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THE JOURNAL OF SYMBOLIC LOGIC 

Volume 55, Number 2, June 1990 

FULL REFLECTION OF STATIONARY SETS BELOW K, 

THOMAS JECH AND SAHARON SHELAH 

Abstract. It is consistent that, for every n > 2, every stationary subset of ca„ consisting of 
ordinals of cofinality wk, where k = Qoxk<n — 3, reflects fully in the set of ordinals of 
cofinality co„-l. We also show that this result is best possible. 

1. Introduction. A stationary subset S of a regular uncountable cardinal K reflects 
at y < K if S n y is a stationary subset of y. For stationary sets S, A s K let 

S < A if S reflects at almost all a e A, 

where "almost all" means modulo the closed unbounded filter on K, i.e. with the 
exception of a nonstationary set of a's. If S < A we say that S reflects fully in A. The 
trace of S, Tr(S), is the set of all y < K at which S reflects. The relation < is well-
founded [1], and o(S), the order of S, is the rank of S in this well-founded relation. 

In this paper we investigate the question of which stationary subsets of u>„ reflect 
fully in which stationary sets; in other words, the structure of the well founded 
relation <. Clearly, o(S) < o(A) is a necessary condition for S < A, and moreover, a 
set S £ a>„ has order k just in case it has a stationary intersection with the set 

SI = {a < (o„: cf a = cok}. 

Thus the problem reduces to the investigation of full reflection of stationary 
subsets of SI in stationary subsets of S"mior k < m < n. 

The problem for n = 2 is solved completely in Magidor's paper [2]: It is consistent 
that every stationary S ^ Si reflects fully in Sf. The problem for n > 2 is more 
complicated. It is tempting to try the obvious generalization, namely S < A 
whenever o(S) < o(A), but this is provably false: 

PROPOSITION 1.1. There exist stationary sets S a S0 and A c Sf such that S does 
not reflect at any y e A. 

PROOF. Let St, i < co2, be any family of pairwise disjoint subsets of S0, and let 
< Cy: y e SI > be such that each Cy is a closed unbounded subset of y of order type a>,. 
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FULL REFLECTION OF STATIONARY SETS BELOW N, 823 

Clearly, at most Kj of the sets S; can meet each Cy, and so for each y there is i(y) < a>2 

such that Cy n St = 0 for all i > i(y). 
There is i < co2 such that i(y) = i for a stationary set of y's. Let A <= Sf be this 

stationary set and let S = St. Then S n Cy = 0 for all y e A, and so S n y is non-
stationary. Hence S does not reflect at any y e A. • 

There is of course nothing special in the proof about K3 (or about Nj), and so we 
have the following generalization: 

PROPOSITION 1.2. Let k < m < n — 1. There exist stationary sets S £ SJJ and 
A £ SJJ, such that S does not reflect at any y e A. 

Consequently, if n > 2 then full reflection in S"m is possible only if m = n — 1. This 
motivates our main theorem. 

MAIN THEOREM 1.3. Let K2 < K3 < • • • < K„ < • • • be a sequence of supercompact 
cardinals. There is a generic extension F[G] in which K„ = K„ for all n>2, and 
such that 

(a) every stationary subset of S% reflects fully in Sf, and 
(b) for every n > 3, every stationary subset of SJJ, for all k = 0,. . . ,n — 3, reflects 

fully in $;_!. 
We will show that the result of the main theorem is best possible. But first we 

prove a corollary: 
COROLLARY 1.4. In the model of the main theorem we have for all n>2 and all 

m, 0 < m < n: 
(a) Any Km stationary subsets of SJ reflect simultaneously at some y e S^,. 
(b) For every k < m — 2, any Km stationary subsets of SI reflect simultaneously at 

some y e S^,. 
PROOF. Let us prove (a), as (b) is similar. Let m < n and let S$, E, < com, be 

stationary subsets of S"0. First, each Si reflects fully in S^ l5 and so there exist club 
sets C,«, £ < com, such that each S4 reflects at all a e Q n S"_ x. As the club filter is 
avcomplete, there exists an a e S"_ x such that Si n a is stationary, for all £, < com. 
Next we apply full reflection of subsets of SQ~ 1 in S" I \ (to the ordinal a of cofinality 
con-! rather than to co„-x itself) and the con_1 -completeness of the club filter on 
&)„_!, to find P e 5J_2 such that Si n /? is stationary for all £ < com. This way we 
continue until we find a y e SJ, such that every S? n y is stationary. • 

Note that the amount of simultaneous reflection in 1.4 is best possible: 
PROPOSITION 1.5. If cfy = Km and if Sj, £ < com+1, are disjoint stationary sets, 

then some S? does not reflect at y. 
PROOF, y has a club subset of size Km, and it can only meet Km of the sets Si n y. 

• 
By Corollary 1.4, the model of the main theorem has the property that whenever 

2 < m < n, every stationary subset of SI reflects quite strongly in S^, provided 
k < m — 2. This cannot be improved to include the case of k = m — 1, as the 
following proposition shows: 

PROPOSITION 1.6. Let m>2. Either (a) for allk < m — 1 there exists a stationary 
set S £ S™ that does not reflect fully in SZ-i, or (b) for all n> m there exists a 
stationary set A £ SJ|,_ j that does not reflect at any d e S^. 

We shall given a proof of 1.6 in §3. In our model we have, for every m>2, full 
reflection of subsets of S" in S™_! (and of subsets of S£" for k < m — 3), and 
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824 THOMAS JECH AND SAHARON SHELAH 

therefore 1.6(a) fails in the model. Thus the model necessarily satisfies 1.6(b), which 
shows that the consistency result is best possible. 

2. Proof of the main theorem. Let K2 < K3 < • • • < K„ < • • • be a sequence of 
cardinals with the property that for each n > 2, K„ is a <K„ + 1-supercompact 
cardinal, i.e. for every y < K„ + x there exists an elementary embedding j : V -* M 
with critical point K„ such that J(K„) > y and My cr M.1 We construct the generic 
extension by iterated forcing, an iteration of length co with full support. The first 
stage of the iteration Pt makes K2 = N2, and for each n, the nth stage P„ (a forcing 
notion in F(F1 * • • • * P„_ t)) makes K„ + 1 = K„ +1. In the iteration, we repeatedly use 
three standard notions of forcing: Col(/c, a), C(K) and CU(K, T). 

DEFINITION. Let K be a regular uncountable cardinal. 
(a) CO1(K, a) is the forcing that collapses a > K with conditions of size </c: A 

condition is a function p from a subset of K of size <K into a; a condition q is 
stronger than p if q 3 p. 

(b) C(/c) is the forcing that adds a Cohen subset of K: A condition is a 0-1-
function p on a subset of K of size < K; a condition q is stronger than p if # 2 p. 

(c) CU(K, T) is the forcing that shoots a club through a stationary set T £ K: A 
condition is a closed bounded subset of T; a condition q is stronger than p if q end-
extends p. 

The first stage Pt of the iteration P = <P„: n = 1,2,.. .> is a forcing of size K2 that 
is co-closed,2 satisfies the K2-chain condition and collapses each cardinal between Kx 

and K2 (it is essentially the Levy forcing with countable conditions). For each n > 2, 
we construct (in V(P \ ri)) the nth stage P„ such that 

(2.1)(a)|P„| = K„ + 1, 
(b) P„ is K„ _ 2 closed, 
(c) Pn satisfies the K„+1 -chain condition, 
(d) P„ collapses each cardinal between K„ (= K„) and K„ + 1, and 
(e) P„ does not add any «„_!-sequences of ordinals, 

and such that Pn guarantees the reflection of stationary subsets of X„ stated in the 
theorem. 

It follows, by induction, that each K„ becomes X„: Assuming that K„ = K„ in 
V(P\ri), the nth stage P„ preserves X„ by (e), and the rest of the iteration 
<P„ + 1, Pn+2,...} also preserves N„ because it is N^i-closed by (b); Pn makes Ka + l 

the successor of K„ by (c) and (d). 
We first define the forcing Px: 
PY is an iteration, with countable support, <ga: a < K2>, where, for each a, 

e ^ C o K K ^ K i + c O x Q K j ) . 

It follows easily from well-known facts that Pj is an co-closed forcing of size K2, 
satisfies the /c2-chain condition, and makes K2 = K2. 

1 We note in passing that the condition about the K„ is equivalent to "every K„ is < K^-supercompact", 
where K^ = supm<0JKm. 

2 A forcing notion is l-closed if every descending sequence of length <,X has a lower bound. 
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FULL REFLECTION OF STATIONARY SETS BELOW K„ 825 

Next we define the forcing P2. (It is a modification of Magidor's forcing from [2], 
but the added collapsing of cardinals requires a stronger assumption on K2 than 
weak compactness. The iteration is padded up by the addition of Cohen forcing, 
which will make the main argument of the proof work more smoothly.) The 
definition of P2 is inside the model V{Pi), and so K2 = X2: 

P2 is an iteration, with Xt-support, (Qa: a < K3>, where, for each a, 

Q. = Col(K2, K2 + a) x C(N2) x CU(7J 

where Ta is, in V(Pl * P21 a), some stationary subset of to2. We choose the Ta's so 
that each Tx contains all limit ordinals of cofinality <*>. It follows easily that for each 
a < K3, P21 a \\-Qx is co-closed. 

The crucial property of the forcing P2 will be the following: 
LEMMA 2.2. P2 does not add new consequences of ordinals. 
One consequence of Lemma 2.2 is that the conditions (p, q, s) e Qa can be taken to 

be sets in V(Py) (rather than in V(P1 * P21 a)). Once we have Lemma 2.2, the 
properties (2.1)(a)-(e) follow easily. 

It remains to specify the choice of the 7J,'s. By a standard argument using the 
K3-chain condition, we can enumerate all potential subsets of co2 by a sequence 
<Sa: a < K3 > in such a way that each Sa is already in V(Pl * P2 | a). At stage a of the 
iteration we let Tx = co2, unless Sa is, in K(P, * P21 a), a stationary set of ordinals 
of cofinality w. If that is the case, we let 

T. = (Tr(S„) n S?) u Sg. 

Assuming that Lemma 2.2 holds, we now show that in V(Pl * P2) every stationary 
ScSj ref lec ts fu l ly inS[ 

The set S appears as S„ at some stage a, and because it is stationary in ViP^ * P2), 
it is stationary in the smaller model V{P^ * P2 \ a). The forcing Qx creates a closed 
unbounded set C such that C n Sf £ Tr(S) (note that because P2 does not add 
co,-sequences, the meaning of Tr(5) or of Sf does not change). 

Thus in F(Pt * P2) we have full reflection of subsets of SQ in Sf. The later stages 
of the iteration do not add new subsets of a>2, and so this full reflection remains 
true in V(P). 

We postpone the proof of Lemma 2.2 until after the definition of the rest of the 
iteration. 

We now define P„ for n > 3. We work in V(PV * •••* P„_t). By the induction 
hypothesis we have K„ = K„. 

P„ is an iteration with K„_!-support, {Qx: a < K„ + 1 > , where for each a, 

Qx = Col(K„, N„ + a) x C(XJ x CU(TJ 

where Ta is a P„ | a-name for a subset of co„. To specify the Ta's, let <Sa: a < K„+1}be 
an enumeration of all potential subsets of oo„ such that each Sa is a P„ | a-name. At 
stage a, let Ta = co„ unless Sa is a stationary set of ordinals and Sx £ S£ for some 
k = 0,.. . , n — 3, in which case let 

Ta = (Tr(SJ n S ^ ) u (S"0 u ••• u S"„_2) 

= {y < co„: cf y < co„_2 or S^ n y is stationary}. 

Sh:387



826 THOMAS JECH AND SAHARON SHELAH 

Due to the selection of the Ta's, Qa is co„ _ 2-closed, and so is P„. The crucial property 
of the forcing is the analog of Lemma 2.2: 

LEMMA 2.3. P„ does not add new con_ ^sequences of ordinals. 
Given this lemma, properties (2.1)(a)-(e) follow easily. The same argument as 

given above for P2 shows that in V(P1 * • • • * P„), and therefore in V(P) as well, every 
stationary subset of SI, k = 0, . . . , n — 3, reflects fully in S" _ t. 

It remains to prove Lemmas 2.2 and 2.3. We prove Lemma 2.3, as 2.2 is an easy 
modification. 

PROOF OF LEMMA 2.3. Let n > 3, and let us give the argument for a specific n, say 
n - 4. We want to show that P4 does not add consequences of ordinals. 

We will work in V(Pl * P2) (and so consider the forcing P3 * P4). AsPj * P2 has size 
K3, KX is a < /c5-supercompact cardinal in V(P1 * P2), and K3 = N3. The forcing P3 

is an iteration of length K4 that makes K4 = K4 and is N,-closed; then P4 is an iter
ation of length K5 . By induction on a < KS we show 

(2.4) P41 a does not add consequences of ordinals. 

As P4 has the N5-chain condition, (2.4) is certainly enough for Lemma 2.3. Let 
a < K5. 

Let j be an elementary embedding j : V -> M (as we work in V(P1 * P2), V means 
V(P1 * P2)) such that J(K4) > ji and Mp c M, for some inaccessible cardinal P > a. 
Consider the forcing j(P3) in M. It is an iteration of which P3 is an initial segment. By 
a standard argument, the elementary embedding j : V -* M can be extended to an 
elementary embedding j : V(P3) -»M( j(P3)). We claim that every /J-sequence of 
ordinals in V(P3) belongs to M(j(P3)): the name for such a set has size </J and so it 
belongs to M, and since P3 e M and M(P3) c M(j(P3)), the claim follows. In 
particular, P41 a e M(j(P3)). 

Let p , F e F(P3) be such that p e P41 a and P is a (P41 a)-name for an cu3-sequence 
of ordinals. We shall find a stronger condition that decides all the values of P. By the 
elementarily of j , it suffices to prove that 

(2.5) 3p < j(p) in j(P41 a) that decides j(F). 

The rest of the proof is devoted to the proof of (2.5). 
Let G be an M-generic filter on j{P3). 
LEMMA 2.6. In M[G~\ there is a generic filter H on P41 a over M[G r\ P3] such that 

M[G~\ is a generic extension of M[G n P3][H] by an Unclosed forcing, and such 
that p e H. 

PROOF. There is an n < J(K4) such that P41 a has size K3 in Mn = 
M[G n (y'(P3)|>/)]. Since P4 |a is N2-closed, it is isomorphic in M, to the Cohen 
forcing C(N3). But Qn = (j(P3))(l) = Col(N3, K3 + r,) x C(N3) x CU(T,), so 
G | Q, = GCol x Gc x Gcu, and using Gc and the isomorphism between P4 |a and 
C(K3) we obtain H. Since the quotient forcing j(P3)/(P3 x C(K3)) is an iteration of 
Kt -closed forcings, it is Kt -closed. • 

LEMMA 2.7. In M [G] there is a condition p e j(P41 a) f/iat extends p, and extends 
every member of j"H. 

Sh:387



FULL REFLECTION OF STATIONARY SETS BELOW N„ 827 

Lemma 2.7 will complete the proof of (2.5): since every value of F is decided by 
some condition in H, every value of j(F) is decided by some condition in j " H, and 
therefore by p. 

PROOF OF LEMMA 2.7. Working in M\_G~\, we construct p e j(P4\oc), a sequence 
<p4: £, < j(a)> of length j'(a), by induction. When £ is not in the range of j , we let pi be 
the trivial condition; that guarantees that the support of p has size |a|, which is N3 

(because a < J(K4) = N4 in M[G]). So let £, < a be such that p | j{t) has been defined, 
and construct pJ(i). 

The condition pm has three parts u, v, s, where u e COI(J(KA), J(KA) + j(£)), v e 
C((/c4)) and s E C\J(Tm). It is easy to construct the u-part and the u-part, as fol
lows: The filter H \ P4(£) has three parts; a collapsing function / of K4 onto K4 + £,, 
a 0-1-function g on /c4, and a club subset C of T .̂ We let u = j"f and v = j"g; these 
are functions of size N3 and therefore members of Col and C respectively. For the 
s-part, let s = j"C u {K4}. In order that this set be a condition in CU(7}K)), we have 
to verify that K4 e TJ(i). 

This is a nontrivial requirement if Sm is in M(j(P3) * (j(P4)\M))), a stationary 
subset of )(KA), and is a subset of either S£ or of S? (of Sn

k for n = 4 and k < n — 3). 
Then /c4 has to be a reflecting point of Sj(i), i.e. we have to show that Sj(i) n K4 is 
stationary, in M(j(P3) * (j(PA) |;({))). 

By the assumption and by elementarily of j , Si is a stationary subset of K4 in 
V(P3 * P4J f), and S{ ̂  s* or S? E S*, i.e. consists of ordinals of cofinality Kco^. 
Since Sj{i) n K4 = j'(S^) n K4 = S4, it suffices to show that S4 is stationary not only in 
K(P3 * P41 0 but also in M(j(P3) * (j(PA) | M)))-

Firstly M(P3 * P41 ^) s K(P3 * P41 <J), and so Si is stationary in M(P3 * P41 ^). 
Secondly, j(P4) is Kj-closed, and by Lemma 2.6, M(j(P3)) is an ^-closed forcing 
extension of M(P3 * P41 £), and so the proof is completed by application of the 
following lemma (taking K = N0 or Kx and X = K4). 

LEMMA 2.8. Let K < / be regular cardinals and assume that for all a < A and all 
P < K, a^ < A. Let Qbea tc-closed forcing and S a stationary subset of k of ordinals of 
cofinality K. Then Q\\-S is stationary. 

This lemma is due to Baumgartner; we include the proof for lack of reference. 
PROOF OF LEMMA 2.8. Let q be a condition and let C be a Q-name for a closed 

unbounded subset of L We shall find q < q and y e S such that q \\-y e C. Let M be 
a transitive set such that M is a model of enough set theory, is closed under < K-
sequences, and is such that M 2 A, q e M, Q e M, C e M. Let <Ny: y < A> be an 
elementary chain of submodels of M such that each Ny has size < X, contains q, Q 
and C, Ny n X is an ordinal, and Ny+1 contains all < K-sequences in Ny. Since S is 
stationary, there exists a 7 e S such that Ny n / = y. As cf 7 = K, N = Ny is closed 
under < K-sequences. 

Let {7 :̂ i < K} be an increasing sequence with limit y. We construct a descending 
sequence {q^. £ < K} of conditions such that q0 = q, such that, for all £, < K,qie N, 
and, for some pi e N greater than yi, qi+1 W-fee C. At successor stages, qi + 1 exists 
because in N, qi forces that C is unbounded. At limit stages r\ < K, the ^-sequence 
(q4: £, < n} is in N and has a lower bound in N because N \= Q is K-closed. 

Since Q is K-closed, the sequence (qf i, < K) has a lower bound q, and because of 
the /Ts, q forces that C is unbounded in 7. Therefore q \\- 7 e C. D 
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828 THOMAS JECH AND SAHARON SHELAH 

3. Negative results. We shall now present several negative results on the structure 
of the relation S < T below Kra. With the exception of the proof of Proposition 1.6, 
we state the results for the particular case of reflection of subsets of SQ in S3

t, but the 
results generalize easily to other cardinalities and other cofinalities. 

The first result uses a simple calculation (as in Proposition 1.1): 
PROPOSITION 3.1. For any N3 stationary sets Ax £ S], a < a>3, there exists a 

stationary set S £ SQ such that S -ft Ax for all a. 
PROOF. Let Ax, a < a>3, be stationary subsets of Sj. By [3], there exist X4 almost 

disjoint stationary subsets of Si; let Sh i < a>4, be such sets. Assuming that each St 

reflects fully in some Am, we can find K4 of them that reflect fully in the same Aa. 
Take any K2 of them and reduce each by a nonstationary set to get N2 pairwise 
disjoint stationary subsets {T :̂ £ < w2} of Si, such that each of them reflects fully 
in A„. Hence there are clubs Q , £ <co2, such that Tr(T^) 2 A^nC^ for every £. Let 
y e f]i<l02 Q n Ax. Then every T( reflects at y, and so y has K2 pairwise disjoint 
stationary subsets {TJ n y: £ < co2}. This is a contradiction because y has a closed 
unbounded subset of size cf y = Kt . • 

The next result uses the fact that under GCH there exists a O-sequence for S\. 
PROPOSITION 3.2 (GCH). There exists a stationary set A s S\ that is not the trace 

of any S e Si; precisely: for every S £ SQ the set A A(Tr(5) n Si) is stationary. 
PROOF. Let <Sy: y e S3) be a O-sequence for S\; it has the property that for every 

set S £ a>3, the set D(S) = {7 e Sf: S n 7 = S7} is stationary. Let 

A = {7 e S?: 5y is nonstationary}. 

The set A is stationary because A 2 D(0). If S is any stationary subset of SQ, then 
for every y in the stationary set D(S), y e ,4 iff 7 <£ Tr(S), and so D(S) £ A A Tr(S). 

• 
The remaining negative results use the following theorem of Shelah which proves 

the existence of sets with the "square property". 
THEOREM ([4], LEMMA 4.2). Let 1 < k < n - 2. The set S% is the union of N„_, 

stationary sets A, each having the following property. There exists a collection 
{Cy:ye A} (a "square sequence for A") such that for each y e A, Cy is a club subset 
of y of order type cok, consisting of limit ordinals of cofinality < tok, and such that for 
all yj, 72 e A and all a, if ae Cyi n C72 then Cyi n a = C72 n a. 

Square sequences can be used to construct a number of counterexamples. For 
instance, if S„, n < a, are K0 stationary subsets of SQ, then Tr( |J*= 0 S„) = ( J ^ 0 S„. 
Using a square sequence, we get: 

PROPOSITION 3.3. There is a stationary set A £ Sj and stationary subsets S;, 
i < (olt of SQ such that Tr(5,) n A = 0 for each i but Tr((JI<(0l St) 2 A. 

PROOF. Let A be a stationary subset of SI with a square sequence {Cy: 7 e A}, and 
let S = {JyeA Cy. Clearly, S £ Si is stationary, and Tr(S) 2 A. For each £ < a»1( let 

S,* = {a e S: order type(C>, n a) = £} 

(this is independent of the choice of 7 e A). For every y e S and every £, < o)u the set 
S$ n Cy has exactly one element, and so S4 does not reflect at 7. It is easy to see that 
Ki of the sets S4 are stationary. [The definition of S4 is a well-known trick.] • 
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FULL REFLECTION OF STATIONARY SETS BELOW N„ 829 

The argument used in the above proof establishes the following: 
PROPOSITION 3.4. / / a stationary set A s S"m has a square sequence and if k < m, 

then there exists a stationary S £ S£ that does not reflect at any y e A. • 
PROOF OF PROPOSITION 1.6. Let 2 < m < n, and let us assume that (b) fails, i.e. that 

every stationary set A s S"m _t reflects at some S of cofinality Km. We shall prove 
that (a) holds. For each k < m — 1 we want a stationary set S c j ™ that does not 
reflect fully in S™_ x. Let k < m - 1. 

Let A be a stationary subset of S^„ j that has a square sequence {Cy:y e A}. The 
set /I reflects at some 5 of cofinality com. Let C be a club subset of 5 of order type a>m. 
Using the isomorphism between C and wm, the sequence {Cy r\ C: y e A} becomes a 
square sequence for a stationary subset B of 5™-!. It follows that there is a 
stationary subset of S£" that does not reflect at any y e B. • 

The last counterexample also uses a square sequence. 
PROPOSITION 3.5 (GCH). There is a stationary set A c si and K4 stationary sets 

Sj ^ 5^ SMC/, f/ja( j/jg sgfS {Tr(Sj) n A: i < a>4} are stationary and pairwise almost 
disjoint. 

PROOF. Let A be a stationary subset of S\ with a square sequence (C^,: y e A), and 
let S = U y 6 / 4 C r Let {/,:;' < w4} be regressive functions on Si u Sf with the 
property that for any two fh f}, the set {a: /j(a) = _/J(a)} is nonstationary (such a 
family exists by [3]). For each ;' and each y e A, the function ft is regressive on Cy 

and so there is some n = n(i,y) < y such that {a e Cy: /;(a) < n} is stationary. Let 
7Ji}, c W l be the stationary set {o.t^C,, n a): _/j(a) < ^} and let H, y be the function 
on 7̂  v (with values < n) defined by H(£) = .£•(£ th element of Cy). For each i, the func
tion on A that to each y assigns (Tiy,Hiy) is regressive, and so constant = {ThH() 
on a stationary set. By a counting argument, (ThHi) is the same for K4 i's; so without 
loss of generality we assume that they are the same (T, H) for all i. 

Now we let, for each i, Ai={yeA: (Va e Cy) if t, = o.t(Cy n a) e T then /f(a) = 
ff (£)} and S, = {a e S: o.t.(Cy n a) e T and (V/J < a, 0 e Cy) if £ = o.t.(Cy n | ! ) e T 
then fj(fi) = H(^)}. By the definition of T and //, each At is a stationary set, and 
each S, reflects at every point of At. We claim that if y e A and S, n y is stationary, 
then y e At. So let y e A be such that 5, n 7 is stationary. Let £ e T and let a be the 
£th element of Cy; we need to show that /;(a) = H(£). As St n y is stationary, there 
exists a ft e Si n Cy greater than a. By the definition of St, _/j-(a) = H{£). Thus y e /!,-, 
and A{ = An Tr(S,). 

Finally, we show that the sets At are pairwise almost disjoint. Let C be a club 
disjoint from the set {a: _/j(a) = /7(a)}. We claim that the set C of all limit points of C 
is disjoint from At n X,-. If y 6 C then C n y is a club in y, and so is C n C r Since T 
is stationary in a>,, there is a £ € T such that the <̂ th element a of C? is in C, and 
therefore /j(ce) # j^(a); it follows that y cannot be both in A{ and in ,4,-. D 
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