class in $(QE). If
nzn and m = m', then Q7" can be expressed in terms of Q*m. Finally
Q%xyp(x, y) is PC expressible in terms of QF. For suppose p(x, y) is a 1-1 pairing
function and {p(z), p2(z)) is p~1; then

Q2xyp(x, ¥) = QFxy(p(pi(x), pr(¥)) A paAx) = pa(y)).

Let .# be the logic obtained by closing first order logic under {Q*|n, m € w}.
In [MR] assuming ¢, Rubin proved that & is countably compact in the ¥;-
interpretation, and < & compact in the £ weakly compact interpretation. The proof
for 8, yields a completeness theorem. The omitting type theorem of Shelah [S1]
can be used to prove the A-compactness of . in the A*-interpretation, under the
same set-theoretic assumptions, and in complete analogy to the proof of the #MM.
compactness given there.

Let #»m = £(Q*") and ™™ = L({Q¥"|n' < norm < m}). Let n =0
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and m > 2. Wedefine M, ,, = <A, Ey, ..., E,, R, ), where{A4, £}, ..., E,> =
M,and R, ,, = {<ay, ..., a,y| forevery | <i <j<maE,a;}. Let¢,, bethe
sentence with predicate symbols E;, ..., E, and R saying that for some B < |M|
(B, Ey !B, ..., E, | B, R| B) is isomorphic to M, .. ¢, , can be written as a
sentence in .#*™. ¢ » can be written using QF only, not Q1.2.

THEOREM 1.2 (O ). Let n > 0 and m > 1, and let K, ,, = {MIM = — ¢, .}
Then K, ,, is not an " m-8,-PC-class.

We did not deal with the problem whether K,, or K, ,, can be PC-classes or ;-
PC-classes in the weaker logics. In view of [Ra] and [Ma, Re] such questions might
have a different nature.

Theorem 1.1 is a special case of Theorem 1.2. We bring it here because its com-
binatorial details are simpler, and so it might be helpful to understand the frame-
work of both proofs using Theorem 1.1 as a model.

Lastly we want to mention a question about another possible generalization of
Magidor-Malitz quantifiers. Let K be a class of models in the same finite similarity
type. Let Qg xq «++ x,(cd1, ..., ¢n) be the quantifier saying the following about a
model M: M = Qgxy -+ X,(¢1, --., ¢y iff there is Ne K and B < |M] such
that (B, ¥ |B, ..., ¢¥|B) =~ N. Note that n is the maximal number of places in
a predicate in the language of K and m is the number of predicates in the language
of K.

Investigate when Qy is compact. E.g., we do not know whether Qf is countably
campact when K = {M} and M = (R, <) or M is the saturated linear ordering
of power ;.

§82 and 3 include results of S. Shelah. §4 includes results of Rubin.

§2. Description of the method of proof. The framework of the proof of both
theorems is the same, so to be specific we choose to describe the proof of Theorem
1.1.

We will use forcing methods and then apply an absoluteness argument to get
back to the ground model.

Assume ¥ = O . Let us deal with a fixed but arbitrary n e w ~ {0}. This n is
fixed for §§2 and 3. Let R be an n + 1-place relation symbol and ¢ = Q#™ 1 xy - - -
xn+1R(x1’ LS | xn+1)-

We will construct a model M with the following properties:

D) M = —g

(2) There is a set of forcing conditions P such that:

@InVPMIE¢;
(b) For every model N € V the ##-theory of N in V' F isequal to the #»-theory
of Nin V. (Note that ¢ is in #7+L)

Let us see why modulo the countable compactness, and a certain completeness
theorem for 71, the existence of such a model M implies that K %f {<4, R) |
{4, Ry = — ¢} is not an #"-8-PC class.

We first describe the completeness theorem which is needed; it appears (at least
implicitly) in [MM] and, for the case of .%, in [MR].

THEOREM (MAGIDOR AND MaALITZ [MM]). A recursively enumerable set of for-
mulas C < ¥t is presented, a proof from ZFC is given that Vo(pe C — ¢ is
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true in every model), and a proof from ZFC + § is given that V(o is true in
every model — ¢ € C).

Suppose now by contradiction, K is an #7-8,-PC class, i.e. for some countable
¥r-theory Te V, Kis the class of reducts of models of T. So M can be expanded to
a model M* of T. Let P be the set of forcing conditions mentioned in (2). Then in
Ve M* =T U {¢}. We show that T |J {¢} is finitely satisfiable in V. Suppose
not; then for some finite 7y = T, Ty U {¢)} does not have a model. So, since Oy
holds in V by the second part of the completeness theorem — (AT A ¢) € C.
Since belonging to C is a dy-formula in Levi’s Hierarchy it is absolute so

—~(ATyA$eC inlP.

By the first part of the completeness theorem, ATy A ¢ does not have a model in
V'?,a contradiction. So by the countable compactness of »+1 T |J {¢)} has a model
in ¥, and so K,,; is not the class of reducts of T, a contradiction. This shows that
it suffices to construct a model M with properties (1) and (2) mentioned above.

The next goal is to find a property S of forcing notions that will assure that the
Zrtheories of old models do not change after forcing with a forcing notion that
satisfies S.

DEFINITION. P is an S,-forcing if either n = | and P is c.c.c., or for every un-
countable subset B of P, there is an uncountable subset B’ of B, such that for
everyqy, ..., q, € B', thereisg € P,suchthatg > ¢;foreveryi = 1, ..., n. Wecall
such a B’ an n-compatible set.

S,-forcings appear in [KT], where Suslin trees are shown to be preserved by
them.

THEOREM 2.1. Let P be an S,-forcing and M € V; then for every ¥-formula ¢
andeveryay, ...,a,€|M|: M = glay, ...,a,)in VifM = ¢lay, ..., a,]in VP,

ProoF. The proof is trivial for n = 1; we thus assume that » > 1. Note that P
satisfies the c.c.c. We prove by induction on the structure of ¢ that for every
P-generic extension V7 of V and for every a3, ..., a,€ |M| M = ¢lay, ..., a,]in
Viff M = ¢la), ..., a,]in V7. The only less trivial case is when ¢ = Q7x; - - -
Xux(x1, - . ., X,). (x might contain parameters.) Suppose M = ¢ in V. Let 4 be an
uncountable subset of |M| such that for every ay, ..., a,e A M = ylay, ..., a,)
in V. Since P is c.c.c., 4 is uncountable in VP, and by the induction hypothesis
foreveryay, ...,a,€e AM = ylay, ...,a,]Jin VP, so M = pin VP,

Suppose M = ¢ in V7. So there is a P-name 7 and ¢ € P such thatg |-,z is an
uncountable subset of [M| and for every a), ..., a,€7 M = ylay, ..., a,]”. So
{alac |M| A Qp = q)(p |- d € 7)} is uncountable in V. (4 is the standard name
of a.) Let {<p;, a,>|i < 8;} be a set such that: ¢ < p;, p; - 4, € 7, and if i # j
then a; # a;. Let B’ < {p,[i < 8;} be an n-compatible subset of {p;[i < 8},
and let A" = {a;|p; € B'}. Leta;, ...,a;, € A'. Letr 2 p;, ..., p;. Sor |- d,,
..., d; €7 and by the induction hypothesis M = yla;, ..., a;}in V;s0o M = ¢
in V. Q.ED.

DEefFINITION. Let M = {A, R)>, R an n + 1-place relation; a subset B of A4 is
called positive homogeneous (PH) if Bl < R.

For a model M as in the definition, let P,, = {o|o is a finite PH subset of [M|};
P,, is partially ordered by inclusion.
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We now go back to the model M with properties (1) and (2) that we wish to
construct. The 7 needed in condition (2) will be P,,. So we want that P,, will be an
S,-forcing.

The requirements from M are now clear, and it turns out that to construct such
a model it is sufficient to assume CH,

THEOREM 2.2 (CH). There is a model M = {A, R>, R an n + l-place relation,
with the following properties:

) M= g;

@ py M E=¢);

(3) Py is an S,-forcing.

This concludes the description of the proof.

§3. The construction of M. We first deal with the case when n > 1. The case
n = 1 is easier and is dealt with at the end of §3.

The universe of M will be 8;. Since we want that in some generic extension
M will satisfy ¢, and in order to prevent trivial problems, we decide that R will
be symmetric, i.e. if {a;, ..., a,+1) = d € R, then every permutation of & belongs
to R. We alsoneed that R 2 T% {<ay, ..., a,1)|ay, - .., 4,1 €8, and for some
i#ja;=aj.

DEFINITION. A finitary system (FS) is a countable family of pairwise disjoint
finite sets.

We make two lists: a list {G,|i < 8;} of all subsets of 8, of power 8y, and a
list {Df)i < 8} of all FS’s D such that UD < 8;. For technical convenience we
assume that for every i G; i | w and (D' < i U w. Let us denote Df =
{di,m e w}.

We will arrange that R will have the following three properties.

() For every § < a < ¥; such that @ < @, there are ay, ..., a,€ Gz such
that <ay, ..., a,, a) ¢ R.

(+x) For every 8 < a < §; such that @ < «, and for every finite e, such that
db < ey € @ — |Jocmeo db, there is a finite subset ¢ of w such that: for every aj,

sa,€a if {a, ..., a,} & e and there are iy, ..., i, 1 € @ — ¢ such that
{ay, ..., a,} S e U Yrd d;i’ then <ay, ..., a, adeR.
(x+*) For every finite ¢ < X; the set {a|for every {a;, ...,a,} € o<ay, ...,

a,, a) € R} is uncountable.

We first show that a relation which satisfies (x), (*#) and (x*#) is as required
in Theorem 2.2,

LEMMA 3.1. Let R = R7'! be symmetric and R 2 T. Suppose R satisfies (), (x*)
and (xxx) and let M = {A, R)>. Then

D ME—¢;

) IFpy (M = ¢);

(3) Py is an S ,forcing.

PrOOF. (1) Let A < §; be uncountable and let G be a subset of 4 of power y,,.
So, for some i G = G;. Let i < q € A; then by () there are ay, ..., 4, € G such
that {ay, ..., a,, a>¢ R, so A is not PH.

It is well known that (2) follows from (*#x).

(3) Let A be an uncountable subset of Py. W.lo.g. 4 = {e|i < 8}, where
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e ={a,..,a Ufasp -, ampandforeveryi<j<Mio<a < -+ <
o < @) < -+ < @, < ;1. Denote {ay, ..., a;} = e. We define by induction
a subsequence {e; |v < N} of {e; |i < 8:}. Let i = 0. Suppose i, has been de-
fined for every ' < v. Let D = {djjicw}, where dy = e and {d,;|0 < i < o} =
{e;» — e]y’ < v}. So, for some 8 < 8y, D = DF. Let i, be the first ordinal i such
that ﬁ < a;g 1.

By renaming (denoting e; by e,), we can assume that {e;|i € §;} has the following
property: for every i there is 8; such that dfi =e, {d§ |0 < le w} = {e; —e|j <i},
and ﬁ,- < a;1-

We now prove:

(»»xx) For every i there is a finite subset ¢; < i such that for ay, ..., a,4 if
{a1, ..., a1} N (6, — €) # @, and there are iy, ...,i,.1€i — ¢; such that

{a1, ...,a,n} = e, U Ul e, then (ay, ..., a,.1) € R By (s#), and since
B: < a;1, for every 1 </ < m, there is a finite subset ¢/ of i such that for every
ay .. aif{ay, ...,a,} el {a;1, .-.»a;;-1} and there are iy, ..., i, 1 €

i — ¢ such that {ay, ...,a,} e U {a;1, -- > a;} U Uizl (e, — €), then
ay, - @iy € R Let o, = 1, ot let {ay, ..., a1} < e; U ()il e, where
iy ooipa€i—g;and {ay, ..., 4,11} N (e; — €) # @. If for some j # j' a; =
a;, then {ay, ..., a,11) € R, since R 2 T. Hence assume that a; # a;, when-

ever j # . Since {ay, ...,a,.1} N (e; — €) # @, there is / such that o,, =
max ({ay, ..., a,+1}). Since R is symmetric, w.l.o.g. we can assume that q,,; =
a;.Henceay, ...,a, < a;;. If {ar, ..., a,} e J{ai1, ..., @i}, then{ay, ...,
an41} S €; € Py, so {ay, ..., a,.1) € R. Finally, otherwise <ay, ..., a,, a;;>€R

and (#x#*) is proved.

By Fodor’s theorem there is an uncountable C < §; and a finite set ¢ such that
for every ieC, g;, =0. Wlog. 6 N C= . Let i}, ...,i,eCand i; <ip <

- < i, Weshow that { Jo_, ¢; is PH. Let {ay, ..., a,11} S Uy €. If {ay, .. .,
a,1) S e, then {aj, ...,a,41)> €R since e e, is PH. Otherwise let p =
max({j| {ay, ..., a1} N (e;, — &) # @}); then since iy, ..., i, € C, {iy, ..., 1)1}
€ iy — 0y So by (»»#+) (ay, .. ., a,11) € R. This shows that C is n-compatible.
We thus proved (3).

To construct M we need two lemmas. Let 3° mean “there are infinitely many™.

DEFINITION. A set of m-tuples A is called small if —=3* g;3% ay -.. 3°q,, ({ay,
ceey Ayy € A).

Note that a subset of a small set is small, and that if B is infinite then B~ is
not small.

If @ and b are finite sequences, then @ ~ & will denote their concatenation. If
A is a set of finite sequences and 4 is a finite sequence then 4; %f {h|a ~ b € 4};
if a is an element then A, abbreviates A4,,.

LEMMA 3.2. (a) Let A be a set of m-tuples and k < m. Then A is small iff {b|b
is a k-tuple and Ay is not small} is small.

(b) A4 finite union of small sets of m-tuples is small.

© {Kay, ..., a1 {ay, ..., a,} S A and for some i #j a; = a;} is small.

PROOF. (a) is trivial from the definition.

(b): We prove (b) by induction on m. For m = 1, “small” means “finite” so
the claim is trivially true. Assume (b) for m, let A, ..., A* be small sets of
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m + l-tuples, and let 4 = ()i, 4. By (a) 4 is small iff B¢f {a]4, is not
small} is finite. But for every a 4, = { JX, A%, and so by the induction hypoth-
esis B = | %, {al4} is not small}. Again by (a), for each i {a|4} is not small} is
finite, hence B is finite and hence 4 is small. Q.E.D.

The proof of (c) is left to the reader.

Let E = {¢ficw} be an FS and let 0 < mew, let E[m] = {<ay, ..., a,)|
there are iy, ..., i, such that {a}, ..., a,} S ¢ U U ¢;}.

LemMA 3.3. If Eis an FS and 0 < m < w, then E[m] is small.

ProOF. We prove by induction on m that for every FS E, E[m] is small. m = 1.
Let E = {e;]i € w} be an FS. Then E[1] = {{a)|a € ey}, so E[1] is small. Assume
the induction hypothesis for m. Let F = {¢]ic w} be an FS. We prove that
{alE[m + 1], is not small} < ey (In fact if [{ JE| = R, then equality holds.)
Suppose ad¢ ey If aé U,-Ew e,, then E[m + 1], = @ so it is small. Otherwise let
ace;; then E[m + 1], = {<ay, ..., a,| there are i, ..., i, such that {a;, ...,
a,) S(eg U ey) U |Jrzae;}. Soif e} is defined to be e; when i # 0, iy, e; = ¢y U
e;, e, = @, and if £’ is defined to be {ej|i € w} then E{m + 1], = E’[m]. Hence
by the induction hypothesis E[m + 1], is small, hence a ¢ ¢, implies E[m + 1], is
small. Since ¢, is finite by 3.2(a) E[m + 1] is small.

The definition of M. Let {r,/i < ;} be an enumeration of all finite subsets of
R8; such that forevery i < 8 {jlz; = z,} is uncountable and such that for every
i<®r,ci fScwrland o < Ry, let S« = {Kay, ...,a,0 | {4, ....a,) S
and <{ay, ..., a, a) €S}

We define Re for the desired relation R. If ¢ < w let Rx = gn.

The definition of R* for @ 2 w. Let {G?| i € w} be an enumeration of {Gg4|f < a}.
Let {E‘li € w} be an enumeration of all FS’s £ = {e,|m € w} such that for some
B<a df S e < «and e, = df for every 0 < me w. (Recall that we denoted
D# = {df |me w}, where {DB|B < 1} is the list of all FS’s whose union is a
subset of 81.)

We define by induction on m € @ R and R% with the purpose that R= will be
defined as U,,,Ew R2. Our induction hypotheses are: (1) RZ, R% are symmetric
disjoint subsets of a”; (2) R2 is small and R is finite; (3) both RZ and RZ are
increasing with m. Let R§ = @ and R = (z,)* U {Kay, ..., a0 |{ay, ..., a,} S«
and for some i # j, a; = a;}. So, the induction hypotheses hold. Suppose R,
Rz have been defined. Since R2 is small and G is infinite, there is (ay, ..., a,) €
(Gm)» — Rz, Let Re,, = R% | {@r1y - - -» Gz |7 @ permutation of {I, ...,
n}}. Let R%,, = R2 U (Em[n] — R%,,). It is easy to check that the induction
hypotheses hold. This completes the definition of R% and R%,.

Let R* = | J,c, R, let Re be the symmetric closure of R x {a} and let R =
T U awn, Re. Recall that T= {ay, ..., a1 ({a1, .- ., @,11} S 8y and for some
i#ja;, =a;.

We prove that R satisfies the requirements of 3.1. Certainly R 2 T and R is
symmetric. By the definition of R§ (+##) is fulfilled.

To prove (x), let 8 < a. Let Gy = G in the enumeration of {G,|y < a};
that was defined before defining R* and Re. So for some by, ..., b, € Gg, R%,; >
{by, ..., b,>. We prove that {by, ..., b,, a)> ¢ R. Since R2, 2 R§ 2 {{ay, ...,
aylay, ...,a,€a and for some i # j a; = a;} and since R,41 N Riy = @,
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Nizj(b; # bj # ). So<by,....b, a>¢T. Certainly<by, ..., b, ad¢Rr
when 7 # a. Now <by, ..., b,, a) ¢ R* since this would imply that <{b,, ...,
b,, a) is a permutation of some element of R* x {a}, this in turn implies that
for some k = m + 1:(by, ..., b,> is a permutation of an element of R%, and
since R% is symmetric, this implies that {b,, ..., b,> € R%. However {by, ..., b,>
e R,and Ry | R = @&, and this is impossible. So (x) is satisfied.

To prove (sx)let 8 < a, df < ¢ S @ — Jocmewdi. Let e; = d% for i > 0,
and let {e,l/iew} = Em where {E/|j € w} is the enumeration of FS’s defined before
the construction of R* and Re. Let ¢ = {i| there is {ay, ..., a,> € R%,, such that
{ay, ...,a,} N e; # @}, o is finite since R%, is. Let <b, ..., b,> be a sequence
such that {b;, ..., b,} & e and there are iy, ..., i, ; € w — ¢ such that {5, ...,
b, < ey U Ul d,.f_; so <{by, ..., b,> € En[n]; on the other hand {b;, ..., b,> ¢
Re,,, so by, ....,b>€e RS, 50 by, ...,b,,ade R Q.E.D.

This concludes the proof of Theorem 1.1 for the case n > 1.

The case n = 1. The construction of M in this case is a simplified version of
the construction for n > 1. Let {G/li < 81}, {D?]i < %} and {di)m e w} be as
in the previous case. We construct R so that it will satisfy (*), (***) of the previous
case and the following modification of (x#).

Let Q be a binary relation on 8;, w < a < 8; and D an FS such that U D ca.
We say that D is Q — a-definable, if for some 8 < « and some finite ¢ € @ D =
fde DFld x ¢ = Q}.

(»*) For every w < a < R, and every infinite R — g-definable FS D there
are infinitely many d e D such that d x {a} < R.

We first prove the analogue of 3.1.

LEMMA 3.4. Let R < 8 be symmetric and R 2 T. Suppose R satisfies (), (¥x)
and (xxx). Then

() M= —¢;

(2) Py is an Si-forcing (i.e. Py is c.c.c.);

(3) Ipy (M = ).

ProOF. (1) follows from (). (3) follows from (**#) and the fact that P,, is c.c.c.
Since (2) means that Py, is c.c.c., the proof will be concluded once we prove (2).

Let {o;|i < #%}  Py. W.lo.g. {o;]i < 8} is a J-system and by the nature of
Py, it is sufficient to deal with the case when for every i < j < %10, 1 0; = @.
Let 8 be such that D = {¢,|i < w}, and let {ay, ..., a,_;} = o; be such that
B<ap< - <a, Forevery k <rlet D, ={deDfldx {ap, ..., a1} S
R}. Hence for every k < r D, is R — ay-definable. Using (**)’ it follows by induc-
tion on k£ < r that D, is infinite. Hence D, is infinite, and this means that for
some n€w o; |J 0,€ Py. We have thus proved that P, is c.c.c..

The construction of a model M which satisfies (x), (*») and (**+) is along
the same lines as the construction of M in the previous case. However, here we
do not need any combinatorial facts. We thus leave the very easy construction
to the reader.

REMARK. Since the completeness of L(Q) [Kr] follows just from ZFC, in the
case of n = 1 we obtain that Theorem 1.1 follows from CH rather than from
Q-

'Ilhis concludes the proof of Theorem 1.1,
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§4. The hierarchy theorem for &»m. To prove Theorem 1.2 we first translate
§2 in an obvious way. We have to modify, however, the combinatorial details.
We assume ¢ ,. Later we shall fix n = 0 and m > 1, then we shall construct a
model M with properties (1), (2) analogous to properties (1) and (2) of M. The
argument why this suffices is the same as the one given in §2.

Our first goal is to find a property S, ,, of forcing notions such that forcing
over V with an S, ,, forcing notion preserves .#»m-theories of all Ne V.

Let “3% ...” mean “there are at least A elements ...”.

DErFINITION. Let & > 0, 2 an infinite cardinal and A a set of k-tuples. 4 is A-
large if 34a, --- A4a({ay, ..., a,> € A). Otherwise we say that 4 is A-small.

DreriNiTION. Let P be a forcing notion, £k = 0 and / = 1; P is called an S},
forcing if either / = 1 and P is c.c.c.,, or / > 1 and for every h: 8t! — P, there
is an ®;-large B < ®%™! such that h(B) is /-compatible.

Pis called an S, ,, forcing if for every h:8}t! — P, there is an 8;-large B = nft+!
such that A(B) is /l-compatible for every / € w.

REMARK. It is possible to define the property S, ;or S, . of forcing notions,
Let T be the tree of finite sequences of countable ordinals with the partial ordering
of being an initial segment. A4 subset T’ of T is called a large subtree of T if it
is closed under initial segments and is isomorphic to 7.

P is an S, forcing if for every A: T — P such that A(b) is /-compatible for
every branch b of T, there is a large subtree T’ of T such that A(T"’)is /-compatible.

Let us define a canonical representation of the isomorphism type of M,. Let
M, = (88, Ey, ..., E;) where E; = {<&, B> |@ti =f 1 i}. In what follows &,
B, # always denote finite sequences of countable ordinals.

THEOREM 4.1. If P is an S, ;-forcing and N € V then for every P-generic extension
W of V, for every p € %' and ay, ...,a,e N: N=glay, ...,a,]in Viff NI=
(p[al, ey am] in W.

ProOOF. The proof is by induction on the structure of ¢, and the only less trivial
case is when ¢ = Q%/x; - -+ x/(¢y, ..., §,). Since P is c.c.c. if N}=¢ in V then
N k= ¢ in W. Suppose N k= ¢ in W, and let p force this fact. Let ¢ be a name of
a function from M, to |N| which is forced by p to exemplify the fact that N = ¢.
For every d € 851 let p; € P and a; € | N| be such that p; = p and p; - (&) = a;.
Let A = §f*'be an R;-large set such that {P;|d& € A} is l-compatible. By the
l-compatibility and the induction hypothesis (used for ¢y, ..., ¢p), A 4 exem-
plifies the fact that N |=¢ in V. Q.E.D.

For the rest of this section we fix n = 0 and m > 1. Let ¢ denote ¢, ,,. We shall
construct a model M of the form {¥7*, Ey, ..., E,, R) where (8!}, Ey, ...,
E,> = M,, but R differs from R, ,,. (Recall that R, , was defined before Theorem
1.2.) Let M be as above, A < |M|is correctif Rt A = R, ,,} A.Let Pyy = ({o <
(M| [o is finite and correct}, < ).

Lemma 4.2 is a generalization of Lemma 3.1.

LEMMA 4.2 (CH). There is a model M = {8{*', E,, ..., E,, R) with the following
properties:

() M= — ¢

(2) Py is an S, forcing for every {n', m') such that either n’ < norm’ < m;

(3) py (M 1= ¢).
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REMARK. It is trivial that in P, m-compatibility implies /-compatibility for
every /, so in fact condition (2) implies that Py, is an S, forcing for every n’ < n.
We do not know how to assure that P, will be an S, . for every m’ < m.

Our next goal is to define three requirements analogous to (*), (x#), (%) of
§3.
Let AM ¥ {5lg = 4 and |o| = k}. Let I(4) = {B = A®¥|=(3C < A)C is
infinite and B 2 C'*))}, and let /{(4) = {B < A'| B is 8y-small}. Let I} be the ideal
on (%) generated by I(x!) U {B*!|B e I'(%))}.

LemMMA 4.3. (a) 1,(A) is an ideal.

(b) I'(A) is an ideal.

(¢) If B < ®{ and B is Ny-large, then B1¥) ¢ I,

(d) Let ¢ = 8| be finite and Be (RD¥. We define B*c = {z||7| = k and
(A7 € B)(z = ¢’ U 0)}; then if Bell then B*g € ll.

PROOF. We leave the easy proofs of (a), (b) and (d) to the reader.

(c) Let B  ®; be 8j-large, and suppose by contradiction that B¥ e I}, so
there are Ce I'(%;) and D € I,(8!) such that B*¥ < C¥! |J D. By (b), B—-C
is Ro-large, and hence it is infinite. But D 2 (B — C)'¥, contradicting the fact
that D e I(8}).

We have to deal separately with the case when n = 0 and m = 2. However,
Theorem 1.1 when applied to n = 1 is just the same as Theorem 1.2 when applied
to {n, m) = {0, 2>. We have already remarked on this case, so from now on
we assume that {n, m) # <0, 2.

Let / denote /%M. Let {@‘|i < %} be a I-1 enumeration of 8™, and let {G|
i < R} be an enumeration of all countable (including finite) subsets of (87+1)im—11
such that for every i < 8, G = {a/lj < i}i» 1.

We shall construct R symmetric in such a way that the following three condi-
tions will hold:

(*) If i < jand G’ ¢ I, then there is ¢ € G’ such that g | {@’} is incorrect.

(»+) (@) If i < j, G" e I and 7 is a finite subset of {@‘|/ < j},then {g € Gix7|g |J
{@’} is incorrect} is finite. (b) For every g e (R¢™)" if ¢ N {&°, ..., @™ 1} # @,
then ¢ is correct. (Remark. (b) is not really needed, we assume it just for technical
convenience. Also note that (b) implies that for every ¢ < 87! if [¢| < m then ¢
is correct.)

(»++) For every finite correct subset ¢ = 87t and for every S e 87| {r|c U
{B7<p>} is correct} | = §,.

LEMMA 4.4. Let M = (87", E4, ..., E,, R) satisfy (), (%) and (¥xx). Then M
satisfies (1), (2) and (3) of 4.2.

Proor. (1) follows trivially from (x) and 4.3(c).

The main novelty appears in the proof that (xx) implies (2). We postpone this
proof for a while.

(#%%) = (3). Let 7 be the name of the union of all conditions (which are finite
sets) in the generic set. Certainly |-p,, *“z is correct”. So it remains to show that
I p,, “7 is 81-large”. But clearly (++*) implies that

"‘—PM(VB € t"'1')(] {T esl'ﬁA<T> € T}| = R1),
so the claim follows.
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We now prove a sequence of lemmas that will lead to the proof of (¥*) = (2).

Notations. For finite sequences & and E, let & < B mean that @ is an initial
segment of 3, and & < § mean that & < j and @ # 5. Let & A j denote the
maximal common initial segment of & and B Let A denote the empty sequence.
For every A, A° means {A}, A<* = { )iz A7 and A=*F = | ), A°. A set of finite
sequences which is closed under initial segments is called a hereditary set. If 4 is
a set of finite sequences, then H(A4) denotes the hereditary closure of 4, and H(&)
abbreviates H({a&}). S,(4) %f {s = A|0 is finite}. A set function is a function such
that every element of its range is a set. A set function g is disjointed if for every
a, b e Dom(g) gla)  gb) = .

We now generalize the notion of a J-system.

DEerFINITION. Let /4 be a set function whose domain is an g;-large subset of n%,
and denote Dom(h) = A. A is called a kK — d-system, or in short, a d-system if A
can be extended to a function & on H(A) such that for every @, f e A4 k(@) () ()
= h(@ A J). We call & the kernel of .

If h is a d-system and % is its kernel, let /' be the function such that Dom(/') =
Dom(k) and for every & € Dom(h) k(@) = k(@) ~ | J {H(B) | B < @&}. We call #’
the remainder function of 4. Note that A’ is disjointed.

LemMma 4.5. If h: 8¢ > S(B), then there is hy < h such that hy is a J-
system.

Proor. The proof is by induction on k. For k = | it is well known. Suppose
true for k, and let A4: 84! — S (B). For every a € 8y, let h,: 8% — S(B) be defined
as follows: ha(ﬁ) = h((aYB). By the induction hypothesis and by renaming we
can assume that for every « h, is a J-system. Let k, and h_ be, respectively, the
kernel and the remainder function of A,. By the induction hypothesis for k = |
we can assume that {ﬁa(~/1)|a < ¥} is a Jd-system. We define a function g’ on
REFL g'(A) = h(A) N h(A) where a # B, g'(Ka)) = h(A) ~ g'(A); and for
every fen™ — (A} and aer, g(Kad"B) = h(B). Note that for every B eyt
18'(8~{r)ly ey} is a family of pairwise disjoint sets.

Let {@|i < 31} be an enumeration of Ki* such that for every i < 8, | {j|&/ =
@'} = 8. We define by induction on i < 8 a sequence {&;|/ < 8y} S 8;*'! such
that for every i < ®; A; % {a&;|j < i} is hereditary. Suppose &; has been defined
foreveryj < i. If @ ¢ A;, leta; = A. Suppose @’ €4, andlet B, = ( J{g'(@,)|/ <i}.
B, is countable and {g'(@"{y>) lreR,} is a family of pairwise disjoint sets, so
for some ye®; g @ (> U B; = @. Let & = @ {r).

By the construction it is clear that 4 ¢f 4, () 8f*!is 8j-large. We prove that
h} Aisa /A-system. Let f be defined on Ay as follows: f(A1) = g'(A), and f(<a>‘[3)
= ha(ﬁ). We verify that f is the kernel of £ | A. Clearly fextends & | A. 1tisalso
trivial that for every § e Ay, f(B) = Ug@la < f}. By the construction g’ | Ay,
is disjointed, hence for every &, € Ay,

f@ NP =Ulg@|7 <aand7 < B} = fi@a A ).

Q.E.D.

REMARK. See [RS] for a generalization of this lemma.

DEFINITION. Let h: B — S,(85™), A is hereditary if for every b € B h(b) is heredi-
tary.



Sh:118

MAGIDOR-MALITZ QUANTIFIERS 553

LEMMA 4.6. Let 0 < k < m and let h: §f —» S, (85™) be a hereditary A-system;
let H, = w7 N \J{Ma)|d e i}, then Hy is Ro-small.

ProOF. For k, m, h as above and j e 85", let 44 = {&|5°@ € H,}. We prove

the following claim by induction on k: let k, m, h be as above, and 4 be the kernel
of h. Then if 3 e §7~* and A" is Ro-large, then B € h(A).

4.6 follows from this cla1m since A(A) is finite.

The case when k = 1. Let § € 87" — h(A). Then there is at most one o€ §;
such that B € h({a)). If there is no such a, then A @, s0 it is ¥g-small. Other-
wise let 3 € h({app); since A is a hereditary 4- system [3 A% < h({ap»), and since
h({ayg)) is finite A" is finite, and so it is &;-small.

We now assume the induction hypothesis for every k' < k, and we prove it
for k + 1. If m < k + 1 there is nothing to prove, so we assume k + | < m.

First by the induction hypothesis (1): if h: 8¢ — S,(8=™) is a hereditary 4-
system, i < m—k and § € 8}, then A% is 8y-small.

Let h: 8f*! —» S,(8=™) be a hereditary J-system, and let h, I’ be, respectively,
the kernel of 4 and the remainder function of h. Let § e np~*D —A(A). If
,Bet (J{n@)|& e "'}, then 4% = &, and hence it is Ny-small. Otherwise let /
and @, be such that &, € 8 and Ee h'(@). Clearly since Egé h(A), I > 0. By the
disjointedness of 4’ &g is unique and (2): BAAg c U{n@)la, < &}. Let g be defined
on ®{*17" in the following way: g(¥) = h(d@,"7). By (2) Ag = AL The induction
hypothesis can be applied to k + 1 — / < k. Hence 3): if i <m — (k + 1 — l)
and 7 e 8{, then A&’ is Ng-small. We can apply 3) toi =m — (kK + 1) and‘3
because m — (k + l) <m—(k+ 1 — I). Hence Ag 18 Np-small, i.e., A” is
Ro-small. Q.E.D.

COROLLARY 4.7. If 'k < mand h: R — S, (8D, then there is an 8,-large A = ¥}
such that | J{h(@)|a& € A} is 8g-small.

PrOOF. Let hy(@) = H(h(@)), let A = R8¢ be such that h; | 4 is a J-system;
then A satisfies the requirements of the corollary.

_ DeFINITION. Let g: Rf > S,(8F%), and let 4 = K% be called f-free if for every &,
Bedg@ N HP) =

LemMmA 4.8 (A4 generalization of a theorem of Fodor and Hajnal [F], [H] for the
case of A = Ry). Let g: 8f — S (8F*) be such that for every G e 8% g(@&) (| H(@) =
Then there is an w-large g-free subset of nt.

Proor. W.l.o.g. g is a J-system (though now its domain is only an §;-large
subset of §f); let ¢ and g’ denote, respectively, the kernel and the remainder
function of g. Let {@‘|i < #,} be an enumeration of 8<% such that for every
i< 8 [{jla’ = @'}| = 8. We define by induction a sequence {&;|i < 8} S N*
such that for every i < 8, A;%f {@,;|j < i} is hereditary. Suppose &, has been
defined for every j < i. If &’ ¢ A; let @; = A. Otherwise let y € 8; be such that
g'@ ) N A, = @and "y ¢  Jg{4,]. Such 7 exists by the disjointedness of g’
and the countability of 4,. Let 4 = A, [ N4 It is easy to see that A is as required
in the lemma.

REMARK. See a generalization of 4.8 in [RS].

LEMMA 4.9. Let h: 8 — S (A) be a d-system, let

k—1
E(h k) = {o€ A®|3 &y, ..., &y(o < | h(@)}.
=1
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Then E(h, k) € I,(A).

PRroOF. Trivial.

PROOF OF 4.4 (x*) = (2). Part 1. Let M satisfy (*x) and we prove that Py, is an
S,-1,. forcing notion.

Let g: 87 — P,. By Corollary 4.7 we can assume that g is a J-system, and
that | ) {g(3) |} € 81} is 8g-small. By (*#)(b) we can also assume that for every
Bewy g(B) = {@, ..., @ 1}. Let g’ be the remainder function of g. Let {#/|i <
¥} be an enumeration of 87" such that for every i [{j|§/ = B}l = 8. Recall
that in (*x) we had an enumeration {@ (i < &} of 87! and an enumeration
{Gili < 8;} of all countable subsets of (8771)" 1",

We define by induction a sequence {B;|i < #;} S N8{” such that for every
i <8 B;%{3;|j <ilis hereditary. Let B, = A. Suppose j;has been defined
for every j < i, and we define j,. If 5" ¢ B,,let §; = A. Suppose §' € B,. Let A; =
U{g'(B,)1j < i}. For some y; 4,71 = G¥. Since g’ is disjointed, there is 7 € ¥,
such that ﬁ'“<r> ¢ B, and g’(ﬁ‘“(p) = {agnd@ b, ..., a7} wherey; < y(i, 1) <
cor < @, L) Let §; = B4

By the construction (B, <) = (K", <), so w.lLo.g. we can assume that
By, = &f". (This assumption is just for notational simplicity.)

We shall define now a function A;: RE" — S, (8F7). Since 8" = {B;] i < ;] it
suffices to define hl(ﬁ,) for every i < 8;. Let i < 8;. For every [ < [, let G =
Guix {@rb, ..., @D} (cf. Lemma 4.3), and G,, = {c€ G*|g U {ar%P} is
incorrect}. 4; = { J{g(B)|f € 87}, so 4; is an Ng-small subset of 7% Hence
G = A" e I. By (*+) (substituting j of (*x) by 5(i, /) and i of (*+) by v,), G,
is finite. Let G, = | J{olo € | J,<;, G}, hence G, is a finite subset of ®{™.. Let
m@B) = {Blg'B) N G, # @ and B, & B,}. By the finiteness of G, and the dis-
jointedness of g, hl(ﬁ,-) is finite. Note that since G; < A; U g’(B,~), for every ¢,
if B, € hy(B,), then t < i. This concludes the definition of A;.

Let h: 87 — S,(87") be defined as follows: A(f) = () {m(%)17 < B}. By the
definition of 4, and A for everyB € N} h(ﬁ) N H(E) = (@, so by 4.8 there is an 8;-
large subset B of 8} such that B is h-free.

We prove that g(B) is m-compatible, and hence it is also /~compatible for every /.
It suffices to show that every ¢ € (| | g(B))"! is correct. Suppose by contradiction
g is incorrect. Let ¢ = {@’1, ..., &/»} where j; < jz < -+ < jn. Let § be such
that @/m e g(ﬁ), and ﬁ,- be such that @/= € g’(E,-). By disjointness of g’ B,‘ < E Let
I < I; be such that j,, = 5(i, /), and let ¢’ = ¢ —{@’=}. We shall prove that ¢’ €
G,y Let gy = o' — g’(B,); since ju, . . ., jm1 < jm it follows that g; S A,. Since
by our assumption on g |g'(A)| = m and since A= ﬁo, then G* # @ so there is
o1 € G” such that g; < gi. Hence ¢’ < g7 U {@7%0, ..., @a7% L}, so ¢’ € G
Since ¢’ |J {@7»} is incorrect, ¢’ € G; ;. Hence ¢’ < G,. There is some ¢ such that
B: < B, butg’(B) N o' # B, for otherwise 7 < g(f), hence it cannot be incorrect.
So g'(8) N G; # @, hence E, € hl(E,) c h(ﬁ). But by disjointness of g’, for some
?EBE, < 7. Hence HF) N h(‘é) # @, contradicting the A-freeness of B. This
proves that g(B) is m-compatible, and we have thus proved that Py is an S, 1 .,
forcing notion.

Part 11. We prove that Py is an S, ,_; forcing notion for every I If m = 2
then we just have to prove that P, is c.c.c. But since (n, m) # (0, 2}, n
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must be greater than 0, so by Part I P, is c.c.c. We can thus assume that
m> 2,

Let g: 8 — Py. Wlo.g g is a d-system. By(*x)(b) we can assume that for
every e 8 g(B) = {@°, ..., @ 1}. Let g’ be the remainder function of g. The
proof is very similar to the proof of Part I. Let {§*|i < 8} be an enumeration of
8T’ such that for every i < 8;[{j|f/ = B}| = 8;. We define by induction a
sequence {f3;|i < 8} = 8 such that for every i < §; B;%f {B,1j < i} is heredi-
tary.

Suppose B,- has been defined for every j < i. If [§" ¢ B; let B; = /. Suppose
BieB;. Let A; = U{g’(ﬁj)lj < i}. The set E(g, m — 1) (1 A1 is a countable
subset of (87*1)" 1), 5o it appears in the list {G?]i < 8,} given in (**); suppose
E(g, m — 1) | A»1 = G*. By the disjointedness of g’ there is 7 € §; such that
B(r> ¢ B;and g'(B(r)) = {@9V, ..., @™} where y; < 9(i, 1) < - <
7(i, ;). We define §; = §"(r). By the construction (B, < > = (8, < ), sowe
assume that B, = 8.

We now define a function A; : 85/ — S,(85). It suffices to define hy(3;) for every
i < . Foreveryl < k < /;let

Gik = G (( U g@ U {&7;(:‘,1), . &’7(:’,/@—1)})’
7<Bi
and let G, , = {s € G'*|g U {@v“*®} is incorrect}. We prove that G, , is finite.
G < E(g, m — 1), hence by Lemma 4.9, G el

r¥( ) g@) Ularen, ..., artiby
7<B:
is a finite subset of {@|r < (i, k)}, hence by (x*) (substituting j of (xx) by 7(i, k)
and i of (#+) by v,) we conclude that G, , is finite. Let G; = U {oloe U,,S,,_ G 1}
So G; is a finite subset of 871 Let 4y(3;) = {B:lg'() N G; # @ and B < Bi-
By the finiteness of G, and the disjointedness of g'hl(B,-) is finite.

Let h: 8{ — S (85" be defined as follows: A(8) = |J {7 < B}. By the
definitions of 4; and A for every § e 8! A(B) N H(B) = &, so by 4.8 there is an
h-free §;-large subset of 8{, which we denote by B.

We shall prove that g(B)is m — l-compatible. Suppose by contradiction it is
not, hence, there are r € B Uand ¢ € (8" such that ¢ < U{g(ﬁ)l Berlandg
is incorrect. Let ¢ = {@&”, ..., @} where j; < --- < j,. Let § €7 be such that
@/ € g(B), and let i be such that @/= € g'(3;). Clearly 0 < i and B; < p. There is
k < I; such that j,, = (i, k). Let ¢' = ¢ — {@’~}. We shall prove that ¢’ € G, ,.
Let o) = o’ — g(B), clearly ¢, = A;. Moreover g; S UlgPl7er — {8}} and
lz — {ﬁ}l = m — 2. By our assumption on g: |g'(A)}| = m; so there is ¢] 2 oy
such that ¢f € () {g(®I7 € v — {B}}) 1. Hence oje E(g, m — 1) (| AU = G*,
Letoy, =0’ N g(ﬁ), hence g4 = (UKE g@) Ufared, ..., ar%+D} It follows
that

a.' =0 U g€ G * (( u 81(7)) U {ay(i,l)’ ey aﬂ(l',k"*l)}) = Gi.*,
7<8s

Since ¢’ U {@7%®} is incorrect, ¢’ € G, ;, and, hence, ¢' & G;. There is some ¢ such
that 3, < §;and g'(8,) N o’ # @, for otherwise ¢ < g(B), and hence it is correct.
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So B, e h(B) = (). Let 7 € B be such that §, <7. So 4(B) N HF) # @, con-
tradicting the A-freeness of B. We have thus proved that g(B) is m — l-compatible,
so Py is an S, ,,; forcing notion.

The construction of M. Let {@&|i < 8} and {G¢|i < R8;} be as in (%), (x*), (x*x),
and let A7 = {&/|j < i}. Let {g;]i < 8,} be an enumeration of S,(%7*!) such that
for every i, j < 81| {klo, = 0, and @*n = &/ t n}| = §,. Since R, ,, is a sym-
metric relation we regard it by abuse of notation as a subset of | ;< (831"
Since R is going to be defined as a symmetric relation we make the same convention
for R.If A is a set let A=W def { ], _, A1 For every i < 8; we shall define a set
Ri = (491! with the purpose that

R = (R 1) (=) U ) {o U 4@ )i < sy, 0 € Ry).
i<Wy

The construction of Ré. For every i < wlet Rf = {¢ € (A))" Vg | {a) e
R, ;. Suppose i = w. Let {G}|j < w}be an enumeration of {G/*z|j < iand 7 e
S.(4)}. We now define by induction on k € w sets Ri, R, < (491! with the
purpose that

Ri={oeRilo U@} eR,n} U{oeRilo U {@}¢ R,

Our induction hypotheses on the R’s and Rj’s are the following:

(1) {Ri|k € w} and {R}{k € w} are increasing with k;

Q@ R, N R, = @;

(3) Riel; and

(4) R; is finite,

Let Ry = o U |J {oe )" VUg N {a@s% ...,a" 1} # @}, and let Ri = @.
It is easy to check that R} € /, so the induction hypotheses hold. Suppose R; and
R have been defined. If Gie [, let R,,;, = R, U (G} — RY). If Gi ¢ I, then since
Rj e I it follows that there is g € G — R};let R}, = Riand R,,; = R, U {g}. It
is trivial to check that the induction hypotheses hold. This concludes the definition
of R, and R}, and hence R' is defined, so R is also defined.

It is easy to check that R satisfies requirements (*), («*) and (*#x). This concludes
the proof of Theorem 1.2.
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