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Abstract

In this article we consider homogeneity properties of Boolean algebras that have nonpr
ultrafilters which are countably generated.

It is shown that a Boolean algebraB is homogeneous if it is the union of countably genera
nonprincipal ultrafilters and has a dense subsetD such that for everya ∈ D the relative algebra
B � a := {b ∈ B: b � a} is isomorphic toB. In particular, the free product of countably many cop
of an atomic Boolean algebra is homogeneous.

Moreover, a Boolean algebraB is homogeneous if it satisfies the following conditions:

(i) B has a countably generated ultrafilter,
(ii) B is not c.c.c., and

(iii) for every a ∈ B \ {0} there are finitely many automorphismsh1, . . . , hn of B such that
1 = h1(a) ∪ · · · ∪ hn(a).

These results generalize theorems due to Motorov [Russian Math. Surveys 44 (16) (1989
191] on the homogeneity of first countable Boolean spaces.

Finally, we provide three constructions of first countable homogeneous Boolean spaces
linearly ordered. The first construction gives separable spaces of any prescribed weight in the
[ℵ0,2

ℵ0]. The second construction gives spaces of any prescribed weight in the interval[ℵ1,2
ℵ0]

✩ This article is [GeSh:811] in the second author’s list of publications. His research was supported
German-Israeli Foundation for Scientific Research & Development and the Edmund Landau Center for r
in Mathematical Analysis, supported by the Minerva Foundation (Germany). The authors would like to tha
anonymous referee for helpful comments and for pointing at very interesting references concerning the s
this article.

* Corresponding author.
E-mail addresses:geschke@math.fu-berlin.de (S. Geschke), shelah@math.huji.ac.il (S. Shelah).

0166-8641/$ – see front matter 2003 Elsevier B.V. All rights reserved.

doi:10.1016/S0166-8641(03)00103-2



242 S. Geschke, S. Shelah / Topology and its Applications 133 (2003) 241–253

that are not c.c.c. The third construction gives a space of weightℵ1 which is not c.c.c. and which is
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not a continuous image of any of the previously described examples.
 2003 Elsevier B.V. All rights reserved.
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1. Introduction

A topological spaceX is homogeneousif for any two pointsx, y ∈ X there is an
autohomeomorphism ofX mapping x to y. Among the most obvious examples
homogeneous spaces are topological groups. In the case of topological groups, tran
can be used to show their homogeneity.

If we restrict our attention to zero-dimensional compact spaces, i.e., to Boolean s
topological groups are not interesting from the topological point of view since infi
compact zero-dimensional groups are all Cantor spaces, that is, they are homeomo
spaces of the form 2κ whereκ is a cardinal (see [4] or [5]).

Not too long ago, Dow and Pearl [2] proved a striking theorem concerning homoge
namely that for every first countable, zero-dimensional spaceX, Xω is homogeneous. Fo
Boolean spaces with a dense set of isolated points this was shown earlier by Motoro

Apart from infinite powers, there is a surprising shortage of examples of homoge
Boolean spaces. Interesting examples were provided by Maurice [11], who prove
for every indecomposable countable ordinalγ the lexicographically ordered space 2γ is
homogeneous. Here an ordinalγ is indecomposableif γ = α + β with β > 0 implies
β = γ . If γ > ω, then 2γ ordered lexicographically does not satisfy the countable c
condition (c.c.c.) and therefore is not homeomorphic to a Cantor space.

Cantor spaces and the lexicographically ordered spaces 2γ , γ countable and indecom
posable, have the property that not only the spaces themselves, but also their dual B
algebras are homogeneous. A Boolean algebraB is homogeneousif for every a ∈ B \ {0}
the relative algebraB � a := {b ∈ B: b � a} is isomorphic toB. In general, there is no d
rect implication between the homogeneity of a Boolean algebra and the homogeneit
Stone space. Van Douwen [13] constructed a first countable homogeneous Boolea
whose dual Boolean algebra is not homogeneous. And it is well known that the Bo
algebraP(ω)/fin is homogeneous but its Stone spaceβω \ ω is not.

However, the homogeneity of first countable Boolean spaces follows from
homogeneity of their dual Boolean algebra. This was noticed independently by Mo
[12] and Koppelberg [7]. Motorov proved that the converse is also true in certain cas
showed (in topological terms) that the homogeneity of a Boolean algebra follows fro
homogeneity of its Stone space if the Boolean algebra is not c.c.c. and every ultrafi
countably generated. Note that the last condition is equivalent to the first countabi
the Stone space.

The main tool in Motorov’s argument is
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Theorem 1.1.Let B be a Boolean algebra such that every ultrafilter ofB is countably
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generated andB has a dense subsetD such that for alla ∈ D, the algebraB � a is
isomorphic toB. ThenB is homogeneous.

Unfortunately, published proofs of Motorov’s results seem to be unavailable
give the proofs of some generalizations of his theorems. The main observation
in Theorem 1.1 the assumption “every ultrafilter ofB is countably generated” can b
weakened to “B is the union of countably generated ultrafilters” (which is equivalen
the Stone space ofB having a dense set of points of countable character). This e
implies that the free product of infinitely many copies of an atomic Boolean algeb
homogeneous. Here a Boolean algebraB is atomicif the atoms are dense inB, i.e., if the
Stone space ofB has a dense set of isolated points.

We also show that a Boolean algebraB which is not c.c.c. is homogeneous if it has
least one countably generated ultrafilter and the property that for alla ∈ B \ {0} there are
finitely many automorphismsh1, . . . , hn of B such that 1= h1(a)∪ · · · ∪hn(a). The latter
property is equivalent to the property that every point of the Stone spaceX of B has a dense
orbit with respect to the natural group action of the group Aut(X) of autohomeomorphism
of X.

Moreover, we provide three constructions leading to new examples of homoge
Boolean spaces. In all cases we obtain first countable spaces which are linearly o
The first construction yields separable spaces of any prescribed weight in the in
[ℵ0,2ℵ0]. These spaces are constructed from nice suborders ofR. Note that the spac
of countable weight is homeomorphic to 2ω since up to homeomorphism 2ω is the only
Boolean space of countable weight without isolated points.

The second construction uses an easy Löwenheim-Skolem argument and gives
geneous continuous images of the lexicographically ordered spaces 2γ , γ indecomposable
with ω < γ < ω1. The spaces obtained using this construction can have any pres
weight in the interval[ℵ0,2ℵ0], and their cellularity equals their weight. The third co
struction uses a linear order on an Aronszajn tree and yields a space of weightℵ1 which
is not c.c.c. and not a continuous image of any of the lexicographically ordered s
2γ , γ < ω1.

It should be pointed out that compact homogeneous spaces which are linearly o
have to be first countable (see [1] or [10]).

2. Generalizing Motorov’s results

As usual, the Stone space of a Boolean algebraB is denoted by Ult(B) and the
Boolean algebra of clopen subsets of a Boolean spaceX is denoted by Clop(X). In the
following, we will frequently switch between Boolean algebras and their Stone space
our presentation will be mainly in topological terms.

Note that a Boolean algebraB is homogeneous if and only if every nonempty clop
subset of Ult(B) is homeomorphic to Ult(B).
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Lemma 2.1.LetX be a Boolean space such thatClop(X) is homogeneous. Ifx, y ∈X are
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points of countable character, then there is an autohomeomorphism ofX mappingx to y.
In particular,X is homogeneous if it is first countable.

Proof. Assuming thatX is infinite, it follows from the homogeneity of Clop(X) thatX
has no isolated points. Let(An)n∈ω and(Bn)n∈ω be clopen neighborhood bases ofx and
y, respectively. Sincex andy are not isolated, we may assume that the sequences(An)n∈ω
and(Bn)n∈ω are strictly decreasing. We may also assumeA0 = B0 = X. For eachn ∈ ω
let Cn := An \ An+1 andDn := Bn \ Bn+1 and fix an homeomorphismhn :Cn →Dn. It
is easily checked thath := {(x, y)} ∪ ⋃

n∈ω hn is an autohomeomorphism ofX mappingx
to y. ✷

In order to apply Lemma 2.1 we need a criterion for the homogeneity of Boo
algebras with first countable Stone spaces. Aπ -baseof a topological spaceX is a family
F of open subsets ofX such that every nonempty open subset ofX includes a membe
of F . A family of clopen subsets of a Boolean spaceX is aπ -base if and only if it is a
dense subset of Clop(X).

Lemma 2.2.LetX be a Boolean space with a dense set of points of countable char
ThenClop(X) is homogeneous ifX has aπ -base consisting of clopen sets which a
homeomorphic toX.

Proof. First note that ifX has aπ -base of clopen copies ofX, thenX is either a singleton
or has no isolated points (tacitly assuming thatX is nonempty). We may therefore assu
thatX has no isolated points.

We show that the nonempty clopen subsets ofX are pairwise homeomorphic. LetA
be a nonempty clopen subset ofX. Let x ∈ A be a point of countable character. As in t
proof of Lemma 2.1, there is a disjoint family(An)n∈ω of nonempty clopen subsets ofA
such thatA= {x} ∪ ⋃

n∈ω An.
Inductively we define sequences(Cn)n∈{−1}∪ω and(Bn)n∈ω as follows: LetC−1 := ∅.

Let n ∈ ω and suppose we have already definedCn−1. Since the clopen subsets ofX which
are homeomorphic toX form aπ -base ofX, there is a clopen setBn ⊆An such thatBn is
homeomorphic toX \Cn−1. With this choice,Cn−1 ∪Bn ∼=X. LetCn :=An \Bn.

Now

A \ {x} =
⋃

n∈ω
(Bn ∪Cn)= B0 ∪

⋃

n∈ω
(Cn ∪Bn+1).

By the choice of theBn, n ∈ ω,
⋃
n∈ω(Cn−1 ∪ Bn) is homeomorphic to the disjoint unio

of ℵ0 copies ofX. It follows thatA is the one-point compactification of the disjoint uni
of ℵ0 copies ofX. SinceA was arbitrary, it follows that the nonempty clopen subsets oX

are pairwise homeomorphic.✷
Using Lemmas 2.2 and 2.1, we can give an easy proof of the homogeneity

lexicographically ordered spaces 2γ , γ countable and indecomposable. For everyα < γ
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and everyx ∈ 2α+1 the setIx := {y ∈ 2γ : x ⊆ y} is a clopen interval in 2γ . By the
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indecomposability ofγ , eachIx is homeomorphic to 2γ . Clearly,
{
Ix : α < γ ∧ x ∈ 2α+1}

is aπ -base of 2γ . Thus, Clop(2γ ) is homogeneous by Lemma 2.2. Now the homogen
of 2γ follows from Lemma 2.1.

Another corollary of Lemma 2.2 gives information about free products of ato
Boolean algebras.

Corollary 2.3. Let X be a Boolean space with a dense set of isolated points.
Clop(Xω) is homogeneous.

Proof. Let D be the set of subsets ofXω of the form {(x0, . . . , xn−1)} × Xω\n where
eachxi ∈ X is isolated. Clearly,D consists of clopen sets that are homeomorphi
Xω. Since the isolated points are dense inX, D is a π -base ofXω. Those sequence
(xi)i∈ω ∈ Xω for which eachxi is isolated inX form a dense subset ofXω, and each o
these sequences is of countable character inXω. Now it follows from Lemma 2.2 tha
Clop(Xω) is homogeneous.✷

Note that for every cardinalκ , Clop(Xκ) is isomorphic to the free product ofκ copies
of Clop(X). It is easily checked that Clop(Xκ) is homogeneous if there is a cardinalλ� κ

such that Clop(Xλ) is homogeneous. Therefore Corollary 2.3 implies that for a Boo
spaceX with a dense set of isolated points, for every infinite cardinalκ the Boolean algebr
Clop(Xκ) is homogeneous. In other words, ifB is an atomic Boolean algebra, then eve
free product of infinitely many copies ofB is homogeneous.

To proceed we need a technical lemma relating the cellularity of a compact
with many autohomeomorphisms to the cellularities of its nonempty open subsets
topological spaceX let c(X) denote the cellularity ofX. Recall that Aut(X) is the group of
autohomeomorphismsofX. Forx ∈X the Aut(X)-orbit of x is the set{h(x): h ∈ Aut(X)}.

Lemma 2.4.LetX be compact and infinite. If everyx ∈X has a denseAut(X)-orbit, then
for every nonempty open subsetO ofX we havec(O)= c(X).

Proof. It is easily checked that all Aut(X)-orbits are dense inX if and only if for every
nonempty open setO ⊆ X, {h[O]: h ∈ Aut(X)} coversX. Let O ⊆ X be open and
nonempty. By the compactness ofX, there aren ∈ ω andh1, . . . , hn ∈ Aut(X) such that
X = h1[O] ∪ · · · ∪ hn[O].

Let A be an infinite family of pairwise disjoint subsets ofX. For somei ∈ {1, . . . , n},
the set{A ∈ A : A ∩ hi [O] �= ∅} is of size|A|. It follows thatc(O)� |A|. This implies
c(O)= c(X). ✷

Now we have collected the necessary tools to show

Theorem 2.5.LetX be a Boolean space which is not c.c.c. and has a point of coun
character. Suppose everyx ∈X has a denseAut(X)-orbit. ThenClop(X) is homogeneous
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Proof. SinceX is not c.c.c.,X is infinite. Since every Aut(X)-orbit is dense inX, X has
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no isolated points. Letx0 ∈ X be a point of countable character. Since the Aut(X)-orbit
of x0 is dense inX, X has a dense set of points of countable character. By Lemma 2
remains to show thatX has aπ -base consisting of clopen sets which are homeomorph
X.

Let (Un)n∈ω be a neighborhood base ofx0 consisting of clopen sets. For everyn ∈ ω
there arem ∈ ω andh1, . . . , hm ∈ Aut(X) such thatX = h1[Un] ∪ · · · ∪ hm[Un]. It follows
that for eachn ∈ ω, X is homeomorphic to a disjoint union of finitely many copies
clopen subsets ofUn.

Now letO be a nonempty open subset ofX. By Lemma 2.4, there is an uncountab
family A of pairwise disjoint nonempty open subsets ofO . For everyA ∈ A let hA ∈
Aut(X) be such thathA(x0) ∈ A. hA exists since the Aut(X)-orbit of x0 is dense. Fo
everyA ∈ A there isn(A) ∈ ω such thath[Un(A)] ⊆ A. SinceA is uncountable, ther
is n0 ∈ ω such that for uncountably manyA ∈ A, n(A) = n0. It follows thatO includes
uncountably many pairwise disjoint open copies ofUn0. But sinceX is homeomorphic to
a disjoint union of finitely many copies of clopen subsets ofUn0,O includes a clopen cop
of X. ✷
Corollary 2.6. Let X be a first countable Boolean space of uncountable cellularit
every point inX has a denseAut(X)-orbit, thenClop(X) andX are both homogeneou
In particular,X is homogeneous if and only ifClop(X) is.

Proof. The homogeneity of Clop(X) follows immediately from Theorem 2.5. Th
homogeneity ofX now follows from Lemma 2.1. ✷

3. Examples of homogeneous Boolean spaces

The homogeneous Boolean spaces we are going to construct will be Stone sp
interval algebras of certain linear orders. As usual, if(L,�) is a linear order, we use< to
denote� \ =. Similarly, if < is transitive and irreflexive, we use� to denote< ∪ =.

Definition 3.1. Let (L,�) be a linear order. Theinterval algebraB(L) of L is the
subalgebra ofP(L) generated by the intervals[x, y), x, y ∈ L∪ {∞}, x < y.

Every element ofB(L) is a finite union of intervals of the form[x, y), x, y ∈L ∪ {∞},
x < y, and of the form(−∞, x), x ∈ L∪ {∞} (see [6]).

The Stone space of an interval algebraB(L) is homeomorphic to the linear order
initial segments ofL (see [6]). Using this fact, we can characterize those linear or
whose interval algebras have a first countable Stone space.

Call a subsetS of a linear orderL coinitial if for all a ∈ L there isb ∈ S such thatb� a.
Thecoinitiality of L is the least size of a coinitial subset ofL, which is the same as th
cofinality of the reversed order.
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Lemma 3.2.The Stone space of an interval algebraB(L) is first countable if and only
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if every initial segment ofL has a countable cofinality and every final segment ha
countable coinitiality.

Proof. LetX be the set of initial segments of the linear orderL.X itself is linearly ordered
by ⊆. SupposeX is first countable. We show that every initial segment ofL is of countable
cofinality. The proof that every final segment ofL is of countable coinitiality is symmetric

By the first countability ofX, for everyx ∈ X, the set{y ∈ X: y � x} is of countable
cofinality. Let x ∈ X be nonempty and assume thatx has no last element. Then the s
{(−∞, a]: a ∈ x} is cofinal in{y ∈X: y � x}. Therefore,{(−∞, a]: a ∈ x} is of countable
cofinality. This implies thatx is of countable cofinality.

Now suppose that every initial segment ofL is of countable cofinality and that eve
final segment ofL is of countable coinitiality. To show the first countability ofX, it suffices
to prove that for allx ∈X the following two conditions hold:

(1) If in X there is no largest element belowx, thenx is the first element ofX or there is
a countable sequence inX converging tox from the left.

(2) If in X there is no smallest element abovex, thenx is the last element ofX or there is
a countable sequence inX converging tox from the right.

We show only the first condition since the proof of the second condition is symm
Suppose that there is no largest element inX which is belowx ∈X. Assume further tha
x is not the first element ofX. Thenx as a subset ofL is nonempty and does not have
last element. By our assumption onL, there is a sequence(an)n∈ω which is cofinal inx.
We may assume that(an)n∈ω is strictly increasing. The sequence((−∞, an])n∈ω of initial
segments ofL converges tox from the left. ✷

Lemma 3.2 easily implies:

Corollary 3.3. If the linear orderL has no uncountable sequences(indexed by ordinals)
which are strictly increasing or strictly decreasing, then the Stone space ofB(L) is first
countable. In particular, the Stone space ofB(L) is first countable ifL has a countable
dense subset.

Proof. If L has an initial segment of uncountable cofinality, then it has a strictly increa
sequence of lengthω1. Similarly, if L has a final segment of uncountable coinitiality, th
it has a strictly decreasing sequence of lengthω1.

If L has a strictly increasing or strictly decreasing sequence of lengthω1, then it is not
c.c.c. and therefore cannot have a countable dense subset.✷

The following lemma provides an easy criterion for the homogeneity of an int
algebra.

Lemma 3.4.LetL be a dense linear order with the property that every two nonempty
intervals ofL are isomorphic. ThenB(L) is homogeneous.
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Proof. By the density ofL, for all x, y ∈ L with x < y the interval[x, y) is infinite. Since
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every two nonempty open intervals ofL are isomorphic,L has no end points. Moreove
the intervals of the form[x, y) with x ∈ L, y ∈ L ∪ {∞}, x < y, are pairwise isomorphic
It follows that for alln ∈ ω and allx0, . . . , x2n+1 ∈ L ∪ {−∞,∞} with x0 < · · ·< x2n+1,
(x0, x1)∪ ⋃n

i=1[x2i, x2i+1) is isomorphic toL.
Let a ∈ B(L) \ {∅}. Then for somen ∈ ω there arex0, . . . , x2n+1 ∈ L ∪ {−∞,∞}

with x0 < · · · < x2n+1 such that eitherx0 = −∞ and a = (x0, x1) ∪ ⋃n
i=1[x2i , x2i+1)

or x0 ∈ L and a = [x0, x1) ∪ · · · ∪ [x2n, x2n+1). In either case, it is easily checke
thatB(L) � x is isomorphic to the interval algebra of(x0, x1) ∪ ⋃n

i=1[x2i, x2i+1). Since
(x0, x1)∪ ⋃n

i=1[x2i, x2i+1) is isomorphic toL, B(L) � a is isomorphic toB(L). ✷
Combining the information we have gathered so far we obtain

Lemma 3.5. Let L be a dense linear order such that every nonempty open inte
of L isomorphic toL itself. ThenUlt(B(L)) is homogeneous if and only ifL has no
strictly increasing or strictly decreasing sequences of lengthω1. In particular, Ult(B(L))
is homogeneous ifL is separable.

Proof. By Lemma 3.4,B(L) is homogeneous. IfL has no strictly increasing o
strictly decreasing sequences of uncountable length, then Ult(B(L)) is first countable
by Corollary 3.3 and homogeneous by Lemma 2.1. Now suppose thatL has a strictly
increasing or strictly decreasing sequence of uncountable length. Then the Stone s
B(L), being homeomorphic to the linear order of initial segments ofL, is not first countable
and therefore cannot be homogeneous, as mentioned in the introduction.✷

It remains to construct linear orders with the properties required in Lemma 3.5. W
construct some separable linear orders.

Lemma 3.6.For every cardinalκ ∈ [ℵ0,2ℵ0] there is a separable dense linear orderL of
sizeκ which is isomorphic to every one of its nonempty open intervals.

Proof. LetL be a subfield ofR of sizeκ . ThenL is separable since it contains the rationa
L is dense since for allx, y ∈ L we have1

2(x + y) ∈ L. SinceL is a subfield ofR, for all
x ∈L it is closed under the order isomorphisms

fx : (x,∞)→ R; y �→ (x − y)−1 + y − x

and

gx : (−∞, x)→ R; y �→ (x − y)−1 + y − x

and their inverses. This implies that for allx ∈ L, L is order-isomorphic to(−∞, x) ∩ L
and to(x,∞)∩L. It follows thatL is order-isomorphic to every one of its nonempty op
intervals. ✷
Corollary 3.7. Letκ ∈ [ℵ0,2ℵ0] be a cardinal. Then there is a homogeneous Boolean s
of weightκ which is separable and first countable.
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Proof. LetL be a linear order of sizeκ as in Lemma 3.6. By Corollary 3.3, the Stone space
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of B(L) is first countable. LetD ⊆ L be countable and dense. Then for alla ∈D, the set of
thosex ∈ B(L) which containa is an ultrafilterFa . SinceD is dense inL andB(L) does
not contain any singletons by the density ofL, B(L) is the union of theFa , a ∈ D, i.e.,
B(L) is σ -centered. This is equivalent to the separability of Ult(B(L)). Finally, Ult(B(L))
is homogeneous by Lemma 3.5.✷

As the referee pointed out, the spaces in Corollary 3.7 can be obtained as variant
double arrow space and have already been mentioned in Section 2.5 of [3]. The des
in [3] is as follows: In order to obtain a space of weight 2ℵ0 consider the double arrow
space, i.e.,[0,1] × 2 ordered lexicographically. After removing the endpoints, we are
with a homogeneous Boolean spaceX of weight 2ℵ0 which is separable and first countab
X is homeomorphic to the Stone space ofB(R). Spaces of smaller weight are obtained
replacing[0,1] in the construction above by[0,1] ∩ K whereK is a subfield ofR of
suitable size (namely the desired weight of the space).

Note that all these spaces are continuous images ofX. So, in the end, a Löwenheim
Skolem argument is used (when choosing subfields ofR) to obtain homogeneous zer
dimensional quotients ofX of a prescribed weight.

We carry out this type of argument once more in a more explicit way in orde
construct first countable homogeneous Boolean spaces of a given weight in the i
[ℵ1,2ℵ0] that are not c.c.c. Starting with an indecomposable countable ordinalγ > ω

we apply the downward Löwenheim-Skolem theorem to get a continuous image
lexicographically ordered space 2γ with the right properties.

Theorem 3.8.For every cardinalκ ∈ [ℵ0,2ℵ0] there is a first countable homogeneo
Boolean spaceX of weight and cellularityκ .

Proof. Let γ > ω be a countable indecomposable ordinal. Then the lexicograph
ordered space 2γ is a first countable homogeneous Boolean space. Since 2γ is linearly
ordered, it is the Stone space of an interval algebra (see [6]). LetL be a linear order with
2γ ∼= Ult(B(L)).

Since Ult(B(L)) is first countable, inL there is no strictly increasing or strict
decreasing sequence of lengthω1. The cellularity of 2γ is 2ℵ0, as is the weight. By
Corollary 2.6,B(L) is a homogeneous Boolean algebra.

Let λ be a sufficiently large cardinal and consider the structure(Hλ,∈) whereHλ is the
family of sets whose transitive closure is of size< λ. Fix an antichainA ⊆ B(L) of size
2ℵ0 and letM be an elementary submodel of(Hλ,∈) of sizeκ such thatL,κ,A ∈M and
κ ⊆M.

Let B := B(L) ∩M. By elementarity,B = B(L ∩M). L ∩M is a linear order withou
strictly increasing or strictly decreasing sequences of lengthω1. Thus,X := Ult(B) is first
countable. Again by elementarity,B is homogeneous. By Lemma 2.1,X is homogeneous
too.

Sinceκ ⊆ M, B is of sizeκ , and so isA ∩ M. It follows that the cellularity ofX
is κ . ✷
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There is another interesting example of a first countable homogeneous Boolean space.
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This one is constructed from a linear order on an Aronszajn tree and is not the cont
image of any of the first countable homogeneous Boolean linear orders mentioned s

Recall that a tree isAronszajnif it is of heightω1, has only countable levels, and do
not include an uncountable chain. IfT is a tree ordered by⊇, we will always assume tha
incomparable elements ofT are disjoint.

Lemma 3.9.There is a dense linear orderL of sizeℵ1 without endpoints and with th
following properties:

(i) L has no strictly increasing or strictly decreasing sequences of lengthω1.
(ii) L is isomorphic to every one of its nonempty open intervals.
(iii) L is not c.c.c.
(iv) B(L) has a subset which is an Aronszajn tree(ordered by⊇).

Proof. For two functionsf andg with the same domain we writef =∗ g if f andg
agree on all but finitely many points of their common domain. Using the constructi
an Aronszajn tree given in [9], we obtain a sequence(fα)α<ω1 such that eachfα is a 1–1
function fromα into Q ∩ (0,1) and for allα,β < ω1 with α < β , fα =∗ fβ � α.

Now for eachα < ω1 let

Sα := {
f ∈ αQ: f is 1−1 andf =∗ fα

}

andTα := ⋃
β<α Sβ . T := ⋃

α<ω1
Tα ordered by inclusion is an Aronszajn tree.

We define a linear order onT . Let x, y ∈ T be such thatx �= y. If x and y are
incomparable with respect to⊆, put∆(x,y) := min{ν ∈ dom(x): x(ν) �= y(ν)} and let
x < y if x(∆(x, y)) < y(∆(x, y)). If x ⊆ y and dom(x) = α, let x < y if y(α) > π and
y < x if y(α) < π .

In other words,T is ordered lexicographically after identifying eachx ∈ T with the
functionx,π where, denotes the concatenation of sequences andπ is identified with
the sequence of length one with valueπ ∈ R.

Claim 3.10.(T ,�) is not c.c.c.

It is well known thatT ordered by reverse inclusion is not c.c.c. For example, for e
α < ω1 let x ∈ Sα+1 be such thatx(α) = 0. Since thexα , α < ω1, are 1–1,(xα)α<ω1 is
an antichain in(T ,⊇). Note that for allx ∈ T , Q \ ran(x) is infinite since otherwise th
construction of thefα , α < ω1, would break down at some point. Thus, for everyα < ω1
there arepα,qα ∈ Q\ ran(xα) with pα < qα . Now for eachα < ω1, xα,qα andxα,pα are
elements ofT . Clearly,{(xα,pα, xα,qα): α < ω1} is an uncountable family of pairwis
disjoint nonempty open intervals of(T ,�).

Claim 3.11. In (T ,�) there is no strictly increasing or strictly decreasing sequenc
lengthω1.

This claim seems to be folklore. A more general statement about so-calledsquashings
of Aronszajn trees is proved in [8, Theorem 4.10].(T ,�) is a squashing of(T ,⊆).
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In order to prove that(T ,�) is isomorphic to each of its nonempty open intervals it
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suffices to show

Claim 3.12.For everyx ∈ T , (T ,�) is isomorphic to(x,∞) and to(−∞, x).

We only showT ∼= (x,∞) since the proof ofT ∼= (−∞, x) is symmetric. Letδ :=
dom(x)+ 1.

For eachy ∈ Sδ let ext(y) := {z ∈ T : δ ⊆ dom(z) ∧ z � δ = y}. As before, ext(y)
is a convex subset ofT . For y, z ∈ Sδ , (ext(y),�� ext(y)) and (ext(z),�� ext(z)) are
isomorphic by the isomorphism mapping everyy ′ ∈ ext(y) to z∪ y ′ � (dom(y ′) \ δ).

As suborders of(T ,�), Tδ+1 andTδ+1 ∩ (x,∞) both are countable dense linear ord
without endpoints.Sδ is a dense and co-dense subset ofTδ+1 andSδ ∩ (x,∞) is a dense
and co-dense subset ofTδ+1 ∩ (x,∞). By the usual back-and-forth argument, there is
isomorphismϕ betweenTδ+1 andTδ+1 ∩ (x,∞) mappingSδ ontoSδ ∩ (x,∞).

For everyy ∈ Sδ let ϕy be an isomorphism between ext(y) and ext(ϕ(y)). Now we
can construct an isomorphismψ betweenT and(x,∞) by lettingψ(y) := ϕ(y) for every
y ∈ Tδ andψ(y) := ϕy�δ(y) for everyy ∈ T \ Tδ .

Finally, we have to find an Aronszajn tree insideB(T ,�). Let T ′ be the subtree ofT
consisting of those elements ofT whose ranges are subsets of(0,1). As (T ,⊆), (T ′,⊆) is
an Aronszajn tree. This is the place where we take advantage of the fact that the ra
thefα , α < ω1, are subsets of(0,1). Mapping everyx ∈ T ′ to the interval[x,0, x,1) of
(T ,�), we obtain an embedding of(T ′,⊆) into (B(T ,�),⊇). Note that this embeddin
maps incomparable elements ofT ′ to disjoint members ofB(T ,�). ✷
Theorem 3.13. There is a homogeneous Boolean space of weightℵ1 which is first
countable, not c.c.c., and not a continuous image of any of the lexicographically or
spaces2γ , γ < ω1.

Proof. Let L be a linear order as in Lemma 3.9. Then Ult(B(L)) is first countable by
Corollary 3.3. Ult(B(L)) is homogeneous by Lemma 3.5 andB(L) is of sizeℵ1 sinceL
is.B(L) is not c.c.c. sinceL is not c.c.c.

Now suppose that Ult(B(L)) is a continuous image of the lexicographically orde
space 2γ for someγ < ω1. ThenB(L) embeds into Clop(2γ ). By condition (iv) of Lemma
3.9, this implies that Clop(2γ ) has a subsetT such that(T ,⊇) is an Aronszajn tree. Thi
contradicts

Claim 3.14.LetT ⊆ Clop(2γ ) be such that(T ,⊇) is a tree whose levels are all countab
ThenT is countable.

Every elementa of Clop(2γ ) can be uniquely written as a finite union of clopen interv
that are maximal convex subsets ofa. We may assume thatγ is infinite. If a ∈ Clop(2γ ) is
nonempty, let depth(a) be the least ordinalα < γ such that there arex, y ∈ a with x < y
and∆(x,y)= α such that the closed interval[x, y] is a maximal convex subset ofa.

For everya ∈ T let height(a) be the ordertype of({b ∈ T : b � a},⊇). We show that for
everya ∈ T and everyα < ω1 the following statement holds:



252 S. Geschke, S. Shelah / Topology and its Applications 133 (2003) 241–253

(∗)a,α The set{b ∈ T : b⊆ a ∧ depth(b)� depth(a)+ α} is countable.
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The claim follows from this since there is nob ∈ T with depth(b) > γ .
We show(∗)a,α by induction onα < ω1 simultaneously for alla ∈ T . Let a ∈ T . We

start with proving(∗)a,1 since (∗)a,0 is trivial, i.e., there is nob ∈ T with b ⊆ a and
depth(b) < depth(a).

If b ∈ T is such thatb ⊆ a and depth(b)= depth(a), then there arex, y ∈ b such that
x < y, [x, y] is a maximal convex subset ofb, and∆(x,y)= depth(a). It is easily checked
that there isz ∈ a such that either

(a) z < x, [z, y] is a maximal convex subset ofa, and depth(a)=∆(z, y), or
(b) y < z, [x, z] is a maximal convex subset ofa, and depth(a)=∆(x, z).

Suppose that{b ∈ T : b ⊆ a ∧ depth(b) = depth(a)} is uncountable. Then there isp ∈ a
such that for uncountably manyb ∈ T with b ⊆ a, p occurs asy in a) or asx in b). This
implies that{b ∈ T : b ⊆ a ∧p ∈ b} is uncountable. By our assumption on trees ordere
⊇, any two elements ofT are either disjoint or comparable, and thus{b ∈ T : b ⊆ a∧p ∈ b}
is a chain inT . But this contradicts the fact that Clop(2γ ) does not include any uncountab
well-ordered chain. This finishes the proof of(∗)a,1.

Now letα = β+1 for someβ < ω1 and suppose we have(∗)b,β for all b ∈ T . Leta ∈ T .
By (∗)a,β , there are only countably manyb ∈ T with a ⊇ b and depth(b) < depth(a)+ β .
Let δ < ω1 be a bound for the heights of suchb. If b ∈ T is minimal (with respect to the
order⊇ onT ) with a ⊇ b and depth(b)= depth(a)+ β , then height(b)� δ+ 1. It follows
that there are only countably manyb ∈ T that are minimal witha ⊇ b and depth(b) =
depth(a)+ β . Since(T ,⊇) is a tree, everyb ∈ T with a ⊇ b and depth(b)= depth(a)+ β

is above a minimal element ofT with these properties. Applying(∗)b,1 for every minimal
b ∈ T with a ⊇ b and depth(b)= depth(a)+ β , we obtain(∗)a,β+1.

Finally suppose thatα < ω1 is a limit ordinal and for alla ∈ T and allβ < α we have
(∗)a,β . Then for alla ∈ T the set

{
b ∈ T : b ⊆ a ∧ depth(b) < depth(a)+ α

}

=
⋃

β<α

{
b ∈ T : b⊆ α ∧ depth(b) < depth(a)+ β

}

is countable, which shows(∗)a,α . ✷
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