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Abstract 

We provide here the first steps toward a Classification Theory of Abstract Elementary Classes 
with no maximal models, plus some mild set theoretical assumptions, when the class is categor- 
ical in some i greater than its Liiwenheim-Skolem number. We study the degree to which 
amalgamation may be recovered, the behaviour of non p-splitting types. Most importantly, 
the existence of saturated models in a strong enough sense is proved, as a first step toward a 
complete solution to the Los Conjecture for these classes. Further results are in preparation. 
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0. Introduction 

We study the categoricity spectrum of abstract elementary classes, when amalgama- 

tion is not assumed a priori, and the only strong model theoretical assumption is the 

non-existence of maximal models. This looks to us like quite a natural assumption, 

and many classes of models that appear usually in mathematics satisfy it - while they 

are not first order, and thus need the expansion of Classification Theory, to which this 

work contributes. 

Previous work with similar motivation appeared in [ 14, 1 l-131, where the endeav- 

our of extending Classification Theory to more general classes of models was started. 
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Of course, some additional assumption had to be used in each one of those directions. 

There were set theoretical as well as model theoretical assumptions. 

Among those set theoretical, the main lines were opened by Makkai and Shelah in 

[2], where the existence of compact cardinals was used, and the Categoricity Spectrum 

for the corresponding classes was studied. Then followed the work of Kolman and 

Shelah [l], and Shelah [ 111, where the hypothesis was reduced to that of the existence 

of measurable cardinals. Along those lines, the Los Conjecture is not yet fully solved. 

Many of the central difficulties in those papers had to do with pinning down the 

right kinds of types (when there is no compactness, the formula-based definition of 

types is no longer a good one), and with proving that the amalgamation property for 

the class still holds. In [2] compactness was still the central tool, and the definition of 

types did not present a problem. The compactness also eased out in a crucial way the 

proof of amalgamation as well as the study of the categoricity spectrum. Of course, the 

price for the relative smoothness was high; thence the natural motivation of looking 

for results with more modest assumptions: reducing the large cardinal assumption to 

the existence of a measurable cardinal. This was worked out in [ 1, 111. A considerable 

amount of work was then needed to pin down a notion of ‘good’ extensions. The lack 

of compactness was partially supplied for by the use of Generalised Ultrapowers (of 

structures). Their existence uses in a crucial way the measurability, and was central to 

the proof of the Categoricity Theorem there. 

Among the model theoretical assumptions, the main references are at this point 

[12], where the amalgamation property is the main assumption. In this context, an 

extensive use of various kinds of Ehrenfeucht-Mostowski models is the central tool for 

constructing models in the proofs. 

This paper could be thought of as ‘branching off from [12]’ (here, the amalgamation 

property is replaced by the weaker model theoretical assumption of the non-existence 

of maximal models). But this is not a completely accurate description of where this 

paper fits in the large picture: our set theoretical assumptions are definitely stronger 

that those of [ 121: we use GCH in large chunks of Card, as well as diamonds and 

weak diamonds. Nevertheless, we do not use large cardinals, and in this relative sense, 

this paper ‘improves’ [ 1, Ill. 

We plan to continue along this line of research. The forthcoming paper [14] is the 

next stage. 

We shall make free use of EM-models for abstract elementary classes, throughout 

the paper. 

1. How much amalgamation is left? 

This first section provides the basic framework for the work - we study the extent to 

which amalgamation may be recovered under our assumptions, as well as the existence 

of Universal Extensions. We also provide the main basic definitions. 
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1.1. A word ubout the hypotheses to be used - abstract elementary classes 

The main model theoretical hypothesis at work here is, as indicated in the title, 

the non-existence of maximal models in the class. The main set theoretical assumption 

here is the GCH, or at least the existence of weak diamonds over the relevant cardinals. 

Additionally, we will assume in many parts of this work that the classes 

( 1) have a Lowenheim-Skolem number E?(R), and 

(2) that they are categorical for some i., 

with A high enough compared with B(K), or at least that the number of models of 

cardinality 3, in H is <~9(3.), modulo isomorphism. ,u$i(i) is often equal to 2’ (in this 

case, the assumption is just that the class does not have the maximum possible number 

of models in j.), but in other cases may be ‘a bit less’ than 2’. For more details on 

the relationship between pji(,?) and 2’, the reader is referred to [ 14, Section I]. There, 

our ps (i) is called p,d(jb); the definition provided there is much more general than 

what we need here; we roughly describe pjt(3L) as ‘the covering number for the weak 

diamond ideal on I’. 

In some portions of the work, certain versions of 0 - 
,7X, /, 

for p E [LS( si), i ) are used. 

The full power of GCH is not really needed throughout the paper; still it is essential for 

the proof of the local character of non p-splitting of types, a central notion in this work. 

Up to some point, the set theoretical assumption GCH ‘provides’ here what otherwise is 

missing as model theoretical assumptions, when we compare our hypotheses to those of 

[ 121 (specifically, the assumption there that all models in H are amalgamation bases). 

Definition 1.1.1 (Abstract Elementary Classes). 

( 1) 5% = (K, < $1 ) is an abstract elementary class iff H is a class of models of some 

fixed vocabulary r = ~$1 and d ,t is a two place relation on K, satisfying the fol- 

lowing axioms: 

Ax 0: If M E H, then all z-models isomorphic to A4 are also in K. The relation 

<>I is preserved under isomorphisms, 

Ax I: If M < ~1 N, then M is a submodel of N, 

Ax II: &; is an order on K, 

Ax III: The union of a <,x-increasing continuous chain k of elements of S is 

an element of R, 

Ax IV: The union of a G,t-increasing continuous chain A? of elements of H is 

the lub of n? under < ~3, 

Ax V: If Ml < ); N for I E (0, 1) and MO is a submodel of MI, then MO Gs; MI, 

Ax VI: There is a cardinal K such that for every M E .K and A c IA4 1, there is 

N <.nM such that A c IN] and IIN(( <K. IA]. The least such ti is denoted 

by LS(R) and called the LGwenheim-Skolem number of H. 

(2) If J. is a cardinal and R an abstract elementary class, we denote by A;. the family 

of all elements of R whose cardinality is /1. We similarly define K,, 

(3) Suppose that K is an abstract elementary class. 
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(a) A joint embedding property (‘JEP’) iff for any Mi,A42 E H, there is N E si 

such that A41 ,Mz are 651-embeddable into N. 

(b) .Q is said to have amalgamation iff for all Mo,M, ,Mz E A and < sl-embed- 

dings g/ :Mo -+Mt for I E { 1,2}, there is N E W and <St-embeddings fi : 
Mr-+N such that fi ogI=f2og2. 

(4) For R’ c 53, let 

if Ml, MZ E R’, gl, g2 are as in (3)(b), 

(5%’ )“’ = MO E 53’ then there are N E A’, and fi , fi 

( 

. 

such that fi o gI = f2 o g2 1 

The main point here is to get the amalgamation inside the class. 

1.2. Density of amalgamation bases 

To ease the reading of this paper, we shall (sometimes redundantly) endeavour to 

spell out the hypotheses used, at the beginning of each section. 

Hypothesis 1.2.1. 9 is an abstract elementary class with no maximal model in R,;., 
categorical in A. 

The content and the proof of Theorem 1.2.4 below are basic in subsequent work. 

They are akin to those in [3, Theorem 1.31 and [7]. Still, for the sake of completeness, 

we provide the argument. See more in [ 131, for a study of Weak Diamond principles 

and their relation to model theoretical properties of Abstract Elementary Classes. 

Before looking at the next central questions in this context, namely the density of 

amalgamation bases and the existence of universal extensions over every model in si,, 

we need some additional results. 

Fact 1.2.2. Suppose that there are no maximal models in si,;.. Fix cardinals x,p 
such that LS(A) d p <x. Then 

(1) I~MER<, and IIMJJ +LS(W) <u <x, then there is an N such that M<a N E si,,. 

(2) If 53 is categorical in x (in particular, tf x = A), then si,, has the joint embedding 
property (JEP). 

Proof. (1) Easy, by a repeated use of the Lowenheim-Skolem theorem (in this con- 

text), and the nonexistence of maximal models: axiom III guarantees that unions of 

<$I-increasing continuous chains of elements of 52 are in 9. 

(2) Also easy to see, by embedding the models into extensions of size x. q 

The main tool to construct models which have useful homogeneity properties is 

in this context the use of generalised Ehrenfeucht-Mostowski models. These were 

developed for the context of abstract elementary classes by Shelah in [7]. The following 

fact asserts that they exist in this context. 

Fact 1.2.3. For every linear order I, there is @ such that EM(I, @) is an EM model 
(so, for instance, if EM(I, @) E si and J C I, then EM(J, @) d 51 EM(I, @)). 
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Proof. Since there are no maximal models in R, there are models in W,,, where 

p= IEM@ @)I = I~l+/~/+~(2LS,~I,)+, by [7, 1.71 (where z is the size of the vocabulary). 

Now the construction of the EM models can be carried in a way similar to how it is 

done in [8, VII, Section 51. 0 

Theorem 1.2.4 (Density of amalgamation bases). If‘ LS(sI) < K <A (ren?emhev: i. is 

the cateyoricity cardinal of the hypotheses), and 38(2” = 2”’ <2”), then jbr every, 

ME R,,,, there is N with M Q $1 N E Ryy. 

Proof. Suppose A4 is a counterexample to this. The idea is to build a binary tree of 

models on top of M, in such a way that the two immediate successors of every node 

act as counterexamples to amalgamation over M, and then use the weak diamond at ti 

(whose existence is guaranteed by 2” < 2” ! - for more on generalised weak diamonds, 

see the Appendix to the forthcoming ‘Proper Forcing’ book by the first author [IO] to 

get a contradiction. So, we choose by induction on cx < K models M,,, for q E “2, such 

that 

(a) M,, =M 

(b) M,, E WC:, 

(c) c( limit A q E “2 + M,, = Up,, M,,~,I 

(d) P<k(v) * M,i/rGsiM, 

(e) M,-(o),M-(I) cannot be amalgamated over M,,; i.e. there is no N E si < /I and d );- 

embedding fi : M,,-(I) --$ N such that JO r MI = _h 1 M, (~0 M,, # M,-(I, I 

For each q E “2. M,, = U,,, M,7 1x E 53, hence by Fact 1.2.2( 1 ), there is N,! E Wj with 

M,, <,,t N,,. By the categoricity in 1, there exists an isomorphism h,, : 

N, 2 N” :=EM(i,, @). But then ~,?(M,,)<.Q N*, hence MPl is <,I-embedded into 

EM(a,,, @) for some a,, <K+. 

Let <” be a linear order on K isomorphic to ( “‘> ti. <ic_,.), so that each x< ti- can 

be embedded into it. Then EM(c(,,, @) is <j;-embeddable into N* = EM((ti, <*). @). 

So, there is a d St-embedding hf : Mq + N*. 

Now use the weak diamond: since there exists 0 such that 2” = 2<” < 2“, the weak 

diamond for ti holds, and thus there are distinct qi , 112 E h 2 and there is c( < ti such that 

Jr,;, tM,,, tr = h;: IMqz tr, and qr(a)# q?(x). But both M,,, ;X_~ and M,,2~,+~ embed into 

EM(I; +, @). This contradicts that M,!, r7 is not an amalgamation base! 17 

So, we have density of amalgamation bases in the case mentioned above (there 

exists H such that 2” = 2<” ~2”) but it should be made clear that the use of the weak 

diamond (or. a fortiori, of GCH in [LS(sI),i)), was crucial here. 

1.3. Uniwrsal extensions 

At this point, we begin to include the following assumption: 

GCH hypothesis. 2” = p+, for all ,LL E [LS(R), 1). Although we stated at the outset this 

assumption, we repeat it now. Up to now, the weak diamond was enough. Nevertheless, 
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it is worth stressing that our aim is to obtain as much stability as possible for our 

new contexts, and at the same time trying to use as little as possible set-theoretical 

assumptions. GCH does not seem too unreasonable from this point of view. 

The following theorem is crucial in the study of the right kind of types in our context, 

and is a natural step in allowing us to build models with enough saturation. So far, we 

have not defined the types, and thus we concentrate on universality. It is worth noting 

that the existence of universal extensions here is obtained for amalgamation bases. 

Theorem 1.3.1 (Existence of Universal Extensions). Suppose that ,D E [U(R), A) and 

MO E si?. Then there is MI such that MO <HMI E A~,MI is universal over MO (i.e. 
MO <%M2 E si,, j M2 is <,t-embedduble into MI over MO). 

Proof. Let I be a linear order of cardinality pi such that I x (a+ + 1) xl, for every 

cc</lcl+, and pick MO E SF. We first move to the case of EM models, and prove the 

following fact. 

Claim 1.3.2. There is a <a-embedding f : MO ---f EM(I, @) such that for every A41 
with MO <W MI E R, there is a <n-embedding g : MI -P EM(I, @) extending f. 

Proof. We begin by listing (note the strong use of 2i’ = p”+ here!) all the possible 

embeddings from MO into EM(I, @) as (J; 1 i <,u+). For every fi let now Ml,i E J$, be 

a counterexample to the property we are looking for; namely, MO <$I MI,~ and fj does 

not ‘lift’ to an embedding from Ml,; to EM(I, @) (Fig. 1). Since MO E RF:“, we can 

find (Mz,~ ( i<p+), da-increasing, continuous, such that M~,o =Mo, and i<,u+ * MI,~ 
is embeddable into Ml,i+l over MO. Now, by categoric&y in 1, we know that the limit 

Mz,~+ is embeddable into EM(I1, @), and thus into some EM(a*, @), LY’ <,LL++, and 

hence into EM(I, @), say by g. But then g/MO must be fit*), for some i(*)<,u+. 
Contradiction. 0 

Fix now some f as in the claim, and let IO c I, 110 j = ,u be such that Rang(f) c EM 
(IO, @). We could have chosen I from the beginning as being decomposable as 

I= u Ii, 
[<}c+ 

for (4)~~~ + increasing, IZc/ = p, and 1;+, universal (inside I) over Z; (a similar con- 

struction is also used in [6], and may be obtained by taking e.g. 

1= {y E ‘“(p’) j y eventually 0 but not constantly 0}, 

ordered lexicographically, and 1; = {q E I 1 Rang(q) c p x (1 + c)}). 

Let now MT correspond via an isomorphism f + 3 f, 

f + : M; % EM(I,, @), 

to EM(Z,, @). We claim that MT is universal over MO: Let A40 < H MI E 53,. Pick the 

corresponding embedding f2 > f, f2 : MZ i EM(I, @). As before, let I’ c I, 11’16p 
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Fig. 1. Lifting f, in Claim 1.3.2 

be such that Rang(f2) c EM(I’, @). Thus, for some automorphism 

h 110 =identity, @‘(I’) ~11. Then h induces an automorphism i of 

have 

A42 2 EM(I’, @) L EM(Z,, CD) “‘2 A4;, 

and i rRang(.j”) =id, f2 I f. So, (f+) -’ o 6 o ,fz is an isomorphism 

and its restriction to MO is the identity. 3 

h of I’, such that 

EM(Z, @), and we 

from M? into Mr. 

Thus, we have universal models in the right cardinals over amalgamation bases. The 

following definition should be regarded as a first step toward the (,u, v)-limits and our 

version of saturation. 

Definition 1.3.3. Let MO <i MI mean (for p E [AS(H), A)) that Mo,M, E K,,, MO 6 !i MI 
and MI is universal over MO. 

Definition 1.3.4. Let 6 be a limit ordinal, 6 d p’, p E [LS(sI), 3.). Then, 

13 there is a <,*-increasing continuous sequence A? = (A4, ( i <6) such that Map = A4 

andi<6+M;ESiy andMi<f,A4i+I, and N=U,,,M, (SO liNji=p+jKI). 

(In this case, we use A4,r for UiCh M, and call (M,: i < 6) a witness for A4 < ;‘,,, N. ) 
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Remark 1.3.5. In previous uses of extensions, the amalgamation property was assumed 

to hold in the class - here we must stress the fact that by decree all the levels up 

from M to N to be amalgamation bases. 

Among the basic properties of c:~,~, we have that 

Fact 1.3.6 ( < & and limits). (1) If Ml <:(,6 Nl for I = 1,2 and h is a <s-embedding 
of MI into M2 then we can extend h to an isomorphism h* from N1 onto N2. 

(2) Moreover, zf (Ml,;: i66) witnesses Ml <:I ii N, we can demand that h* map 

Ml,zi into M2,2i and (h*)-’ map M2,2i+i into Ml,zi+l. 

Proof. By induction on 6. 13 

Another easy fact about -c:,~ is 

Fact 1.3.7. (1) M<i,N z~M<:~~(~)N. 

(2) VM<i,,N an> uC6= sup’(u), 61 =otp(u), then M-c~,~,N. 

Hypothesis 1.3.8. 0 Sl;;,, for p E [NW, 4 

The use of amalgamation wherever possible, together with the existence of universal 

models over amalgamation bases, are the two basic tools of construction of saturated 

enough models. The following fact is important from that point of view. 

Fact 1.3.9. Zf M <i,a N and 6 <p+, then N E 53,4”. 

Proof. Easy by Us:;,,) (proof similar to that of Theorem 1.2.4). 0 

Fact 1.3.10. For every limit 6 C/L+ we have 

(1) lfM+?‘:m, then for some N we have M <:I 6 N. 
(2) IfM<&N, then NE%?. 

Proof. By induction on 6. Suppose that this is true for all limit ordinals <6. If 6 

is not a limit of limits, let 60 be the highest limit below 6. We have by induction 

hypothesis Mh,, with M <i 60Mh0, as witnessed by some sequence (Mi / i < 60). Just 

taking a universal extension Mh of MC>, over M does the trick: by Fact 1.3.9, Md, is 

itself an amalgamation base, and thus the sequence (Mi 1 i<&)-(Md) witnesses that 

MC;‘ sMa. 
Now, if 6 is a limit of limits, we construct a <H-increasing continuous sequence 

(Mi 1 i<6) of models from A, such that Mj+l E si”“, A4i+2 universal over Mi+i over 

M = MO. We just take unions at limits, and universal extensions which are amalgama- 
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tion bases at successors. This is close to what we need, but of course we still need to 

get that the Mi’s are amalgamation bases all the waft through 6. But this is taken care 

of by Fact 1.3.9. 0 

The following definition is crucial in the study of saturatedness in this class, and 

will play a central role from now on. 

Definition 1.3.11. We say that N is a (o,6)-limit if M <‘,,, N for some M and a66 

is regular. 

The proofs of the previous facts essentially depended on constructions by induction 

on 6, as well as the use of set theoretical hypotheses. These hypotheses are not too 

strong (from our point of view), especially when one compares them to those that were 

used in the past by Makkai and Shelah in [2] (compact cardinals) and by Kolman and 

Shelah in [6] and Shelah in [ll] (measurable cardinals). Of course, the ‘price to pay’ 

is that many notions ‘natural’ in those contexts (such as definitions of types as sets 

of formulas in the presence of a strongly compact cardinal in [2] or the existence of 

many ultrapower operations in [ 1, 111) are no longer ‘natural’ here, and require new 

ways of dealing with the categoricity problem. 

2. Types and splitting 

2.1. What kind qf types are good here? 

We start by giving a definition of types for this context. It must be stressed that 

here, types are only defined over models which are amalgamation bases, so as to avoid 

confusion later. The definition of types here is essentially the same from [5, Ch. II] 

and [ 13, Section 0] and [ 121. There is, though, a difference: in the presence of monster 

models (like in [ 121) it is natural to construe all the automorphisms relevant to the 

definition of types as automorphisms of the monster. Here, in its absence, we must 

do with embeddings into an amalgam. Our hypotheses about amalgamation clear away 

the problem here. Still, the diagram chasing involved might be slightly more entangled 

than within monster models. 

Definition 2.1.1. (1) We define the type 

@(a. M, N ) 

(when M d ,i N, 2 c N, M, N E 53;;) as (a, M, N)/E where E is the following equiva- 

lence relation: (a’,M’,N’)E(a2,M”,N”)~~MM[ <.G~N’,G’E”(N’) (for some x), 

M’ = M2 and there is N E R satisfying M’ = M’ < $1 N and ,f’ : N’ 3 N over M’ 

(i.e. f 1 M’ is the identity) and f’(Z’)=f2(G2). 
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More generally, for N E fi,, (not necessarily an amalgamation base) and 6 c N, we 

define tp(Z,M,N) as tp(&M,N’), with A4 6 H N’ d $3 N, a c N', and N’ is an amalga- 

mation base. 

(2) We say that N is Ic-saturated (when rc>LS(R)) if M <jr N, IMI <% and p E 

Y<“‘(M) (see below) imply that p is realised in M, i.e. for some 6 c N, p= 

tp(kM,N). 

(3) ,~P”(M):={~~(~,M,N)J~E”N,M <RN}. 

(4) When A4 ~$1 N and p E Y”(N), we denote by p r A4 the restriction to A4 of p 

given by tp(& M, NI ), where N d $1 NI , p = tp(E, N, NI ) and p d q. 

(5) Y(M)=Y’(M) (we could just as well use Y”“(M)). 

Remark 2.1.2. We define types on M in N under the condition that M be an amal- 

gamation base and there be some amalgamation base N’ > a in between M and N. 

Under these conditions, we may prove that E is an equivalence relation. Otherwise, 

the diagram chasing for the transitivity of E, which we leave to the reader, would not 

go through. 

The following fact is basic, and is used throughout the paper. 

Fact 2.1.3 (Stability below A). Let p<;1. Since A is categorical in i, for every 

NE fi,,. l9W)I 6~. 

Proof. Use EM(/z, @), just as in [l, Theorem 3.91, where Kolman and Shelah prove 

the existence of weakly universal models over any N E H,,. 0 

Definition 2.1.4. (1) (p-splitting) pi Y(M) p-splits over N d,tM ifs (NI 6p, and 

there are N,, N2, h such that: Ni, N2 E R,,, h an elementary mapping from Ni onto N2 

over N such that the types P / N1 and h(p 1 Nl ) are contradictory and N d $1 NI d $1 M. 

(2) We say that the type q E Y(N) is a stationarisation of p E Y’(M), JjMI( = ,u, 

M c N, ifs for some M- <H M, q does not p-split over M-. 

The next theorem marks the real beginning of the new ideas in this paper. It uses 

GCH in a rather strong way, and sheds light on the local character of non-p-splitting. 

2.2. The Splitting 

Theorem 2.2.1. Assume that 

(a) 06 I l< CJ 1s de-increasing and continuous, ) 
(b) for all i<o, Mi E A, and M; is an amalgamation base in fib’, 

(c) each Mi+l is universal over Mi, 

(d) cf(a) = 0 < ,u’+ < A, and p E Y(M,). (Since M, is an amalgamation base, ‘types’ 

are well-dejned in this context.) 

Then, ,for some i < C, p does not ,a-split over Mi. 
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Remark 2.2.2. We do not just have 

A [p TM, does not split over M,]. 

/E(f.fll 

Proof. Assume that the conclusion fails. We shall choose (M, / i GO) and p contra- 

dicting the statement, fitting into one of the following possibilities. 

(a) j <c + p TM/ does not p-split over MO. 

(b) else (a) is impossible, and p ]Mz;+i p-splits over M2, and p ]M2;+2 does not p-split 

over Ml;+ 1. 

(c) else (a) and (b) are both impossible, and g = ~1 (so p is regular), and i < (T + 

ptA4;+1 p-splits over M;. 

Without loss of generality, Mi+l is (p, co)-limit over M,, as there is such an A4)‘. , , 

M d&f:+, dSiMl,l. 

Claim 2.2.3. One of (a)-(c) is always possible 

Proof. Assume that both (a) and (b) are impossible. Given n? = (A4, / i < cr.) and p E 

.‘Y(M,), we will use the fact that both (a) and (b) are impossible (for any n? ) in 

order to produce some ,@’ satisfying (c). As for any j< rr, possibility (a) fails for 

(M, _, 1 i do), we have that necessarily 

(*) for every ,j < rr, there is some cj E (j, (T) such that p rM;, p-splits over M,. 

Even more so, by renaming, we can require 

(*)’ p rM,+, p-splits over M,. [We are close here to a (c)-style sequence. What is still 

missing is the appropriate length.] 

We can find (M,.i 1 j <p) d s,-increasing continuous, M,.,+I (,u, u)-limit over M;,,, 

Mi,i an amalgamation base [we freely use 1.3. lo], for each j d p, with Mi.0 = M,, 

Mi.,, d )i M,, 1. Now we ask, for each i, 

$3, Does p rhf;,,, p-split over M,., for every j d p? 

If for some i, the answer is ‘yes’, then we can repeat the procedure above (applied 

now to (M,,, / j<p) and prMi,,,). So we get that (*)’ holds, i.e. possibility (c) holds 

for (M,,, ( j<p). If, on the other hand, for every i da, the answer to 8, is no, then 

for some ji < p, p rA4,. I, does not CL-split over M,, j, . Consider the sequence 

This sequence and p clearly witness the case (b). 0 

We now come back to the proof of Theorem 2.2.1, and look at the three possible 

cases from the last claim. 
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Proof of Case (c). Under our hypotheses, we have that 2</’ = p. Let p, (Mj 1 i <p) 

be as in case (c). Choose by induction on i 6~ models Ni and sequences (gi 1 q E ‘2) 

such that 

(a) N, E 52,,, (Nj ( i 6 p) is <g-increasing continuous, 

(P) N+1 is a (p, o)-limit over Ni, 

(Y) No =Mo, 
(6) gb is an isomorphism from &,i onto Ni, 

(E) s:,,j c sb, for _i<i, 

The clause (0 is possible because a, p witness the case (c). Having obtained these 

sequences and isomorphisms, we have that N,, is a (p,~)-limit. For r E i’2, gV :A4,( --% 

N,,, and the g,(p), for r E b’2 (in Y(NP)) are pairwise distinct. 

So, NP E 52,, is an amalgamation base, and IY(N,, ) I> p. This contradicts the basic 

fact 2.1.3, and ends the proof when dealing with possibility (c). 

Proof of Case (a) or (b). Choose C = ?rr = (Ci I c( E $,‘+), where 

(a) S{- denotes the set of ordinals <p+ of cofinality c, and 

(b) for every a, Ct C CI is a club, otp(C,“) = cr, and for every club C of I”+, the set 

(6 E Si+ I 6 = sup[C n nacc(C,i)]} 

is stationary, where nacc(X) is the set of nonaccumulation points of X. This is 

possible by [9, III]. 

We start with p and (A4i 1 i < a) as there and choose (by induction on CI <p+) 

N, E $“’ such that 

(i) (N, I a<~+) is d Sk-increasing continuous, 

(ii) N,+I is (11, w)-limit over N,, 

(iii) when cf(a) = a, then we list Cl (our originally chosen club in a of order type 

a) increasingly as 

Cl = {B~,Y,i I i<a). 

Additionally, we let /IO. c(,O = c( and also let (Mi I i da) and (N[jO, 1, _ I [ < 0) be iso- 

morphic via gr : M, % N, (so that ga(Mc) = ND~. x __ ). Let a, E N,+i realise gl( p). 

So, we have (N,Icr<p+). Let N= Ur<ll+NO!~521,T. 

Clearly, N d ii-embeds into EM(A, @). Even more, we can use @’ = Y o @ such that 

EM@+, @‘) is universal in fill+, and has as many automorphisms as we will need. For 

more details on the theory of EM models for abstract elementary classes, see [12, I, 

Section 41. 

So we have a <~-embedding h : N +EM(p+,@‘). For crgS (S:=#+; S= 

Dom((?)), let 
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E = (1) CL{+ / VC E N[c E NY, H h(c) E EM(y. @‘)I and 7 a limit ordinal}. 

Clearly, E is a club. 

We now focus on case (a): for some stationary S* c S, c( E S* + C.; c E, 75, = T*. 
ia n(oL)=d, M(C()=m*, c’;=i’; ,...,, m(r)=<;l*, Pr.ri.o = /3_.0. Let #x’ < CI” be in S’. WC 

then have that 

(i) tp(a7~~.N,/,N,l~,1 ) does not p-split over N,il;,.o. 

(ii) tp(uyl,Nyl,N+rLI ) p-splits over N/f*,,,. 

For (i), we use the choice of p and (M, / i < o-) as in case (a) and choose ,j < (r such 

that g7” (M, ) > N,,; since a,11 real&es y,j~( p), we get that tp(arlg, N,), N,lc , I ) does not 

bl-split over N/~*,~~. To see (ii), we just use our original assumption about the splitting 

of p, and ‘translate’ it via gxJ. 

So, the two types must be different, and thence 

tp(h(a,J,).EM(c(‘, @‘),iQ+, ) # tp(h(u,~ ),EM(r’. @‘),A& / , ), 

but on the other hand, it is easily seen that h(u-/,j ) and /~(a,( j realise the same type 

- @’ could have been chosen at the outset so that there is an automorphism k of 

EM@-, @‘) with k /EM(cd, CD’) = identity and k(h(a,~~)) = h(a,~ ). 
We now switch to case (b): Let x be large enough, and let (‘B1 1 M <p-j be a <,,;- 

increasing continuous sequence of elementary submodels of (H(x), E , < J ), each ‘9X, 

of size p, such that @, EM(i+, @), h, (Al, / CI < p ) and (u, 1 x E S) all belong to ‘9&. 

(‘13, / M<Y) E 23: ,_I, and 23: n pL is an ordinal. Let 

E* = {;3 j CB;, n p* = ?}. 

E” is a club of p*. Also, by the choice of e, there is r such that Cc c E*. Now find 

[<c such that (7.. . , [$,, < /Im,r.; < c(, and p tM;+, does not p-split over M;. 

Let now cp be a formula in the language of set theory, with parametres in ‘93,,; , 

satisfied by z, and saying all the properties of r we have used so far in this proof. 

We can then find IX’ E (flm,r,;, fig. 1,c+r ) such that the terms r, and r7/ coincide, and 

M(M) = m(a’), n(cc) = n(cc’), (i”T’, . . , rr;:,,, ,) = (<;. . , <:,(, ,). For every < d (T, h maps 

M/i0 I,i into EM(P,.,,i,@‘), because PO.,. GE*. 
Now compare the types of h(u,) and /~(a,,) on h(N,~)cEM(a’,@). 

The first one does not p-split by monotonicity and the choice of <, whereas the 

second one p-splits by the construction, as p p-splits over Ad;. This contradicts the 

fact that the two types are the same by the way IX’ was chosen. 0 
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3. Building the right kind of limits 

We build here from the bottom up the right kind of limit, in order to approach the 

construction of models with strong saturation. 

Hypothesis 3.0.1. (a) LS(R)<y, 

(b) On p we have the consequences of Sections 1 and 2, namely density of amal- 

gamation (1.2.4) and non psplitting (Theorem 2.2.1). 

(c) Categoricity in ;1> p, /z > &p~~~ b, or at least some consequences of this. 

3. I. Good extensions. Towers for limits 

Definition 3.1.1. For a<$, let 

1 

G = (M, 1 i < 0~) is da-increasing (not necessarily 

(a) %,,. = (A?, 2) continuous), a’= (~2; 1 i + 1 <a), a, E M+i \M, 

M E fi,, 

(b) “rz = {(&Z) E R,,, I each Mi is an amalgamation base}, 

(c) %E,X = {(A?,;) E R,,., 1 each M; is a (/A, Q-limit}, 

(d) 

a;,, = u $L 
lKp+nnReg 

where Reg denotes the class of regular cardinals, 

( 

(ti,a’)ER;,,,lii=(N;ji+ l<a),N, <~A4j, 

Ni an amalgamation base in R,(, 
(e) +‘~,. = (~‘~~Ij-) M, universal Over N, 

1 I> 
tp(a;,M;,Mi+i) does not p-split over A$ 

(f) 

Remark 3.1.2. (1) It is worth noting that, unlike what was done in other treatments 

of the subject (see, e.g., [14, 7, 11, 12]), here from now on we mainly deal with 

towers of models. Objects akin to the towers defined here were also used in [13, 

Sections 8-101 in a different context: there full amalgamation is obtained, but for very 

few cardinals (only 3 of them!)... here, we only have amalgamation for dense families 

of models, but for many more cardinals. We aim at obtaining in subsequent papers a 

full description of the categoric&y spectrum; in that respect, amalgamation is a central 

feature. On the other hand, in [13, Sections 8-101, the construction is used in order to 

get the non-forking amalgamation, which is far down the road yet in our situation. 

(2) What is the point of the definition of ‘sil,%. 7 The idea is that we intend to have 

a parallel to ‘the stationarisation of tp(ai,Mi,Mi+i ) E 9’(M1’), whenever Mi 6~ A4/ E 
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Sy,ni’. We now turn to defining three orders on the previously defined classes of towers 

of models. With these orderings we intend to capture strong enough notions of limit. 

(3) Continuity is not demanded in the definitions above. One of the major aims is 

to show that the continuous towers are dense. 

Definition 3.1.3. For 1= 1.2, 

(1) for (n;l’,Z’) E ‘til,,r, let 

mean u” =a’?, and for all i < LX, h/l,’ < )k IV,‘, 

(2) for (h;r’,lij) E .S$“r,, let 

mean a” = a’?, and for all i < c(, IV, -I&I’,’ or M,’ 6,; M,‘, and moreover A4: is 

universal over M,’ , 
(3) for (G’.ii’,Z’) E +.S.i,y, let 

mean a” = a”, I?’ = G2 and for all i < x, M,’ = M,’ or M,’ < )i M,‘, Mj? is universal 

over h/r,’ (in K,,) and tp(at ,II~,~, A4,‘+, ) does not p-split over N,' , 
(4) in all these cases, we say ‘strictly’ and write ‘ -~j~.~, for .~=a, b or C’ if A, M;’ 

#M{Z. 

We have the following facts. 

Fact 3.1.4. R,,. x 2 S$y, > 51f,x. 

Proof. The second inclusion is due to Fact 1.3.9. C 

Fact 3.1.5. (1) <j:,, is a partial order, 

(2) <i:,x is u partial order, 

(3) +:., c G;:.X? 

(4) If’ ((G:,&) I(<6) is a <;.y -increasing sequence qf’ members qf SIDES, ii is N 

limit ordinal <pi, and (&?,?i)-((U_<nM,~ / i<~),ii~), then 

(a) (A?. a’) E S$ 

(b) (&k,Z) is the least upper bound qf ((~@:.a;) 1 <<6) (both in -<y_ and <{;,,), 

Remark 3.1.6. Part (4) of 3.1.5 explains why we need to have <{:. 7 in 

addition to G;,,. 

This lists the main basic properties of <I:.%, <e. 7 and <ii.?. It is worth mentioning 

here that 3.1.5(4) has several uses in what will come next. 
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Fact 3.1.7. RE,a, ‘SZf,, are both non-empty. 

Proof. We construct the sequences ‘from the bottom up.’ Choose (by induction on 

i<cc) A4jER,,, < H-increasing continuous, such that 

A40 is (p, o)-limit, 

A4i+, is (p, o)-limit and universal over A&, 

for i limit, A4i is chosen by continuity. 

Choose ai E A4i+1 \A4;, and choose N; by using Theorems 1.3.1 and 2.2.1. It is easy to 

see that the resulting sequence of ‘double towers’ ((Mi,ai,N;) 1 ka) belongs to ‘sZz,l, 

and the corresponding ((M;,ai) ( i <a) to $,. 0 

We now get a weak form of disjoint amalgamation. 

Theorem 3.1.8. Zf MO is (p, O)-limit, MO <A MI, Mj E si,,, for I= 1,2 and b E Ml then 

we can find M3, with MI d KM~ E R,, and a d s-embedding h of M2 into M3 such 

that b 4 h“(A42). 

Proof. Suppose not. Then fix MO, MI, M2 as in the statement, and for i <pf, find 

Ni E si,, GA?-increasing continuous, and additionally, also find Np, N;, Nf whenever 

cf(i) = 0, such that every Nj is an amalgamation base, Ni+t is universal over Ni, and 

cf(i)=6’ + Ni=NF <wN, <KNi+,, 1=1,2, 

and (N/,Ni],NL2,bi)~(Mo,M~,M2,b), for some &EN, 

Without loss of generality, 

N:= u Ni <,<EM(p+,@). 
;</I+ 

Let E c p+ be a club thin enough so that, in particular, 

GEE =+ NnEM(6,@)=N6. 

Let also b, =ti(ai,o ,..., ai,n,_l), with Cli,m,_l <i<Cli,m,, and 

Now choose 60 E E, with cf(&)= 8, 60<St EE. Let h be the <$I-mapping, with 

Dom h =EM(61, @), induced by 

j if j<&, 
j++ 

i 61 +j if &<j<6t. 

On (NiO, NiO, NiO, ba,, ), we get precisely the required embedding, and this contradicts 

the assumption of its non-existence. 0 
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Fact 3.1.9 (Existence of good extensions). (1) rf (A?, a’) E siF,I, und 8 E pt n Reg, 

then there is (&?,a’) with (G,a’) <fi,% (G’,Z’) E $,( C fi;,l), where (A?,;) <f., 

(A?f’,Z’) means (A%,Z)<~~,(A?‘,Z’) and A,{_ [M[j #A$]. 

(2) Simihrly for +JiT;,x, +&, and 6: ,,%. 

Proof. (1) Start by observing that given any A4 E RTLrn”, there is M’ E H,, universal over 

A4 which is actually a (p, @)-limit over M: just apply 0 many times, Theorem 1.3.1 

(Existence of Universal Extensions). We still need to ensure that we get the ‘weak 

disjoint amalgamation property’, namely a, 6 M,‘. Theorem 3.1.8 exactly provides this. 

(2) Like (1). together with the existence of stationarisation of types and the locality 

of non-y-splitting (Theorem 2.2.1). C 

We now get even more about the least upper bounds for the order < ;;, I. 

Fact 3.1.10. (I) <ii,? is a partial order, 

(2) zf ((Ax a-‘,G) ) (<is) is a <ii,,-increasing sequence oj’members qf‘ _ S6.7> ci 

is a limit <p-, and (a,;) is as in 3.1.5 (4), then 

(a) (ti,a’)EHt,,, (A?,&7?)E1Si~,.. 

(b) (G,Z) is the l.u.b. of ((G’,a’;) 1(‘<6) (both in ~j’,~ and <I: ,), and 

(c) (ki,BL$) is also a 6&,-l.u.b. of ((&?c, *’ 
-: d1 

a’;,N”) 1 (<6). where N = N+, jiw uny < 

(remember they are all equal). 

Proof. (1) Trivial, 

(2) If the conclusion were not to hold, then we would fall into ‘possibility (a)’ of 

the proof of 2.2.1, namely: if {Mi 1 id CJ) is <,I-increasing and continuous, and for all 

i <a, M, E 9;,m, A4;+, is universal over A4;, p E Y(MCj), and p 1 M, does not p-split 

over MO. But then, using 2.2.1, we have that p does not /c-split over MO. 11 

Definition 3.1.11. (1) (k,Z) E siz,X is reduced if 

(2) (&?,Z.fi)~+fiT,,~ is reduced if 

Remark 3.1.12. Equivalently, when defining (G,Z) is reduced, we could have used 

<z 1 instead of <e,X: just notice that x <T[ an’ <i 2.~” =+ x <i, 1 x” and for all x in 

the appropriate class of towers there exists y such that x <c 3: y. 
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Fact 3.1.13 (Density of reduced towers). (1) For every 8 E p”’ nReg, for every 

(&a) E A::.,, there is a reduced tower (A?‘,L?) E 5$X such that (G,Z) ~9 (n?‘,~?). 

(2) Similarly for +Sr(.x, ‘SE.,. 

Proof. (1) Let (G,a’)EAE.,. If the conclusion fails, then we can find (A?,;) E S&, 

d %,,-increasing continuous for i <y+, such that (A%‘,,) witnesses that (&?,a’) is not 

reduced. Now the set 

is a club of p7. For UE U~<U+,rC3M~, let 

i(a)=min 

:(a)=kn( C aE iCMi&l}. 

So, E’={6laEM~, i<cc*[(a)<6} is a club and E’ c E. Choose 6* E El: this vi- 

olates that the conclusion fails. [Why? ($6’ ,Z) is reduced. To see this, just let 
(&“’ ,Z) <i.% (&P,Z). We only have to check that for every i < CI, M/ n lJj <a Al;‘* 

CM!‘. SO let aEM:n lJjCaM!*. Since 6” EE’, i(a)<6*, hence aE lJ~,rca,M&l,. 

But since 6* E E, we have that (lJ;<Lc+ A4,‘) n (U,,, v;“* > = A@*. This implies that 

a E A&* .] 1 
(2) Clearly similar. 0 

Fact 3.1.14. (1) In 3.1.5(4), ij” S=sup{[<6)(&,&) is reduced}, then (@,a’) 

is reduced. (In fact, it is enough to have (&?,a) E SyT, and (I@~,&) E S$~! is 

< I:, ,-increasing. ) 

(2) In Fact 3.1.10(2), ifS=sup{i<6/(~~,,-~,~-i) is reduced}, then (@,&g;) is 

reduced. 

Proof. Clear from the definition of ‘reduced’. 0 

Theorem 3.1.15. (1) u (a,;) E Sit., is reduced, then A? is <AI-increasing and con- 

tinuous. 

(2) If (&,a’,$)~ +S& is reduced, then ti is <,+-increasing and 

continuous. 

Proof. We prove by induction on 6 <a limit ordinal that if (2, a’) E Hl;,a is reduced, 

then A48 = ULc6 Mi. Assume then failure for 6: there exists some b EMA\ Uit6Mi. 
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Fig. 2. The diagonal and h. 

We can find (a;,a’) reduced, for [ 66, a <f,,,-strictly increasing continuous chain of 

towers, such that (Go, a’) = (Q, a’) (it exists by Fact 3.1.5(4), and because ‘reduced 

towers are dense and closed under limit’, Fact 3.1.13). Now consider the diagonal 

sequence (MP ( i <6) (Fig. 2). It is Gsi-increasing continuous, its members are in $I,,, 

each A4; is (p, 8;)-limit, for some 0; E pl+ n Reg, and Mj;: is universal over Mi. Also, 

M,f CI@,~~,, and bEM&. So, by the main result on non-~-splitting (Theorem 2.2.1) 

for some t < 6, tp(b, UT<6 @,@) does not p-split over M;. Let now % be (p, ~1’ )- 

limit, MC! < .(i 23. 

We choose by induction on i<6 models N, and functions hi such that 

l if is<+ 1. then N,=Mf and hi= id!,,, 

l if i E ([ + 1,6], then N, < ~~‘23 is a (,u, Of)-limit model, and 

1. (N; / i d 6) is d H-increasing, continuous, 

2. NY+, is universal over Ni, 

3. N+ > M;‘, 

4. h, is a <,;-embedding of n/r,” into Ni, 

5. h,,l maps Mf+,\Mf into N,,l\Ni, 

6. (h, / i < 6) is increasing continuous, 

7. tp(b, h,(Mf), 23) does not p-split over N* := Mj = h,(Mi), for i >, <. 

For i < t+ 1, this is trivial. For i E (5 + 1, S) successor, by the Claim 3.1.16 below. For 

i E (t + 1,6] limit, use Theorem 2.2.1 for the last clause (remember, by the induction 

hypothesis, (Mf 1 i <6) is continuous, and by definition, Mf is (cl, Oi)-limit, hence an 

amalgamation base). We also have that tp(b, UICd hi(Mf ), 23) does not p-split over N*. 

so, 

h* = u h, u {(b, b)} 
I <ii 
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is a ‘legal’ map. For some N(T+, <$I B, (p, w)-limit over NC?, we can extend h* to 

~+EAUT(N~~+~). Let for i<6, My=(h+)-‘(N;). We then have @‘b(M/Ii<6)<F,,6 

(Mi@ (i66). 

[Why? On the one hand, i < 5: =+ h+ > hi = id,,, = idN, , and thus M.8 = N, = M!. On L 1 I 
the other hand, if i E (t. S), then h+ > h” > hi and hi <St-maps M/ into NC. We thus 

have that M: 6 $1 Mi@. If i = 6, then clearly Mf < $1 Mi’. 

In the R;,, case, we still need to show why i < 6 + ai @ Mi’: if i < t, this is trivial; if 

i> t, as h,+l maps Mii,\MF into N,+, \N;, and thus hi+, (a,) $! N;, hence ai @ (h+)-‘(Nf) 
=Mi?] 

So, ah holds, and as earlier we can define Mi 8, for i E (6, a) such that (Mf 1 i < a) 

<i,s (ML@ 1 i < a). But then the place of b drops: now, b E M,r 6 51 Ni+l, and h+(b) = b, 

so bEA4&. Contradiction. This finishes the proof of (1). 

The proof of (2) is similar: We are now in the ‘9z,c( case, and we need (in ad- 

dition to what has already proved) to prove that the non-p-splitting holds. This is, 

tp(aj,M;‘,Miy,) does not p-split over N,“. By definition of +.5&, we already have 

that tp(ai,Mf,M$,) does not p-split over Nf. But h+ EAUT(NJ+~)); hence, tp(h+(a;), 

h+(Mf), h+(ML’i,)) does not p-split over h+(NF). But then, pulling back again this 

type, we have that tp(a;,Mi’,Miy, ) does not p-split over NF. 

The proof is finished just like in case (1); we use the fact @J, (MF, NF ) id 6) <t;,B 

(My, N/’ ) i d 6) the same way as there. Cl 

Claim 3.1.16. Assume thut MO is (p,&)-limit over N,“, N,* E 537, Ml is (~61)~limit 
and universal over MO, for I= 1,2, b E Ml, tp(b,Mo, Ml) does not p-split over N,*. 

Then, we can find Mj E 53; and h such that MI < $1 M3, h is a <w-embedding of M2 

into M3 over MO, tp(b, h(MI),M3) does not p-split over N,*. 

Proof. We can first find Mj, h’ such that M2 < ~1 M; E 537, h’ is a d ,t-embedding of 

MI into Mi over MO, and p’ = tp(h’(b), Mz, Mj) does not p-split over N,*. This follows 

by the definition of type and the existence of p’ E Y(Mz), p’3 tp(b,Mo,MI), not p- 

splitting over N,*: hence, for some M3/‘, M2 <<n A43’ E $“, and b’ E M3/l realises p. So 
there are M$, h’, Mj > Mf as required. Send b to b’ via h’, and extend the identity 

on MO. q 

3.2. Toward the uniqueness of limits 

We need a refined concept of type in order to obtain the right kind of towers later 

(‘full’ towers). The following definition specifies this refinement: in addition to just 

‘describing elements,’ like we do when defining types of various sorts, we look both 

at the ‘elements’ themselves and at witnesses of the specific ‘way they do not p-split’. 

In principle, this provides a tighter description of the element, since it provides along 

with it the specific submodel over which the type does not p-split. 
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Definition 3.2.1. For A4 a (,IJ,~)-limit model, let 

(1) Gt(M) = {(p,N) (N <,lM is (p, U)-limit, M universal over N, p E Y(M) does 

not /l-split over N}, 

(2) for (~/,NI)E St(M), for I= 1,2, let (~r,N,)%(p?,N2) #‘for every M’. M 6,; 

M’ E “,“(“I, there is q E Y(A4’) extending pi and ~2, not Ll-splitting over VI or 

over N?. 

Fact 3.2.2. (1) RZ is an equivalence relation on et(M), 

(2) lf M’ E KY is universal over M (in Dqfinition 3.2.1(2)), the existence qf q jbt 

this M’ sufices, 

(3) (St(M)/=\ dp. 

Proof. ( 1) A diagram chase which we leave to the reader, 

(2) By Universality + Preservation by d ,I-embeddings, 

(3) Since by Fact 3.2.2(2), there is M’ E Sib universal over M in which we may 

check all the instances of - --equivalence, we have 1 Gt(M)/zl 6 IY(M’)I <,u. C 

Remarks. (I ) It is worth noting here that perhaps E is the equality. We do not know 

yet; but for our purposes, it is OK to use X. 

(2) In the definition of ‘(@,Z,@) E+RI*,.,‘, it is just the ‘St(M)-equivalence class 

(tp(h;, M,. M;,~,),~li,)/ x that matters, and not N, itself. 

And now, we can provide a crucial notion for towers (see also [13]). 

Definition 3.2.3. We say that (a, 2.g) E LYE, I is ,full $t” 

(a) p divides (x (if p is regular, if it is singular, ~1”’ divides CI). 

(b) if P<x and (~,N”)E Gt(MLj), then for some i<b+p, we have that (tp(b,i+i,M/i+,, 

Mp+(_ 1 ), N/j_,) = (p, N*). (Formally, it is equivalent to the stationarisation of 

(p>N*).) 

We are approaching one of our main goals (‘uniqueness of limits’) with the following 

theorems. 

Theorem 3.2.4. Zj (G, a’, @) E +S1;,? is full. und I@ is continuous, then U,,, M, is 

(p, cf a)-limit over MO. 

Proof. Let (M[ / i <cx) be <ii-increasing continuous, with each model in the tower in 

si”“‘, and such that each M! ,+, is universal over M,‘, A4; 

aid IM:I as {u:,~ ( i:<,u}. Let g : c( 

2 MO. List IM,l as {al.; / ;<p) 

+ U,,,M/ =Mi satisfy g(i)EM: (Fig. 3) and 

if /I<cl, ~EM,$, (p,N)~Gt(Mii), then 

@ 
D<Y<BfP 
(P,N)~(tp(a;,,M,,M,+I),N;.) TM/i 

s(l/> = b 

This makes sense: ilMh]j 6~ and by Fact 3.2.2, jEt(M)/--j <,LL 
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Fig. 3. The definition of q 

We choose by induction on i <a, hi such that 

(a) hi is a <~-embedding of Mi; into MI,, 
.I, 

(b) (J&x is increasing continuous, 

(c) j!, jZ are increasing continuous, 

(d) j/+1 <j,’ + pL, $+, <j? + .D, 

(e) g(i) E Rang(hi+t ). 
For i= 0, this is trivial. for i limit, just take unions. For w, without loss of 

generality g(i) EM: <pi II&~, and we know that A4i is (p, 8,)-limit (say (A4i.e 1 E < Bi) 
.I, 

witnesses this). So, for some Ed, tp(g(i), h,(Mi),M;;) does not p-split over hf(Mi,, ). 

So there is pi E Y(M,; ) such that hi(pi) = tp(g(i), hi(A4i),Mi*), and thus for some 

t E (0, ,u), we have 

Let ji+, = j,’ + 5 + 1, _$+, = j,’ + 1; there is hi,, as required. 

So, letting h = UiCr hi, we have a witness for the original requirement: 

For p regular, jf = i -<j,’ E [i, i + ,u), for ,n singular, i,” = i, jr E [i, pi). So, since @ 

divides CI we catch our tail (j,’ =jt = a), and get the isomorphism we are looking for 

(h, :A& -+ ibl: is onto by the bookkeeping g). 0 

3.3. Limits via sequences of difSerent lengths 

So far, ‘the limit’ has been proven to be unique, when the sequences converging 

to it in the various orderings defined are of same length. We are striving for more: 

we want to prove that even if we approach a model via sequences of certain different 

lengths, the limit may be proven to be ‘unique’ in a robust enough sense, by using 

a rectangle of models which will be (p, 8/)-limits over A&O, for I = 1,2, by the two 

sides. 
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Definition 3.3.1. For u an interval, and U a union of intervals, let 

A? = (Mi 1 i E u) is <j;-increasing (not 

necessarily continuous), a’= (q 1 i E u), 

a,~Mi,,\Mt, G=(N,li~u), N, <GM,, 

N, an amalgamation base in K,,, 

M, universal over N;, 

tp(ai,Mi,M,+I) does not p-split over N, 

23 

The right way to think about these classes is by immediate analogy to the original 

+ “&. 1 classes. As there, it is natural to expect to have a <ii,, relation. 

Definition 3.3.2. For (G’,Z’,fi’) E fS3i,l,:, 1= 1.2, let 

Now, as before for the definitions of towers, we have the following basic facts about 

the new ‘scattered’ towers. 

Fact 3.3.3. (1) Let U’ c U2 c ORD. Then, 
--+- 

(a) !f (M,a.N) E +s~~,llz, then (ti,&E) r U, E +Kt,,,,; 

(b) IJ’ (ii;rii,*) E +t;.1,,, -/-/-I * 
then there IS (A4 , a , N ) E -WI,,I,J such that (A%‘, ii’, @‘) 

r UI E ’ q,u,. 
(2) Let (U, (E<E(*)) b e an increasing sequence of sets qf ordinals such that 

1 II, 1 d ,u then the parallel of Fact 3.1.10 ,ftir limits. 

(3) IJ’ II, CU,, (G’,a’,ti~)E+R;.,i. and (A?,c?‘,$~) YU, <‘(ti’,Z’,~?‘), then 

M’e cun jind (ti3,Z3,rj3) E +SIir,,l,, such that (lii’,~‘,~‘)~~(lii3,a3,~3) and (Gii’, 

,-~.P)~~~(iij3,$,j?), 

We also have that 

Fact 3.3.4. In Fact 3.3.3, if each one sf’the towers is reduced, then so are the limits. 

Construction 3.3.5. Fix [ and let c( < 1~~ be divisible by p”’ (ordinal exponentiation). 

Let now Ur = U { [p,uc, /?p[ + ,UE) ( /I < LX}, for each E< i. Now we can define the class 

+Az,II just like +a:.,, but now using 21, as our set of indices, instead of x. The point 

is that now we want to play with changing U, in various ways. 
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-i --c ‘IE We choose (A4 ,a-,N )E+R~,~~~, <‘-increasing (naturally), each one of these tow- 

ers reduced. In successor stages, in the new intervals which have length ,LL we put 

representatives to all types. 

In the end, we get 2 = (A4i 1 i < (/l,u[)cc). So, 
~31 each Mi is (cl, cf [)-limit (by <‘), 

82 every (p,N) E Gt(M)/ =, up to equivalence (by Theorem 2.2.1 - we dealt with 

it so it appears in j E [i, i + /?p[)), 

@3 if there exists E such that i E U, and i = sup(U, I? i) then A4i = Ujii Mj. 

So, reformulating ‘full + limit’, we get a similar claim for U instead of p or ,LP. 

If a = CC* + 1 is a large enough ordinal, then we can find ‘I such that 2 r ‘$3 is full, 

CC* = sup 23 n CC* and c1* E 58. So, by 83, we have 

@IV,* = UBESIMfl is (p, cf cc*)-limit over MO. 

But M, is (,u, cf [)-limit. We can arrange cf a*, cf i to be any regular <pLf. 

Conclusion 3.3.6. If M/ is (,u, 8/)-limit (I = 1,2), then Mi M A42. 

So, to speak about ‘the ,u-limit model’ now makes sense. 

Comments. A nicer construction may be obtained if we set 

j<,u”[, j=Omod3 

This way, the first set UO contains at least all the ordinals which are 0 or 1 mod 3, 

hence there is no problem with the limit. 

Theorem 3.3.7. If Ml is (p, 9,)~limit over M, for I = 1,2, then 

Proof. The same proof as for Theorem 3.2.4 works, although naturally it has to be 

adapted to our ‘scattered tower’ situation. Without loss of generality, both 0 and c(* E U. 

We define (@, &,%) E +Ri,u;, Ac$’ =M. So, we have that M$ is a (p, &rr* )-limit 

over A4, and also (p, cf [)-limit over M. 17 

With this, we can by now conclude that saturated models exist in a strong enough 

sense. We may take as our definition of a ‘saturated model over M’ in a cardinal ,u 

the (by now unique because of Theorem 3.3.7) (p, Q-limit over M, for an arbitrary 8. 

This paves the way towards a full study of the categoricity spectrum for abstract 

elementary classes without maximal elements. We intend to continue developing this 

theory in that direction, by studying the type theory for our context, non forking amal- 

gamation, and the true role of saturation. But this will be the material of forthcoming 

papers. 
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