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STRONG MEASURE ZERO SETS WITHOUT COHEN REALS 

MARTIN GOLDSTERN, HAIM JUDAH, AND SAHARON SHELAH1 

Abstract. If ZFC is consistent, then each of the following is consistent with ZFC + 2Xo = N2: 

(1) X E R is of strong measure zero iff |A"j < N, + there is a generalized Sierpinski set. 

(2) The union of X, many strong measure zero sets is a strong measure zero set + there is a strong 

measure zero set of size K2 + there is no Cohen real over L. 

§0. Introduction. In this paper we continue the study of the structure of strong 
measure zero sets. Strong measure zero sets have been studied from the beginning 
of this century. They were discovered by Borel. Luzin, Sierpinski, Rothberger, and 
others turned their attention to the structure of these sets and proved very inter­
esting mathematical theorems about them. Most of the constructions of strong 
measure zero sets involve Luzin sets, which have a strong connection with Cohen 
reals (see [10]). In this paper we will show that this connection is only apparent; 
namely, we will build models where there are strong measure zero sets of size c 
without adding Cohen reals over the ground model. 

Throughout this wojk we will investigate questions about strong measure zero 
sets under the assumption that c = 2Xo = K2. The reason is that CH makes many 
of the questions we investigate trivial, and there is no good technology available 
to deal with most of our problems when 2No > K2. For example, if we want to 
obtain a model of 2Xo > K2 + £f = [IR]<C (see below for definitions), we cannot 
use a finite support iteration, since the Cohen reals produced along the way will 
guarantee b = c, which makes £f — [IR]<C impossible (see 0.11). This disqualifies 
the approaches in [1], [21], [24]. We also have to be able to deal with more than 
Ki many requirements, so it is also unlikely that the method of [7] would succeed. 

0.1. DEFINITION. A set X £ u of reals has strong measure zero if for every 
sequence <£,: i < co> of positive real numbers there is a sequence <xf: i < co} of real 
numbers such that 

X £ (J (X; - St, Xt + £,). 
i<to 

We let y c ^P(R) be the ideal of strong measure zero sets. 
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0.2. REMARK, (a) If we work in m2 then X £ w2 has strong measure zero if 

(Vfc e a(o)Ug e n*<n)2 W e X)(3^n)(g(n) = x \ h(n)), 

or equivalently 

(*) (V/r e W ^ e ]1 * w 2 V x e X)(3n)(fl(n) = x \ h(n)). 

(b) To every question about strong measure zero sets in U there is a corre­
sponding question about strong measure zero sets of <°2, and for all the questions 
we consider the corresponding answers are the same. So we will work sometimes 
in R, sometimes in a2. 

0.3. DEFINITION. Assume that Jf s aco. We say that v has index JF if v = 
(v*: heJ»f} and, for all heJ^,vhisa function with domain co and Vn vh(n) e h(n)2. 
We let 

heJf keio 

(where we let [n] := {/ e <°2: r\ £ /}) . 
We say that X5 is the set "defined" by v. 
0.4. Fact. Assume Jf £ raa) is a dominating family, i.e., for all f e raa> t/iere is 

/i e J>f sucfc t/iat Vn /(n) < h(n). Then 
(1) / / v has index Jf, then X„ is a strong measure zero set. 
(2) / / X is a strong measure zero set, then there is a sequence v with index J^ such 

thatX E X*. 
0.5. DEFINITION. A set of reals X £ R JS a GLuzin (generalized Luzin) set if for 

every meager set M £ U, X n M has cardinality less than c. X is a GSierpinski set 
if for every set M £ R of Lebesgue measure 0, X n M has cardinality less than c. 

0.6. Fact, (a) / / c is regular and X is GLuzin, then X has strong measure zero. 
(b) A set of mutually independent Cohen reals over a model M is a GLuzin set. 
(c) / / c> Kt is regular and X is a GLuzin set, then X contains Cohen reals over L. 
PROOF. See [10]. 

0.7. THEOREM [10]. Con(ZF) implies Con(ZFC + there is a GLuzin set which is 
not strong measure zero). 

0.8. THEOREM [10]. Con(ZF) implies Con(ZFC + c > K, + 3 1 e [R]c, X a 
strong measure zero set + there are no GLuzin sets). 

In Theorem 0.16 we will show a stronger form of 0.8. 
0.9. DEFINITION. (1) Let Unif (Sf) be the following statement. "Every set of reals 

of size less than c is a strong measure zero set." 
(2) We say that the ideal of strong measure zero sets is c-additive, or Add(y), 

if for every K < c the union of K many strong measure zero sets is a strong mea­
sure zero set. (So Add(^) => Unif (S?).) 

0.10. REMARK. Rothberger ([18] and [17]) proved that the following are 
equivalent: 

(i) Unif(^), 
(ii) for every h: co -> co, for every F e [EL «(«)]<c, there exists / * e (0co such that 

for every f e F there are infinitely many n satisfying f(n) = f*(n). 
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STRONG MEASURE ZERO SETS 1325 

Miller [14] noted that this implies the following: 

Add(^) iff Unif (Sf) and b = c. 

(See 0.17 for definitions.) 
Rothberger proved interesting results about the existence of strong measure 

zero sets, namely, 

If b = Kl5 then there is a strong measure zero set of size Kt. (See [8].) 

In this spirit, we first prove the following result. 
0.11. THEOREM. / / Unif(^) and b = c, then there exists a strong measure zero 

set of size c. 
We start the proof by proving the following 
0.12. Fact. If b = c, then there is a set {f: i < c} of functions in aco such that for 

every g e wa>, the set 

{i<c:f<*g} 

has cardinality less than c. 
Proof of the fact. We build </J: i < c> by transfinite induction. Let mcu = 

{gf j < c}. We will ensure that for j < i, f,iL* gj. This will be sufficient. 
But this is easy to achieve, as for any i, the family {gy. j < i) is not dominating, 

so there exists a function f such that for all j < i, for finitely many n, f(n) > g}(n). 
This completes the proof of 0.12. 
0.13. PROOF OF 0.11. Using b = c, let </;: i < c> be a sequence as in 0.12. Let 

F: m03 -> [0,1] — Q be a homeomorphism. (Q is the set of rational numbers.) We 
will show that X := {F(_/j): i < c} is a strong measure zero set. 

Let <£„: n < a)} be a sequence of positive numbers. Let {r„: n e co} = Q. Then 

^1 : = Unea)(rn _ £2n' Yn + 62n) ^S a 0 ° P e 1 1 S e t - ^ ° ^ : = [0, ^ ~ ^1 lS C l ° S e d a n d , 

hence, is compact. As K £ rng(F), also F_1(/C) £ ma> is a compact set. So for all n 
the projection of F~l(K) to the nth coordinate is a compact (hence bounded) sub­
set of co, say Zg(n). So 

F-lKz{fe"cD:f<*g}. 

Let Y := X - Ux £ K. Then Y £ F(F_1(X)) £ {F(f): f <* g) is (by asssumption 
on </•: i < c» a set of size < c and, hence, has strong measure zero. So there exists 
a sequence of real numbers <x„: n < OJ> such that Y £ U2, where 

^2 : = U (Xn ~~ £2n+l> xn + e2n+l) 

and X £ t/j u l/2 • So X is indeed a strong measure zero set. 
In §3 we will build models where Add(^) holds and the continuum is bigger 

than Kt without adding Cohen reals. First, we will show in 3.7: 
0.14. THEOREM. / / ZFC is consistent, then 

ZFC + c = K2 + y = [R] S N l + there are no Cohen reals over L 

is consistent. 
Note that c = K2 and <f = [ R ] s N l implies 
(1) Add(^) (trivially). 
(2) b = b = N1(by0.11). 
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The same result was previously obtained by Corazza [5]. In his model the non­
existence of strong measure zero sets of size c is shown by proving that every set 
of size c can be mapped uniformly continuously onto the unit interval (which is 
impossible for a strong measure zero set). Thus, the question arises whether it is 
possible to get a model of £f = [R]< c + c = K2 + "not all sets of size c can be 
continuously mapped onto [0,1]". 

By adding random reals to our construction, we answer this question in the fol­
lowing stronger theorem. 

0.15. THEOREM. / / ZFC is consistent, then 

ZFC + c = N2 + Sf = [R] - N l + there are no Cohen reals over L 
+ there is a GSierpinski set 

is consistent. (See 0.5.) 
By a remark of Miller [12, §2] a GSierpinski set cannot be mapped continuously 

onto [0,1] (not even with a Borel function). 
What is the strength of the hypothesis Add(y)? Carlson [4] showed that Add(^) 

is implied by Add(yT) (= additivity of the Lebesgue null sets), and Judah and 
Shelah [9] showed it is not implied by Add(Jf). For the converse, Pawlikowski 
[15] showed that Add(^) does not imply kdd(.J(\ He uses a finite support itera­
tion, so he adds many Cohen reals and in the final model Co\(J?) holds (i.e., R 
cannot be written as the union of less than c many meager sets). We will improve 
this result in the next theorem. 

0.16. THEOREM. If ZFC is consistent, then 

ZFC + c = b = N 2 > b + Add(^) + no real is Cohen over L 

is consistent. 
(Note that by 0.11, b = c + Add(^) implies that there is a strong measure zero 

set of size c.) 
0.17. Notation. We use standard set-theoretical notation. We identify natural 

numbers n with their set of predecessors, n = {0,...,n — 1}. AB is the set of func­
tions from A into B, A<0> := [jn<(0"A. \A\ denotes the cardinality of a set A. ty(A) 
is the power set of a set A, A <= B means A £ B & A # B. A — B is the set-theoretic 
difference of A and B. [A]* := {X £= A: \X\ = K}. [ X ] < K and \_AYK are defined 
similarly. (We write A := B or B =: A to mean: the expression B defines the term 
(or constant) A) 

Ord is the set of ordinals. cf(a) is the cofinality of an ordinal a. 

In particular, S\ is the set of all ordinals <a>2 of uncountable cofinality. 
R is the set of real numbers, c = |R| is the size of the continuum. For f,g e^co 

we let / < g iff for all n f(n) < g(n), and f <* g if for some n0 e co, Vn > n0 

f(n) < g(n). The "bounding number" b and the "dominating number" b are de­
fined as 

b := m i n { | ^ | : X £ »fflj Vgr e aw 3h e Jt -i(h <* g)}, 

b := min{| Jf|: Jf £ mw, Vg e Mra 3h e JT g < h) 

= min{|Jf|: J f c ^ V g f e mco3/jEJfgK* h}. 
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STRONG MEASURE ZERO SETS 1327 

(It is easy to see that co1 < b < b < c.) 
We call a set Jf £ ma> dominating if V# e "co 3/i e Jf g < h. M is the ideal of 

meager subsets of R (or of a2), and JV is the ideal of Lebesgue measure 0 sets, £f 
is the ideal of strong measure zero sets. For any ideal f <= ^J(R), Add(J') abbre­
viates the statement: "The union of less than c many sets in f is in #" Cov(,/) 
means that the reals cannot be covered by less than c many sets in f. 

If / is a function, dom(/) is the domain of/, and rng(/) is the range of/. For 
A £ dom(/), f\Ais the restriction of/ to A. For n e 2<ro, [»/] := {/ e ra2: /; £ / } . 

0.18. More notation. If Q is a forcing notion, Ge is the canonical name for the 
generic filter on Q. We interpret p < q as: q is stronger (or "has more information") 
than p. (So p < q => q 11- p e GQ.) 

When we deal with a (countable support) iteration (Pa,,Qa: a < e> (where Pa is 
the intermediate stage reached in the ath stage and Qx is a Pa name for the next 
iteration step), then we write Ga for the canonical name of the generic filter on Px 

and G(a) for the generic filter on Qa. If there is a natural way to associate a 
"generic" real to the generic filter on Qx, we write gx for the real given by G(a). We 
write lha for the forcing relation of Pt. If fi < a, Gp always stands for GxnPfi. 
V = V0 is the ground model and Va = F[G„]. PB is the countable support limit of 
<Pa: a < £>. 0 a is the weakest condition of Px, and 0a lh-„ tp is usually abbrevi­
ated to lr-a (p. 

0.19. £uen more notation. The following notation is used when we deal with 
trees of finite sequences. 

Tovne V<l0,ie V, n~i is the function n u {<M,i>} e ^<M-
p s (u<m is a tree if p ^ 0 , and for all >/ E p, all k < \n\, n\ ke p. Elements of 

a tree are often called "nodes". We call \n\ the "length" of n. We reserve the word 
"height" for the notion defined in 2.2. 

For p £ a><(0, n e p, we let succp(/y) := {i: n"~i e p} (= the set of immediate suc­
cessors of rf). 

If p is a tree, n e p, let p w := {v e p: >? £ v or v £ >/}. 
If p £ a»<ra is a tree, b £ p is called a branch, if fe is a maximal subset of p that 

is linearly ordered by £ . 
Clearly, if Vrj e p succp(?7) ^ 0 , then a subset o £ p is a branch iff o is of the 

form b = {f \ n: n e a)} for some / e m(o. 
We let stem(p) be the least element of p which has more than one successor. 
Acknowledgement. We thank the referee for his or her careful work. 

§1. A few well-known facts. We collect a few more or less well-known facts 
about forcing for later reference. 

1.1. DEFINITION. An ultrafilter °U on <a is called a P-point, if for any sequence 
(A„: n E co> of sets in % there is a set A in °ll that is almost contained in every An 

(i.e., Vn A — A„ is finite). 
1.2. DEFINITION. For any ultrafilter % on co, we define the P-point game G(< )̂ 

as follows: 
There are two players, "IN" and "NOTIN". The game consists of co many 
moves. 
In the nth move, player NOTIN picks a set An e °U, and player IN picks a 
finite set a„ £ An. 
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Player IN wins if after co many moves, \JnaneHl. 
We write a play (or run) of G(Hl) as 

(A0;a0-+Al;aiL-*A2;...y. 

It is well known that an ultrafilter Hi is a P-point iff player NOTIN does not 
have a winning strategy in the P-point game. For the sake of completeness, we give 
a proof of the nontrivial implication "=>" (which is all we will need later). 

Let Hi be a P-point, and let a be a strategy for player NOTIN. We will con­
struct a run of the game in which player NOTIN followed a, but IN won. Let A0 

be the first move according to a. For each n, let stn be the set of all responses of 
player NOTIN according to a in an initial segment of a play of length < n in which 
player IN has played only subsets of n. 

^n:= {Ak:k< n, (A0; a0 -> A^;...; ak^1 -> Ak} is an 
initial segment of a play in which NOTIN 

obeyed a and a0,...,ak-l £ n). 

Note that si0 = {A0}, and for all n, $4n is a finite subset of Hi. As Hi is a P-point, 
there is a set X e Hi such that for all A e \Jn srfn, X — A is finite. Let X ^ A0un0, 
and for k > 0 let nt satisfy 

n4 >/!*_! and V/l e stf„kl X £ ,4 u nt. 

Either (Jt6 ra[n2) [ ,n2,+1) e ^ , or (J t e r a [n2, + 1 , « 2 k + 2) e ^ . Without loss of general­

ity we assume (J*eratn2k'w2/c + i) e <^- Now define a play (A0; a0->-A1;a1->-A2;...) 

of the game G(Hl) by induction as follows. 
A0 is given. 
Given 4,-, let a,- := /4,- n [n2j-, n 2 j + J and let /L. +1 be <r's response to a,-. 
Then as a0,..., a^ x £ M2/, We have A} e =si/„2j, s o X s A } U n2j- f°r all i- There­

fore, for all j we have 

X n [n2], n2j+1) £ (X, u n2j.) n [n2j-, n2j-+ x) = ^ n [n2j-, n2j+1) = a,-. 

S o U ^ ^ ^ X n U j e J ^ . ^ + i J e * -
Thus, player IN wins the play (A0; a0 -»• At; at -» /42;...> in which player 

NOTIN obeyed a. 
1.3. DEFINITION. We say that a forcing notion Q preserves P-points, if for 

every P-point ultrafilter Hi on co, lhQ "<# generates an ultrafilter", i.e., lhQ "Vx 6 
^P(co)3u e t f i i c x o r u c o - x)". 

[13] defined the following forcing notion. 
1.4. DEFINITION. "Rational perfect set forcing", RP, is defined as the set of trees 

p £ <a<0> satisfying 
(1) for all n e p, |sucCp(v)| e {1,K0} (see 0.19), 
(2) for all n e p there is v e p with n £ v and |succp(^)| = K0. 

We let p > g iff p £ 4. 
Then the following hold: 
1.5. LEMMA. (1) RP preserves P-points [13, 4.1]. 
(2) RP adds an unbounded function [13, §2]. 
(3) RP is proper. (This is implicit in [13]. See also 2.16.) 
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The next lemma is easy (see, e.g., [11, Chapter VII, 6.8, 6.9, and Exercise H2]. 
1.6. Fact. If Q is a forcing notion satisfying the H2-cc {chain condition) and not 

collapsing X1( then 
(1) / / II—Q c: co2 -* oi\, then there is a function c: oo2 -* OJ2 such that lh-Q Va < a>2: 

c(a) < c(a). 
~ ( 2 ) l h Q ^ = N2. 

(3) For every stationary S £= X2, \\~Q "S is stationary on X2". 
The following fact is from [19, V 4.4]. 
1.7. Fact. Assume <[PX,QX: a. < co2> is a countable support iteration of proper 

forcing notions Qa. Then for every 5 < co2 of cofinality > co, \r-s
aa) n Vs = "'co n 

U<z<* K> or i n otner words: "no new reals appear in limit stages of cofinality > co". 
As a consequence \\-012 "If X £ "co, \X\ < Kl5 then there is d < oo2 such that 

X e Vt", provided that Pon satisfies the tt2-cc. 
We also recall the following facts about iterations of proper forcing notions. 
1.8. LEMMA. Assume CH, and let <P0,,2„: a < a>2> be a countable support itera­

tion such that for all a < a>2, II—x "Qa is a proper forcing notion of size < c." 
Then 
(1) Va < co2: lr-« c = Kj (see [19, III 4.1]). 
(2) lhm2 c < X2. (This follows from 1.7 and (1).) 
(3) For all a < a>2, Pa is proper [19, III 3.2] and satisfies the K2-cc. (See [19, 

III 4.1].) 
(4) 1 ^ ^ = * , . (See [19, III 1.6].) 
In [3, 4.1] the following is proved. 
1.9. LEMMA. Assume <Pa, Qx: a < co2} is as in 1.8 and for all a < a>2, 

I I — a "Qa preserves P-points". 

Then for all a < co2, Px preserves P-points. 
1.10. DEFINITION. We say that a forcing notion Q is mco-bounding, if the set of 

"old" functions is a dominating family in the generic extension by Q, or equivalently, 

\\-Q V/ e "to 3g e^oonVVn f(n) < g(n). 

[19, V 4.3] proves 
1.11. LEMMA. Assume </Jt,Qa: a < a>2> is as in 1.8 and for all a < a>2, 

lr-a "Qx is '"co-bounding and co-proper". 

Then for all a < co2, Pa is
 aw-bounding. (We may even replace co-proper by "proper"; 

see [6], [19].) 
The following is trivial to check. 
1.12. Fact. Assume Q is a forcing notion that preserves P-points or is '"co-

bounding. Then 

\hQ "There are no Cohen reals over V". 

1.13. DEFINITION. A forcing notion P is strongly "co-bounding, if there is a se­
quence < <„: n e co} of binary reflexive relations on P such that for all n 6 co 

(1) p <„ q => p < q. 
(2) p<„+lq^>p<„q. 
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(3) If p0 < 0 px <j p2 < 3 •••, then there is a q such that Vnp„+1 <„ q. 
(4) If p Ih "a is an ordinal", and n 6 co, then there exists q>„p and a finite set 

A £ Ord such that q Ih a € A. 
1.14. DEFINITION. (1) If <Pa,ga: a < e> is an iteration of strongly "co-bounding 

forcing notions, F £ e finite, n e co, p ,qe PE, we say that p <Fn q iff p < q and 
Va e F q \ a Ih p(a) <„ q(a). 

(2) A sequence <<p„,F„>: n e co> is called a fusion sequence if <F„: n e co> is an 
increasing family of finite subsets of e, <p„: n e co> is an increasing family of condi­
tions in P, Vnp„ <fn „ pn+l and U„dom(p„) £ [jnFn. 

Note that 1.13 is not literally a strengthening of Baumgartner's "Axiom A" 
(see [2]), as we do not require that the relations <„ are transitive, and in (2) we only 
require pn + 1 <„q rather than pn + 1 <n+l q. (This makes it possible also for random 
forcing to satisfy our demands.) Nevertheless, the same proof as in [2] shows the 
following fact. 

1.15. Fact. (1) / / the sequence <Xp„,F„>: n e co> is a fusion sequence, then there 
exists a condition qe Pe such that for all n e co, pn+1 >Fni„ q. 

(2) If a. is a Pt-name of an ordinal, n e co, F £ Pe finite, then for all p there exists 
a condition q >Fn p and a finite set A of ordinals such that q Ih a e A. 

(3) If X is a Pe-name of a countable set of ordinals, n e co, F £ Pc finite, then for 
all p there exists a condition q>Fi„p and a countable set A of ordinals such that 
q\\~X <=A. 

The next fact is also well known. 
1.16. Fact. Let B be the random real forcing. Then B is strongly "co-bounding. 
PROOF. Note that though random forcing is ccc and hence trivially satisfies 

axiom A, witnessed by p <„ q <-+ p = q, these relations clearly do not work to show 
strong ro co-bounding. Rather, we define <„ as follows. 

Conditions in B are Borel subsets of [0,1] of positive measure, p < q iff p2q . 
We let p <„ q iff p < q and p.(p — q) < 10""~ V(p)> where \i is the Lebesgue 
measure. Then if p0 > 0 pt >l •••, letting q := P)„p„we have for all n, all k > n, 
»(pk-Pk+1)<M-k-1V(pk)<W-k-1H(Pn),soli(pn-q)<lO-"-l + \0-"-2+--< 
2 * 10""" V(P«)- In particular, t̂(q) > 0.8 * n(p0), so q is a condition and q >n_ t p„ 
for all n > 0. 

Given a name a, an integer n, and a condition p such that p Ih "a is an ordinal", 
let A be the set of all ordinals j3 such that [a = j 3 ]np has positive measure ([<p] 
is the boolean value of the statement cp, i.e., the weakest condition forcing q>). 
Since Z/36^^([2 = /0 n P) = A*(/>) there is a finite subset F £ A such that letting 
q:= pn (J^^pla = /?] we have p.(q) > (1 — 10""" ̂ //(p). So q >n p and q Ih a e F. 

We will also need the following lemma from [23, §5, Theorem 9]: 
1.17. LEMMA. Every stationary S £ K2 can be written as a union o/K2 many dis­

joint stationary sets. 
Finally, we will need the following easy fact (which is true for any forcing no­

tion Q). 

1.18. Fact. If f is a Q-name for a function from co to co, lhQ f $V, and r0,r± 

are any two conditions in Q, then there are I 6 co, j0 # j t , r'0 > r0, r\ > rx such that 

r'0Vrf(l) = h,r\\\-f(l)=h-
Proof. There are a function f0 and a sequence r0 = r° < rl < • • • of conditions 

in Q such that for all n, r" Ih / \ n = f0 \ n. Since ry Ih / £ V, r, Ih 31 f (I) * f0(l). 
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STRONG MEASURE ZERO SETS 1331 

There is a condition r\ > rt such that for some / € co and some j l + f0(l), r\ \\-
/(/) = h- Let j0 := Ml), and let r'0 := r' + 1. 

§2. H-Perfect trees. In this section we describe a forcing notion PTH that we 
will use in an iteration in the next section. We will prove the following properties 
of PTH: 

(a) PTH is proper and "co-bounding. 
(b) PTH preserves P-points. 
(c) PTH does not "increase" strong measure zero sets defined in the ground 

model. 
(d) PTH makes the reals of the ground model (and hence, by (c), the union of all 

strong measure zero sets defined in the ground model) a strong measure zero set. 
2.1. DEFINITION. For each function H with domain co satisfying Vn e co 1 < 

\H(n)\ < co, we define the forcing PTH, the set of //-perfect trees, to be the set of all 
p satisfying 

(A) p £ co<ra is a tree. 
(B) V»j e pV/ e domfa): n(l) e H(l). 
(C) V«ep:|succp(n)|e{l, |tf(|»|)|}. 
(D) V>/ e p3v e p: n £ v, |succp(v)| = |H(|v|)|. 
2.2. DEFINITION. (1) For p e PTH, we let the set of "splitting nodes" of p be 

split(p) := {n e p: |succp(n)| > 1}. 

(2) The height of a node n e p e PTH is the number of splitting nodes strictly 
below r\: 

htp(f/):= |{v<= J/: vesplit(p)}|. 

(Note that htp(»j) < \n\.) 
(3) For p e PTH, fe e to, we let the fcth splitting level of p be the set of splitting 

nodes of height k. 

split„(p) := [t] e split(p): htp(rj) = fe}. 

(Note that split0(p) = {stem(p)}.) 
(4) For u £ co, we let 

split"(p) := U splitt(p). 

2.3. REMARKS, (i) Since H(n) is finite, (3) just means that either r\ has a unique 
successor fpi, o r succp(>j) = H(|J; |).) 

(ii) Letting H'(n) = |H(n)|, clearly PTH is isomorphic to PTH, (and the obvious 
isomorphism respects the functions tj \—»• htp(>7), <p,fe> H-* splitt(p), etc.). 

2.4. REMARK. If we let H(n) = m for all n, then 2.1(A)-(D) define RP, rational 
perfect set forcing. The definitions in 2.2 make sense also for this forcing. Since we 
will not use the fact that H(n) is finite before 2.12, 2.5-2.11 will be true also for RP. 

2.5. Fact. Let p,qe PTH, n e co, r\, v e co<£0. Then 
(1) If n eve p, then htp(f?) < htp(v). //, moreover, n e split(p), then htp(n) < htp(v). 
(2) If b ^ pis a branch, then b n split„(p) # 0. 
(3) Ifp 2 q, then for all n,qr\ split„(p) ^ 0. 
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(4) If n e p and htp(w) < n, then 3v e p, n £ v, and v e split„(p). 
(5) / / n0 # n^ are elements of sp\it„(p), then n0 £ n^ and ̂  £ n0. 
Proof. (1) is immediate from the definition of ht. 
For (2), it is enough to see that b n split(p) is infinite. (Then ordering b by inclu­

sion, the nth element of b n split(p) will be in split„_ i(p)-) 
So assume that b n split(p) is finite. Recall that each neb — split(p) has a unique 

successor in p. By 2.1(C), b cannot have a last element, so b is infinite. Hence, there 
is n0 e b such that 

Vv e b: n0 £ v => |succp(v)| = 1. 

A trivial induction on |v| shows that this implies 

Vv e p: n0 £ v => v e b. 

Hence, 

Vv e p: ))„ c v => |succp(v)| = 1. 

This contradicts 2.1(D). 
To prove (3), let b be any branch of q. b is also a branch of p, so (2) shows that 

q n split„(p) 2 b n split„(p) # 0. 
To prove (4) let b be a branch of p containing n. By (2) there is v 6 b n split„(p). 

If v <= n, then htp(>;) > htp(v) = n, which is impossible. Hence, I J £ V . 

(5) follows easily from (1). 
2.6. DEFINITION. For p,qe PTH, n e co, we let 

(1) p < <? ("fl is stronger than p") iff a £ p. 
(2) p <„ <j iff p < g and spfit„(p) £ q. (So also split^p) £ o for all k < n.) 
2.7. Fact. If p <„ q, n > 0, then stem(p) = stem(a). 
2.8. Fact. Assume p,qe PTH, ne u>,p <„q. 
(0) For all n e q, ht,fo) < htpfa). 
(1) For a// fc < n, split4(p) £ g. 
(2) For all k<n, splitt(p) = splitk(tf). 
(3) If p^nq <„ r, then p <„ r. 
Proof. (0) is clear. 
(1) Let n e splitk(p) for some k < n; then by 2.5(4) there is a v, n £ v £ split„(p) £ q, 

son e q. 
(2) Let n e splitfc(p). Each v e succp(n) has an extension v' 2 v, v' e split„(p) £ q. 

So succp(f?) £ q, and hence n e split(g). Clearly, htq(^/) < htp(n) = k. Using (1) induc­
tively, we also get ht,(w) > k. 

(3) Let n e splitn(p). So n e <j, ht,(w) < htp(n) = n. By 2.5(4), there is v e split„(<j), 
n £ v. Also v e r, n e r. 

2.9. Definition and Fact. If p0 <i px < 2 p2 <3 • • • are conditions in PTH, then we 
call the sequence <p„: n < <w> a "fusion sequence". If (pn:n<co} is a fusion sequence, 
then 

(2) Foralln,pn<n + lpx. 
2.10. Fact. (l)Ifnepe PTH, then pM e PTH and p < pM. (See 0.19.) 
(2) If p < q are conditions in PTH, n e q, then pM < qM. 
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2.11. Fact. If for all n e splitn(p), qn > p w is a condition in PTH, then 

(!) <l:=U,espm„(p)%isinPTH> 
(2) q >„ P, 
(3) forallnesp\itn(p),ql"] = q,. 
2.12. Fact. If ne co,p e PTH, then split„(p) is finite. 
Proof. This is the first time that we use the fact that each H(n) is a finite set. 

Assume that the conclusion is not true, so for some n and p, split„(p) is infinite. 
Then also 

T:={n\k:nesp\it„{p),k<\ri\}cp 

is infinite. As T is a finitely splitting tree, there has to be an infinite branch b £ T. 
By 2.5(2), there is v e b £ T, htp(v) > n. This is a contradiction to 2.5(1). 

2.13. Fact. PTH is strongly wa>-bounding, i.e., if a is a PTH-name for an ordinal, 
p e PTH, neco, then there exists a finite set A of ordinals and a condition q e PTH, 
p <„ q, and q II- a e A. 

Proof. Let C := split„(p). C is finite. For each node neC, let qn > pM be a con­
dition such that for some ordinal a,, qn lh a = an. Now let 

q •= U % a n d A '•= K : n 6 cl-
i jeC 

Since any extension of q must be compatible with some qM (for some n e C), 
q lh a e A. 

2.14. COROLLARY. PTH is proper (and indeed satisfies axiom A, so is a-proper for 
any a < a^) and "'co-bounding. Moreover, if neco, p e PTH, T a name for a set of 
ordinals, then there exists a condition q>np such that 

(1) if p II- "T is finite", then there is a finite set A such that q lh "T S A"; 
(2) if p lh "T is countable", then there is a countable set A such that q lh "T S A". 
PROOF. Use~2.13 and 2.9. 
Similarly to 2.13 we can show 
2.15. Fact. Assume that a is a RP-name for an ordinal, p e RP, h e a>. Then there 

exists a countable set A of ordinals and a condition q e PTH, p <„ q, and q lh a e A. 
Proof. Same as the proof of 2.13, except that now the set C, and hence also the 

set A, may be countable. 
2.16. Fact. RP is proper (and satisfies axiom A). 
Proof By 2.15 and 2.9. 
2.17. DEFINITION. Let G £ PTH be a F-generic filter. Then we let g be the PTH-

name defined by 

«=-u(A')-
We may write gH or gPT[1 for this name g. If PTH is the ath iterand Qx in an iteration, 
we write gJov~gH. 

2.18. Fact. 0PTH forces that 
(0) g is a function with domain a>. 

(1) \/ng(n)eH(n). 
(2) For all feV,if Vnf(n) e H(n), then 3°°n/(n) = g(n). 
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Furthermore, for all p e PTH, 
(3) p lh "{g \ n: neco} is a branch through p". 
(4) p lh Vfclngf \ n € splitt(p). 
Proof. (0) and (2) are straightforward density arguments. (1) and (3) follow im­

mediately from the definition of g. (4) follows from (3) and 2.5(2), applied in VPT". 

2.19. REMARK. Since Unif (5^) is equivalent to 

for every H: co ->co, for every F e \_Y\nH(rij]<c, there exists / * e "co such 
that for every f e F there are infinitely many n satisfying f(n) = f*(n), 

2.18(2) shows that if we have c = K2 and Martin's Axiom for the forcing notions 
PTH (for all H), then we also have Unif {Sf\ (In fact the "easy" implication "<=" of 
this equivalence is sufficient.) This can be achieved by a countable support iteration 
of length K2 of forcing notions PTH, with the usual bookkeeping argument (as 
in [22]). 

We will show a stronger result in 3.3. If P := PW2 is the limit of a countable sup­
port iteration <i^,6a: a < co2), where "many" Qa are of the form PTHa for some 
Hx, then some bookkeeping argument can ensure that Vp \= Add(^). 

Since PTH is ̂ "co-bounding, it does not add Cohen reals. The same is true for a 
countable support iteration of forcings of the form PTH. However, in 3.8 we will 
have to consider a forcing iteration in which some forcing notions are of the form 
PTH, but others do add an unbounded real. To establish that even these iterations 
do not add Cohen reals, we will need the fact that the forcing notion PTH preserves 
many ultrafilters. 

2.20. DEFINITION. Let Q be a forcing notion, x a g-name, p e Q, p lh x £ co. We 
say that x* £ co is an interpretation of x (above p), if for all n there is a condition 
p„> p such that p„ lh x n n = x* n n. 

2.21. Fact. Assume Q, p, x are as in 2.20. Then 
(1) there exists x* £ co such that x* is an interpretation of x above p; 
(2) if p < p' and x* is an interpretation of x above p', then x* is an interpretation 

of x above p. 
2.22. LEMMA. PTH preserves P-points, i.e., if °U e V is a P-point ultrafilter on co, 

then 

lhP7-H "<% generates an ultrafilter". 

PROOF. Assume that the conclusion is false. Then there is a PTH-name T for a 
subset of co and a condition p0 such that 

Po \\~PTHVX e ^ : l x n i l = K00 ~ x)nl\ = ^o-

For each p e PTH we choose a set t(p) such that 
• i(p) is an interpretation of T above p. 
• If there is an interpretation of T above p which is an element of %, then 

i(p) e W. 
Note that if r(p) e % and p > p', then also i(p') e % since (by 2.21(2)) we could 
have chosen r(p') := t(p). Hence, either for all p z(p) e <%, or for some px > p0, all 
p > p l 5 t(p) ^ ^ . In the second case we let a be a name for the complement of T, 
and let a(p) = co — t(p). Then a{p) e °U for all p> Pi- Also a(p) is an interpretation 
of a above p. So wlog for some px e PTH, pY > p0 we have: for all p > p l 5 r(p) e ^ . 
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We will show that there is a condition q > px and a set a e ^U such that q lh a £ T. 
Recall that as ^ is a P-point, player NOTIN does not have a winning strategy in 
the P-point game for °U (see 1.2). We now define a strategy for player NOTIN. On 
the side, player NOTIN will construct a fusion sequence (p„:n<co} and a se­
quence <m„: n < co} of natural numbers. 

p0 is given. Given pn, we let 

An = n *(PM). 
n e s p l i t n + i(pM) 

This set is in °U. Player IN responds with a finite set a„ £ A„. Let m„ := 1 + max(a„). 
For each ?? e split„+1(p„) there is a condition q„ > p^1 forcing t n m , = t f p ^ n m , , 
so in particular 

? , H - a „ c t n m , . 

^e tPn+l = Ui,esplitn + ,(p„)^i,-

Then 

(*) Pn+i>»+iPn and p „ + 1 l h a „ £ T . 

This is a well-defined strategy for player NOTIN. As it is not a winning strategy, 
there is a play in which IN wins. During this play, we have constructed a fusion se­
quence <pn: n < co). Letting a := [jna„,q '•= f]„ P„, we have that a e°ll,p0<q e PTH 

(by 2.9), and q lh a £ T (by (*)), a contradiction to our assumption. 
The following facts will be needed for the proof that if we iterate forcing notions 

PTH with carefully chosen functions H, then we will get a model where the ideal of 
strong measure zero sets is c-additive. 

2.23. Fact and Definition. Assume p e PTH, u £ co is infinite, v = co — u. Then 
we can define a stronger condition q by "trimming" p at each node in split"(p). (See 
2.2(4).) Formally, let i = <i„: r\ e split"(p)> be a sequence satisfying iv e H(\ri\) for all 
n e split"(p). 

Then 
Px := {rj e p: Vn e dom(n): If n \ ne split"(p), then n{n) = 7„r„} 

is a condition in PTH. 
Proof. Let q := p?. q satisfies (A)-(B) of Definition 2.1 of PTH. The definition 

of px immediately implies the following: 
(1) if n £ split"(p) n q, then succ^(^) = {i,}; 
(2) if n e split"(p) n q, then %uccq(t]) = succp(r]) = H{\n\); 
(3) if n e q — split(p), then n e p — split(p), so succq(r]) = succp(>;) is a singleton. 
Note that split(p) = splitu(p)u split "(p), so (l)-(3) cover all possible cases for 

n e q. So q also satisfies 2.1(C). From (l)-(3) we can also conclude 
(4) for all n e q: succq(n) / 0 . 
To show that q e PTH, we still have to check condition 2.1(D). So let n e q. Since 

u is infinite, there is k e u, k > \n\. By (4), there is an infinite branch b £ q containing 
n. By 2.5(2) there is v £ b, htp(v) = k. Then n £ v and v E split(q). 

2.24. Fact. pr lh "n £ g & n e split"(p) => g{\n\) = i," (w/iere # is a name for the 
generic branch defined in 2.18). 

Proof. pr lh g £ pr and succPifo) = {i„}. 
2.25. LEMMA. / / Q is a strongly "co-bounding forcing notion, then Q does not in­

crease strong measure zero sets defined in the ground model, i.e., whenever #P is a 
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dominating family in V and v = {v*: h e J f ) e V has index JV, then 

It—e 0 U [v*(fc)] E V. 
heJtf kern 

We will prove a stronger lemma (about iterations of strongly "ra-bounding 
forcing notions) in the next section. We do not know if in this lemma "strongly 
ra(U-bounding" can be replaced by "proper and racu-bounding". 

Finally, we show how the generic real introduced by PTH can be used to cover 
old strong measure zero sets. 

2.26. Fact. Assume h*:a>-+a>- {0}, H*(n) = h*(n)2. Let Jt^^cobea dominat­
ing family, and let v have index Zf. Let g be the name of the generic function added 
byPTHt. 

Then 

\hPTH.3heJf{J[_vh(k)lc; U[g(„)]. 
fceci> neco 

Proof. Assume not, then there is a condition p such that 

(*) p Ih Vfc e j f U [v*(k)] £ U [g(«)]-
fcew neco 

Let he Jit? be a function such that V/c e a>V?y e split2fc+i(p) /i*(l»7l) < M )̂- This func­
tion h will be a witness contradicting (*). 

For f/esplit2t + 1(p) let i„ e succp(f/) = H*(M) = **(l,l)2 be defined by i„ := 
v\k) \ h*(\ti\). (Note that vh(k)em2 and fc(fc)> fc*(M).) Let i := <i„: >/espht2t+1(p), 
/c e co>, and let tj := p?. Then t? Ih VnV7c(gi f n e split2t + 1(p) => g(n) = i9r„ £ vh(k)) 
by 2.24. Since also q Ih VfeBrcg f w e split2fc + 1(p), we get q Ih Vfc3n[vk(fc)] s [#(«)]. 
This contradicts (*). 

§3. Two models of Add(5^). In this section we will construct two models of 
c = K2 where the ideal of strong measure zero sets is additive, i.e., closed under 
unions of less than c many sets. Both models will be obtained by a countable sup­
port iteration of length co2, starting from a ground model satisfying CH. 

Our first task is to characterize strong measure zero sets in iterated extensions 
and to show that if we force sufficiently often with PTH, we get additivity of strong 
measure zero sets. 

3.1. LEMMA. Let (PX,QX: tx < co2} be an iteration of proper forcing notions as in 
1.8, p e Pa>2, A a P^-name. If p Ih "A is a strong measure zero set", then there is a 
closed unbounded set C £ co2 and a sequence (ys: S e C n Sf > such that each vs is 
a Pd-name, and for all 5 e C nS\, 

P "~ ra 2 <̂5 nas i^ex ",03nVd and i c Q (J [v*(n)]. 

PROOF. (Recall that Sf := {3 < co2: cf(8) = coj.) Let c be a Pm2-name for a func­
tion from co2 to co2 such that for all a < w2, 

lhro2 Wi e mco n V^v" e Vc(a): Vnvh{n) e m2 &A^ (J[v"(n)]. 
n 

(Why does c exist? Working in V[Gm^\, note that there are only Xt many functions 
in ""(o n Va, and for each such h there is a vh as required in \Jp<0)2 Vf, by 1.7.) 
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As Pa2 satisfies the N2-cc, by 1.6(1) we can find a function ceV such that 
H-ra2 Vac(a) < c(a). Let 

C := {8: Va < 8 c(a) < 8}. 

The set C is closed unbounded. In V we can assign to each P^-name h (for x < 3 e C) 
a Prname v- such that 

Ko2 Vwv*(n) e *(n)2 & ^ £ U[v*(n)]. 

Now in K[G^] we can choose for each h e raa> an a < 8 and a Pa-name h such that 
/i = h[Gd~\. Then we let v* := (v - ) ! ^ ] . Thus, we found a sequence v = (v*1: li e ^ ) e 
la, as required. 

3.2. LEMMA. Assume (Pz,Qx: a < a>2) is a countable support iteration of proper 
forcing notions, where for each ordinal 8 e Sf II—̂  <2̂  = PTHj /or some Pd-name Hs. 
We will write gs for the generic function added by Qd. 

Assume Jf is a name for a dominating family ( £ w(a> — {0})) in Vmi and 

lh„2 "For allheJf, Sh := {SeS2
i:Qs = PT/6} is stationary (where H(n) = m2)". 

Let Ga2 £ Pa2 be V-generic; then in K[Gm2] a set A £ U is a strong measure zero 
set iff there is a closed unbounded set C £ co2 such that for every 8 eC nSf, 

PROOF. First we prove the easy direction. Assume that for some club C, for all 
8 e C n S\, A £ {Jnigd(nJ]. Then for every heVa2n

 m{co - {0}) there is a 8 = 8h e 
CnSh^ Si. So Qdh = {PTH)y"-, where H(n) = m2. Since gdh(n) e m2 and A £ 
U [0«h(")] f°r arbitrary /i, ,4 is a strong measure zero set. 

Now for the reverse implication. In Va)2 let A be a strong measure zero set. By 
the previous lemma, there is a club set C £ co2 and a sequence (ys: 8 e CnSj} 
such that each v e 1̂  is a sequence with index "conl^ and I^2 \\-A £ X?(J. By 2.26 
we have for all 8 e C n Sf that 

K a + 1 |=3AeK,U[vS(n)]sU[^(»)] -

So fix li0 e Ka witnessing this. This inclusion is absolute, so also 

^ N U [ v » ] £ U [ 0 M I -
Thus, 

Va2 N X £ *,„ £ U l > » ] ^ U [»«(")]. 
n n 

and we are done. 
3.3. COROLLARY. Assume Pm2 is as above. Then ll-> A d d ^ ) . 
PROOF. Let (At i i e a j b e a family of strong measure zero sets in V012. To each 

i we can associate a closed unbounded set C; as in 3.2. Let C := f\ C;, then also 
C is closed unbounded and for all 8 e C n Sj , IJiero i -4; £ UneoC^Mj- Again by 
3.2, [jieo)i Aj is a strong measure zero set. 

Now we will show that if we iterate strongly rao>bounding forcing notions 
then we do not increase strong measure zero sets which were defined in the ground 
model. 
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3.4. LEMMA. Assume Pa2 is an iteration of strongly aco-bounding forcing notions. 
Let f be a Pai-name for a function, p a condition, ne to, F a finite subset of OJ2, 
p\\- f $ V. Then there exists a natural number k such that 

(*) for ally] ek2 there is a condition q > Fn p, q lh / £ [rf\. 

We will write kpFn or kfpFn for the least such k. Note that for any k > kpFn, (*) 
will also hold. 

PROOF. Assume that this is false. So for some / , n0, p0, F0, 

(*) V/c e co 3nk e
 k2: -i(3q >Fo,„0 p0:q\\-fi [%]). 

Let 
T:={nk\l:l<k,ke co}. 

T is a finitely branching tree ( s ra2) of infinite height, so it must have an infinite 
branch. Let / * e m2 be such that {/* \ j : j e co} c r . 

Since f*eV but p0\\- f 4 V, there exists a name m of a natural number such 
that p0 lh / * \ m =£f \ m. By 1.15(2) we can find q >Fo,„0 p0 such that for some 
m* e co, q \\- m < m*. 

Claim. For some k,q\\-f$ \_nk~\. This will contradict (*). 
Proof of the claim. We have q lh / \ m* # / * \ m*. Since f*\m*e T, there is 

a k > m* such that / * \ m* = nk \ m*. Hence, q lh / \ m* =£ f* \ m* = nk \ m*, so 
1lh / $ Ilk \m*]- But t n e n a l s o <Z ^~ / £ ['/*]• 

This finishes the proof of the claim and hence of the lemma. 
3.5. LEMMA. Assume that Pm2 is an iteration of strongly "'co-bounding forcing 

notions, J? is a dominating family in V, and v = (v*: h e 3fC> has index .if. Then 

ih- n U lAm ^ v. 
heJC keia 

PROOF. Assume that for some condition p and some PM2-name / , 

plhftV&fe H {Jlv\n)l 

We will define a tree of conditions such that along every branch we have a fusion 
sequence. Specifically, we will define an infinite sequence </„:neco> of natural 
numbers, an increasing sequence <F„: ne co} of finite subsets of co2, and for each 
n a finite family 

{pirio,...,^.,):^^10!,...^^^1" '2} 

of conditions satisfying 
(0) P() = P-
(1) For all n, V^0 e

 lo2,...,r\n-i^ '"~'2:'« ^ kp<„„,...,„„-1>,F„,"-
(2) For all n, V?y0 e

 lo2,...,n„.1 e '-12Vnn e '"2, 
(a) p(n0,...,f/„- J <F„,„ p(n0,...,nn.x,nn). 
(b) p(f/0,...,»?n-i,»7„)lh/^[»jn]. 

(3) Fora l ln ,V J ? 0 6 , 0 2 , . . . , ^_ 1 6 ' " ' 2 ,dom(p( ) 7 0 , . . . , f / n _ 1 ) )cy m F m . 
Given p(n0,...,nn^t), first define F„ using a bookkeeping strategy such that 

eventually condition (3) will be satisfied. Then going through all n0 e '°2,..., nn„ x e 
'"-'2, we can find /„ satisfying condition (1). By the definition of kp(tln Vn l )Fm„ we 
can (for all n„ e ,n2) find p{n0,...,n„-1,^„) satisfying(2). 
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Now let he jf be a function such that for all n, h(n) > l„. Define a sequence 
(nn: n e co> by n„ := vh(n) \ l„, and let 

Then p < p0 < f o 0 p, <F l i l •••, so there exists a condition q extending all p„. So 
for all n, q \\- f $ [//„]. But then also for all n, q\\- f $ [v*(n)], a contradiction. 

3.6. COROLLARY. / / Pa>2 is a countable support iteration of strongly mco-bounding 
forcing notions, Pa2 satisfies the tt2-cc, and for all a < a>2 we have lha CH, then 
l h W 2 ^ e [ R ] ^ . . 

So we get 
3.7. THEOREM. / / ZFC is consistent, then 

+ no real is Cohen over L 

+ there is a GSierpinski set 

is consistent. 
PROOF. We will start with a ground model V0 satisfying V = L. Let 

j f := "(a) - {0})nL = {hx: a < coj, 

and let Ha(ri) = M n , 2 . 
Let <S„: <x < a^) be a family of disjoint stationary sets s {d < co2: cf(<5) = a^}. 

Construct a countable support iteration (PX,QX: a < a>2> satisfying 
(1) For all even a < co2, 

lh>a For some h: co ->• a - {0}, letting H(ri) = h(n)2, Qx = PTH. 

(2) If ,5 e Sa, then lh, Qa = PTH%. 
(3) For all odd a < a>2, 

lhpa g,, = random real forcing. 

By 1.11 (or as a consequence of 1.15), Pm2 is "co-bounding, so lhC02 "jf is a domi­
nating family". By 1.8(3) and 1.6 the assumptions of 3.3 are satisfied, so \\-m2Add(£f). 
Also \\-m2 "c = K2 and there are no Cohen reals over L". Letting X be the set of ran­
dom reals added at odd stages, X is a GSierpinski set: any null set H e Vm2 is covered 
by some Gs null set H' which is coded in some intermediate model. As coboundedly 
many elements of X are random over this model, \H nX\ < \H' nX\ < Xt. 

Finally, by 3.6 we get if £ \_W]-Hl, and hence by Add(^) = [R]N l . 
Our next model will satisfy 

(*) Unif(^) + b = c = N2. 

This in itself is very easy, as it is achieved by adding K2 Cohen reals to L. (Also 
Miller [14] showed that Unif(£f) + c = K2 + b = Xt is consistent.) Our result 
says that we can obtain a model for (*) (and indeed, satisfying Add(^)) without 
adding Cohen reals. In particular, (*) does not imply Cov(^). 

3.8. THEOREM. Con(ZFC) implies 

Con(ZFC + c = b = N 2 > b + Add(^) + no real is Cohen over L). 
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PROOF (sketch). We will build our model by a countable support iteration of 
length co2 where at each stage we either use a forcing of the form PTH or rational 
perfect set forcing. A standard bookkeeping argument ensures that the hypothesis 
of 3.3 is satisfied, so we get lhW2 Add(y). Using rational perfect set forcing on a 
cofinal set yields lhra2 b = c = K2. Since all P-point ultrafilters from V0 are pre­
served, no Cohen reals are added. 

PROOF (detailed version). Let 

{6<<o2:d(8) = a>l}=> \J Sy, 

where <Sy: y < (02s) is a family of disjoint stationary sets. Let F: w2 x cot -* co2 be 
a bijection. We may assume that 8 e Sr{otJ1) => 8 > a. 

First we claim that there is a countable support iteration (,Px,Qa- a < ^2) a n d 
a sequence of names <</jf: a < co2>: P < w i ) s u c n t n a t 

(1) For all a < a>2, all /? < eu1( jfi£ is a Pa-name. 
(2) For all a < cu2, Ih, {fc£: 0 ^ a ^ } = "(a - {0,1}). 
(3) For all a < co2, if a £ ( j y < r a 2 Sy, then H-„ Q. = RP 
(4) For all a < co2, all fi < iou all 8eSr{a,0): ^sQs = PT„f, where 

Hj(n) := "«("»2. 
Proof 0/ t/ie _/im claim. By induction on a we can first define Px, then 

<fcf: /J < ojj) (by 1.8(1)), then Qa (by (3) or (4), depending on whether a e |Jy<(i)2 Sy 

or not). 
Our second claim is that letting Jf be a name for all functions from a> to 

a> — {0,1} in ^ [G^J , the assumptions of 3.3 are satisfied, namely, 
(a) lhM2 "V/ ie^f3y<co 2 S y £S„" . 
(b) IH ĵ "Vy < OJ2 Sy is stationary". 
(b) follows from 1.8(3) and 1.6, and (a) follows from 

lhW2 "For all h e Jf there is a < co2 and P < Wi such that h = h%" 

which in turn is a consequence of 1.7. So by 3.3, Va2N= Add(y). Let GM2 s Pm2 

be a generic filter, Fra2 = F[Gro2]. Again by 1.7, every Jf £ raw n FTO2 of size < Kt 

is a subset of some Va, a < at2, so Jf cannot be a dominating family, as rational 
perfect set forcing Qx+1 will introduce a real not bounded by any function in 
/ c F a c va+1. Hence, b = c = K2. 

Finally, by 1.5, 1.9, and 2.22, any P-point ultrafilter from V generates an ultra-
filter in Vai, so there are no Cohen reals over V. 

This ends the proof of 3.8. 
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