Sh:247

More on Stationary Coding

We here continue our investigations in [Sh1] on stationary coding sets
(introduced and investigated by Zwicker [Z]) making some improvements
and additions.

The various claims are not so connected. They include:

A Ifx= % A= Afthen thereis a («* A")-stationary coding (see 23)

B If A= AV is regular, S C {6< A*: ¢f 6= 8y is stationary but does not
reflect then there is an (8;,A*)-stationary coding (see 24, 25)

C 1t A= A then O (:bs (A*)) (see 28); for more on diamonds see 13, 14,
1

15.

D We note that Martin Maximum implies that “there is no (8{,A)-weak sta-
tionary coding for every A" and we show that statement for A = 8; when
2“" = Mg, (see 3). We note also that for « first inaccessible, strong stationary
coding may not exist (see 4).

E We also give an elementary presentation of "a normal fine filter on A (or
/9<,c()\)) concentrating on the wrong cofinality is not At-saturated” (see

6,7.8). O (:b) has an even stronger conclusion (see 17).

F On strong stationary coding see 18.

1. Notation:

1) If <* | a well order the set a let ofp (a, <*) be the order type. If e is a
set of ordinals, < * the usual order then we write otp (a).
Let ord be the class of ordinal.

2) H¢ (o) is
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ta:la|<kandforeveryn andzx,, .
if x1€x2€.x3~-'€xn€a,
then zis an ordinal < aor

a set of power < ¢}

H, (0) is written H{x).
3} Observe that |H (o) = {2+«|<* when «is regular.

4) For =i let £ = /37“ be a subset of H. (A) of power A such that for
some M*, M*< . (H((2MN*), €), ke M* ||M'||= A A€M, A< M" and
B = M*'nH (N, hence

(i) if A" = xthen & = H N
(%) if AS€> Abutthereis® ¢ Ho (N,
1Bi=n, (vaef  A)(@Ebel)(acb)

then R satisfies this

5) Let cd,, be a one-to-one function from l:?,m onto A, and let ded g, be its
inverse
Let ded*(e) = {ded(z): z€a]

6) Let Dg (8 an uncountable regular cardinal), be the filter generated by
the closed unbounded subsets of 9, :bgb is the filter of co-bounded subsets

of 8.

7) For f,.g:I»ord, f< g means{tel: f(£)<g(t)eD, frdD<g /D
D

has the same meaning
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8) If D is an ¥,-complete filter on a set [, f:/-» ord then the D-rank of J is
denoted by Rk (f :Z)) is an ordinal. We define it by defining by induction on
awhen Rk (f D) = «:

Re(f D)= aiff a = Ui{B+1 : < & and for some g/:b‘(f/:b, Fie (g D) = a}

9) f Dom f = 6 aregular uncountable cardinal, let Fk(f) = Rk(f x,fb;"),

10) For O a fine normal filter on F( (4), B ¢ 4 let

Do = tanB:aeli: Ied

D B is a fine normal filter on /9< «B)

2. Lemma:

1) The following are equivalent for a regular uncountable « and station-
ary T C «
(i)  there are function g {a<«*),g from x to « such that (Vi< k)
g(i) < ®g+ i) and g /D, < gﬁ/,ﬁz}x for a < < k* and g/:bxﬁga/:z},c
(v) for any cardinal u such that {(vée T) [cf & u /A |8]% k], cardinal A > «
and subsets F; € A {i < y) there are functions g; 1 ¢ » « {1 < @) such that
the following set is stationary {i.e., # ¢ mod $<K(}\))
fa €p<,c(?\) : ank is an ordinal and for 7 < u the order type of ankF; is
g9:(ank), and if ¢ is an accumulation point of a,
ef dAcf(ank) then 6€ al
2) Assume (i) of 1) holds (for «,7), A= %% |a|* < k¥ and (Vy< «)
[|7112! < k). If T is a set of inaccessibles (not necessarily strong limit) then
there is a {«,A) —stationary coding.

2.A Remark:

Lemma 2 (1) says that in [Sh1] 12, 12A we can add condition (v) to the
four equivalent conditions. Lemma 2 (2) says we can strengthen [Shi] 13
{which uses the same assumption and deduce the existence of a (x,A)-weak
stationary coding (with no additional condition on 7)).

Proof:

1) We use [Sh1] 12A which has the same proof of [Sh1]12. Now (v) here
implies (iv) there trivially. The proof there of (ii)==> (iv) gives (ii)==> {v).
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2) Like the proof of [Sh1]13.

3. Fact:

1o oMoy, Ny then there is a stationary 5 < Scy,(82) which does not
reflect, i.e, S # ¢mod :bgno(&z) but for every o< 8¥; {(but = 8;),
SN Sey, () = ¢mod :Z)ﬁnu((x)

2) f Sc fa:ac k" ankanordinal, |a| <«} € S¢ (c") is a station-
ary set which does not reflect « regular uncountable, then for some
Ce :bs olk¥), € N Sisaweak (k«")-stationary coding for («,k*)

Proof:

1) Let for an ordinal %, h; be a one to one function from |i] onto 2. In
V'E L[ {h;:1 < > ] there are at most 8 countable subsets of wd (and
/=87, 8 =8 [V E'a € Son,(8)" =2 V E"a € Scn,(82)]). But it is
known that every (¢ :Z)SHO(HE) has power = Moy No. So
S%fa:ac Sen,(82), @ € V'] is # ¢mod '%s&o(so)- But for every o< 8;
using h, there is C, E.:bsgo(a), Cy € V' (each member of C, has the form
tho{i) i < &8 for some 6< wy). So .S does not reflect.

2) Let S C S le™) be # ¢mod D (k*), but
S0 S fa) = ¢gmoddD, (o) when k= a< x*. Let hg be a one to one func-
tion from [B| onto B When «< a< «* let a= U a2 a2 increasing con-

i<k
tinuous in 1, ¢ € S. (Possible by the choice of 5). Let Cyo= i < w: h,
maps 1 onto af so C, is a club of x. Let gy x —»« be defined by
gli) = Min(C, —1).
Let £" = {a € S.{«*): a is closed under h,, hs' and g, and @ N« is an ordi-
nall

Cbviously C* E:bsgu(&g). SoSnC%is# ¢gmod :bsso(/c*').

Suppose (*) a.b € SNC", a C b, anw,;=bnNnw,; a#b, and we shall
get a contradiction.

Let d=ank=bnrx I a€anb, a=k then ana= {h{i):
1< 8 =bnk We know b —% ¢ let 8= Min (b-¢); by the previous sen-
tence @ C By hence a = b nB Now as b is closed by gg clearly 6€ Cg,
hence {using h, and the definition of Cﬁ) a = af, soa ¢ 5, contradiction.
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So (#) is impossible hence S N C*is a weak («,«)-stationary coding.
Remark: The proof is similar to some proofs in [FMS].

4. Fact:

It is consistent that e.g. the first inaccessible cardinal A, is a strong
limit and for no (regular uncountable) ¥ < A, a strong («, A)-stationary cod-
ing exists (assuming the consistency of suitable large cardinals)

Proof: Woodin constructs a model of set theory in which the first inaccessi-
ble A is strong limit and (/}\ fail. By [Shi] 74 for x < A, strong {(KA)-
stationary coding does not exists.

Why 74 holds? By the known (folk?) proof that club implies diamond i.e.
4.A Fact: (= 7A of [Sh1])
If there is a strong (x,A)-stationary coding, <A, A=AS*> 2<% then

N
Mo nef 5 il
Proof: As A = AM let {4; 1 i <A} be a list of all bounded subset of x. Let

fas: 665} be a strong (x A)-stationary coding, for some stationary S ¢
< Nefé<k] € A 0= supas and |ag|<r Let Ps= iik.e}bA,,; :b C al, so for
€S, /96 is a family of < 2°F subsets of 6 Now we shall prove that
(P(S: 6€ S > satisfies

(9)for X C 4, {& X Xﬂ&pg is a stationary subset of A.
For let h: A » A be defined by

h{i)= Min {j : 4, N1 =X N1}

So for stationarily many &s, ag; is closed under h hence
Xné= y (Xni)= U 4= U4, 7€a, ycRang(hla)] €Py  as

i€, i€,
2<% < Awe are finished by a Theorem of Kunen.

5. Lemma:

1) It is consistent (in fact follows from the axiom from Foreman Magidor
and Shelah [FMS] Martin Maximum) that: for no A > 8, is there an (8;, A)-
weak stationary coding
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2) It suffice to assume that :wa is ¥g-saturated, and for every stationary

Sc PN, 4eP g SaPs(A) 2 mod Dy, (4) # ¢
mod $<32(?\)‘

Proof:

1) We prove 1) by 2), the assumptions of 2) holds by [FMS], and for 2) we
may repeat {Shi1] 20.
Alternatively assume S is a weak (8;,A)-stationary coding, let I; be the fam-
ily of T C w; such that: there is an increasing continuous sequence
{ a;1i<w; > of countable subsets of A satisfying:
{i<w;iifi € Tthen @ beS) [1 = a;Nnw;C bC a;]] contains a club C.
For Telylet {a;{T):i<w; >, C{T) be witnesses. Now /; is a normal ideal on
w{, hence modulo the non-stationary ideal on w, has a maximal member 7*
{as :baa is Ng-saturated).
If T*" = w, (or just contains a club), then

St =tbeP N @)L Ui (T = a(T)ai (T
J< o

and b ¢ 1 a;(7")}
F<ey
is a club of /90;1(7\), and any member of S*n S contradict the assumption
"S is a weak (®;,A)-stationary coding”, but such an element exists.
If w-T"is stationary, S; = tb €S5: b n [ U a;(T")] = a;(T*) for some
F<ay

i € T*} cannot be stationary otherwise by the second hypothesis of 5(2) we
get contradiction to the maximalety of T°. So for some €,§Z><sl()\)}
CnSi=¢
Let o= (b e Py N:b ¢ U a;(T, and

J<

b NNl v a;(T*]is a;(7°) for some i < w].
J <y
Clearly (g €fb<gl(>\). Hence C;nCyce :Z)<N1()\) hence there is
belCinCanS As b € C; we know b € 54, and as b € C; for some 1 <
bn [<U a;{T%)] = a;(T"), b # a;(T"). This implies as b ¢ 5; by the defini-
§<uy
tion of S; that i € T*, hence thereisa; € 5, 0;,{T") nw; € a € a;(7T"). As by
the choice of b andi b Nnw, € a;(T") C b, q;(T") # b we get a,b contradict-
ing "S is a weak (8;,A)-stationary coding".
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We give an elementary (i.e. with no forcing) presentation of the proof of
[Shi] 14.

6. Theorem:

1f 2 is a fine normal filter on / = fa ¢ A:cf(supa)#cflalil, and Ais
regular then there are functions f,; for 1 <A™ such that: Dom f; = 7,
fila) €@ andfori # j, fe €/: fi(a)= f;(a)l = quonS
Proof: We can find 4;(1 < A%) such that:

(*) 4; is a subset of A, unbounded in A, and for j < i, 4 N A; is bounded
in A
[just let 4;(i<A) be pairwise disjoint subsets of A of power A, and then
define 4; (A1 < A*) by induction on %: for each i let {j :j < 1} be
{Ja:a< M, and let 4; = §7§ - B< Al where 72‘ = Min (Ajﬂ - v 5‘47',1) .} it exists

a <
as [4;,04;,] < Mor a < g].

Let for i < A%, g; : 1= X be such that {4; —g;(j) : § < i} are pairwise dis-
joint. Let f; be a strictly increasing function from A onto 4; (for i < A*)
hence f;{a) 2 a So (; = {a : a is closed under f;] belongs to . For each
aelleta = {22 . a< |all.

Now for each @ € C;, @ n 4; is unbounded is a, {by the definition of ()
so for some oy{a) < |a|, 4 n{z2:a< {a)] is unbounded in a (as
cf(sup a)# cf |a|).

Next for © < A* let h; be a one-to-one function from A onto AU{j : j < i}
and define by induction on 4:

CGl=facCiuUn: a closed under by , B3, anxel
a n Aclosed under f; , f;7,
@ closed under g, , {(jeaorj=1)

andforj €a, a n{jur) € Gt}

Clearly G;'M\ = fannaeCl] is in 2D, and for each a € I there is at most one
a' € ¢ satisfying a'nA = @ , namely h;* " (a).
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Now we define for 1 < A% a function d; with domain /.

{ogla) otp(fjehy (@) ag(a) = ou(a)] ), if Ay’ (a)or=a
hi“(a)ECil

Min a otherwise

Now we shall finish by showing:

A: for iy # ig fa €] :d;{a) = d;(a)] = ¢ mod D

B: for a €17, {d;{a): i< A%} has cardinality < a

Why this suffice? As for each a €/ we can find a one-to-one function ey,

from {d;(a): i < A*] into a and now use the A* functions
( eq (difa)): i < A" )

Proof of A: Wlo.g. i, < iyand A=< 1, for notational simplicity. Clearly

RE=f{ael: h, (a)eCl, i,€h; " (a) (henceh;  (a)= hy " (a)ni, €l

belongs to . Let a be in it, and d;{a) = di(a). Clearly d;(a)# Min a
hence by the first coordinale in d;{(a), a; (@) = oy,(a). Now {£€h; > (a):
aa) = oy, (a)} is an initial segment of {£€h;, (a): afa) = o fa)] (as
a € i) and a proper one (as i, belong to the latter but not the former). As
the ordinals are well ordered, their order types are not equal. That means
that the second coordinate in the d;(a), d;(a) are distinct. So
d;(a) # d;{a)is true for i;# 1, a€R, as required.
Proof of B: As the number of possible o;{a) is < |a |, and the number of
order types of well orderings of power < |a | is |a] it suffice to prove:

(%) for i<A*, aeCl, the setw = {j €a : a;(a nA) = og{anA)} has power
<la]
Why (*) holds? Because for j € u the set

ANz a< og{ani)i

is unbound in anNXA

but A; N\g;(j) is bounded in @aNA (as a is closed under g;)
hence
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r F{AN () Nz a< og{ani)
is an unbounded subset of @ N A, hence non empty.
But {r;: j€a, aj(am)\) = gz(@anA) > is a sequence of pairwise disjoint
subsets of {22 : a < o;(@nA)} (by the choice of g;). As they are non empty

their numberis= {22 : a< oy (@nN)l] < |a|.

7. Claim:

Let 2D be a fine normal filter on 7 ¢ /2. ()\), A singular and (va € )
(la|= c¢f Aa cf la| # cf A acf A=suplcf Ana)) and
Re(lal D) < |al*

Then there are functions f; for i < A*, Dom f; = /, (vae € )[f;(a)<a]
and fori#j {a €7: fy(a) = f;(a)] = ¢mod D

P f: Let o=cf A, A= X XA, h A lar, Z A< A< A f < o

roo et o f R ¢, eac ¢ regular E<<‘$ ¢ or ¢
We can find for 4 < A" functions 4; from o to A, 526)\5 < A (9 < A¢such that
<
fori < 7 < A* there is £é< o such that

¢ (< o= A< 4@

Let again a = {z%:a<la|}, so for each i1 < A*, a €] if Range 4; is
unbounded in a then for some oy{a) < a, (Range 4;) n{zl o< oy(a)} is
unbounded in @ (and o;(a) = Min a otherwise).

Now for 1 < A* we define a function d; with domain 7 (h;- a one-to-one
function from A onto i U A):

(as(a), otpfi €hy () i ay(a) = (@)} if @ = e (@) N,
(vee{ancf A))A(Jea
3 and{Vvj €a)
di(a) = a = h;* (a) NA
Min a otherwise

We finish as in 6.
7A Remark:

1) Really we use Rk(|a |,:b§°) < Jal|* (where o= cf A) just to get, that
for every (< |a| for some ¢ < |a|*
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(*) thereareno f; : o > (fori < &, [1<j == fi <pg f;]
We should observe that for @ € I, o n o has order type ¢

Note that if for each ¢< |a| there is such £ then £(*) = <<L1Jalétis <la|*
and work for all ¢s.

Similar remark apply to 8.

8. Claim:
Suppose k= 0= ¢f A< A,
¢ faef of la|# c¢f (sup (@ N a)), and Fe(la],
,%g;(sup(ana)))s fa|* when cf (sup a) > ¥ and
la |79 = |a| when cf (sup @) = Ngi,

and D a normal fine filter on /.

Then there are for i < At functions f; : I»A, fi(a)€e and for i#]
fa €I fi{a)=f;(a)] = ¢mod D.
Proof: Let 4;, A;be as in the proof of 7, @ = {x% :a< |a|}. Let hy be a one-
to-one function from A onto AU{j : j < i}. For each i the set (! #fa e/ a
is closed under 4;, and (Range 4;) Nna is unbounded in a, h* {e)nrh=a
and a € C} for j € hy"{(a) and cf (sup a) = cf (sup (ang))} belongs to D,
and for acC! let oy(a)<|a| be minimal such that
(Range 4;) N {z% : a < o;(a)} is unbounded in @. We then let

(agla), otply :j €hy(a)  ayla) = ay(@)}y fa € Gl
& (a) =

Min a otherwise

and we proceed as in the proof of 8, 7 (and see 7A).
9. Definition:

1) For x < A, k regular, and a model N with universe |N| which is an ordi-
nal <k, two place relation Rllvg Ré" a three place relation Eév and a partial
one place function FN (if one of them is not memtioned this means it is
empty), let (see notation 1(5)):

TeA(N) = (o €PN ded (a) N A= a,
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and there are b, {(for s € | N|} such that:

i) by ¢ @, a = uUb,, b, c€dcd (a) (equivalently

seN
Cd/c,?\(bs) ca)

(ii)  sREYt implies by C b,

(iii) st implies cd,\(bs) € by

{iv) for each ¢, cdi<a cd, \(bs)>:

RY (a, s, t)} € b,

(v) fort €Dom#F¥, |b,| = F(¢)

2) For K a family of models N, T, (K) = e T aN)
[

3) NO
) 2]

i

1

i

(9,< < ’RS)

(so By,Ry Rq,F are empty)

(so Ry, Rg,F are empty)

{so Ra,F are empty)

a€ N,

where Fg = {<a,ay> :a< 7 <6} (so F is empty)

We now show that [Sh1] 13 (and 12) is applicable sometimes. (see 2, 2A
above for what they say). This is when £ = Ain 10.

10. Claim:
Suppose « = u* < A, 8 regular, 8y < 8 < 1, and Rk (u*, D

sby
o)

u". Then

there is a function g from 7 = T;c,)\(N;} to k& such that for every well order-

ing <*of &

fa eP V) otp(a<?) < gla)) 2 T mod DN
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11. Remark:

1) We can use other N's, but then have to change accordingly the filter by
which we define the rank.

2) In [Sh2] various sufficient conditions for R/c(,qu,:Z);b) = ut are given:
(Whencf u# 0):

(vo< w[c®= y
and

"u> 2% and pu=< (suplo: ® = )"

4) As for ae€T {B:8< g(a)l has power u and C' = fa 6/9<,C()\):
la| = € :b<,c()\), we can deduce that:

If the conclusion of 10 holds for 7 then there are functions g; : T- XA (for
i < AY) g(a) € @ such that fori#j {acT: g;(a) = g;(a)l = ¢mod EZ)QC()\)
Proof of 10: For each well ordering < * of X let
<= {acf (N:toreachica, cd (i) " A< a and
otp (cd, (i) N A, <*) < otp(a)]
It is clearly closed unbounded, ie., belongs to $<K(A), Now if
ac T(Nel) NCI<®], let {(by:a< 8> witness "a € T" (ie, iz€a,

ia=cdeby) e B\ a= ub, b
! ’ a<8

otp(b; ,< ") < otp(a) for each a. So clearly it suffices to prove:

« 18 increasing in «), so

12. Fact:
If @ is regular cardinal, Ng < 8 < u, 8 # ¢cf u and Fk (M+,:be"b) = u* then
for every ¢ < u* there is &< wh such that: if ¢= UeAi’ 4; increasing, then
i<

for some i < 0 otp(4;) = ¢

Proof:

Suppose ofp (4;) < £ fori < @, A increasing, and ¢{= 1;39 A;. Define for y < ¢
a function A, : - ¢ by: h (1) = otp(4;ny). So each h, is a function from e to
ordinals, and for B< y (Vi < @) [hg(i) = h(i)], moreover for some j < @
BeA; hence (Vi) [j< i< 8>hgli)< h(i)]. This clearly implies
Ri( & Zb;b)z & but Rk ( ¢, ib;") < ut
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13. Definition
For k< A, « regular, 2D a normal fine filter on / € /9<,c(?\),

0 (D) means that there are (4, a€l), A, C a,such thatfor
every A C A fa €7: 4na = Ay} # ¢mod D

2y O "(:b) means that there are (/9 caely, /Oa a family of
= {a[ subsets of @, such that for every 4 ¢ A fa €] Ana e/f’ag

ed

3) We replace D by I when D is the filter generated by the family of
closed unbounded subsets of /. We write /, D instead of D + I,

14. Remark:
We implicitly assume [ # ¢ mod ﬂ)< M),

15. Fact:
1) For/C J C /9<,C(>\) :Z)l C :.bz normal fine filter on /9<,c()\)
1) 0D = O Do)
i) QD) => O (D)
i) O (DatD) = O (Dy+J)
iv) QMDD = O (Det)
(remember D (N)+7 < D for any fine normal filter on I)
2) Suppose & < A = ASK,
T = {a: for some®, a € T,C,,\(N;), la|®= |a|
ora € T,C,Q\(Nel), andcfla| #6(vo< |a])o®=< |a]
or (Ix,00) (RX= Aar=x* Alal<?=lalr (V7<)
[ef (any™ ) < oln a < o)}
Suppose further T # ¢mod :Z)<,C()\)v Then (T, :Z) 23]

Proof: By straightforward generalization of the proof for the case A = «, due
to Kunen for 1, (i.e., 1(ii), the rest being trivial) Gregory and Shelah for 2)
(see e.g. [Sh3]). le. for 1)(ii), suppose (/9,, ‘a €/9<,C()\)> exemplifies

O (:b + J). Let /9 {A® .1 €a)]. Let < , > be a pairing function on A,
and for eachi < A\, e € /9<,c(>\) let
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Bl =fa:aca, <ai> €AY

So B C a;;is (B a eP N> a O (D ,)-sequence for some i? If yes
we finish, if not let B* ¢ A exemplify thisi.e.,

Ct=taecfP N: Bina » B} €D,
Hence

C=1ta €p<,€()\): (vi €a)a € C*, and a is closed under < , >} ed

and let

A= f{<ai> s a€ B .

So for some a €, Ana 6/9@ hence for some 1 € A, Ana = A¥ hence
Bina = B} contradiction.

16. Remark:

We can enlarge T in 15(2) to:
the setof a €/9<K(?\) satisfying:
(*) there is a family H of = |a| functions from a to a such that: for any
h:a-»a, forsomeb C a, hb € Handa C ,;E,,d‘:dw(i)

Now 15(2) can be combined with (15(ii) and):

17. Observation:

1f 3D is a fine normal filter on P . (A), and O (D) holds, then: there are
J, € PN for a < 2* such that:

J,# ¢mod D, Ja N Jg= pmod D for a# B
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18. Conclusion:

Suppose A = A% 6 < k, « regular, A regular, and there is a strong («,A)-
statienary coding set S§° such that (vaeS") [cf(supa)=86] and
O (D (A)+S?). Then there are S, C {6< X cf 6= 6} for a < 2 each sta-
tionary, the intersection of any two non-stationary (any normal filter D on
A will satisfy this if {supa:ae € S* # ¢mod D and O (:Z)’+S’) where
D= D+ifa - supacd} 4 D).

19. Conclusion:

Te< o= A k=t (2= py thenfor T = T,C’;\(Neo}, T # ¢mod D (N) and
O AT, D).

Remark: This is closely related to [Sh6], [Sh7], (see particularly last
section of [Sh7]) which continues [Sh4] VIII 2.6.

Proof: By 15(2).

20. Lemma:
1) Suppose 8< K< x= A , TcC /9<X+(7\), T# ¢mod ‘:bx*(}\)‘
O (T, :Z}X+(}\)) and foreacha € 7, x ¢ a and:

(1) @b Ca)[lb]| < rra= yded,.,(a)]

aeb

Then we «can find T7,¢C P (N}, T,# ¢mod :b,c(A) such that
O (T4, D (N) holds.

2) Suppose in addition that for @ € T:

(i) (vec ¢ a)[lc] <k~ cdy+y(c)ea)
Then we can demand 7, € Tlc,x(Nes)

Proof: 1) Asin the proof of elaim 7 in [Sh1].

As O (T4, ':bx*()‘))* we can find { M, : a € T > such that ¥, is a model with
universe ¢ and countably many (finitary) functions, and for every model ¥
with universe A and countably many functions f{a:M, = ¥ |}
# ¢pmod D, (N)
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For a € T we can find b, ¢ a, |b,| < k such that b, is closed under the
functions of M, and a C ub ded,s (o). By the last condition, and as
achy, ’

le €a == ded,vy(a) € a] clearly [a;# a;==> b, # b, | We define
Np, = Mg ' by, andlet T = {b, 1 a € 7). So Ny(beTy) is well defined. Now
D e Pl

(iiy T, # ¢mod :Z),C(X) [if M is a model with universe A and countably many
functions, for some a € T M, = ¥ | a, so b, is closed under the functions
of M and b, € T,

(iii) For every model M with universe A and countably many functions, for
some b € Ty, Ny = M [ b. [same proof as in (ii)]. Hence & (74, D)
holds.

2) Easy from the proof of 1), choosing b, in T,C}A(N;)

21. Lemma:
Suppose :251 is a fine normal filter on f?<x(>\1), = Ay <A Let D be the

normal fine filter on /9< A) generated by

{a 6/9“(7\): ani €S} 5edD,}. Suppose further that T; € /9<,c(>\1),

T, # ¢mod D, , O (T, and T, isa (k) -weak stationary coding.

Lastly suppose NSi{«,A) holds (see [Sh1] Def.8) or at least: for some algebra
M will universe A and countably many functions, # has no isomorphic but
distinct subalgebras ¥, C My, My n A = Mo X €T

Then there is a (1,A)-weak stationary coding set 7, for which (T:Z))
holds.

Proof: Just like 10 of [Shi].

Remark: We can combine 21 or 22 with 23 or 24, getting existence for many
cardinals.

22. Lemma:

Suppose in the previous lemma, x is a strongly Mahlo cardinal, T is a
(#,Aq}-stationary coding. Suppose further that if b € @ are in T then for
every subset ¢ of a of power < |b |, cd,\(c) €a. Then /9<,C(7\) has a (©,A)-
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stationary coding.

23. Lemma:

1) Suppose 8g< £ < A, k£ is regular, A= A and (Vo< k) M <, {(hence
Mo ¢ ).
Then there is a {k,A\")-stationary coding set T.
2) Also we can have () (T, :.b,c()\))
3) Suppose that A%< A", 231 is a normal fine filter on /9<,c()\], T e &1, 7t

has cardinality A, and

(@) (vaeT)(vbca)l[lo] =8, cd.,(b)€a]

Let 2D be the minimal normal fine filter on D A*) such that
D FA= Q)l. Then for some D-stationary T, (D + Y PA= :231, and 7 is a
stationary coding set.

4) For 3)if A = }\ﬁ‘, A<f= A" and for some Ty C /9<,C(>\)
|Tol = An(vacP N)(3b € To)[acb]
then :bmc(}\) + T is as required where
T={a €/Q<,C()\): there are b, €7, (1< ) increasing a = U by,
a = Andcd, (@), cd, (b)) €aj
Proof:

1) Let PN =1 i<i(®], i(®= A", and let for 1< i(%)
S; € S*= {6< W' cf 6= 8] be pairwise disjoint stationary subsets of A*,
S*=usS,. Forée ‘<&'}( )S,; let 1(8) be the unique 7 such that §€ 5.

T 1< 1i*

Let f.g be such that: f,g two place functions from At to AY, for i < A*,
1= {y<iy = {f )<l andforj< [i|<At g(i.f(i.7)) = j.

23.A. Observation:

If a €p<,c()\+) is closed under f and g, w ¢ a is unbounded in a and
a N A= b, then o is totally determined by w and i, and we write a = g;[w].
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Let for d€ 5
g = ta €p<,c()\+) csupa =6, anA=b;, aclosed under {f and g,
and for any bound countable w ¢ o , with supw € S*,

Cdrc,k*(“i(sup w) [w]) € CL%

=y Ts
&S5

r= gy ™
i<i(®)

23.B. Observation:

Ifccdd#cande,d e Tthencd, ,{c)ed

Proof: Let d A= b;, ¢ " A= b;, wC c a countable subset of ¢ with
supw = supc (w exists as for each a € T, cf(supa) = ¥y).) As ¢ € T,
¢ NA=bj necessarily supw €.5;. If 2 = j thend NA=c¢ NAand w is an
unbounded subset of both so d = ¢ = g;[w] contradiction. So assume
i# j, 8o necessarily supw # supa hence supw < supa hence
a.,;(supw)[w] = ¢ but as d € T by the definition of the ng’s we know that
@i (sup witW)) € d. Socd, ,{c) € d.

23.C. Observation: T # ¢mod :Z),C(,\)

Proof: By Rubin and Shelah [RS]. (see proof of 24 after 24A)
Continuation of the proof of 23.

The observations above finishes the proof of 23(1).
2) We let {(b;,M;):4 < i(#)] list all pairs (b,M), where b € (N,
M= (oM A¥), oM < k, AM ¢ o We use {b;: 1 < i(*)} as above and for a € 7,
supa €Ty, let 4, = (£ € A: otp(ang) € A™] Now (4,.a € T} is a wittness

for (7, D).
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3) Same proof.

4) Left to the reader.

24. Lemma:
Suppose 8y < £ < A, « regular, S*C {6< A*: cf 6= 8y, and D is a nor-
mal fine filter on /9<,C()\) such that:
(i) Ar= (A7
(ii) there is Y* € 2 of power A
(ili)if A< a< X*, and Q)a is the unique normal fine filter on « such
that :Z)a Pa= D then:
fa E/’Q<,C(O() :thereisde S'na—a

such that §= sup {(6na)l = ¢mod D,

(iv)2<*=< A
Let :bl be the minimal normal fine filter on

P<. (3 suchthat D, Pra=D

Then there is T C /9<,C(>\+), such that 7 is a (x,A%)-stationary coding,
(Di+T)Pa=Dand O (T.D)
Proof: Let {{(b;,#;):1 < i(*)} (where i(*) € {A\A*]) list the pairs (b,M),
beY, M= (oM aM), o < k, A ¢ oM (by (i) this is possible). Let S; ¢ S*
(for i < i(*)) be pairwise disjoint stationary subsets of A*, S* = U( ) 5. For
i<i(s
6€ 5" let i(6) be the unique i < i(*) such that §€ .S5;. Let f, g be two-place
functions on A* such that for i < A* i = {f(i,7):7 < |i|} and for § < |i|
gla.f(i.j)=j. Let Co= {a 6/906(?\*): a closed under f and g and z+1]
For w ¢ A* countable with supw € 5* let set [w] be the closure of
W U by qupw)under f and g. Fori < i(*), §€ S let
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Ts % {a 6/9“(}\*) isupe =6, a NA= by
a isaclosedunder f andg ,
and for any bounded countable
w ¢ a:if supw € 5* (and

setfw]lnx=» ) then cd,, (set [w]) €a |

1{(sup w)

ey T
oS,
For a € T* let h, be the unique order preserving function from a onto the
ordinal otp(a) (= the ordertype of a). Let 4, = {j € a : hy(j) e 4™ so Ag

is a subset of a.

Te o

1< i{*)

24A. Observation: If ¢ C d, ¢ # d both are in T then cd,,+(c) € d
As in the previous proof (i.e., see 23A).

Now let # be an algebra with universe AT and countably many functions
including f,g and 4 ¢ A*, andlet Y ¢ P (N), Y # ¢mod D. We shall find
a€T,anA€Y and a is a subalgebra of ¥ such that 4 na = 4,. This will
prove T # ¢mod Dy, (D, + T) Pa=Dand & (7.D.MN).

We imitate Rubin and Shelah [RSh]: We define a game g which lasts @
moves. In the n'® move player I chooses a, 5/9”(7\) and then player /I
chooses an ordinal «,, which satisfies:

(I) (i) a, is a subalgebra of #

(it) a, NAEY

(#i) @, N0y = @uy when n > 0

(iv) thereisnodc(supa,)n S*—a,, 6= sup(a, NJ)
(Ir) () o, > supa,, o, > Aandwhen n > 0, a, > 0,4

The game is determined being closed. If player I has a winning strategy, ag
his first move, let by = a4 and simulate a play {a,, &, :n < @) in which

player I uses his winning strategy and U «, € S;. Now a %/ k<1 a, isin T
n<w
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and is a subalgebra of #¥. What about 4, = Ana? For each a < «, B C awe
define a game g((x,B), similar to g but player I also choose in his n** move

D, v oh, < hy, and (Vvae€a,)
men

(a€ A = h, () € B). If for some o B player / has a winning strategy, we

an order preserving A,

have no problem. If not then {(as the games are closed hence determined)

player /I has a winning strategy F, g for g(aB) foreach a < ¢, B ¢ a Now

we define a strategy for player Il in G:

Flag, ... a,) = V{Fap(ag hg ag, by, ..., hy)+l for Ll mn, by a
function from a,
into a, a< k,
Bc o

Clearly this gives a legal move for player /I, and in the end we can
define a= ofp( U a,), B = jotp(énua,) €é€A4An U a,l, and define
m<w m n<w

hpp @ Qpy = a by by (7) = olp{ynC,,) and get contradiction.

So it is enough to prove that player [ wins Q’, or equivalently that player
Il has no winning strategy. So suppose F is a winning strategy. Now by
assumption (ii) of 24 wlog Y] = rand(by 24 (iv)) e nk:a €¥i|< A
Now let for {< xw M, be an elementary submodel of H((2")*, €) to which
S D, M, F, Y belongs, {1:i<N € My, { Mgé< ¢ € Mey, |1M|] = A Let
Be= sup (M, nA*) = Min (A" M), and let = %Bf So M, is increasing.

Choose a c (U MINAY, anieY and a N {Bpmsg £<i} = {Bemss
&KW

¢cankl, a is closed under f.g, and there is no 6¢& 5" nf—a,
6= sup (end). (This demand "@anAEY”’ restrict ourselves to a positive set
mod .ibﬂ, the rest to a member of :bﬁ (the last demand by {iii) of 24) so
there is such a.)

As anieY, clearly for each ¢ anAeMy, and as an {Bepmig € <kf =
{Bem+g € <k, £€ai, and ankeM,, (by the restriction on Y) and f,g€M, and
(Mg ¢< km+(supe N a)) € My, (as for sup (k na) < a) clearly we get
aNM ym+1)sM(m+1)- Now we can simulate a play of the game in which
player Il uses his winning strategy F, whereas player [ choose
@, = aNMymyq) By what we say above Flag, ... .,¢,) € My(n+1) hence
Fag, ... ,8,) < Bgm+1), S0 actually player [ wins the play, contradiction.
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25. Conclusion:

Suppose « is regular >Rg, A= A%, and S C {6< A*: of 6= Ry} is sta-
tionary, but for no § < A" of cofinality « is S*nd stationary in 8 Then, there
is a (k,A%)—stationary coding 7 ¢ T, ,+ (V&) and even (> (7, :Z),C()\)) holds.

26. Remark:

1) When does such a S* exist? 1t follows from the existence of square on
{6<A*: ¢f 6< x}, which -0# implies holds when x© < A {and even for many
€ = N's (see Magidor's work).

2) We can weaken the non-reflection asin 7 of [Sh1].

27. Claim:

In 24 if we do not require & (T, :Z)l) then we can omit (i) and {(iv).
We can deduce from the proof of 24 also:

28. Lemma:

1) O (Dew,(A%)) when A = Ao
2) It D is normal fine filter on /9<sl(?\+), ':2)1 is the minimal normal fine
filter on p<sl(}\+) such that %1 [\ A= 3) and A = )\No then \//\ (:bl)
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