

On Closed P-Sets with \$\operatorname{ccc}\$ in the ω* Author(s): Rvszard Frankiewicz, Saharon Shelah and Paweł Zbierski Source: *The Journal of Symbolic Logic*, Vol. 58, No. 4 (Dec., 1993), pp. 1171-1176 Published by: <u>Association for Symbolic Logic</u> Stable URL: <u>http://www.jstor.org/stable/2275135</u> Accessed: 12/01/2015 10:34

Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at http://www.jstor.org/page/info/about/policies/terms.jsp

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact support@jstor.org.

Association for Symbolic Logic is collaborating with JSTOR to digitize, preserve and extend access to The Journal of Symbolic Logic.

http://www.jstor.org

THE JOURNAL OF SYMBOLIC LOGIC Volume 58, Number 4, Dec. 1993

ON CLOSED P-SETS WITH ccc IN THE SPACE ω^*

RVSZARD FRANKIEWICZ, SAHARON SHELAH, AND PAWEŁ ZBIERSKI

Abstract. It is proved that — consistently — there can be no ccc closed P-sets in the remainder space ω^* .

A subset $A \subseteq X$ of a topological space X is said to be a P-set if $A \subseteq int(\bigcap R)$ holds for any countable family R of open neighborhoods of A. A point $x \in X$ is called a P-point if the one-element set $\{x\}$ is a P-set. In the case of the remainder space $\omega^* = \beta[\omega] \setminus \omega$ we may assume that R consists of open-closed neighborhoods. Rudin in [R] proved that if CH (the continuum hypothesis) is assumed, then P-points exist in the space ω^* . On the other hand, Shelah in [S] proved that—consistently—there can be no P-points in ω^* . In this paper we show how to construct a model of set theory in which there are no closed P-sets having ccc (every disjoint family of relatively open sets is countable) in the ultrafilter space ω^* . The problem of the existence of such sets (which are generalizations of P-points) has been known for some time and occurred explicitly in [vM] (see also [JMPS] for more results on P-sets in this direction). In the proof we follow the method from [S] of the construction of a model with no P-points. We note here that the model from [S] does not work for our purpose. Actually, it is not difficult to see that each P-point from the ground model becomes a closed ccc P-set in the final model. A particular case of P-sets which are supports of measures on $P(\omega)$ with AP (the additive property) has been settled in [M], where the author shows that there can be no such measures on $P(\omega)$ (under CH, e.g., the Gleason space $\mathbb{G}(2^{\omega})$ of the Cantor space is a ccc P-set in ω^* which carries no measure with AP).

§1. It is well known that closed sets in ω^* have the form $\bigcap \{\overline{A} \setminus \omega: A \in F\}$, where F is a filter on the set ω (\overline{A} is the closure of the set $A \subseteq \omega$ in $\beta[\omega]$). Filters F corresponding to closed P-sets are called P-filters and are characterized by the following condition:

if $A_n \in F$ for $n < \omega$, then there is an $A \in F$ such that $A \subseteq_* A_n$ for each $n < \omega$ (here $A \subseteq_* B$ means $A \setminus B$ is finite).

© 1993, Association for Symbolic Logic 0022-4812/93/5804-0003/\$01.60

1171

Received April 10, 1992; revised December 21, 1992.

Research partially supported by KBN grant number 1054-02-91 (Ryszard Frankiewicz and Paweł Zbierski) and by Israeli basic research funds (Sharon Shelah).

Thus, the dual ideal $I = \{\omega \setminus A : A \in F\}$ has the following property:

(1.1) if $A_n \in I$ for $n \in \omega$, then there is an $A \in I$ such that $A_n \subseteq_* A$ for each $n \in \omega$.

Further, the countable chain condition imposed upon F implies that I is fat in the following sense (see [F-Z]):

(1.2) if $A_n \in I$ for $n \in \omega$ and $\lim_n \min A_n = \infty$, then there is an infinite $Z \subseteq \omega$ such that $\bigcup_{n \in \mathbb{Z}} A_n \in I$.

Indeed, let $e_n = A_n \setminus A$, where $A \in I$ is as in (1.1). Since min A_n are arbitrarily large, we can find an infinite set $Y \subseteq \omega$ such that the family $\{e_n : n \in Y\}$ is disjoint. If $\{Y_{\alpha} : \alpha < c\}$ is an almost disjoint family of subsets of Y, then the unions

$$S_{\alpha} = \bigcup \{ e_n \colon n \in Y_{\alpha} \} \qquad \alpha < c,$$

are almost disjoint, and hence, the closures S^*_{α} in the space ω^* are disjoint. By ccc we have

$$S^*_{\alpha} \cap \bigcap \{B^* : B \in F\} = \emptyset$$

for some α and consequently $S_{\alpha} \in I$. It follows that the union

$$\bigcup_{n \in Y_{\alpha}} A_n = \bigcup_{n \in Y_{\alpha}} (A_n \cap A) \cup \bigcup_{n \in Y_{\alpha}} (A_n \setminus A)$$

is in *I* as a subset of $S_{\alpha} \cup A$.

For the rest of the paper let us fix a given ccc P-filter F and its dual I. We shall define a forcing $\mathbb{P} = \mathbb{P}(F)$.

A partial ordering (T, \leq_T) , where $T \subseteq \omega$, will be called a tree if for each $i \in T$ the set of predecessors $\{j \in T : j \leq_T i\}$ is linearly ordered and

$$i \leq_T j$$
 implies $i \leq j$ for all $i, j \in T$.

We define a partial ordering for trees

 $T \leq_t S$ iff (S, \leq_S) is a subordering of (T, \leq_T) and each branch of T contains cofinally a (unique) branch of S.

There is a tree T_0 such that $T_0 \in I$ and T_0 is order isomorphic to the full binary tree of height ω . Deleting the numbers $\leq n$ from T_0 we obtain a subtree denoted by $T_0^{(n)}$ (we have $T_0^{(n)} \leq_t T_0^{(m)}$ for $n \leq m$). Let \mathscr{T} consist of all the trees $T \in I$ such that

 $T \leq_t T_0^{(n)}$ for some $n \in \omega$.

Note that each tree $T \in \mathcal{T}$ has finitely many roots.

DEFINITION. Elements of the forcing \mathbb{P} are of the form $p = \langle T_p, f_p \rangle$, where $T_p \in \mathscr{T}$ and $f_p: T_p \to \{0, 1\}$. The ordering of \mathbb{P} is defined thus

$$p \leq q$$
 iff $T_p \leq_t T_q$ and $f_p \supseteq f_q$.

Let $\{b_{\alpha}: \alpha < c\}$ be a fixed enumeration of all the branches of T_0 in V. For a generic $G \subseteq \mathbb{P}$ let $T_G = \bigcup_{p \in G} T_p$ and $f_G = \bigcup_{p \in G} f_p$. For each branch b_{α} there is a (unique) branch B_{α} of T_G containing b_{α} cofinally. We have $B_{\alpha} = \bigcup_{p \in G} b_{\alpha}^p$, where b_{α}^p denotes the branch of T_p extending b_{α} . Define

$$X_{\alpha} = \{i \in \omega : i \in B_{\alpha} \text{ and } f_G(i) = 1\}.$$

Since $T_p \in I$ for any $p \in \mathbb{P}$; hence, $\omega \setminus T_p \cap A$ is infinite for each $A \in F$. It follows that the sets

$$D_{n\varepsilon}^{A\alpha} = \{ p \in \mathbb{P} : \exists i > n [i \in b_{\alpha}^{p} \text{ and } f_{n}(i) = \varepsilon] \}$$

are dense for each $A \in F$, $n \in \omega$, $\alpha < c$, and $\varepsilon = 0, 1$. Hence, X_{α} intersects infinitely each A in F, and $B_{\alpha} \setminus X_{\alpha}$ has the same property. Thus, \mathbb{P} adds uncountably many almost disjoint Gregorieff-like sets.

§2. Let $\mathbb{Q} = \mathbb{Q}(F)$ be a countable product of $\mathbb{P} = \mathbb{P}(F)$. Thus, the elements $q \in \mathbb{Q}$ can be written in the form

 $q = \langle f_0^q, f_1^q, \ldots \rangle$, where $\langle \operatorname{dm}(f_i^q), f_i^q \rangle \in \mathbb{P}$ for each $i < \omega$.

By $q^{(n)}$ we denote the condition $\langle q_i : i < \omega \rangle$, where

$$g_i = \begin{cases} f_i^q | \operatorname{dm}(f_i^q)^{(n)} & \text{for } i < n, \\ f_i^q & \text{for } i \ge n. \end{cases}$$

Here $T^{(n)}$ is a tree obtained from T by deleting the numbers $\leq n$.

LEMMA 2.1. For each decreasing sequence $p_0 \ge p_1 \ge \cdots$ there is a q and an infinite $Z \subseteq \omega$ such that

 $q \leq p_n^{(n)}$ for each $n \in \mathbb{Z}$.

PROOF. Let $T_{ni} = \text{dm}(f_i^{p_n})$, where $p_n = \langle f_i^{p_n}: i < \omega \rangle$. Since min $T_{ni}^{(n)} \ge n$, we may use (1.2) to define by induction a descending sequence $Z_0 \supseteq Z_1 \supseteq \cdots$ of infinite subsets of ω such that

$$\bigcup_{n \in Z_i} T_{ni}^{(n)} \quad \text{is in } I \text{ for each } i < \omega.$$

There is an infinite $Z \subseteq \omega$ such that $Z \subseteq Z_i$ for each $i < \omega$. Define

$$T_i = T_{ii} \cup \bigcup_{n \in Z} T_{ni}^{(n)}$$

and

$$f_i^q = f_i^{p_i} \cup \bigcup_{n \in \mathbb{Z}} f_i^{p_n} | T_{ni}^{(n)}.$$

Then dm(f_i^q) = T_i and $q = \langle f_i^q : i < \omega \rangle$ is as required.

For $q \in \mathbb{Q}$ and $n \in \omega$ let S(q, n) be the set of all sequences $s = \langle s_0, \ldots, s_{n-1} \rangle$ satisfying the following properties:

Q.E.D.

(1) s_0, \ldots, s_{n-1} are finite zero-one functions.

(2) The domains $t_0 = dm(s_0), \dots, t_{n-1} = dm(s_{n-1})$ are finite trees such that

$$\max t_0 < \min T_0^{(n)}, \dots, \max t_{n-1} < \min T_{n-1}^{(n)},$$

where $T_0 = dm(f_0^q), \dots, T_{n-1} = dm(f_{n-1}^q).$

(3) There are trees Y_0, \ldots, Y_{n-1} in \mathcal{T} such that

$$Y_0^{(n)} = T_0^{(n)}, \dots, Y_{n-1}^{(n)} = T_{n-1}^{(n)}$$

and

$$Y_0^{(n)} \setminus T_0^{(n)} = t_0, \ldots, Y_{n-1}^{(n)} \setminus T_{n-1}^{(n)} = t_{n-1}.$$

Note that from the definition of \mathcal{T} it follows that S(q, n) is always finite. Let us denote

$$s * q^{(n)} = \langle s_0 \cup f_0^q \upharpoonright [n, \infty), \dots, s_{n-1} \cup f_{n-1}^q \upharpoonright [n, \infty), f_n^q, \dots \rangle$$

for q, n, s as above. Actually, $s * q^{(n)}$ depends also on the choice of the trees Y_0, \ldots, Y_{n-1} as in (3) above. We omit this to simplify the notation. Obviously, we have

(2.2) the set $\{s * q^{(n)}: s \in S(q, n)\}$ is predense below $q^{(n)}$

(i.e., the Boolean sum $\sum_{s \in S(q,n)} s * q^{(n)} = q^{(n)}$).

Now, we easily obtain an analogue of [S, VI, 4.5].

(2.3) For arbitrary $p \in \mathbb{Q}$, $n < \omega$, and $\tau \in V^{(Q)}$ such that $\mathbb{Q} \Vdash "\tau$ is an ordinal" there is a $q \le p$ and ordinals $\{\alpha(s): s \in S(p, n)\}$ so that

$$q^{(n)} \Vdash "\bigvee_{s} \tau = \alpha(s)".$$

Indeed, if $S(q, n) = \{s^0, \dots, s^{m-1}\}$, then we define inductively conditions p_0, \dots, p_m so that $p_0 = p$ and $p_{k+1} \le s^k * p_k^{(n)}$ is such that

 $p_{k+1} \Vdash ``\tau = \alpha$ '' for some ordinal $\alpha = \alpha(s^k)$.

Now $q = s * p_m^{(n)}$, where s is such that $p = s * p^{(k)}$ (we may assume $s \in S(p, n)$) satisfies (2.3).

We recall now some notions from [S]. Let $H(\kappa)$ denote the family of all sets of hereditary power $\langle \kappa$. We say that a sequence $\langle N_{\xi}: \xi \leq \alpha \rangle$ is continuously increasing if $N_{\xi} \subseteq N_{\eta}$, for $\xi < \eta$ and $N_{\beta} = \bigcup_{\xi < \beta} N_{\xi}$ for any limit $\beta < \alpha$. Let $\alpha < \omega_1$. An arbitrary forcing \mathbb{P} is called α -proper if for sufficiently large κ ($\kappa > \omega_1$ in our case) and any continuously increasing chain $\langle N_{\xi}: \xi \leq \alpha \rangle$ of countable elementary submodels of $H(\kappa)$ such that $\mathbb{P} \in N_0$ and $\xi \in N_{\xi}$, for every $\xi \leq \alpha$, $\langle N_{\xi}: \xi \leq \eta \rangle \in N_{\eta+1}$, all $\eta < \alpha$, for each $p \in \mathbb{P} \cap N_0$ there is a $q \leq p$ which is N_{ξ} -generic for all $\xi \leq \alpha$.

Thus, 0-proper means proper.

We say that \mathbb{P} has the strong **PP**-property if for any $p \in \mathbb{P}$ such that

$$p \Vdash "f: \omega \to \omega"$$

for some $f \in V^{(\mathbb{P})}$ and any $h: \omega \to \omega$ diverging to ∞ there is a $q \le p$ and a perfect tree $T \subseteq \omega^{<\omega}$ such that $T \cap \omega^n$ is finite for all $n < \omega$ and $\operatorname{card}(T \cap \omega^n) \le h(n)$ for infinitely many $n < \omega$ and $q \Vdash "f \in \operatorname{Lim} T$ ". (Lim T denotes the set of all branches of T.)

From [S] we know that if \mathbb{P} has strong PP-property, then it is ω^{ω} -bounding (i.e., the set of old functions: $\omega \to \omega$ dominates) and that an iteration of the length ω_2 with countable supports of ω -proper and ω^{ω} -bounding forcings is proper (and consequently does not collapse ω_1). Thus, what we need is the following

2.4. THEOREM. \mathbb{Q} is α -proper for every $\alpha < \omega_1$ and has the strong PP-property. PROOF. Let countable $N \prec H(\kappa)$ for sufficiently large κ be such that $\mathbb{Q} \in N$, and suppose that $p \in \mathbb{Q} \cap N$. To prove that \mathbb{Q} is proper we have to find a $q \leq p$ which is N-generic. Let $\{\tau_n : n < \omega\}$ be an enumeration of all the \mathbb{Q} -names for ordinals such that $\tau_n \in N$ for $n < \omega$. Using (2.3), we define inductively a sequence $p_0 = p \geq p_1 \geq \cdots$ and ordinals $\alpha(n, s)$ so that

$$p_n^{(n)} \Vdash \bigwedge_{i \le n} \bigvee_s \tau_i = \alpha(n, s)$$
" for each $n < \omega$

(i.e., in the *n*th step we apply (2.3) for all names τ_0, \ldots, τ_n). Note that the *p*'s and α 's can be found in *N*, since $N \prec H(\kappa)$. By Lemma 2.1 there is a *q* and an infinite $Z \subseteq \omega$ such that

$$q \leq p_n^{(n)}$$
 for each $n \in \mathbb{Z}$.

Hence, $q^{(m)} \leq p_n^{(n)}$ also holds for arbitrarily large n and all $m < \omega$, and thus

$$q^{(m)} \Vdash ``\tau_n \in N"$$

for all $n, m < \omega$.

By [S, III, 2.6] each $q^{(m)}$ is N-generic. To see that \mathbb{Q} is α -proper let $\langle N_{\xi}: \xi \leq \alpha \rangle$ be a continuous sequence of elementary countable submodels of $H(\kappa)$ such that $\mathbb{Q} \in N_0$ and

$$\langle N_{\xi}: \xi \leq \eta \rangle \in N_{n+1}$$
 for each $\eta < \alpha$.

Assume that \mathbb{Q} is β -proper for each $\beta < \alpha$, and let $q_0 \in \mathbb{Q} \cap N_0$. If $\alpha = \beta + 1$, we have a $q \le q_0$ which is N_{ξ} -generic for each $\xi \le \beta$, and we may assume that the $q^{(n)}$ have the same property for all $n < \omega$. Since $N_{\alpha} \prec H(\kappa)$ and all the parameters are in N_{α} , such a q can be found in N_{α} and as above we construct a $q_{\alpha} \le q$ which is N_{α} -generic and so are the $q_{\alpha}^{(n)}$ for $n < \omega$. Thus, q_{α} and all the $q_{\alpha}^{(n)}$ are N_{ξ} -generic for all $\xi \le \alpha$. If α is a limit ordinal, we fix an increasing sequence $\langle \xi_n : n < \omega \rangle$ such that $\alpha = \sup_{n < \omega} \xi_n$ and by the inductive hypothesis there is a sequence $q_0 \ge q_{\xi_0} \ge q_{\xi_1} \ge \cdots$ such that for each $n < \omega q_{\xi_n}$ is N_{ξ} -generic for each $\xi \le \xi_n$ and $q_{\xi_n} \in N_{\xi_n+1}$ and that $q_{\xi_n}^{(m)}$ have the same property for each $m < \omega$. By Lemma 2.1 there is a $q \in \mathbb{Q}$ such that $q \le q_{\xi_n}^{(n)}$ for infinitely many $n < \omega$. Thus, $q \le q_0$ and q is N_{ξ} -generic for each $\xi < \alpha$ and, hence, also for each $\xi \le \alpha$.

Finally, to prove the PP-property let $h: \omega \to \omega$ diverge to infinity and suppose that $p \Vdash "f: \omega \to \omega"$. Define

$$k_n = \min\{i: h(i) > 2^n \cdot \operatorname{card} S(p, n)\}$$
 for $n < \omega$

and using (2.3) define inductively the sequence $p = p_0 \ge p_1 \ge \cdots$ such that

$$p_n^{(n)} \Vdash \bigwedge_{i < k_n} \bigvee_{s \in S(p_i, i)} f(i) = \alpha(s, i)$$

for each $n < \omega$ and some integers $\alpha(s, i) < \omega$. Let T be the tree built up of sequences of integers

$$\{\alpha(s, i): i < \omega \text{ and } s \in S(p_i, i)\}.$$

If $q \le p_n^{(n)}$ for infinitely many *n*, then we have $q \Vdash "f \in \text{Lim } T$ " and $T \cap \omega^{k_n}$ has less elements than $h(k_n)$ for all $n < \omega$, which finishes the proof. Q.E.D.

The last point to be discussed is how $\mathbb{Q} = \mathbb{Q}(F)$ acts in the course of iteration. 2.5. LEMMA. If \mathbb{R} is ω^{ω} -bounding and $\mathbb{Q}(F)$ is a complete subforcing of \mathbb{R} , then in

 $V^{(\mathbb{R})}$ the filter F cannot be extended to a ccc P-filter.

PROOF. Let X_{α}^{n} be the α -th set added by *n*th factor of the product $\mathbb{Q} = \mathbb{P}^{\omega}$. Suppose that for some $r \in \mathbb{R}$ and a ccc P-filter $E \in V^{(\mathbb{R})}$ we have

$$r \Vdash "F \subseteq E".$$

1176

Sh:396

Note that for each $n < \omega$ the relation $X_{\alpha}^{n} \in E$ holds for at most countably many α 's, since E is ccc. Hence, there is an α such that for all $n < \omega$ we have $\omega \setminus X_{\alpha}^{n} \in E$, and since E is a P-filter, there is an $A \in E$ and a function g so that $A \subseteq \bigcap_{n < \omega} (\omega \setminus X_{\alpha}^{n}) \cup [0, g(n))$, i.e., for some $r_{1} \leq r$ we have

(2.6)
$$r_1 \Vdash :: \bigcap_{n < \omega} (\omega \setminus X^n_{\alpha}) \cup [0, g(n)) \in E''.$$

Since \mathbb{R} is ω^{ω} -bounding, we may assume that $g \in V$. By the assumption \mathbb{Q} is a complete subforcing of \mathbb{R} , and hence, there is a $q \in \mathbb{Q}$ such that r is compatible with each $q' \leq q$. On the other hand, since $T_n = \operatorname{dm}(f_n^q) \in \mathcal{T}$, there is a set $B \in I$ and an increasing sequence $a_0 < a_1 < \cdots$ such that $T_n \setminus [0, a_n) \subseteq B, g(n) < a_n$, and $[a_n, a_{n+1}) \setminus B \neq \emptyset$ for each $n < \omega$. Define $q' \leq q$ as follows. For a given n extend T_n by adding elements of $[a_n, a_{n+1}) \setminus B$ on the α th branch b_{α}^q and put $f_n^{q'}(i) = 1$ for each $i \in [a_n, a_{n+1}) \setminus B$. Obviously, we have

$$q' \Vdash ``(\omega \setminus X^n_{\alpha}) \cup [0, g(n)) \cap [a_n, a_{n+1}) \setminus B = \emptyset'' \text{ for each } n,$$

and hence,

$$q' \Vdash \bigcap_{n < \omega} (\omega \setminus X^n_{\alpha}) \cup [0, g(n)) \setminus B \cap \bigcup_{n < \omega} [a_n, a_{n+1}) = \emptyset$$

Consequently, $q' \Vdash \cap_{n < \omega} (\omega \setminus X_{\alpha}^{n}) \cup [0, g(n)) \subseteq_{\ast} B^{"}$ which contradicts (2.6). Q.E.D.

The rest of the proof is routine. Beginning with a model V of $2^{\omega} = \omega_1$ and $2^{\omega_1} = \omega_2$, we iterate with countable supports the forcings $\mathbb{Q}(F)$ for all ccc P-filters F booked at each stage $\alpha < \omega_2$ of the iteration. From [S, V.4] we know that the resulting forcing \mathbb{R} (obtained after ω_2 stages) is proper and ω^{ω} -bounding. Hence, in V[G] there are no ccc P-sets.

REFERENCES

[F-Z] R. FRANKIEWICZ and P. ZBIERSKI, Strongly discrete subsets in ω^* , Fundamenta Mathematicae, vol. 129 (1988), pp. 173–180.

[JMPS] W. JUST, A. R. D. MATHIAS, K. KIRBY, and P. SIMON, *On the existence of large P-ideals*, this JOURNAL, vol. 55 (1990), pp. 457–465.

[M] A. H. MEKLER, Finitely additive measures on N and the additive property, Proceedings of the American Mathematical Society, vol. 92 (1984), pp. 439–444.

[vM] J. VAN MILL, Introductions to $\beta\omega$, Handbook of set-theoretic topology (Kunen and Vaughan, editors), North-Holland, Amsterdam, 1984.

[R] W. RUDIN, Homogeneity problems in the theory of Čech compactifications, Duke Mathematical Journal, vol. 23 (1956), pp. 409–419.

[S] S. SHELAH, *Proper forcing*, Lecture Notes in Mathematics, vol. 940, Springer-Verlag, Berlin and New York, 1982.

INSTITUTE OF MATHEMATICS POLISH ACADEMY OF SCIENCES WARSAW, POLAND

INSTITUTE OF MATHEMATICS THE HEBREW UNIVERSITY JERUSALEM, ISRAEL

Sorting: The first address is Professor Frankiewicz's and Professor Zbierski's; the second address is Professor Shelah's.