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CODING WITH LADDERS A WELL ORDERING OF THE REALS 

URI ABRAHAM AND SAHARON SHELAH 

Abstract. Any model of ZFC + GCH has a generic extension (made with a poset of size H2) in which 

the following hold: MA + 2N(I = ^2+there exists a A\-well ordering of the reals. The proof consists in 

iterating posets designed to change at will the guessing properties of ladder systems on to\. Therefore, the 

study of such ladders is a main concern of this article. 

§ 1. Preface. The character of possible well-orderings of the reals is a main theme 
in set theory, and the work on long projective well-orderings by L. Harrington [4] 
can be cited as an example. There, the relative consistency of ZFC + MA+ 2N° > Hi 
with the existence of a A' well-ordering of the reals is shown. A different type of 
question is to ask about the impact of large cardinals on definable well-orderings. 
Work of Shelah and Woodin [7]. and Woodin [9] is relevant to this type of question. 
Assuming in V a cardinal which is both measurable and Woodin, Woodin [9] proved 
that if CH holds, then there is no I?x well-ordering of the reals. This result raises 
two questions: 

1. If large cardinals and CH are assumed in V, can the Sf result be strengthened 
to 2̂ 2? That is. is there a proof that large cardinals and CH imply there are no 
T.\ well-orderings of the reals? 

2. What happens if CH is not assumed? 

Regarding the first question, Abraham and Shelah [2] describes a poset of size ^2 
(assuming GCH) which generically adds no reals and provides a A\ well-ordering 
of the reals. Thus, if one starts with any universe with a large cardinal K, one can 
extend this universe with a small size forcing and obtain a A% well-ordering of the 
reals. Since small forcings will not alter the assumed largeness of a cardinal in V, 
the answer to question 1 is negative. 

Regarding the second question, Woodin (unpublished) uses an inaccessible car
dinal K to obtain a generic extension in which 

1. MA for rj-centered posets + 2No — K, and 
2. there is a I j well-ordering of the reals. 

Solovay [8] shows that the inaccessible cardinal is dispensable: any model of ZFC 
has a small size forcing extension in which the following holds: 
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1. MA for a -centered posets + 2N° = H2, and 
2. there is a E2 well-ordering of the reals. 

In [3] we show how Woodin's result can be strengthened to obtain the full Martin's 
Axiom. We prove there that if V satisfies the GCH and contains an inaccessible 
cardinal K, then there is a poset of cardinality K that gives generic extensions in 
which 

1. MA + 2N» = K, and 
2. there is a E2 well-ordering of the reals. 

Our aim in this paper is to show that the inaccessible cardinal is not really 
necessary, even to get the full Martin's Axiom. 

THEOREM 1.1. Assume 2^° = Hi and 2*' = H2. There is a forcing poset of size 
K2 that provides a cardinal preserving extension in which Martin's Axiom +2Ho = H2 

holds, and there is a E2 well-ordering of the reals. In fact, there is even a 
well-ordering of the reals there. 

The concepts £2 and £2[N|1 will soon be defined, but first we shall point to what 
we consider to be the main novelty of this paper, the use of ladder systems as coding 
devices. A ladder over S C co\ is a sequence rj = (n$ \ S e S) where rj6 : u> —* S is 
increasing and cofinal in S. Two ladders over S, rj' a subladder of?;, may encode a 
real (a subset of co). Namely the coding of a real r is expressed by the relationship 
between n's and n$ (for every S). Splitting co\ into H2 pairwise almost disjoint 
stationary sets, it is possible to encode H2 many reals (and hence a well-ordering) 
using H2 pairs of ladder sequences. Of course, we need some property that ensures 
uniqueness of these ladders, in order to make this well-ordering definable. Such 
a property will be obtained in relation with the guessing power of the ladders. A 
ladder system (tjg \ 6 £ S) is said to be club (closed unbounded set) guessing if for 
every closed unbounded C C co\, [rjs] C* C for some 5 £ S. It turns out that there 
is much freedom to manipulate the guessing properties of ladders, and, technically 
speaking, this shall be a main concern of the paper. 

We now define the £2 and E2tK'l relations. The structure with the membership 
relation on the collection of all hereditarily countable sets is denoted H (Hi). Second-
order formulas over //(Hi) that contain n alternations of quantifiers are denoted 
Y?n when the external quantifier is an existential class quantifier. Thus a Y?n formula 
has the form 

3XtfX2...XMX\ X„) 
where ip may only contain first-order quantifiers over //(Hi) and predicates X\ 
X» are interpreted as subsets of//(H)). (One can either write Xt(s) treating Xt as a 
predicate, or s e Xt treating Xt as a class.) 1? denotes the union of all l?n formulas. 

If the second-order quantifiers only quantify classes (subsets of //(Hi)) of cardi
nality < Hj, then the resulting set of formulas is denoted £„ ' . So S, l] for example 
denotes second order formulas of the form "there exists a subset X of //(H)) of size 
< Hj such that ^p{X)" where v? is a first order formula. We write S2[H|), without a 
subscript, for U „ < £ 0 2 ^ , ] . 

In Theorem 1.1 above, we get a well-ordering which is £2[N|), and we will explain 
now why MA + 2N° > Hi implies that such a relation is necessarily S2. This 
transformation which replaces any number of quantifiers over sets of size Hj with 
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a single existential quantifier over arbitrary subsets of //(Hi) is a trick of Solovay's 
that was used by him in [8]. The basic idea is to use the almost-disjoint-sets coding 
(Jensen and Solovay [5]) in a way which will be sketched here. 

THEOREM 1.2 (Solovay). Assume MA + 2N° > Hi. Any £2(Hl] formula <^(x) over 
//(Hi), with free variables equivalent to a 1,\ formula y/{x). 

PROOF. It seems easier to prove first that every £2[<c' formula is equivalent with 
a £ | formula. (The £2[<cl formulas are second order formulas over //(Hi) in which 
class quantification occurs only for subset of //(Hi) of size less than continuum.) 
Then the theorem follows because the Z2[Nl] classes are a naturally characterized 
subclass of the S2[<cl. 

So let ip(x) be any S2[<c] formula. The equivalent S2 formula y/ begins as follows 
(with existential class quantifiers mixed with first-order quantifiers which do not 
change the complexity of the formula): 

There is a set x c 8P(co) such that the relation 
x <r y iff y \ x is finite 

is a well-order ofx such that there is no infinite a C co with a C* x for all 
x G r. There is also a map p : x —• //(Hi), which is onto //(Hi), and there 
is a map p : x —> [co]^" such that for distinct x,y G x, x(x) and x(y) are 
almost disjoint, ([tof*0 is the collection of infinite subsets ofco.) 

Then y/ continues with first-order quantifiers that replace the S2[<c] quantifiers of 
f in the following manner. To represent any X C //(Hi) of size < c, look at the set 
p~xX C T. Since its size is < c, there is by Martin's Axiom an infinite set a C co 
almost included in every set in p~l X. Hence p~lX is bounded in x. So there is tQ in 
T so that p~x (x) <T to for every x G X. Now look at the collection {p(t) | t <T t0} 
of almost-disjoint sets (its cardinality is < c) and use Martin's Axiom to encode 
with one r the set p[p~xX]. That is find r c co such that for t < t to, p{t) n r is finite 
iff ju{t) G X. Then r and t0 represent X. -\ 

§2. Ladder systems. The notation A C* B is used for "almost inclusion" on 
subsets of co\, meaning that A \ B is finite. Similarly A =* B is defined if A C* B 
and B C* A. A ^* B is the negation of A =* B. 

DEFINITION 2.1. 1. A ladder system over S C co\ (consisting of limit ordinals) is 
a sequence rj = (rjs | S £ S), where rjs is an increasing co-sequence converging to S. 
S is called "the domain" of?/, and is denoted dom(?7). rj is called "trivial" if dom(?7) 
is non-stationary. The range of r\& is denoted [rjs] (so [tjs] = {tjg(i) | / € co}), and 
Ui S g s[^] is the "range" of rj. So, [rjs] C* C means that, except for finitely many k's, 
tjs(k) e C always holds. 

2. Let rj and /Z be two ladder systems. We say that rj and ju are almost disjoint iff, 
for some club C C a>\, for any 8 G C n dom(^/) n dom(/Z), [%] n [//,?] =* 0. 

3. We say that rj is asubladderof/Ziff the following holds for some club C C co\\ 

C n dom(>7) C dom(/Z) and for 8 e C n dom(?7), [^] C* ^ ] . 

In such a case we write rj <\~]I. Also, >7 =* 7/ iff both rj <\~p. and pZ <\rj. That is, 
?/ =* /Z iff there is a club set C C coj such that dom(?/) D C = dom(/Z) n C, and 
[rjs] =* [ps] forc5 G dom{rj) n C. 
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582 URI ABRAHAM AND SAHARON SHELAH 

4. The difference ladder p = n \ ju is defined by 

[PS] 

[rjs] if d G dom(^) \ dom(/7) 

bis] \ L"<s] if this s e t is infinite 
undefined otherwise. 

It is the <-maximal ladder included in rj and (almost) disjoint from Ji. 
5. Given any A C coi, the restriction ladder ^ f /< is naturally defined, and its 

domain is A n dom(?/). If x C co is infinite, then ?/ [* x means something else: 
it is obtained by enumerating x — {xk \ k G w} in increasing order, and setting 
(rj f x) — /J where /^(fc) = rjs(xk) for every <5 G dom(?/). 

We shall define some properties of ladders (in fact, of =* equivalence classes). 

DEFINITION 2.2. Let rj be a ladder over S. 
1. We say that rj is club-guessing iff for every club C C w, there is S e S such 

that [77,5] C* C. (So. in this case, S G C, and hence dom(^) is stationary if 7̂ is club 
guessing.) For brevity, we may use the term guessing instead of club-guessing. 

2. We say that rj is strongly club guessing (or just strongly guessing) iff for any 
club C C co\ for some club D, if 5 G D n 5 then [>/,>-] C* C. If?/ is strongly guessing 
and J) <fj, then clearly J> is also strongly guessing. (Be careful: if /7 < rj and >7 
is strongly guessing, you cannot infer that J> is guessing, unless ]> is non-trivial.) 
The trivial ladder is (trivially) strongly guessing, and hence we cannot say that a 
strongly guessing ladder is always guessing. A strongly guessing non-trivial ladder 
is, of course, guessing. 

3. We say that a club set C C <x>\ avoids rj iff for every S G S (except a non-
stationary set), [ns] n C =* 0. 

4. We say that rj is avoidable iff some club set avoids rj. If every ladder over S is 
avoidable, then we say that S itself is avoidable. Hence, in particular, if S is non-
stationary, then S is avoidable. Remark that if rj is avoidable, then rj is non-guessing. 
So rj is strongly guessing and avoidable iff rj is trivial. The collection of all avoidable 
sets forms an ideal which will be shown to be normal in the following subsection. 

5. Maximal ladders. Suppose that rj is some strongly guessing ladder over S. and 
X 3 S is a subset of a>\. If every ladder over X and (almost) disjoint from rj is 
avoidable, then we say that rj is maximal for X. In such a case, for every X' C X. 
rj r X' is maximal for X'. The trivial ladder 0 is trivially maximal for any avoidable 
set. Our terminology may be misleading because a maximal ladder for X is not 
necessarily defined over X, it is rather the maximality which is for X. Thus, iffj is 
maximal for X, then ju <\ rj for every strongly guessing ladder /Z over a subset of X. 
(Because Ji \ rj is, in that case, strongly guessing and disjoint from rj. and is hence 
avoidable. Thus dom(/7 \ rj) is not stationary, and hence Ji < rj.) Hence if both Ji 
and rj are maximal for X, then /7 =* 77. We denote this unique ladder, maximal for 
X.byX(X). 

It is easy to see that if rj is maximal for X and Xa C X then rj \ X0 is maximal for 
X0. 

2.1. Ideals connected with ladders. We are going to define four ideals on a>i: the 
ideal of non-guessing restrictions, denoted Ijf. the ideal of avoidable sets, denoted 
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/o. the ideal of maximal guesses, denoted I\, and the ideal of bounded intersections, 
I{S). Then we will prove that all are normal ideals. 

DEFINITION 2.3. 

The ideal of non-guessing restrictions. Let rj be a guessing ladder over X. The 
collection of all subsets S C w\ for which rj \ S is not guessing is a proper, normal 
ideal, denoted /^. 

The ideal of avoidable sets. S £ /o iff every ladder system over S is avoidable. 
The ideal of maximal guesses. The ideal I\ is the collection of all sets X C co\ such 

that there is a maximal ladder for X. 
So S £ I\ iff there is a strongly guessing ladder system rj such that dom(?/) C S 

and any ladder over S and disjoint from 77 is avoidable. As said above, this unique 
ladder rj is denoted #(S). (Uniqueness is up to =*, where non-stationary sets and 
finite differences do not count.) 

In case S £ IQ. then S £ I\, and #(S) is the trivial (empty) ladder 0. So 

(1) ftC/t. 

77ie ideal of bounded intersections. Let S = (S, | / £ C02) be a collection of H2 
stationary subsets of co\ such that the intersection of any two is non-stationary (we 
say that S is a sequence of pairwise almost disjoint stationary sets). The ideal I(S) 
consists of those sets H C u>\ for which 

[{/ £ <x>2 I H n Si is stationary}| < Ni

seis in /(S) will also be called S-small sets. It may seem that I(S) is not connected 

to ladders, but we will later show the consistency of I(S) — I\. 

LEMMA 2.4. All four ideals are normal. 

PROOF. An ideal on coi is said to be normal if it is closed under diagonal unions. 
The ideal of non-guessing restrictions. Let rj be a guessing ladder over X. To prove 

normality of /^, suppose A$ £ Ijj. for £ < <yj. Thus, for every <J there is a club set 
Q such that J 6 /I* n X => [rjs] <£* Q . Let 

def 
/I = V4€,U]/fc; = {a £ co, | 3£ < a ( a £ ^ ) } 

be the diagonal union, and C = A^e,U| Q be the diagonal intersection of the club 
sets. Then A £ Ijf because fort) £ An X, [nj] <f_* C. 

The ideal of avoidable sets. We check that IQ is normal. Suppose S$ £ h for 
C £ to], and let S = V|€ a j ,5^ be the diagonal union. Let rj = (tjs | 8 £ S) be any 
ladder over S, and we will show that rj is avoidable and hence that S £ 70- Indeed, 
a slightly more general fact will be used later: 

If S<j C co 1 are arbitrary sets, 5 = V<j€tui S%, and 77 is a ladder over S such 
that 77 f S^ is avoidable for every £ £ coi, then 7/ is avoidable. 

To see this, let Q for <5 £ a>\ be a club set that avoids rj f 5«j, and let C = Ac-ero| Q 
be their diagonal intersection. Then C avoids rj, as can easily be checked. 

The ideal of maximal guesses. We prove that I\ is normal. So suppose that S? £ I\ 
for £, £ coi are given, and 5 = V^6ra, 5^ is their diagonal union. We must prove that 
S e I\. First we claim that the sets {S% j £, € coi} may be assumed to be pairwise 
disjoint. Indeed, define S? = .% \(J{S?/ I <T < 0 - T h e n s = v^*> a n d t h e s e t s s! 
are in I\ and are pairwise disjoint. So we do assume now that the Si's are pairwise 
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disjoint. For every £ £ coy, x(S^) is a strongly guessing ladder over its domain 
S° C Ss (and S° = 0 when 5^ £ /<,)• Define S° = V4€a,,S£. Clearly 5° C 5. For 
S e S° define ^ to be x(Sz)s f° r the (unique) £ < <S such that (5 e S". 

CLAIM. 77 = (rjs | (5 £ S°) is maximal for S, and hence S £ I\. 

PROOF. We first prove that rj is strongly guessing. Well, if C C a>\ is club, find for 
each £ £ a>i a club set £^ such that for <S e Di n S°, (^(S^))a C* C. Now define 
D = A^gcujD.j to be the diagonal intersection. It follows that for every d e 5 ° n Z ) , 
[is] C* C. 

To prove maximality, assume ^ is defined on S and is disjoint from rj. Then 
JJ \ S( is disjoint from x(S() f ^ \ (<? + !)• Hence /7 f S^ is avoidable for every 
£ < eoi, and by the proof of normality of Jo, ]" is avoidable. H 

77ze idea/ of bounded intersections. Let 5 = (S,• | i £ £02) be a collection of 
pairwise almost disjoint stationary subsets of a>\ defining l(S). If H^ for f £ io\ 
are in 7(5), then there is a bound y'o < a>2 such that for every jo < j < 002 Sj n H^ 
is non-stationary. Hence VjSy r\ H^ = Sj n V//{ is non-stationary, and thus 
V 4 F 4 e 7(5). * H 

2.2. y4(S,^). In this subsection we formulate a statement, A(S,fj), andshowthat 
it implies I(S) = I\. The consistency of A(S,rj) will be proved in the subsequent 
sections. 

DEFINITION 2.5. A(S, rj) is the conjunction of the following six statements: 

Al S — (Si I i £ W2) is a sequence of pairwise almost disjoint stationary subsets 
of a>\. rj is a ladder system, and U,<C02 & Q dova{rj). 

A2 Every ladder disjoint from rj is avoidable. (It immediately follows that if ~fi is 
strongly guessing, then JJ \ rj is both avoidable and strongly guessing and thus 
77 \ rj =* 0, so that /Z < rj.) 

A3 For every i < co2, Si £ I\. In fact, #(<S,-) is defined over Si (and it is a non-
trivial strongly guessing ladder over St such that any ladder over a subset of 
Si and disjoint from x(Si) is avoidable). It follows by A2 that % (Si) < rj. 

A4 If X C co! is such that X n £,• is non-stationary for every i < a)2, then A' is 
avoidable (equivalently, in view of A2, rj \ X is avoidable). 

A5 If X C cui is not S-small, p is a ladder over X and p~ <rj, then there exists 
z < C02 such that Si C X and #(£,•) < ^. 

A6 For every z £ ct>2 either (%(Si),rj \ Si) is clearly not encoding, or else 
r = d(x(Si),rj \ Si) is defined, and in this case r = d(x(Sj),rj \ Sj) for 
unboundedly many y"s. The meaning of this statement is clarified later in this 
subsection. 

A'(T ,rj) is the following statement: T = {7} \ i < 002) is a sequence of pairwise 
almost disjoint stationary subsets of co\. For every i < a>2, Tj £ I\, and if 5, denotes 
dom( / ( r , ) ) , then A(S, rj) holds for 5 = (St \ i < w2). 

We first collect some simple consequences of the first five statements of A(S,rj). 

LEMMA 2.6. The first five statements ofA(S, rj) imply that: 

1. If~p < rj is avoidable, then dom(^) is S-small. 
2. /o C I(S). 
3. IfJJ < rj is strongly guessing, then dom(/l) is S-small. 
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4. Actually: If ju is strongly guessing, then dom(/z) is S-small. 
5. /, - I{S). 

PROOF. TO prove 1. assume Jxrj but X = dom(/?) is not S-small. Then A5 implies 
that, for some / < coj, / (S,-) <• ~P- Hence p~ is not avoidable (by A3 which says that 
x(Si) is (strongly) guessing). 

We prove 2. If X e IQ (X is avoidable) then any ladder system over X, and in 
particular tj \ X, is avoidable. Hence (by item 1) dom(^ \ X) is S-small. Thus X 
is S-small. (Because X = X0 U Xx where X0 = X n |J, & and Xx = X \ X0. Xx is 
clearly S-small, and X0 = dom(rf \ X).) 

To prove 3, assume that dom(/Z) is not S-small. Split Ji into /71 and Ji2, two 
"halves" denned by taking (//' ),>- to be an infinite co-infinite subset of fig (for every 
S G dom(/7)). and letting Ji2 =Ji\ji{. If X = dom(/Z) is not S-small, then, by A5 
applied to /71, there is i such that S, C X and 

(2) x(Si)<Jil. 

Since Ji is strongly guessing, Ji2 \ S, is strongly guessing (and non-trivial as its 
domain is the stationary set S,), but formula (2) shows that Ji2 \ S, is disjoint from 
x(Si), and this contradicts the maximality of x(Sj) for S,. 

To prove 4, suppose that J> is a strongly guessing ladder over X. To show that 
X G / (S) , we reduce this claim to the case that J> <lrj. Look at ̂  \ rf and its domain 

X{ = {S G X I I/^] \ [%] is infinite}. 

By A2, /? \ rj is avoidable. But, as /) is strongly guessing, any subladder of p~ is also 
strongly guessing, and hence Ji \ rj is strongly guessing and avoidable, which could 
only be if X\ is non-stationary. 

Now set Xi = X \ X\, and JL = J> [* X<±. Then Ji < rj is strongly guessing, and 
hence by the previous item dom(/Z) is S-small. 

Finally we prove 5. If X € I\ then X = X0 U X\, where Ao € /o and Xi is the 
domain of a strongly guessing ladder—namely x(X). Hence X G I(S) by items 2 
and 4. 

Suppose now that X G / (S) . By definition, there is y < a>2 such that, for / > y, 
X n Xj is non-stationary. Let (Tj | /" G a»i) be an <x>\ -enumeration of the collection 
{St | i < y). Then each Tj G I\ by A3. Let T = V; e c 0 | Tj be the diagonal union. 
By normality of /,, T G I\. Hence X n T G / i . But X \ T has only countable 
intersections with each Tj (for in fact (X \ T) n Jy C j ' + l ) , and hence, certainly, 
has non-stationary intersections with every S,, and is thus in IQ (by A4). As /o C /] 
(by Formula (1) in Definition 2.3), X G I\. H 

We will prove next that if A(S, rj) holds, then rj is determined, up to an I\ set, as 
that ladder rj for which (3S)A(S, rj). 

LEMMA 2.7. If the first five statements hold for A(S ,rjy) andA(T,rj2), then I(S) — 
I(T) = /,, a ^ { ^ G co! | [^j] ^* [rj2]} eh. 

PROOF. Define S1 = dom(rjl \ rj2), and S2 = dom(^2 \ ^ ' ) . We claim that 
Sl,S2 G / ] . This implies the lemma because S1 U S2 G I\ follows. By symmetry, it 
suffices to deal with only one of these sets, for example with S1. 
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Set /? = rj1 \ rj2 (so S1 = dom(/?)). Since it is disjoint from rj2. ~p is avoidable (by 
item A2 of A{T.rj2)). Yet. ~p < rj1. and so. by Lemma 2.6(1). dom(/>) is S-small. 
which, in view of Lemma 2.6(5), implies that S1 € I\. H 

Whenever A(S.rj) holds, a set of reals can be decoded which we denote code( S .rj). 
We will encode reals (subsets of to) by taking subladders of rj appropriately chosen. 
Suppose that a is a cofinal subset of order-type co of some S < co\. Identifying a 
with co. any a' C a corresponds to a subset of co. This encoding of reals as subsets 
of a is too crude, because if we take end segments of a and a' then a different real 
may be decoded. Since we shall be able to recover the ladder rj only up to finite 
changes we must have a more stable decoding procedure. So we look for a function 
d that associates with every pair (a', a) as above some real d{a'. a) so that: 

If o\ =* 02 and a\ =* a'2. then d{a[.o\) = d{a'2.a2). 

The range of d should be all subsets of co. i.e.. for every a for every x C co there 
is a' Cir such that d(a', a) = x. It is not difficult to find such a function d. and we 
assume that the reader has picked one. (For example, you may look at the intervals 
of a formed by successive members of a' and take those cardinalities that appear 
infinitely often.) 

Now let a' < a be two ladders; we say that (a1, a) encodes the real r C co if. for 
every 8 £ dom((r'), ^([e^], [cal) = *"• We may just write d (a1, a) = r insuchacase. 

Not every pair a1 o er encodes a real. An extreme case is when, for every S\ ^ 52 

in dom(ff')- d(o's .as,) ^ d{a's ,a,52). We shall say in such a case that {'a'.a) are 
"clearly" not encoding. 

Now we can understand the meaning of A6. If A(S, rj) holds, we define 

code(S.rj) = {r C co \ r = d(x{Sj),rj \ Si) for some / e <x>2}-

Clearly if r £ code(S.rj), thenr = d(x(Sj),rj \ 5,-) for an unbounded set of / e W2-

LEMMA 2.8. If A(S,rjx) andA{T.rj2), then code(5.^') = code(7\^2). 

PROOF. Suppose that r £ codeiS.rj1) and let U C cot be the unbounded set 
of indices ;' such that r — d(x{Si).rjl \ Si). We must check that for some (and 
hence for unboundedly many) j £ co2. r = d(%(Tj).tj \ Tj). We know that 
[rjg] =* [Tjj] except for an /] set. and I\ = I{S) = I{T) (Lemma 2.7). That is. if 
H = {5 e co2 | P?]] 7̂ * [rj}]}, then / / £ / , . and hence H £ / (5 ) . Thus there is an 
index ;' £ U such that 

(3) H n St is non-stationary. 

That is, 

1. jjl \ St =* rj2 I Si (that is. [fjl
g] =* [rj2] for all S £ 5,. except for a non-

stationary set), 
2. d(x(Si),rjl \Si)=r. 

Now /(<S,) is maximal for 5, (a stationary set) and hence its domain St is not 
avoidable. So by A4 of A(f,rj2), for some j £ 002- X = S,• n T"/ is stationary. 
Hence ^(S,-) f X is maximally guessing (and non-trivial). Similarly x(Tj) \ X is 
maximally guessing, and thus 

*(sy) r x =* x(T/) r A-
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by the uniqueness of the maximal ladder over X (namely ^(Ar)). Since X n H is 
non-stationary (by (3) above), 

t \ X =* f \ X 
and thus {x(Tj),fj2 \ Tj) encodes a real, and d(x(Tj),Jj2 \ Tj) = r. -\ 

§3. The consistency of A (S.tj). Our aim in this section is to prove the following. 

THEOREM. Assume that 2H|) = Hi and 2N| = N2. Suppose that T = (T, j i < a>2) 
is a collection 0/N2 pairwise almost disjoint stationary subsets ofu>\. andrj is a ladder 
system such that: 

(1) rj \ Tj is guessing [hut not necessarily strongly guessing) for every i < a>2-
(2) range(^) n T{ is empty for every i. 

Then there is a generic extension in which A'(T, if) and Martins Axiom hold. 

The extension is an iteration of the posets R{ji). and P(rj,C) described below. 
Before proving this theorem, however, we review some notions from proper forcing 
theory. 

3.1. Some proper forcing theory. This short subsection assembles some known 
definitions and results on proper forcing, such as a-properness and 5-properness for 
a stationary set S. Our notations and terms are taken (with some minor changes) 
from Shelah's book [6] (see also [1]). 

Recall that if P is a forcing poset and N -< //;. a countable elementary substruc
ture, then a condition q G P is N generic iff for every D G N, dense in P, every 
extension of q is compatible with some condition in D n N. A forcing poset P is 
proper is for some cardinal A, for every countable N < HA such that P e N, every 
p G P fl N has an extension that is N generic. 

DEFINITION 3.1 (of a-properness). Let a be a countable ordinal. A poset P is 
said to be a-proper iff for every large enough cardinal X, if (TV, \ i < a) is an 
increasing, continuous sequence of countable elementary submodels of HA such 
that P e No and (N, \ j < i) e Ni+\ for every i < a. then any p0 e P n NQ can be 
extended to q £ P that is A',-generic for every i < a. 

DEFINITION 3.2. Let S C co, be stationary. A forcing poset P is S-proper if it 
is proper for structures M such that M D OJ\ £ S. That is, P is S-proper iff for 
sufficiently large A, if M -< HA is countable, S.PeM. and M n a>\ G S then any 
p G P n M can be extended to an M-generic condition. 

A stronger property is that of a poset being 5-complete. It means that whenever 
M < HA is countable, with P, S G M, and M n co\ G S, then every increasing and 
generic co-sequence of conditions in P D M has an upper bound in P. (A sequence 
of conditions is generic if it intersects every dense set of P in M.) 

The notion (E, a)-properness is defined in Shelah [6, Chapter V]. Just as proper-
ness is equivalent to the preservation of stationarity of S^a(ju), so is (is, a)-properness 
equivalent to the preservation of an appropriate notion of stationarity defined there. 
However, for our article, a notion of somewhat less generality suffices. 

Let V" be the collection of all increasing sequences of countable ordinals. We 
write a = {a,• \ i < to) for a £ I"'. The club guessing property can be regarded as 
a notion of non-triviality of subsets of/'". 
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DEFINITION 3.3. 1. A family E C Im is stationary if for every club C C a>\ there 
is a £ E such that [a] = {at \ i e co} c C. 

2. Let E C Im be stationary. We say that the poset P is £-proper (or (E,co)-
proper, to emphasize that this notion is related to co-properness) iff for every suffi
ciently large cardinal X, whenever M,- -< Hx, for; < co, are countablewith E, P £ Mo 
and are such that M, e Mi+\ for all i < co, if 

(Mi n co\ \i<co) e E 

then any p e P n Mo can be extended to a condition which is M,-generic for every 
i < co. 

In Shelah [6] it is proved that the countable support iteration of posets that 
are 5-proper (a-proper or Ts-proper) is again S-proper (a-proper or Ts-proper, 
respectively). Also, if P is 5-proper (Ti-proper). then, in Vp, S (respectively E) 
remains stationary. 

LEMMA 3.4. If E C Iw is stationary and P is an E-proper poset, then E remains 
stationary in Vp. 

PROOF. Let D be a name in Vp forced by some p e P to be a club subset of co\. 
Define an co\ sequence (Mi \ i G cx>\) where M, -< Hx are countable with (M, | / < 
j) 6 Mj+\, and such that p,P,D e M0. The set C = {M, n co\ \ i € co\) is closed 
unbounded in co\. Since E is stationary, there is a e E such that {a„ | n G co} c C. 
Then a„ = M,(„j n coi and N„ = M,-(„) is an increasing sequence of structures with 
Nn e Nn+\ and such that (N{ n coi | ?' < co) e £". So there is an extension q € P 
that is N,-generic for every / < co. So for every i q\\-ai 6 I>. (Because c/ forces that 
D is unbounded below a\ = coj'.) Thus ^lh[cf] C D, as required. H 

We shall define now two subsets of 7W, £^ and D^. which will be used later. 

DEFINITION 3.5. 1. Let rj be a ladder system and S = dova(rj). Define E-pj <z Im 

by 

a = (a,- | i < co) 6 £V 

iff 
a e 7™ and, for c5 = sup{a, | i < co}, S e 5 and a is an end segment of ^ 
(i.e., for some &, ̂ (fc + j) = on for all ;"s). 

It is obvious that Ejf is stationary ifftj is club guessing. Thus, if?; is club guessing 
and P is 7%-proper, then rj remains a guessing ladder in Vp. 

2. The set Dj C 7" (7) is for disjoint) is defined for any ladder JI as follows: 
a 6 7)̂ - iff for d = sup{a, \ i < co}, either S £ dom(/Z) or [a] n [/i,?] =* 0. If Ji is 
disjoint from rj, then 7i^ C 7)^. Thus, in this case, if P is (Dj. co)-proper, then P is 
{Ejj, co)-proper as well. 

3.2. The building blocks. Two families of posets are described in this subsection: 
R(JL) and P(rj, C). 

The poset R(~ju). Let Ji be a ladder over a set 5* C coi. The poset R(ju) introduces 
a generic club to coi that avoids JI. So, naturally, 

c e R(ji) 

iff 
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c C a>\ is countable, closed (in particular max(c) G c), and for every 
8 G S. [fis] n c is finite. 

The ordering on R(ji) is end-extension. 
The cardinality of R(jl) is the continuum. It is clear that /?(/Z) is coi \ S complete. 

A short argument is needed in order to prove that it is proper. 
Observe first that for any condition q G R(ji) and dense set D C R(jj), if 

ao = max(</) then there is a closed unbounded set of ordinals y < co\, ao < y, such 
that for every a\ with an < a\ < y there is an extension q' G D such that q' c y 
and a\ G q' is the successor of ao m l'• For example, the club set can be obtained 
by defining a continuous, increasing chain (Na | a G a»i) of countable elementary 
substructures of some H) with /Z and the dense set D in JVo. Then {co\C\Na \ a G coi) 
is as required. 

Suppose that a countable M <Hi and a condition /70 G R{ji)C)M are given. We 
want to define an increasing, generic sequence of conditions /?, extending po so that 
for <5 = MC\w\,p = U/&u/?,U{<5} isacondition. ThecaseMncoj ^ S is trivial and 
so assume that 8 = M C\co\ G S. The problem is that we may decide infinitely often 
to put fi#(n) in \Ji /?,-, and then p is not a condition. The preliminary observation 
enables the construction of the sequence /?, in such a way that p n [u,s] C /?0 is finite. 
The point is that when we need to extend a condition pt into a dense set D, we first 
consider the club set formulated above (do it in the substructure M) and find a limit 
ordinal y in the club that is in M. Now a\ < y is chosen so that the interval [a\, y] 
is disjoint to [jus]. (The fact that [jus] is only an co sequence implies the existence of 
such an ordinal.) 

R(jl) is not co-proper. For suppose Mi, i < co is an increasing sequence of 
elementary submodels such that a, = M, n a»i G [^] for infinitely many i% where 
S = sup{a, | i < co}. Then no condition can be generic for all of the M,-'s, 
However, if 8 $• S or (M, n u>\ \ i < a>) is disjoint from [jug] (or has only a finite 
intersection) then there is no problem in finding such a generic condition. That is, 
R(ji) is {Dji, co)-proper. In fact, if p, is any sequence of increasing conditions where 
pi G Mj is Mi-i generic, then \Ji pt gives a condition. This property is stronger 
than (Dj, co)-properness, but in application we shall mix proper forcings with R{ju) 
forcings and hence the iteration itself is {Dj, co)-proper. 

Hence we have the following which will be used in Lemma 3.9. 

LEMMA 3.6. Suppose that Ji is a ladder system and A,B C dom(/Z) are such that 
~ji \ AH B is not guessing. Then R{ji \ A) is E^B-proper. 

PROOF. Suppose that A, B C dom(TZ) are such that JI \ A n B is not guessing. 
Let C C w\ be a club set such that, for every 8 G A n B, [p$\ (£_* C. Suppose that 
M; < Hk for / < w are as in the definition of EJ\B properness and<5 = sup(M, ncoj | 
/ < co). So, E-p^B, R{JL \ A) G MQ. Hence A,BG M0 and thus C G Mo can be 
assumed. Then M, n a>\ e C for every /. Since (M, n co\ \ i < co) G E^B, 8 G B 
and \jig] =* {Mi r\a>\ \i < co}. Thus [ps] C* C and hence 8 (£ AC\B. So <5 ^ A 
and as /?(/Z f A) is coi \ /I complete, there is no problem in finding a condition that 
is M,-generic for every /. H 

The poset P(rj,c). Let tj be a guessing ladder over a stationary co-stationary set 
S. such that 
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S n range(^) is non-stationary. 

(See Definition 2.1 for range(?/).) Then, for any club set c Qw\. the poset P{rj. c) 
introduces a generic club set D c co\, such that for every S e D (1 S, [rjg] c* c. 
This may be viewed as forcing a club subset to the stationary set {S G 5 | [rj#] C* 
c } u ( c o i \ S ) . 

Accordingly, we define c? £ P(^, c)ifft/ C eoj is countable, closed (with max((/) G 
rf), and for every J g r f n S , fe] C* c. 

The order is end-extension. 
It is easy to check that any condition has extensions to arbitrary heights (as there 

are no restrictions on a>\ \S). The cardinality of P(tj, c) is the continuum. 
P(Tj,c) is not necessarily proper, because if, for d — M n (o\, [r/s] 2* <-'• then 

no M-generic condition can be found. Still, P{Tj. c) possesses two good properties 
which allows its usage: 

1. P{Tj, c) is {to\ \ 5)-complete (the proof of this is obvious). 
2. P(tj, c) is (Ejj, a>)-proper. (Ejf is stationary since Tj is guessing.) 

We check the second property — it is for its sake that the requirement that 
dom(^) n range(^) is non-stationary was made. So let (M, \ i < to) be an in
creasing sequence of countable elementary submodels of HA. with A/,- e M,+], and 
such that P(Tj, c),rj,c G Mo. Denote Si = M, n a>\. and S = sup{<5, | / < to}. 

The assumption is that (<5, | i < to) G Ejf, and the desired conclusion is that 
any p0 e P C\ Mo can be extended to a condition that is generic for every M,. So 
the assumption is that S G S and (St \ i < to) is an end segment of tjs- Since 
dom(rj) n ranged) is non-stationary, 5t 0 S (because Ma contains a club that 
is disjoint from this intersection), and it is easy to find (in M, + i) an M,-generic 
condition extending any given condition (using the (to\ \ S)-completeness). Thus, 
given po G P(rj,c) n Mo, we may construct an increasing sequence of conditions 
Pi G Mi, such that pi+\ is M,-generic. Then;? = {<5}U|J/<C0 pt ism P{rj,c) because 
[is] C* c follows from the fact that Sj G c for every i (as c G Mi). 

As a warm-up we shall present some simple models obtained by countable support 
iteration of the posets R(ji) and P(tf, c) just described. We assume 2N" = H) and 
2N| = H2 in the ground model. 

1. A model in which MA+2N° = N2+CO1 is avoidable. This is achieved by iterating 
c.c.c. posets to obtain Martin's Axiom, and posets of the form R{~p) (varying over 
all possible ladders /7 over co\). Countable support is used in this iteration of proper 
forcing posets, and hence the final poset is proper. The final poset satisfies the 
N2-chain condition (see [6, Chapter VIII] or [1]). The length of the iteration is a>2 
so that each possible c.c.c. poset of size Nj and each ladder ~jx are taken care of at 
some stage. 

2. Given a guessing ladder tj such that dom{rj) n ranged) = 0 a model of MA + 
2H° = N2 can be obtained in which Tj is strongly guessing. This time posets of type 
P(rj, c) are iterated (varying club sets c C to\) as well as c.c.c. posets. The iteration 
is with countable support and of length a>2 as before. Put S = dom(rj). Then 5 is 
stationary (as Tj is guessing) and co-stationary (as S n range(^) = 0). Since each 
poset Pitj, c) is co 1 \ S complete, and each c.c.c. poset is obviously a>\\S proper, we 
have here an iteration of co\ \S proper posets. Thus the final poset itself is VJ\ \ S 
proper and co\ is not collapsed. Moreover, since the iterands (both P(Tj.c) and 
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the c.c.c. posets) are Ejj proper, the final iteration is E-^ proper. Hence rj remains 
guessing at each stage and in the final extension. It is strongly guessing since we 
took explicit steps to ensure this. 

3. Now we want to combine 1 and 2. We are given a guessing ladder system rj 
defined over a stationary co-stationary set T, such that T n range(^) = 0, and we 
want a generic extension in which rj is maximal for a>i. For the iteration, decompose 
a>2 into three sets 002 = J U K U / of cardinality K2 each. At stage a < a>2 of the 
iteration, supposing that Pa has been defined, define the poset Qa in VPa as follows: 

(a) If Q G / . then Qa is a c.c.c. poset, and the iteration of all posets along J 
guarantees Martin's Axiom. 

(b) For a e K, Qa will be of type R{]l) where jl s VPa is a ladder system disjoint 
from rj. R{ji) is proper and it is (Dj, to) proper. Hence as Ejf C D -̂, R(jl) is 
Ejj proper. 

(c) For a e I, Qa will be of type P(rj.c) where c is a club set in VPa. These posets 
are C02 \ T complete, and Ejj proper. 

Any of the posets along the iteration is either proper or a>2 \ T proper (namely, the 
P(rj. c) posets which are Wz\T complete). So the iteration itself is w\\T proper, 
and thus a>\ is not collapsed. Moreover, the posets are Ejj proper, and hence rj 
retains its guessing property in the extension. 

3.3. The iteration scheme. Recall that our aim is to prove the following theorem. 

THEOREM 3.7. Assume 2H° = Hi and 2^ = K2. Suppose: 

(1) A sequence T = (Tt \ i e W2) ofpairwise almost disjoint stationary subsets of 
a>\. (Almost disjoint in the sense that T; fl Tj is non-stationary.) 

(2) A ladder system rj such that: 
1- \j{Ti I ' 6 C02} Q dom(?7), andco\ \ dova(rj) is stationary. 
2. For every i.rj \ T, is club guessing. 
3. dom(rj) n range(^) = 0. 

Then there is cofinality preserving generic extension in which A'(T, rj) andMA+2H° = 
N2 hold. (The definition of'A'(T', rj) is immediately after Definition 2.5.) 

PROOF. It is not difficult to get T and rj as in the theorem, and the following section 
contains a generic construction of such objects. Here we just assume their existence 
and prove the theorem. The generic extension is made via P = PW2, obtained as 
an iteration. (Pa \ a < 02), with countable support of posets of cardinality Hj. At 
successor stages, Pa+\ — Pa * Qa> where Qa £ VPa is one of the following three 
types. 

(1) A c.c.c. poset. (To finally obtain Martin's Axiom.) 
(2) A P(o. c) poset, where a e Vp" is a guessing ladder such that a <3fj, and 

c e V" is a club set. Recall that P{a,c) introduces a generic club subset D 
such that S e D n dom((j) implies og C* c. We have checked that this poset is 
(cwi \ dom(ff))-complete, and (Ew. co)-proper (as dom(^) n range(?/) = 0). 

(3) The third type of iterated posets is R(ji) where jl e VPa is a ladder system. 
This forcing makes ju avoidable. We have seen that R(jl) is proper, (Dj,co)-
proper, and (wi \ dom(/Z))-complete. 

Each iterated poset Qa is (io\ \ dom(^)) proper in VPa. Hence the iteration itself 
is (co\ \ dom(?7)) proper, and it satisfies the a2-c.c. 
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We must specify how to choose the posets Qa for the iteration. Every Pa will 
have cardinality < H2 and will satisfy the N2-C.C. When we say that a name in Vp" 
satisfies property $, we mean that it is forced by every condition in Pa to satisfy 
4>. We say that a VPa name of a subset of <x>\ is standard iff it associates with every 
/? e m\ a maximal antichain of conditions that decide whether /? is in this subset 
or not. Every subset of at\ in VPa has (an equivalent) standard name. For every 
poset P of size H2 that satisfies the K2-C.C., fix an enumeration {E(P, y) \ y < 0J2} of 
all standard names in Vp of subsets of a>\ and of ladder systems. Thus any ladder 
or subset of co\ in VPa has a name of the form E{Pa,y) for some y < co2. Fix a 
natural well-ordering of the pairs {{a, y) \ a.y < CO2} that has order-type coi- So 
each (a, y) has its "place" in (02. This will serve in the choice of Qa. 

To define the iteration, we partition a>2 (in V): 

C02 = JUKULU (J{/,- I i < co2}, 

where each set in this partition has cardinality H2. The type of Qa depends on the 
set in this partition that contains a. 

For a € / , Qa is a c.c.c. poset of cardinality Hj, and the iteration of these posets 
in J shall provide Martin's Axiom. By now this is so standard that no further details 
will be given. 

For a G K, Qa will be of type R(~p). where ~ju e Vp" is a ladder system disjoint 
from rj (namely, JL is a name forced by every condition to be a ladder-system disjoint 
from rj). The final result of iterating these posets along K is that, every ~p e Vp 

disjoint from rj is avoidable in Vp. Thus property A2 of A'(T, rj) can be assured. 
Before going on, let's discuss the problem involved in the direct approach to 

obtain A5 and why we do not get A(T,rj) but rather A'{T,rj) (namely A(S,fj) 
where 5", C Tt). A possible approach to A5 is to consider each possible ladder ~p < rj 
such that X = dom(/?) is not T-small, and to find for this ~p some / e (02 such that 
X n Ti is stationary. Then, if possible, to transform ~p \ X D T( into a maximally 
guessing ladder. For this to have any chance, it must be the case that Jj \ T, is 
guessing. Yet it is possible that "p \ Tt is non-guessing for every /. In this case we 
must shrink the Tj's so as to make X S-small. This shows the need for defining 
subsets Si C Ti. But now A4 causes a problem because, if X C a>\ is such that in 
Vp X n Si is non-stationary for every i < a>2, then we must be able to identify this 
X at some intermediary stage of the iteration so as to make rj \ X avoidable. Yet, as 
the St are not yet all defined in any intermediate stage, it is not clear how to identify 
these X's. 

We describe now in general terms how the sets /, from the partition will be used in 
the iteration. For every i < a>2 let a{i) be the first ordinal in /,. A stationary subset 
Si C Tt and a guessing ladder a' over 5, will be defined in VP*'K The iteration 
of the posets Qa for a e /, will make a' maximal for Ti% and will achieve A3 by 
establishing/(J,-) = a1. Finally, in Kp, A(S,rf) will hold for 5 = (5, | i e co2). 

To define S,- and a1 we assume a function, p, which assigns to any a of the form 
a = a(i) a name p{a) € VPa that is one of the following. 

1. If i is an even ordinal then p(a{i)) is a name of a real in Vp". The complete 
definition of p is given in the following section where it is used to define the 
encoding of the well-ordering of reals. Here we only assume that p(a) is 
defined. 
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2. If / is an odd ordinal, then p(a(i)) is determined as a name of the ladder 
system p{a), defined as follows in Vp". With respect to the well-ordering of 
names in Vp<<. p(a) is the least ladder p <j Tj that is not of the form p(a') for 
a' < a, and is such that for D = dom(]j) 

Tj I D H Tj is guessing. 

Suppose that a = a(i). Instead of defining the names Si and Qa directly in VPa, 
we let G C pa be L-generic and we shall describe the interpretations of S-, and 
Qa. We will later see (Lemma 3.9) that Tj \ Tj remains guessing in V[G]. In V[G]. 
collect all sets X C co\ such that 

1. a standard name of X appeared before a in the well-ordering of the names (i.e., 
for some a' < a and y < coj, {a'-, y) is placed before a in the well-ordering of 
a>2 x CL>2- and E(Pai.y). the yth name in Vp«', gives X), and 

2. X is such that rj \ (Tj (~l X) is not guessing (i.e., Tt C\ X e Ijf). 

Let (X* | c, < u>\) be an enumeration of these sets. Take their diagonal union 

(4) ^v^nr,), 
Then A e / f . Since // f 7} is guessing in F[G], T\=Ti\A£ % (that is, Tj\T[ is 
guessing). (The reason for this specific definition of/I and T7/ will only be apparent 
in the proof of item A5 in Vp'.) 

Now />(a) is either a real or a ladder system in L[G]. Accordingly the definition 
of Si and a' is split in two. Suppose that p(a) is a real r C to in V[G]. We want to 
encode r. Define St = T-, and let CT' < tj f 5", be a ladder system over S, such that 

d(a'.rj \ St) = r. 

Since Tj \ S,- is guessing and CT' < ^ f 5,- has domain 51;, CT' is also guessing. 
Suppose next that a = a{i) for ; an odd ordinal and ~p = p(a) is (in V[G]) 

a ladder over X = dom(/7) (such that p <\Tj, and Tj \ X <1 Tj is guessing). Then 
Tj \ X n Tj is guessing, because 7", \ T[ G 7̂ -. It follows that ~p \ X n T/ is guessing 
as well, because /J < ^ and I n r / C dom(/?). In this case define 

Si = x n 7 '̂. 

and define 

CT' < /J f S, so that (W ,Tj [• 5,) is clearly not encoding. 

The iteration along /, builds up the properties of W' and establishes x(Ti) —W 
in K^. For this, the posets Q^, for £ e /,-, are of two types: 

(1) />(CT', c). where c "runs" over all possible clubs. This ensures that a' becomes 
strongly club guessing in Vp. To enable the use of P(a',c) we rely on the 
assumption, proved later to hold, that ~al remains club guessing at each stage. 

(2) /?(//), where JL "runs" over all possible ladders over St that are disjoint from 
a1. This ensures the maximality of a1. 

To satisfy item A4 (in the definition of A(S,Tj)), every X must be made avoidable 
whenever all the intersections X n Si are non-stationary. It suffices to show in such 
a case that the ladder Tj \ X is avoidable to conclude that X is avoidable, because 
any ladder disjoint from Tj is necessarily avoidable in Vp. It is the iteration along L 
that achieves this, by forcing with posets of type R(Tj \ X) as follows. 
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Given £ e L and a generic filter G C Pj, we will define gf in K[G]. For z < C02 
such that a( /) < £, the sets S,- have been defined. For every i < co2 define 

s*=\Si i f a ( z ) < £ 

1 T, otherwise. 

Using the well-ordering of standard names, take the least set X C to\ (if there is 
one) that was not taken before at a stage in L, such that 

(5) Vz < 03jr\ \ X Pi S* is not guessing. 

Then define Q^ to be R(rj \ X) (or a trivial poset if no such X exists). 
This ends the definition of the iteration, but it is not yet clear why items A4 

and A5 hold in VF. To prove A4 we shall first prove that if 

(Vz < (02)X n Si is non-stationary in Vp, 

then (5) holds at some stage Vpz, ( e i , and hence rj \ X is avoidable in the next 
step of the iteration. To see that this is indeed the case, we need the following pivotal 
observation. 

LEMMA 3.8. Suppose G C PWl is V-generic. Ify<a>2 and]} G V[G \ y] is a 
ladder over X such that, in V[G \ y] p~ <\ rj and 

(6) \{i £ a>2 \ rj \ X Ci T, is guessing}] = H2. 

Then there is i such that Si C X n T\ and a' < ~p. 

PROOF. The proof of this lemma depends on the fact that for any i (with a(z') > y) 
such that rj \ X n Tt is guessing in V[G \ y], rj \ X n T, remains guessing in 
V[G \ a(i)] as well. Thus, as the turn of ~p cannot be delayed u>2 many times, at 
some stage a = a{i), p~ = p(a) holds, and then Sj ~ X D T- and a' < p~ \ 5, were 
defined in V[G \ a]. -\ 

Now we can prove item A4 in ^ t ^ ] . For this, let X C co\ be such that (Vz < 
co2)X n Sj is non-stationary. We will show that, at some stage £ G L, the poset 
i?(?7 I" X) was taken as Q^. If, for some y < C02, (6) of Lemma 3.8 holds in V[G \ y], 
then Sj C X contradicts the fact that S, is stationary. Hence Formula (6) never 
holds, and for y such that X G V[G \ y] there are only boundedly many j's for 
which rj \ X (~) Tj is guessing. So let y < jo < co2 be such that if rj \ X n 7; is 
guessing, then 7 < y'o- Since, in K[G], X n 5, is non-stationary for every j < co2. 
there is a stage j \ such that for every j < j 0 , X n 57 is non-stationary in F[G \ j \ \ . 
Thus, for C > j \ , in F[G \ Q, for every z < a>2, if' < 7o then S, is defined (that is, 
ot{i) < 0 and X n 5, is non-stationary, and hence 7̂ f Z n 5, is non-guessing, and 
if' > 7o» then ?7 f X n 7", is non-guessing. But this is exactly the condition required 
at stages £ G L to force with /?(?/ f Z) . 

Finally, we turn to prove item A5. So let ~p <\ rj with X = dom(^) be given in the 
generic extension V[G]. Then for some y < a>2,7> 6 ^t^1 f ?]• a n ^ a name of X 
appeared before y in the well-ordering of names. 

Case 1: In V[G \ y\. There is z'o < co2 such that, for every i > z0, cc(z') > y and 

z/ f X n T, is not guessing. 

Then, in defining St for i > i0, a(i) > y, and the set X appears as some Xi (in 
Equation (4)), and hence X n S{ is at most countable (it is included in £, + 1). Thus, 
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in Case 1, X fl 5"; is non-stationary (and even countable) for a co-bounded set of 
indices. That is. X is S-small. (It is for this argument that, in defining St, we asked 
Si n A = 0.) 

Case 2: Not Case 1. Hence (6) holds in V[G \ y]. So, by Lemma 3.8 there is / 
such that Si C X D 7} and a' < ~p, which establishes A5. H 

Our proof relied on preservation claims that some ladders retain their guessing 
property, and we intend now to prove these claims. First, set T = \jTt. Then 
a>\ \ T is stationary by assumption, and all the posets used are (w\ \ T)-proper. 
(The c.c.c. posets are certainly proper. The P(a,c) posets (defined for a < rj) are 
(co\ \ dom(3r))-complete, and hence (w\ \ 7,)-proper. The R(~p) posets are proper.) 
This secures the preservation of Ni. 

LEMMA 3.9. rj \ Tj remains guessing in VPa for a = a(i). 

PROOF. This follows from the fact that the posets iterated at stages £ < a are all 
(%r,,«)-proper: 

1. The c.c.c. posets are always cu-proper. 
2. The R(ji) posets iterated at stages in K are defined for /7's that are disjoint from 

rj. In such a case Ejj C Dj. But we remarked that R(~ju) is (Dp, co)-proper. 
3. The P(a,c) posets introduced for £ < a are defined along i) only for y"s such 

that a (y) < a, and thence fork's such that WOtj \ Tj, implying the (Ejj^Tl,co)-
properness. (Since 7) n Tt is non-stationary, and ranged) n Tj = 0.) 

4. The R(ju) posets defined along /,• for a(j) < a are defined for ladders JJ over 
Tj. As Tj is almost disjoint from Tj. these R(jt)'s are (E^Tr co)-proper. 

5. The R(tj \ X) posets defined for ( £ L, £ < a, are such that Tj \ X n T, is 
non-guessing and the poset is thence (Ejj^Tr to)-proper (by Lemma 3.6). 

Then, we must also show that the guessing ladder a* < rj \ St defined in Vp«^ 
remains guessing at every stage in 7, (and thus the posets P(a\c) can be applied). 
This is basically the same proof, done in Vp«l>*> for the quotient poset P/Pa^ which 
is again a countable support iteration of posets as above that are EWi proper. H 

§4. The I2[N|1 well-ordering. The main theorem. Theorem 1.1, is proved in this 
section. So 2N° = Ni and 2H] = #2 are assumed in the ground model V. We need a 
sequence T of pairwise almost disjoint stationary sets, and a guessing ladder system 
rj: and we are going to define them first. 

Since we want to describe the K2 stationary sets in the language E2^1', we need 
a compact form of generation for such sets. This is provided by the following 
definition. 

DEFINITION 4.1. Let -a{0.1} denote the set of all functions f : {) —> {0,1} for 
fl < a. Ordered by function extension, this forms a tree. Define < a{0,1} similarly. 

A stationarity tree is a subtree T C <m'{0,1} of cardinality Hj such that: 

1. If f.g G T and a are such that / \ a = g \ a but f(a) ^ g(a), then 
/ - ' { l } n g - l { l } c a . 

2. T has K2 branches of length a>\ and each gives a stationary set (that is, the 
union of the nodes along any coj-branch forms a function f and / - 1 { 1 } is a 
stationary subset of a>\). It follows from item 1 that the intersection of any 
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pair of these stationary sets is countable. Thus the branches of T give K2 

pairwise disjoint stationary sets enumerated as 7", for i <coi. 
3. We also require that U = U,<0J2 Tt is a co-stationary set. 

The poset S. defined below, will produce a stationarity tree by forcing. 
Conditions in S will be countable trees, together with countable information on 

the family of branches. Define p £ S iff p = (Tp, f p) where: 

1. For some countable ordinal /? (called the "height" of p) Tp C -/'{0.1} is a 
countable tree of functions ordered by inclusion, and satisfying property 1. 
and such that Tp n ! i{0,1} ^ 0. 

2. f p is a countable (partial) map defined on a>2 that assigns to £ in its domain 
anode/pCO £ TpC\fi{QA). (dom(/p) is called the "domain" of p.) 

The extension relation p2 > p\ on S is defined by requiring that TP) = TP1 n 
-Q |{0,1} where c*i = height (7^,), and that fpXO extends fPl{£) f°r every £ e 
dom(/ / , l ) . 

If Pi, Pi £ ^ are such that TPI = TP2, and fPl agrees with f Pl on the intersection 
of the domains, then p\ and pr are compatible. Hence. CH implies the H2-c.c. for S. 

It is not difficult to prove that every condition has arbitrarily high extensions, and 
that for every £, s m2 the set of conditions p with £, e dom(/ / ) ) is dense in 5. Clearly. 
S is countably closed. If (p„ \ n £ w) is an increasing sequence of conditions, let 
p = sup{/?„ I n < co} be defined as follows. Tp = U { ^ „ | « £ « } U {/P(<J) | C £ 
dom(/' / ,J for some n e co} where /, ,(£) = U{/p„(^) | « £ co & t̂  e dom(/?„)}. 
That is, if a is the height of p, then T/ ,n

a{0.1} consists only of the functions f P{c) 
for cj £ dom(/?). If G C 5* is F-generic. define r = T(C) = \J{Tp \ p € G), 
Then F is a stationarity tree. Define / ( £ ) = U(//»(C) I P £ ^ } . Then /'(£) is an 
coi-branch of 7™, and ford ^ C,2 f{(\) ^ /(C2). Thus T has K2 many co(-branches. 
The fact that every f(£) gives a stationary set requires a simple density argument. 
We will check now the following: 

CLAIM 4.2. Any w\-branch ofT in V[G] is some f(Q. 

PROOF. Suppose, toward a contradiction, that p forces that 1 is a branch of 
T which is not f(() for any ( G co2- Observe first that since S is a-closed. any 
condition p can be extended to a condition q that describes x up to height(/>). Then, 
every condition p and c £ dom(p) have an extension 17 such that / ( / (£) diverges 
from the value of x determined by q. Repeating this procedure co2 times, we finally 
get an extension q of p with S = height(</) limit, and such that q determines x as a 
branch of Tq of height S which is different from each of the branches /<,(£)• Since 
Tq n,5{0.1} consists only of the branches of the form /<,(£)• the branch of x is not 
in Tq. Then q forces x C T \ 8. H 

We denote with T = (T, | ;' < 0)2) the collection of stationary sets thus obtained 
from the branches / ( £ ) of T. Let U = Ui<a2Ti. 

It is not difficult to show that an \ U is also stationary. If C is a name of a closed 
unbounded subset of a>\, find a countable M < H} with C e M. and define an 
M -generic condition p that puts S = MPicoi incoi \ U. 

Next, we obtain a ladder system rj over U such that range(^) n U = $. and 
rf \ T, is guessing for every i. It is possible to get this 7/ by forcing with the natural 
(countable) conditions. This forcing notion is countably closed, and. assuming CH. 
it has cardinality N]. 
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Now comes the main stage of the iteration. 
Using the construction of the previous section we obtain an extension in which 

A'(T.rf) + MA + 2N" = H2 hold, and such that for every i < a>2 either {(fhtf) is 
clearly not encoding (where a7, = x(T,) is the maximal ladder for 7}), or else it 
encodes a real r-,. and in that case r, = r7 for H2 many j's (any encoded real is 
encoded unboundedly often). The set of encoded reals, W = {rt \ i < C02}, is (in 
some natural encoding of pairs) our well-ordering of the reals. We must prove that 
this well-ordering is £2'N|1. After the extension, Claim 4.2 may no longer be true 
because new branches were added to T. However, the stationary sets Tt are Z2[H|1 
definable. They are exactly those stationary sets X obtained from a branch of T and 
such that X is not avoidable (any to \ -branch of T that is not one of the original / ( c ) 
branches is almost disjoint to any original branch and hence by A4 its stationary 
set is avoidable). 

We describe the S2^'l formula i//(x) that decodes this well-ordering (y/(x) iff 
x e %)• First consider the S2^'1 formula ip(To,JfQ) (with class variables 7b and rf0) 
which says that 7n is a stationarity tree, and rj0 is a ladder system such that A'(To,r}0) 
holds (where To is the collection of non-avoidable stationary sets derived from the 
branches of To). (The statement "there are H2 indices such that . . . " can be 
expressed by saying "there is no Hi-class containing all the indices such tha t . . . ".) 

This enables a E2[N|1 rendering of the formula x e «?: 

y/(x) = there exists 7° and Jf° such that <^(r°, rf°) and x <E code(r°, Jf°). 

Clearly, y/(x) holds for every x £ 'S (by virtue of the "real" T and fj), and we 
must also prove that if y/(x) then x eW. But this follows from Lemma 2.8. 

REFERENCES 

[1] U. ABRAHAM, Proper forcing. Handbook of set theory (Foreman. Kanamori. and Magidor, edi
tors). 

[2] U. ABRAHAM and S. SHELAH, A A^ well-order of the reals and incompactness ofL{QMM). Annals 
of Pure and Applied Logic, vol. 59 (1993)", pp. 1 32. 

[3] , Martin's axiom and Aj well-ordering of the reals. Archive for Mathematical Logic, vol. 35 
(1996). pp. 287 298. 

[4] L. HARRINGTON, Long projective well-order ings. Annals of Mathematical Logic, vol. 12 (1977), 
pp. 1-24. 

[5] R. B. JENSKN and R. M. SOLOVAY. Some applications of almost disjoint sets. Mathematical logic 
and foundation of set theory (Y. Bar-Hillel, editor). North-Holland. Amsterdam, 1970, pp. 84-104. 

[6] S. SHEIAH, Proper and improper forcing, 2nded.. Springer, 1998. 
[7] S. SHELAH and H. WOODIN, Large cardinals imply that every reasonably definable set of reals is 

Lebesgue measurable, Israel Journal of Mathematics, vol. 70 (1990). pp. 381-394. 
[8] R. M. SOLOVAY, a paper to be published in the Archive. 
[9] H. WOODIN, Large cardinals and determinacy. in preparation. 

DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE. 
BEN-GURION UNIVERSITY. BE'ER-SHEVA. ISRAEL 

E-mail: abraham@cs.bgu.ac.il 

INSTITUTE OF MATHEMATICS 
THE HEBREW UNIVERSITY. JERUSALEM. ISRAEL 

E-mail: shelah(a)math.huji.ac.il 

Sh:485

mailto:abraham@cs.bgu.ac.il
http://huji.ac.il

