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THE JOURNAL OF SyMBOLIC LoGIC
Volume 58, Number 4, Dec. 1993

ON CLOSED P-SETS WITH ccc IN THE SPACE w*
RVSZARD FRANKIEWICZ, SAHARON SHELAH, AND PAWEE ZBIERSKI

Abstract. [t is proved that—consistently —there can be no ccc closed P-sets in the remainder space w*.

A subset A = X of a topological space X is said to be a P-set if 4 = int(ﬂR)
holds for any countable family R of open neighborhoods of A. A point x € X is
called a P-point if the one-element set {x} is a P-set. In the case of the remainder
space w* = f[w]\w we may assume that R consists of open-closed neighbor-
hoods. Rudin in [R] proved that if CH (the continuum hypothesis) is assumed,
then P-points exist in the space w*. On the other hand, Shelah in [S] proved
that—consistently—there can be no P-points in @w*. In this paper we show how to
construct a model of set theory in which there are no closed P-sets having ccc
(every disjoint family of relatively open sets is countable) in the ultrafilter space w*.
The problem of the existence of such sets (Which are generalizations of P-points)
has been known for some time and occurred explicity in [vM] (see also [JMPS]
for more results on P-sets in this direction). In the proof we follow the method
from [S] of the construction of a model with no P-points. We note here that the
model from [S] does not work for our purpose. Actually, it is not difficult to see
that each P-point from the ground model becomes a closed ccc P-set in the final
model. A particular case of P-sets which are supports of measures on P(w) with
AP (the additive property) has been settled in [M], where the author shows that
there can be no such measures on P(w) (under CH, e.g., the Gleason space G(2%)
of the Cantor space is a ccc P-set in w* which carries no measure with AP).

§1. Itis well known that closed sets in w* have the form ({4 \w: 4 € F}, where
F is a filter on the set w (A is the closure of the set A < w in f[w]). Filters F
corresponding to closed P-sets are called P-filters and are characterized by the
following condition:

if A, € Fforn < w,thenthereisan A € Fsuchthat 4 =, A4,foreachn < w

(here A =, B means A\ B is finite).
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Thus, the dual ideal I = {®w\ A: 4 € F} has the following property:
(1.1) ifA, eIforne w,thenthereisan A € I suchthat 4, <, Aforeachne .

Further, the countable chain condition imposed upon F implies that I is fat
in the following sense (see [F-Z]):

(1.2) if A,el for new and lim,min 4, = oo, then there is an infinite
Z c wsuch that (), , A4, €l

neZ

Indeed, lete, = 4,\ 4, where A € lisasin (1.1). Since min A, are arbitrarily large,
we can find an infinite set Y < w such that the family {e,: n e Y} is disjoint. If
{Y,: o < ¢} is an almost disjoint family of subsets of Y, then the unions

S,={en:ne Y} o<,
are almost disjoint, and hence, the closures S} in the space w* are disjoint. By ccc
we have
S¥n({{B*BeF}=0
for some « and consequently S, € I. It follows that the union
U= U)o AN
neY, ne Yy neYy

isin I as a subset of S, U A.

For the rest of the paper let us fix a given ccc P-filter F and its dual I. We shall
define a forcing P = P(F).

A partial ordering (T, <), where T < w, will be called a tree if for each i € T the
set of predecessors {j € T: j < i} is linearly ordered and

i<;j implies i< jforalli,jeT.
We define a partial ordering for trees

T <, Siff (S, <g) is a subordering of (T, <;) and each branch of T contains
cofinally a (unique) branch of §.

There is a tree T, such that T, € I and T is order isomorphic to the full binary tree
of height w. Deleting the numbers < n from T;, we obtain a subtree denoted by T’
(we have T <, Ty for n < m). Let 7 consist of all the trees T € I such that

T<, Ty forsomene w.

Note that each tree T € J has finitely many roots.

DEerINITION. Elements of the forcing P are of the form p = (T, f,>, where

T, € 7 and f,: T, — {0, 1}. The ordering of P is defined thus
p<q iff T,< T,and f,2 f,.

Let {b,: o < c} be a fixed enumeration of all the branches of T;, in V. For a generic
GePletT, = UPEG T,and fo= UPGG /,- For each branch b, there is a (unique)
branch B, of T containing b, cofinally. We have B, = ( pec by» Where b7 denotes
the branch of T, extending b,. Define

X,={iew:ieB,and f;(i) = 1}.
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CLOSED P-SETS WITH CCC IN THE SPACE o* 1173

Since T, e for any p e P; hence, w\T,n A4 is infinite for each 4 € F. It fol-
lows that the sets

Dir={peP:3i>n[iebfand f,(i) = €]}

are dense for each A € F, ne w, « < ¢, and ¢ = 0, 1. Hence, X, intersects infinitely
each A4 in F, and B,\ X, has the same property. Thus, P adds uncountably many
almost disjoint Gregorieff-like sets.

§2. Let Q@ = Q(F) be a countable product of P = P(F). Thus, the elements
q € Q can be written in the form

q=<f%f1,...>, where {dm(f?), f1> ePforeachi < w.

By q™ we denote the condition {g;: i < w), where

{f?ldm(f?)‘"’ fori<n,
9: =

f? fori> n.

Here T™ is a tree obtained from T by deleting the numbers <n.
LeEMMA 2.1. For each decreasing sequence py = p, > --- there is a q and an infi-
nite Z <  such that

q<p™ foreachneZ.

PrOOF. Let T,; = dm( f?"), where p, = {f?":i < w). Since min T‘,,';’ > n, we may
use (1.2) to define by induction a descending sequence Z, =2 Z, = --- of infinite
subsets of w such that

(J T% isinIforeachi< .

neZ;

There is an infinite Z < o such that Z < Z, for each i < w. Define
T.=T;u U T(n’?
neZ
and

fi=rro s

neZ

Then dm( f7) = T;and g = {f?:i < w) is as required. Q.E.D.

For ge Q and ne w let S(g,n) be the set of all sequences s = {s¢,..., S,—1)
satisfying the following properties:

(1) sq,...,8,_ are finite zero-one functlons

(2) The domalns to = dm(sp),...,t,_; = dm(s,_,) are finite trees such that

maxt, < min T‘"’ ..,maxt,_; <min T,

where T, = dm(f{),.. = dm(f -
(3) There are trees YO, ,Y,_,in J such that

() _ (n) (n) (n)
Yy =r1y,....Y," =T,
and
YO\TY =to,..., Y2 N\T®  =1t,_,.
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Note that from the definition of 7 it follows that S(g,n) is always finite. Let us
denote

S*q(") = <souf‘(‘)f[n,oo),...,5,,_1 UfZ—l r[n’oo)’f?l"">

for g,n,s as above. Actually, s * g™ depends also on the choice of the trees
Yy,..., Y, as in (3) above. We omit this to simplify the notation. Obviously, we
have

(2.2) the set {s * ¢™: s € S(g,n)} is predense below g

(ie., the Boolean sum ¥ 5, s * ¢ = q™).
Now, we easily obtain an analogue of [S, VI, 4.5].

(2.3) Forarbitrary pe Q, n < w, and t € V9 such that Q |- “z is an ordinal”
there is a ¢ < p and ordinals {a(s): s € S(p, n)} so that

g = “\/1 = a(s)”.

Indeed, if S(g,n) = {s°,...,s™ !}, then we define inductively conditions p,, .. ., p,,
so that p, = p and p,, , < s* * p{" is such that

Prs1 IE“1=0" for some ordinal o = a(s¥).

Now g = s * p{", where s is such that p = s * p® (we may assume s € S(p,n))
satisfies (2.3).

We recall now some notions from [S]. Let H(k) denote the family of all sets of
hereditary power <x. We say that a sequence {(N;: ¢ < ) is continuously increas-
ing if N, € N,, for ¢ < and N, = (), N; for any limit f < «. Let « < ®,. An
arbitrary forcing P is called a-proper if for sufficiently large x (x > w, in our case)
and any continuously increasing chain {N;: £ < a) of countable elementary sub-
models of H(x) such that P e Ny and ¢ e N,, for every & < a, (N;: £ <n) e Ny,
all n < o, for each pe P n N, there is a g < p which is N,-generic for all £ < a.

Thus, 0-proper means proper.

We say that P has the strong PP-property if for any p € P such that

pl=“fro-w”

for some f € V™ and any h:  — o diverging to oo there is a ¢ < p and a perfect
tree T < w=? such that T n w" is finite for all n < w and card(T N w") < h(n) for
infinitely many n < w and g = “f € Lim T”. (Lim T denotes the set of all branches
of T))

From [S] we know that if P has strong PP-property, then it is w“-bounding (i.e.,
the set of old functions: w — w dominates) and that an iteration of the length w,
with countable supports of w-proper and w®-bounding forcings is proper (and
consequently does not collapse w,). Thus, what we need is the following

2.4. THEOREM. Q is a-proper for every o < w, and has the strong PP-property.

PrROOF. Let countable N < H(k) for sufficiently large x« be such that Q e N,
and suppose that pe Q@ n N. To prove that Q) is proper we have to find a g <p
which is N-generic. Let {1,:n < w} be an enumeration of all the Q-names for
ordinals such that 7, € N for n < w. Using (2.3), we define inductively a sequence
Po =p = p; = ---and ordinals a(n, s) so that
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CLOSED P-SETS WITH ccC IN THE SPACE w* 1175

pP =< A\ /i =a(ns)” foreachn <o
(i.e., in the nth step we apply (2.3) for all names 1,,...,7,). Note that the p’s and a’s
can be found in N, since N < H(x). By Lemma 2.1 there is a g and an infinite Z < w
such that

qg<p™ foreachneZ.
Hence, ¢™ < p™ also holds for arbitrarily large n and all m < w, and thus
q™ - “t,e N”

for all n,m < w.

By [S, I11, 2.6] each ¢ is N-generic. To see that Q is a-proper let (N;: & < a)
be a continuous sequence of elementary countable submodels of H(x) such that
Qe N, and

(Ng:E&<nye N,y foreachn <a.

Assume that Q is S-proper for each f < o, andlet go e Q " Ny. If o = f + 1, we
have a g < g, which is Nx-generic for each ¢ < f5, and we may assume that the ¢
have the same property for all n < w. Since N, < H(x) and all the parameters are
in N,, such a g can be found in N, and as above we construct a g, < g which is
N,-generic and so are the ¢\ for n < w. Thus, ¢, and all the ¢{” are N,-generic
for all & < o. If o is a limit ordinal, we fix an increasing sequence <{&,: n < w) such
that o = sup, <, £, and by the inductive hypothesis there is a sequence g, > q;, >
qg, = --- such that for each n < w q,, is N-generic for each { < ¢, and g; € N; 4,
and that ¢! have the same property for each m < . By Lemma 2.1 there is a
q € Q@ such that g < ¢! for infinitely many n < w. Thus, g < g, and q is Ny-generic
for each ¢ < « and, hence, also for each ¢ < a.

Finally, to prove the PP-property let h: w — w diverge to infinity and suppose
that p I- “f: w —» w”. Define

k, = min{i: h(i) > 2" - card S(p,n)} forn<w

and using (2.3) define inductively the sequence p = py > p; > --- such that

PN\ S = als i)
i<k, seS(pi,i)
for each n < w and some integers a(s,i) < w. Let T be the tree built up of sequences
of integers

{a(s,i):i < w and s € S(p;,i)}.

If ¢ < p™ for infinitely many n, then we have g I “f € Lim T” and T n w*" has
less elements than h(k,) for all n < w, which finishes the proof. Q.E.D.
The last point to be discussed is how @ = Q(F) acts in the course of iteration.
2.5. LeMMA. If R is w®-bounding and Q(F) is a complete subforcing of R, then in
V® the filter F cannot be extended to a ccc P-filter.
Proor. Let X7 be the o-th set added by nth factor of the product Q = P“.
Suppose that for some r € R and a ccc P-filter E € V® we have

ri=“F < E”
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Note that for each n < w the relation X} € E holds for at most countably
many o’s, since E is ccc. Hence, there is an o such that for all n < w we have
w\X" e E, and since E is a P-filter, there is an 4 € E and a function g so that
A S (), < (@\X7)U[0,g(n),ie., for some r; <rwe have
(2.6) rol=< ) (@\X}5) U [0,9(n) e E”.

Since R is w®-bounding, we may assume that g € V. By the assumption Q is
a complete subforcing of R, and hence, there is a ¢ € Q such that r is compatible
with each ¢’ < g. On the other hand, since T, = dm(f?%) € 7, there is a set Be |
and an increasing sequence a, < a; < --- such that T,\[0,a,) < B,g(n) < a,, and
[a,,a,+1)\B # & for each n < w. Define ¢’ < q as follows. For a given n extend T,
by adding elements of [a,,a,.,)\B on the ath branch b and put f(i) =1 for
eachie[a,,a,.,)\B. Obviously, we have

¢' - “(@\X2) U [0,g(0)  [a,a,.)\B = @" for cach n,

and hence,
q == O (@\X3) U [0,gm)\B | [, a1 1) = S
Consequently, g’ - “ﬂ"<w(w\X n u [0,g(n) =, B” which contradicts (2.6).

Q.E.D.

The rest of the proof is routine. Beginning with a model V of 2° = w,; and

2t = w,, we iterate with countable supports the forcings Q(F) for all ccc P-filters

F booked at each stage o < w, of the iteration. From [S, V.4] we know that the

resulting forcing R (obtained after w, stages) is proper and w®-bounding. Hence, in
V[G] there are no ccc P-sets.
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