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Theorem 1. (a) Let T be a superstable theory without the omitting type order property.
Then every regular type is either locally modular, or nen-orthogonal to a strongly regular type.
In the latter case, a realization of the strongly regular type can be found algebraically in any
realization of the given one.

(b) Let T be a superstable theory with NOTOP and NDOP. Then every regular type is
either locaily modular or strongly regular.

Theorem 2. Let T be superstable.

(a) Let p be a nontrivial regular type. Then p-weight is continuous and definable inside some
definable set D of positive p-weight. If p is non-orthogonal to B, then D can be chosen
definable over B.

(b) Let p be a nontrivial regular type of depth 0. Let stp(a/B) be p-semi-regular. Then a lies
in some acl(B)-definable set D such that p-weight is continuous and definable inside D.

1. Introduction

It was shown in [10] that if the models of a theory do not encode second-order
information, then the theory enjoys a number of structural properties: super-
stability, NDOP, NOTOP. If a theory has tF=se properties, then any model of the
theory is the prime model over an independent tree of countable submodels; and
each model in the tree is roughly determined by a regular type over its
predecessor. The notion of a regular type is the key to this anaiysis.

Not much is known about regular types in general. The only clearly understood
ones are those whose geometry is locally modular, analyzed in [5]. Of those, the
nontrivial ones are essentially the generic types of a definable abelian group, with
a slightly distorted vector space structure, and no further relations ‘near the
generic’. The orly further complication arises from the possible existence of an
infinite chain of definable subgroups of finite index, creating a nontrivial type
structure on the generics.

* The first author was supported by a National Science Foundation Postdoctoral Fellowship.
** The second author would like to thank the Foundation for Basic Research of the Israel Academy
for Sciences for a grant supporting this work.

0168-0072/89/$3.50 © 1989, Elsevier Science Publishers B.V. (North-Holland)



Sh:342

158 E. Hrushouski, S. Sheich

A different kind of information is available about strongly regular types. There
one knows nothing about the geometry, but at least the type structure is trivial;
the type is isolated among the types non-orthogonal to it. Steve Buechler found a
remarkable dichotomy in the rank 1 case: every weakly minimal type is either
locally modular, or strongly regular. The two kinds of complexity cannot co-exist.
In this paper we generalize Buechler’s result to ali regular types of depth 0. In

‘classifiable’ theories, this includes all nontrivial regular types.

In finite rank both U-rank and R™ enjoy many properties that fail in a more

general context; for instance U-rank is fully additive in finite rank, while R™ has
good definability properties [8, 1]. This makes their combined use a very powerful
tool in finite rank; but both these properties fail in general. In [4] it was shown
that p-weight can successfully replace U-rank near a regular type in a stable
theory. However, p-weight need not have good definability properties, and so
one seems to have no parallel to R” in finite rank. We show in Theorem 2 that in
fact the failure of deﬁl‘n‘ibi}iﬁ of p-'weight OCCUnrs uuly for trivial types; for
nontrivial p p-weight has the maximal continuity and definability properties.
Combined with the geome ric properties this gives an excellent technology, and it
is this that we use to prove Theorem 1. The definitions of the terms used in
Theorem 2 follow.

Definitions. Let p be a regular type.

(a) We will say that a regular type p is orthogonal to B if p is orthogonal to
some conjugate of itself over B; this disagrees with standard usage (p L B in the
standard sense iff p 1L acl(B) in our sense).

(b) Let D be a definable set. Then D*9={f(b,,..., b,):f a O-definable
function in T°9, by, ..., b, € D¢}.

(c) A formula is said to have p-weight <k if every type extending it has
p-weight <k; it has p-weight k if it has p-weight <k, but not <k — 1.

(d) Suppose p is nonorthogonal to By, and D is By-definable. We will say that
p-weight is continuous inside D if whenever Boc B, a € D®, and w,(a/B) <k,
there exists a formula in tp(a/B) of p-weight <k.

(e) p-weight is definable if for every formula ¢(x, y), {b: @(x, b) has p-weight
k} is a union of By-definable sets.

p weight is definable inside D if the same is true for every @(x, y) such that
{x:9@(x, b)} = D9 for every b.

In fact we will prove a stronger statement than Theorem 2; see Proposition 2.4.

Here is a more precise statement of Theorem 1. We do not use the full power
of NOTOP, but only a local consequerice, p-PMOP, asserting more or less the
existence of prime models over ccrtain pairs [10, XII4.3]). It states that
tp(a/b,b, M) is isolated whenever the following hold:

(1) b., b, realize p-semi-regular types over M.
(i) M is R,-saturated.
(iii) b, L by | M.
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(iv) stp(a/b,b,;M) is almost orthogonal (over Mb,b,) to ¢, @ g, whenever q, is
a strong type based on M U {b,}, arid g, one based on M U {b,}.

In fact we will cnly need to know that under the conditions (i)—(iv), there exists
a formula @(x) € tp(a/b,b,M) such that @(x)tp(a/M). Let us call this weaker
principle p-WIOF {weak isolation over pairs.)

Theorem 1(8). Let T be superstable, p = stp(a/B) regular, and assume p-WIOP.
Then either p is locally modular, or there exists a, € acl(a, B) with tp(a,/B)
strongly regular.

Theorem 1(b). Let T be superstable, p a regular type of depth 0 and with
p-WIOP. Then p is locally modular or strongly regular.

Even p-WIOP will only be needed in certain circumstances, in which
stp(a/M) = p.

The first part of the theorem can be considered as an approximation to
w-stability. This turned out not to be one of the structural properties; many
model-theoretic questions become easy for w-stable theories, but Morley’s
example of a vector space with a descending chain of subspaces of finite index
shows that not all non-w-stable theories encode second-order phenomena. The
theorem can be thought of as saying that locally, the only obstructions to the
w-stability of classifiable theories are the variants of this example. To see this
note:

Propeosition 1.1. Let T be countable and superstable. Suppose every regular type is
non-orthogonal to a strongly regular one. Then T is w-stable.

Proof. SR abbreviates strongly regular. We first show by induction on the infinity
rank of the SR formula D that every strongly regular formula has ordinal Morley
rank. Let p be the SR type determined by D. Work inside D. Then every SR type
except p has Morley rank <. Hence whenever g #p is a 1-type, as q is
non-orthogonal to some SR type and g L p, q is non-orthogonal to a type with
ordinal Morley rank. Thus if @(x) is any formula such that ~@(x) € p, then by
Proposition 2.1b of [6], @ has ordinal Morley rank a(g). It follows that D itself
has Morley rank sup{a(a(@) + 1: ~@ € p}. This shows that every SR formula has
Morley rank. Applying the same theorem from [6] once more, it follows that T is
w-stable. O

An example in [7] shows that countability is necessary here.

The proof of Theorem 1 is a technical generalization of [2]; for motivation we
direct the reader to the proof presented in [4]. The key is that if two generic
‘curves’ in D X D meet at all, then they must decide what set of strong types is
realized in the intersection. If we know that the intersection is finite, this puts a
limit on the possible number of strong types. In Theorem 1 we must work harder
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to get an intersection to which the hypothesis applies. A more straightforward
generalization of the proof of [2] in [4] yields the following variant. (It also
follows from Theorem 1, since p-WIOP with tp(a/M) = p follows readlly from
the assumptions.)

Proposition 1.2. Let p be a regular type in a countable superstable theory, based
on A = aci(A), A countable. Suppose every formula of smaller infinity-rank than p
is consistent with only countably mary types over A. Then p is either locally
modular or strongly regular.

This vields the following striking statement, suggested by A. Pillay.

Corollary. Let T be countable and superstable, and assume that none of its regular
types are locally moduler. Then T is w-stable.

Proof. By induction on R”(D) we show that D has ordinal Morley rank. Suppose
this is known for all formulas D' with R*(D') <R®(D). Work inside D. Let p be
a regular 1-type. Then the hypothesis of 1.2 is met. Since p is not locally modular,
it is non-orthogonal to a strongly regular type. Since p is arbitrary in D, by
Proposition 1.1, D has ordinal Morley rank. 0O

Theorem 1(b) goes beyond w-stability; it is false in w-stable theories with the
DOP. Its proof uses stable groups (as does 2(b)).

We recall some of the facts we will need; however uotations and results
concerning regular types from [9] and [5] will be used rather freely. Let p be a
stationary type p based on B, and let Q be an »-definable set (the solution set of
a partial type.) p | B denotes the restriction to B of the non-forking extension of p
to C. p is foreign to Q if p is orthogonal to every type q extending Q, over any set
oi parameters. p is internal to Q if for some set B, Q is defined over B, and there
existalrp|Bandd,,...,d,+Q withaedc(B, d,, . . ., d,). Assuming |Q|>1,
p is O-internal iff there exist n and a definable function f such that {c:stp(c/B) =
p} =f[Q"]. The symbol O is the symmetric version of <. (pOgq iff p<q and
q<=p.) (d,x) @(x, y) denotes the p-definition of @(x,y) (read: ‘for generic x
realizing p, ¢(x, y)’). We will also use the following results from [7]. Fact 1.3 and
other basic facts concerning the notions ‘internal’ and ‘foreign’ (including the
above equivalence) can be found in [7, §2]. 1.4 is essentially contained in [10,
V.4-6]; it can be found explicitly in [5, §3, facts (4), (5)]. 1.5 is Theorem 2 in [6].

Fact 1.3. If stp(a/B) is not foreign to Q, then there exists a, € dcl({a} U acl(B)) -
acl(B) such that stp(a,/B) is Q-internal.

Fact 1.4. (a) For all a, B in C*9, if stp(a/B) is p-simple and B = dcl(aB) N Cl L(B)
then stp(a/B) O p* for some k.
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(b) If stp(a/B) is non-orthogonal to the regular type p, then there exists
a, e dcl(B U {a}) such that stp(a,/B) is p-simple of positive p-weight.

Fact 1.5. Suppose q is a regular type based on B, r = stp(a/B) is q-semi-regular,
and r is almost orthogonal to q over B. Then there exist a’' € acl(a, B) — acl(B),
r' =stp(a'/B), a definable group G, a definable set D, and a definable transitive
action of G on D, such that r' is a generic type of D with respect to this action.

2. Definability properties of local weight

Terminology. Let P be a property of clements of C*%. We will say that
(ay, . .., a,) has P provably over B if there exists a formula @(x,,...,x,)
with parameters from B such that kF@(a,,...,a,) and for ali aj,...,a,, if
kg(ay, . . ., a;,) then Pholds of (a3, . . ., a;). If B is understood it may be omitted.
For example, ‘tp(a/c) has p-weight 0, provably over b’ means that there exists a
formula @(x, y, b) e tp(ac/b) such that if F@(a’, c’, b) then tp(a’/c’) has p-
weight 0.

Remark 2.1 (7T stable). Let P be a property invariant under Aut(C/B). Suppose P
holds of a provably over BUC, and a & C | B. Then P holds of a provably over
B.

Proof. L:t (%, B, C) demonstrate that P holds of @ provably. Let g = stp(C/B).
Then the g-definition of @, ¢'(%, B) £ (d,Z)¢(%, B, Z), shows that P holds of a
provably over the algebraic closure of B. Take the disjunction of all conjugates of
@' over B to see that P holds of @ provably over B. []

As a further example of this usage, note

Fact 2.2. Let Q be a B-definable set. If stp(a/Bc) is Q-internal, then stp(a/Bc) is
Q-internal provably over B.

Proof. If Q is finite, then a € acl(B U {c}) and the claim is obvious, so w¢ may
ignore this case. By the characterization of internality mentioned in Section 1,
there exists a definable function f =f{x, a) and n such that f[Q"] contains
{a’:stp(a’/Bc) =stp(a/Bc)}. By compactness, there exists a formula a(x)e
tp(a/acl(Bc)) such that f[Q"] contains {a':Cka(a’)}. Let a,,..., a, be the
conjugates of & over B U {c}; so a* =/, & is definable over B U {c} For each i,
let f; be the conjugate of f corresponding to a;, se that £f{0"]2 «f and hence

-----

U f[Q"] 2 aF. It is now easy to get a single function f* such that f*|Q™"""] 2
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a*C. Say f* =f*(%, a*), and a* = B(x, c)(B € L(B)). Then the formula:

B, 7) & EuIVENBE", 1) @aro - Zumsm) M 5 € Q &5" =£°(2, 4)))

describes the situation, and shows that tp(a/Bc) i< Q-internal provably over
B. O

Proof of Theorem 2(g). T is superstable, and we work in C*. Let p be a regular
type. We will show in sequence:

(a) There exists a p-simple, weight-1 formula 6(x, b).
Assuming p is nontrivial, we show that & can be chosen so that:

(b) If k6(a, b), b edcl(c). and w,(a/c) =0, then w,(a/c) =0 provably over b.
We then note

Lemms 2.3. Any formiula 0 satisfying (a) and (b) also satisfies:
(c) Ifaedcl(ay, ..., a,, b) for some a,, . . ., a,, such that £0(a;, b) for each i,
b e dcl(c), and w,(a/c) =k, then w,(a/c) <k provably over b.

It then remains only to show that D can in fact be found definable over any set
B such that p is non-orthogonal to B, and that p-weight is definable. This is
proved in a considerably stronger form as Proposition 2.4.

(a) Let Oy(x, bo) be a formula of least possible R” such that p X 8,. So if
E6u(a, bo) and ay B | by, then stp(a/B U {b,}) is orthogonal to p. It follows that
G, is p-simple, of weight 1.

(b) From now on assume p is nontrivial. Hence there exist b, c,, c,, c3 such
that bo € dcl(b), FOq(c;) (i=1, 2, 3), w,(c:/bc;)) =1 if i #j, but w,(cs/bcic;) =0.
Let g =stp(c,/b). Choose a e Cb(stp(c;c,/bcs)) such that c,c, s c3|ab. Then
ai acz| b, so k~(d,y) ¢'(a, y, c;) & @'(a, ¢y, c;) for some @'=@'(x, y, 2, b);
without loss of generality (d,x) @' is also over b. As a e acl(bc;), there exists a
formula 8,(x, b) e tp(a/b) such that @, is p-simple of weight 1. Let (d,, e;),
(d,, ), . . . be a Morley sequence over ab, with d, = c;, e, = c,. So a is definable
over (dy, e)), ..., (d,, e,) for some n. Say a=f(d,,...,d,, e,,...,e,), where
f is a O-definable function. Let

o(x, y, 2) = 0i(x) & Oo(y) & 0o(z) & ~(d,y) @'(x, y, 2) & @'(x, y, z).
Let
e(x) = (dqyl) e (dqyn)(azl °° -z,,)(tp(x, Y1, zl) &---& ‘p(x’ Yn» Zn)
&Ex=f(M,- sV 215+ -« » Zu))-

0 is our desired formula. It is defined over b € acl(b), and we may again simplify
the notation by adjusting so that b = b.
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Clearly k0(a), and 0 is p-simple, of weight 1. To see that (b) holds, let
b edcl(c), and suppose F6(a’) and:

(i) wy(a'/c)=0.

Cheose (d,,...,d,)Eq"|ca’, and (e,,...,e,) such that a’'=f(d, &) and
kEgla’, d;, e;) for i < n. By the choice of ¢ we have: _

(ii) wy(e:/c)=<1, w,(d:/c)=<1, and all types occurring are p-simple.

(iii) It is not the case that d;kq | ba'e;.

Hence R"(d;/ca'e;) < R™(d;/ba’e;) < R*(6,). By the choice of 6y, stp(d;/ca’e;)
is orthogonal to p, so w,(d:/ca’'e;)=0. By (i) and the addiiivity of weight,
w,(d:/ce;) =0. Hence

(iv) It is not the case that d;kq | ce;.

So for some a(y,u,z), k~(d,y)a(y,c,e) and ka(d;,c,e). Let @*=
~(d) a(y, u, z) & a(y, u, z). As b edcl(c), b =g(c) for some 0-definable func-
tion g. Let 6*(x, #) be the formula:

(dgy1): - - (dgyn)(32;- - - 2,)(@(x, Y1, 21) & - - - & @(x, Ya, 2)
& (p*(ylr u, zl) & & (p*(yl’ u, Z,,)
&b=gW)&x=f(Y1,- -V Z1s -+« Zn))

So kK0*(a’,c). If E6*(a*, c*), we have to show that w,(a*/c*)=0. Choose
ds,...,d})Eq" |a*c*, and (ef,...,e;) such that F@(a* df,ef) and
p*{d,c*, el), and x=f(dy,...,d,, e}, ..., e}).

Since each dfy c*ef, w,(d*/c*¢*)=0. As 6, is p-simple of weight <1,
w,(8*/c*) < L wy(ef/c*) <n. So w,(d*&*/c*) <n; since w,(d*/c*) =, it follows
that w,(é*/c*d*)=0. Thus w,(a*/d*c*)=w,(a*/é*d*c*)=0(a* e dcl(é*d*).)
Since a*c*wd*|b, a*wd*|c*, so w,(a*/c*)=0. This finishes the proof of
(). O

Proof of Lemma 2.3. Using 2.1 and the definition of p-simple types, one can
reduce to the case w,(a;/c, b) =0 for each i. Let J = {i:w,(a;/{c, ay, ...a;1})=
1}. So card(J)=k. As w,(a;/{c, a4, ..., a;_1}) =0 provably over b if i ¢J and
wy(a;/{c, a,,...,a,_,})<1 provably over b if ieJ, one sees easily that
w,((a1, . . ., 8,)/c) <k provably over b. Since a edcl(b, a;, .. ., a,), it is clear
that w,(a/c) <k provably cver b. O

Proposition 2.4. Let T be superstable, p be a nontrivial regular type, non-
orthogonal to B. Suppose tp(a/B) is p-simple. Then there exists a, € dcl(a, B) and
@ e tp(a,/B) such that @ is p-simple, and p-weight is continuous and definable
inside @; and w,(a/a,B) =0

Proof. Let 0 satisfy (a), (b) and (c) above. Without loss of generality p extends
0. By the definition of »>-simplicity, there exists B'>B, auw B'|B, and
C1,...,C realizing p* over B, with w,(a/B’c;---¢,)=0. We may assume
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B'—B is a singleton {b}, and @ =0(x,b). Let c=(c,,...,c). Find a'e
Cb(sgp(bg/Bg“ such that bcw a| Ba’'. Then w,(a/Ba') = w,(a/Ba’'bc) =0. We
have a’ € acl(Ba) rather than dcl; to fix this, let a, be an element of C*? coding
the (finite) set of conjugates of <’ over Ba. Then a, € dcl(e, B), and w,(a/Ba,) =
0. Also, since e’ is definable over a set of independent conjugates of bc over Ba,
the same is true of each conjugate of a’, and hence of a,. Let b'c!, ..., b"c" be
independent conjugates of Oc over Ba, such that @, edcl(d’,c,...,b" c"),
b=(b',...,b"). Let p, be the conjugate of p corresponding to b; (so
¢ kp¥| Bb,). Note that p,-simplicity is the same as p-simplicity, and w, = w,, for
each i. (Because p is non-orthogonal to B.) Let @, = 6(x, b') v - - - v 6(x, b").
Then @, is p-simple, of weight 1, and (by the choice of 6):

(i) If E@,(d), b e dcl(e), and w,(d/e) =0, then w,(d/e) =0 provably over b.

Let c;; be the jth co-ordinate of c;. Then a, e dcl(d, c;;:i, j), and each c;;
satisfies @;. Thus by Lemma 2.3, there exists a formula @, € tp(a,/Bb) such that

(i), @ is p-simple.

(i), If F@y(d), b e dcl(e), ard w,(d/e) =k, then w,(d/e) <k provably over b.

Write @,= @a(x, b), let r=stp(b/B), and let @i(x)=(d,7) @.(x, ). Since
each b; w a | B and the b;’s are independent over Ba. b & a | B, so b b a, | B. Thus
k@s(a;). Applying the idea of 2.1 we get:

(iii). @s is p-simple.

(iii)y, If E@s(d), and w,(d/e) =k, then w,(d/e) < k provably over acl(B).

Note that if w,(d/e) <k provably over acl(B), then the same is true over B
(take the disjunction of the conjugates of the formula expressing the given fact).
So if we let @ be the disjunction of the conjugates of @, over B, then ¢ is
p-simple, k@(a,;), and (iii), holds for ¢ in place of @;. Let D = {x:p(x)}. By
Lemma 2.3 again,

(*) If d e D™ and w,(d/e) =k, thea w,(d/e) <k provably over B.

It follows immediately that p-weight is continuous inside @. For definability, let
P(x, e) be such that {x:y(x, e)} c D, and y(x, e) has p-weight i. We must
show that y(x, e) has p-weight i provab'y over B. By 2.1 we can harmlessly
enlarge B by parameters independent from e. Hence we may assume that there
exist d,d in D%, with der'| BU {e}, r a regular type based on B, r Yp,
B =acl(B), Fy(d, ), and w,(d/ed)=0. By (*), w,(d/ed) =0 provably over B,
by virtue of some formula B(j,x,v)etp(d, e d). Let a(x)=
(d,7)(3v)(y(v, x) & B(7, x, v)); then « clearly shows that (x, ) has p-weight
=i provably over B. The other inequality follows directly from (*) and
compactness. O

Theorem 2(a) is now irrmediate, using Fact 1.4(b).
Proposition 2.5. Let p be a regular type of depth 0 in a superstable theory.

Suppose stp(a/B) is p-semi-regular, a,€acl(aB), and w,(a/a;B)=0. Then
tp(a/a,B) is p-simple of weight 0, provably over B.
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Lemma 2.6. Assume the hypothesis of 2.5. Then there exist n and a,, . . . , a, such
tha::
(i) Each a; € acl(Ba).
(ii) For i=1, there exists ewa|B and an e-definable set D such that
stp(a;+1/BU {a,, . . . , a;}) is D-internal, and p is foreign to D.
(iii) a, =a.

It is easy to see, using Fact 2.2, Remark 2.1 and induction, that if the
conclusion of Lemma 2.6 is true of a, then there exists a formula @ € tp(a/B) such
that whenever F@(a’), the same conclusion is true of a'. Since it follows clearly
that stp(a’/B) is p-simple of weight 0, the proposition follows.

Proof of Lemma 2.6. As long as a ¢ acl(B U {q;}), we define by induction a;,,
satisfying (i) and (ii), and with a;,,¢acl(BU{a,,...,a;}). Since each a; €
acl(a), it follows that R*(a/BU {a,, . .., a;}) decreases with i. The chain must
terminate, so a € acl(a;) for some i, and we can let n =i + 1.

Let b=(ay,...,a;). As beacl(BU {a}) —acl(B), stp(b/B) is semi-.egular,
ALp. p has depth 0; so r, =stp(a/Bb) is non-orthogonal to B. So there exists
C 2B, au C| B, and a regular typ: r based on C, with r ¥ r,. Choose r of least
possible R”. Then by the theorem c 1 existence of semi-regular types in [10, V 4],
we may assume r; is r-semi-regular. Note that every extension of r, is orthogonal
to p.

Claim. r, is almost-orthogonal to r” over CU {b}.

Proef. Suppose not. So there exists ¢k r™ for some m, éwLb|C, ag ¢|Cbh. By
transitivity of nonforking as b eacl(a), aJ¢|C. But r Lp and stp(a/C) is
p-semi-regular, a contradiction.

By Fact 1.5, there exist a’ € acl(a, B) — acl(B, b), r,=stp(a’/Bb), a definable
group G, a definable set D' and a definable transitive action of G on D’, such
that », is a generic type of D' with respect to this action. Since every extension of
r, is orthogonal to p, and every type inside D' is parallel to some extension of a
translate of r,, every type inside D’ is orthogonal to p. Now the formula defining
D may have parameters from acl(CU {b}); call it &(x,c), with ce C and
é(x, y) € L(Bb). Let t =stp(c/Bb). Let 6,(x) = (d,y) 6(x, y). Then ES,(a’), and
p is foreign to &,. Let b’ be a conjugate of b over acl(B), aw b’ | B, and let 6, be
the corresponding conjugate of &,. Then p is foreign to &,, and &, has
parameters independent from a. Moreover, as r, is non-orthogonal to B, r, is not
foreign to &,. (It is not orthogonal to a conjugate of itself extending 6,.) By Fact
1.3, there exists a”e€acl(a’)—acl(BU {b}) with stp(a"/BU {b}) J,-internal.
Letting a;,, =a"” and D the formula defined by 9§, satisfies ii*, and hence proves
the lemma. O
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Proof of Theorem 2(b). Assume the hypothesis of 2(b). By 1(a) and Proposition
2.4, there exists @, € dcl(a, acl(B)) with w,(a/a,) =0, and a B-definable set D,
with @, € D, and p-weight is continuous and definable inside D,. Say 4, = f(a), f
an acl{B)-definable function. By 2.5 there exists = ‘ormula @(x, y) € L{B) such
that k@(a, a;), and for any a;, {x:p(x,a:}; is p-simple of weight 0. Let
D = {x:@(x, f(x)) & D\(f(x))}. It is easy to sec that D works. [J

3. Proof of Theorem 1

Theorems 1(a) and 1(b) follow immediately from Proposition 2.4 and Theorem
2(b), respectively, and the Proposition 3.1 below. We will tak¢ the point of view
of [, Section 4], that local modularity can be best understood using imaginaries.
Let p be based on @. Then p is locally modular iff any two p-closed sets (in C*9)
are independent over their intersection. This statement turns out to be independ-
ent of the base; so ‘modular in C** would be a better operational description than
the equivalent ‘locally modular’.

Proposition 3.1. Let p be a regular type. Assume p is not locally modular, and
p-WIOP holds. Suppose D(x) i&s a p-simple formula, D(x) € p, and p-weight is
continuous and definable inside D. Then p is strongly regular.

Proof. By elementary stability considerations, we may assume D is x =x, and p
is based on f. The lesamas to the end of this section assume this hypothesis as
well as the hypotheses of the proposition.

Lemms 3.2. There exist a, b, C with the following properties.

(@) w,(a/C)=w,(b/C)=2; w,(a/Cb)=w,(b/Ca) =1.

(b) Cl,(2) NCL(b) =Cl,(C).

(c) pis based on C, and p | C is realized inside dcl(a).

(d) C=Cl,(C)Ndcl(a, b, C).

(e) Cl,(a, C)Ndcl(a, b, C) < acl(C, a}.

® If C2C, abuw, C|C, o is an automorphism fixing acl(C, a), ob & b | Ca,
and b € Cl,(b, C), then au. {C, b, ab} | {C, b, ob}.

(® Cl,(b, C)Ndcl(a, b, C) c acl(b, C).

The formulation and ordering of these clauses is intended to make the proof
casy. To understand them, it may help to note that by Fact 1.4, (d) implies that
stp(ab/C) O p* for some k. In view of (a), this is equivalent to: stp(e»>/C) O p>. In
fact, (d) is equivalent to this statement together with the fact that ip(ab/C) is
stationary. Similarly, (e) and (g) are equivalent to the statements: stp(b/Ca) and
stp(a/Cb) are regular (respectively.)
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Proof. For (a) and (b), find A, 7* p-closed with Ay B | (AN B). It is easy to see
that if w,(A/A N B) and w,(B/A N B) are minimized, then both equal 2. Now by
the definition of p-simplicity, there exists C2A N B, AB & C| (A N B), such that

A =Cl,(Ca) and B =Cl,(Cb) for some sequences a, b of independent realiza-

tions of p | C. This gives a, b, C satisfying (a), (b), (c).

Replacing C by Cl,(C) Ndcl(a, b, C) does not hurt (a), (b) or (c), since Cl,(C)
is unchanged. By superstability, for every subset E of dcl(a, b, C) there is a finite
Eqc E such that E cacl(EoUC) (consider R”(ab/E).) So there exists a, €
dcl(a, b, C)NCl,(a, C) such that (dcl(a, b, C)NCl,(a, C)) cacl(C,a,). As
Cl,(Ca)=Cl,(Caa,) and dcl(Cab)=dcl(Caa,b), there is again no harm in
replacing a by aa,. Thus (d) and (¢) can be met. Given g, b, C satisfying (a)-(e),
let o be an automorphism fixing Cl,(Ca) such that owb|Ca, and let
a(a, b, C) = R*(a/b, ob, C). Clearly stp(b, ob/Ca) does not depend on g, so a is
well-defined. Choose a, b, C so that a(a, b, C) is minimized. Then (f) holds: let
o, b, C be as in (f), and suppose ay {b, ob} | {C, b, ob}. By (e) and Fact 1.4,
stp(b/Ca)Op. Hence b Cl,(Ca)|Ca; applying o, obuw Cl,(Ca)|Ca. Thus
there exist an automorphism o' fixing Cl,(Ca) pointwise and with o'b = ob. Let
b'=(b, o' Y(0b)), C'=0C1,(C)Ndcl(C, a, b'), and as above find a’ such that
a’ edcl(a, C', b"), aedcl(a’), and CL,(C, a)Ndcl(C, a, b’) c acl(a’). So a’, b’,
C’ satisfy (a)—(e); and

’ l_' Pal AN , |
a{a’,b',C")=R

< ""(a/b ab, C)<R°°(a/b ab C)=a(a, b, C),

contradicting the minimality of a(a, b, C). (The first inequality is true because
a'edcl(a, C', b’); the second because obedcl(o’b’); the third because
ay {C, b, ab} | {C, b, ob}.) Thus (f) holds. To satisfy (g) one replaces b by a
somewhat bigger element insidc dcl(a, b, C) N Cl,(C, b), as a was replaced in (¢);
this does not change dcl(a, b, C), so (e) and (f) remain valid. O

In the proof, we used the fact that if £ is a subset of C invariant under Aut(C),
then any two elements realizing the same type over £ are Aut(C/£2)-conjugate.
This is an easy exercise, using stability.

Lemma 3.3. Let a, b, C be as in 3.2, and let b' Estp(b/Ca), b' & b | Ca. Then:
(a) wy(a/bb'C)=0,
(b) b'wbd|C.

There exists a formula p(x, y, y') over C such that for b’ as above,
(c) p(x, b, b')Ftp(a/C).

Proof. (a) Since b'w b|Ca, Cb(stp(b’'/Cab))c acl(Ca). Suppose b’ Wb a|Cb.
Then Cb(stp(b’/Cab)) < acl(Cb). But acl(Ca) Nacl(Cb) = Cl,(C) by 3.2(b), so
b’ & ab | Cl,(C), and in particular (as b’ W Cl,(C)|C by Fact 1.4 and 3.2(d))
b' & a | C. This is absurd. Thus b’ a | Cb. By Fact 1.4 and 3.2(g), stp(2/Cb) is
regular; by symmetry, ay b' | Cb; so w,(a/Cbb') =0.
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(b) w,(abb'/C) =w,(a/C) +2w,(b/Ca)=4 while w,(a/Cbb')=0, so
w,(bb'/C) =4 =w,(b/C) + w,(b'/C). By 3.2(d), stp(b/C) O p?; hence b w b'|C.

(c) We will show that the conditions listed in p-WIOP hold. Let C>C,
B2Cu{b}, B'2CU{b'}, abb' LC|C, BuLB'|C; we must show that
aw BB' | Cbb'. Let By=dcl(B) NClL,(Cb), By=dcl(B')NCL,(Cb'). It follows
from 3.2(f) that a W ByBg| Cbb’. But (because x =x is p-simple, and by Fact
1.4), stp(B/B,) and stp(B'/B,) are both domination-equivalent to powers of p.
As BuB'|C and Cc(Bo,UB) = BUB', Bu B'|(ByU Bf); so stp(BB'/B,By)
is also domination-equivalent to a power of p. But w,(a/B,Bg)=0, so
a W BB' | ByBg. By transitivity, a ., BB’ | Cbb’, as required. O

Lemma 3.4. The following facts are true of a provably over Cb.
(1) wy(a/C)=<2, wy(a/ChV<1, w,(b/Ca)<1.
(2) For ail b',
either (i, stp(b'/Ca)+#stp(b/Ca),
or (ii) w,(d'/Cab)=0,
or (iii) kp(a, b, b'), and w,(a/b, b") =0.

t'roof. (1) is immediate from 3.2 and the definability hypothesis we are working
under.

(2) First note that (2) is true: by 3.2(e), stp(b/Ca)Op, so if stp(b'/Ca)=
stp(b/Ca) and w,(b'/Cab) #0, then b’ & b | Ca, and 3.3 applies giving (iii). Now
for any particular b’ realizing stp(b/Ca), the statement (i) v (ii) v (iii) is true of
a, b’ provably over Cb. By compactness, only finitely many formulas are
involved, so we can use the universal quantifier to get that (Vb')((i) v (i) v (iii))
is true of a provably over Cb. 0O

Lemma 3.5. If (1) and (2) of Lemma 3.4 hold of a' in place of a, and
w,(a'/Cb) #0 then tp(a’'/C) = tp(a/C).

Proof. Let @' be such an element, and choose b’ such that stp(b’'/Ca’)=
stp(b/Ca’) and b' & b | Ca’. First compute that

w,(b/Ca’) =w,(b/C) + w,(a’'/Chb) —w,(a'/C) =2+ (=1) - (<2)=1.
But by 3.4(1), w,(a’/Cb)<1 and w,(b/Ca’') <1. So
(a) wy,(b/Ca")=1,
(b) wy(a’'/C)=2,
(c) w,(b'/Ca’'b)=w,(b'/Ca’')=1 (from (a)).
Thus neither (i) nor (ii) of 3.4(2) hold, so (iii)) must: kp(a’, b, b’'), and
w,(a’'/Cbb’) = 0. Using the last equality we compute again:
w,(bb'/C) = w,(a/C) + w,(b/Ca) + w,(b'/Cab) — w,(a’'[bb'C)
=2+1+1-0=4.
As stp(b/C) = <tn(b’'/C) O p?, it follows that b L b’ | C. Thus by the choice of p,
tp(a/C)=tp(a’'/C), as required. O
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Proof of Proposition 3.1. By the last two lemmas, there exists a formula
a(x) € tp(a/Cb) such that if Fa(a’) and w,(a’/Cb)+#0 then tp(a'/C) = tp(a/C).
By 3.2(c) there exists a 0-definable function / such that h(a)Ep | C. Let d = h(a).
By 3.2(b), d¢Cl,(Cb), so dkp|CU{b}. It follows in particular that
w,(a/C, b, h(a)) = 0; as p-weight is continuous and definable we may assume that
a(a’) implies w,(a’'/C, b, h(a')) =0. Let a*(x) = (Ix')(x = h(x') & a(x')). Then
P | Cb is strongly regular via a*. For suppose ka*(d’) and w,(d’/Cb) #0. Pick a’
such that d'=h(a') and Ea(a’). Then w,(a’/Cb)+#0, so tp(a’/C)=tp(a/C).
Hence tp(d'/C) =tp(d/C)=p | C. As p is regular and w,(d'/Cb)>0, d' w: b | C.
As p | Cis stationary, d' Fp | Cb. This shows that p | Cb is strongly regular via a*;
hence p is strongly regular.
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