On decomposable sentences for finite models

Saharon Shelah

A Definition: Suppose $\psi = \psi(\overline{P}, \overline{Q})$ (i.e. ψ is first order depending on the predicates $\overline{P} = \langle P_{\ell} : \ell < n \rangle$, $\overline{Q} = \langle Q_{\ell} : \ell < n \rangle$, If the truth value of $(A, \overline{P}, \overline{Q}) \models \psi(\overline{P}, \overline{Q})$ depend on the isomorphism types of (A, \overline{P}) and (A, \overline{Q}) only, we call $\psi(\overline{P}, \overline{Q})$ decomposable.

If this holds for all finite models we call $\psi(\bar{P}, \bar{Q})$ finitely decomposable.

Let
$$K_{\psi} = \{(A, \overline{Q}); \exists \overline{P} \text{ such that } (A, \overline{P}, \overline{Q}) \models \psi\}$$

B. Claim: If $\psi(\overline{P}, \overline{Q})$ is decomposable then there are $\psi_{\ell}(\overline{P})$, $\psi^{\ell}(\overline{Q})$ such that we can compute the truth value of $(A, \overline{P}, \overline{Q}) \models \psi$ from the truth values of $(A, \overline{P}) \models \psi_{\ell}(\overline{P})$ and $(A, \overline{Q}) \models \psi^{\ell}(\overline{Q})$.

Proof: Use saturated models.

- C. Conclusion: If $\psi(\overline{P}, \overline{Q})$ is decomposable then there are $\boldsymbol{\vartheta}_m(\overline{Q})(m < m_0)$ such that each $K_{\psi}^{\lambda} = \{M \in K_{\psi}: ||M|| = \lambda\}$ is the class of models of $\boldsymbol{\vartheta}_m(\overline{Q})$ where m depends on λ (and is the same for all infinite cardinals).
- 1. Example: We deal with models with universe $n = \{0,1,\ldots,n-1\}$, $(n < \omega \text{ arbitrary})$.

We shall find sentences $\psi(\bar{P}, \bar{Q}), \varphi(\bar{P})$ (not depending on n) such that

1) the truth value of $(n, \overline{P}, \overline{Q}) \models \psi(\overline{P}, \overline{Q})$ depend on the isomorphism type of (n, \overline{P}) and (n, \overline{Q}) only

2)
$$\psi(\overline{P}, \overline{Q}) \rightarrow \varphi(\overline{P})$$

3) in each finite power $\varphi(\bar{P})$ has a unique model.

4) For
$$n < \omega$$
 (quite large), the set $K_n = \{(n, \overline{Q}) : (\exists \overline{P})[(n, \overline{P}, \overline{Q}) \models \psi(\overline{P}, \overline{Q})]\}$

is not definable (among models of the right signature and power n) by any first order sentence of size $= \frac{200}{\sqrt{n}}$ (and even such quantifier depth.)

Remark: We do not try to improve the bounds appearing here, clearly $n^{(1/2+\epsilon)}$ suffices (for any positive ϵ).

- **2. Construction**: Let $\varphi(\overline{P})$ just say that (n,P) is a model $(n,+,\times,0,1,<)$ satisfying the reasonable rules of arithmetic (addition , product) (but not necessarily the standard ones). Let $\psi = \psi_0(\overline{Q})$ be such that
- $(A,Q_0,Q_1,Q_2,Q_3,F_1,F_2,+',\mathbf{x}',0',1') \models \psi_0 \text{ iff} \quad Q_0,Q_1,Q_2 \text{ are monadic relations}$ which form a partition of A, Q_3 a monadic relation, $Q_3 \subseteq Q_1$, also $\varphi^{Q_2}(+',\mathbf{x}'\cdots)$ hold, F_1,F_2 are one place function from Q_1 onto Q_3 . (so $F_{\mathcal{L}}(x)$ is undefined for $x \notin Q_1$), and:

$$\begin{split} & (\forall x \in Q_3)[x = F_1(x) = F_2(x)] \\ & (\forall x, y \in Q_1)[x = y = (F_2(x) = F_1(y) \land F_2(x) = F_2(y))] \\ & (\forall x, y \in Q_3) \; (\exists z \in Q_1)[\; F_1(z) = x \land F_2(z) = y \;] \end{split}$$

Let $K_n = \{M : ||M|| = n, M \models \psi_0, |Q_0^M|^{100} < |Q_1| \text{ and } |Q_0| \text{ is even} \}$ (we can replace "even" by anything reasonable.

Before we shall define a ψ , such that $K_n = K_{\psi}^n$ we have to deal with

3. Question: If $(n, \overline{P}) \models \varphi(\overline{P})$, $Q \subseteq M$, can we define (by a short formula) |Q| in (n, \overline{P}, Q) , i.e. we want as formula $\vartheta(x, \overline{P}, Q)$ such that:

$$(n,\overline{P}) \models \varphi(\overline{P}), Q \subseteq n \Longrightarrow (n,\overline{P},Q) \models (\forall x) [|\{y:y < x\}| = |Q| \equiv \vartheta(x,\overline{P},Q)]$$

The following approximation (and more) for this appeared in Deneberg Gurevich and Shelah [2], and is included for completeness.

4. Fact: There is a formula $\vartheta(x, \overline{P}, Q)$ such that for every n and \overline{P} , if $(n, \overline{P}) \models \varphi(\overline{P})$ and $Q \subseteq n$ then $(n, \overline{P}, Q) \models (\exists x) \vartheta(x, \overline{P}, Q)$ and $\models \vartheta(x, \overline{P}, \overline{Q})$ implies

$$|Q| \le |\{y: y < x\}| \le |Q|^2 |\ln n|^2 + 10$$

Proof: Let $\vartheta_0(x, \overline{P}, Q)$ says that x is the first prime number such that for every $y \neq z \in Q$: $y \not\equiv z \mod x$ (all arithmetic statements are interpreted by \overline{P}).

Let (n, \overline{P}) be for notational simplicity the usual arithmetic. So clearly there is at most one such x and $|Q| \le x$. Suppose that T < n and for every prime $|Q| \le p$ $|Q| \le p \le T$, there is a pair $y \ne z \in Q$ so that p divides y-z.

Then $A = \prod_{\substack{y,z \in Q \\ z>y}} (z-y)$ is divisible by $B = \Pi\{p:p \text{ prime, } |Q| \le p < T\}$. Hence

 $B \leq A$; but $A \leq n^{|Q|^2}$, whereas $B \geq |Q|^{\pi}$, where π is the number of primes in (|Q|, T), So $e^{|Q|^2 \ln n} = n^{|Q|^2} \geq |Q|^{T/\ln T} - |Q|/\ln(Q) = (e^{T \ln |Q|/\ln T})e^{-|Q|}$, hence

$$|Q|^2 \ln n + |Q| \ge T \ln |Q| / \ln T$$

Hence if e.g. $T = |Q|^2 (\ln n)^2$, $n \ge 10$ we get contradiction.

5. Fact: In 4) we can also define a one to one function from Q into $\{y:y < x\}$, and then we can do the same analysis on the image, replacing n by $\{y:y < x\}$) (or even if you want, $T = |Q|^2(\ln n)^2$); so we get a new bound

$$|Q| \le |\{y: y < x'\}| \le |Q|^2 (\ln T)^2$$

So if e.g. $|Q| \le \sqrt[3]{\ln n}$, we can find a one to one map from Q onto an initial segment: as by the previous analysis w.l.o.g. $Q \subseteq \sqrt[2]{\ln n}$, the funcion $q: Q \to n$, $q(x) = |\{y \in Q: y < x\}|$ is represented in (n, \overline{P}) .

6. Fact: There is a formula $\mathfrak{V}(x,y,\overline{P},\overline{Q})$ such that if $(n,\overline{P},\overline{Q}) \models \varphi(\overline{P},\overline{Q})$, $\varphi(\overline{P}) \wedge \psi_0(\overline{P},\overline{Q})$, then $\mathfrak{V}(x,y,\overline{P},\overline{Q})$ defines an isomorphism from $(Q_2,+',\mathbf{x}',\cdots)$ onto an initial segment of (n,\overline{P}) .

Proof: By (5) we can do this for large enough initial segment, of power $k = \sqrt{\ln n}$; then we know that in a model of finite arithmetic, 2^k is definable as well as the representation of every $\ell \le 2^k$ by a subset of k (using binary representation). Doing it twice we finish.

7. The sentence ψ : So we have to describe the sentence ψ such that $K_n = K_{\psi}^n$ for every finite n. It will be the conjunction of $\varphi(\overline{P})$, $\psi_0(\overline{Q})$ and another sentence which we describe what it says, rather than write it down.

So let $M=(A,\overline{P},\overline{Q})\models\psi_0(\overline{Q})\land\varphi(\overline{P}),\ |A|=n$. For simplicity we ignore the case some Q_ℓ is empty. W.l.o.g. (A,\overline{P}) is the standard model. All considerations are uniform in the sense they do not depend on n.

By (6) we can define the number $|Q_2|$ hence the numbers $|Q_0| + |Q_1| = n - |Q_2|$. By (4) we can define an x such that:

$$|Q_0| \le x \le |Q_0|^2 (\ln n)^2$$

We can also define the number $\ln n$. We recall that $|Q_1|$ is a perfect square (by the functions F_0, F_1). So there is a number y < n, $y^2 = |Q_1|$. Can we define y in M?

It satisfies:

(*)
$$n - |Q_2| - y^2 \le x \le (n - |Q_2| - y^2)^2 (\ln n)^2$$

We have already defined all numbers appearing here (by suitable formulas) except y. So it suffices to show that (*) has a unique solution when $M \in K_n$ (as then we can define it and write our demand on $|Q_0|$ which is $n-|Q_2|-y^2$); if however there are two solutions, then $M \not\in K_n$).

Now if $M \in K_n$, $|Q_0|^{100} < |Q_1|$ and $y_1 \neq y_2$ are solutions, we get a contradiction or $y \leq (\ln n)^{10}$, but then we can define $|Q_0|$ directly.

8. Non definability of K_n :

It is well known that two models of the theory of equality of power >n satisfies the same first order sentence of quantifiers depth n. So by the Feferman Vaught theorem (see [CK]), if $M \upharpoonright Q_2 = N \upharpoonright Q_2$, $M \upharpoonright Q_1 = N \upharpoonright Q_1$ and $|Q_0^N| = |Q_0^M| + 1$, (and M,N are finite) then M,N, satisfy the same first order sentences of quantifier depth $< |Q_0^N|$, but $M \in \bigcup_{n < \omega} K_n \iff N \not\in \bigcup_{n,\omega} K_n$.

So we finish.

References

- [1] C. C. Cang and H. J. Keisler, Model Theory, North Holland Publ. Co.
- [2] L. Deneberg, Y. Gurevich and S. Shelah, Cardinalities definable by constant depth polynomial size circuits. Information and Control.