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Abstract

In this article we consider homogeneity properties of Boolean algebras that have nonprincipal
ultrafilters which are countably generated.

It is shown that a Boolean algebiis homogeneous if it is the union of countably generated
nonprincipal ultrafilters and has a dense subi3etuch that for every: € D the relative algebra
B |a:={be B: b<a}isisomorphic toB. In particular, the free product of countably many copies
of an atomic Boolean algebra is homogeneous.

Moreover, a Boolean algebiais homogeneous if it satisfies the following conditions:

(i) B has a countably generated ultrafilter,

(i) Bisnotc.c.c., and

(i) for every a € B \ {0} there are finitely many automorphisnig, ..., 4, of B such that
1=h1(a)U---Uhy(a).

These results generalize theorems due to Motorov [Russian Math. Surveys 44 (16) (1989) 190—
191] on the homogeneity of first countable Boolean spaces.

Finally, we provide three constructions of first countable homogeneous Boolean spaces that are
linearly ordered. The first construction gives separable spaces of any prescribed weight in the interval
[Ro, 2%0]. The second construction gives spaces of any prescribed weight in the irtervato]
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that are not c.c.c. The third construction gives a space of weighthich is not c.c.c. and which is
not a continuous image of any of the previously described examples.
0 2003 Elsevier B.V. All rights reserved.
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1. Introduction

A topological spaceX is homogeneoud for any two pointsx,y € X there is an
autohomeomorphism oKX mappingx to y. Among the most obvious examples of
homogeneous spaces are topological groups. In the case of topological groups, translations
can be used to show their homogeneity.

If we restrict our attention to zero-dimensional compact spaces, i.e., to Boolean spaces,
topological groups are not interesting from the topological point of view since infinite
compact zero-dimensional groups are all Cantor spaces, that is, they are homeomorphic to
spaces of the formwherex is a cardinal (see [4] or [5]).

Not too long ago, Dow and Pearl [2] proved a striking theorem concerning homogeneity,
namely that for every first countable, zero-dimensional spac¥® is homogeneous. For
Boolean spaces with a dense set of isolated points this was shown earlier by Motorov [12].

Apart from infinite powers, there is a surprising shortage of examples of homogeneous
Boolean spaces. Interesting examples were provided by Maurice [11], who proved that
for every indecomposable countable ordipalhe lexicographically ordered spacé B
homogeneous. Here an ordinalis indecomposabld y = o + 8 with 8 > 0 implies
B=y.If y >w, then 2 ordered lexicographically does not satisfy the countable chain
condition (c.c.c.) and therefore is not homeomorphic to a Cantor space.

Cantor spaces and the lexicographically ordered spateg 2ountable and indecom-
posable, have the property that not only the spaces themselves, but also their dual Boolean
algebras are homogeneous. A Boolean algébimhomogeneoui$ for everya € B \ {0}
the relative algebr® | a := {b € B: b < a} is isomorphic toB. In general, there is no di-
rectimplication between the homogeneity of a Boolean algebra and the homogeneity of its
Stone space. Van Douwen [13] constructed a first countable homogeneous Boolean space
whose dual Boolean algebra is not homogeneous. And it is well known that the Boolean
algebraP (w)/fin is homogeneous but its Stone sp#ee\ w is not.

However, the homogeneity of first countable Boolean spaces follows from the
homogeneity of their dual Boolean algebra. This was noticed independently by Motorov
[12] and Koppelberg [7]. Motorov proved that the converse is also true in certain cases. He
showed (in topological terms) that the homogeneity of a Boolean algebra follows from the
homogeneity of its Stone space if the Boolean algebra is not c.c.c. and every ultrafilter is
countably generated. Note that the last condition is equivalent to the first countability of
the Stone space.

The main tool in Motorov’s argument is
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Theorem 1.1.Let B be a Boolean algebra such that every ultrafilter Bfis countably
generated and3 has a dense subsé such that for alla € D, the algebraB | a is
isomorphic toB. ThenB is homogeneous.

Unfortunately, published proofs of Motorov’s results seem to be unavailable. We
give the proofs of some generalizations of his theorems. The main observation is that
in Theorem 1.1 the assumption “every ultrafilter Bfis countably generated” can be
weakened to B is the union of countably generated ultrafilters” (which is equivalent to
the Stone space a8 having a dense set of points of countable character). This easily
implies that the free product of infinitely many copies of an atomic Boolean algebra is
homogeneous. Here a Boolean algeBris atomicif the atoms are dense B, i.e., if the
Stone space @B has a dense set of isolated points.

We also show that a Boolean algel®#avhich is not c.c.c. is homogeneous if it has at
least one countably generated ultrafilter and the property that fareal \ {0} there are
finitely many automorphisnvs, ..., h, of B such that == h1(a) U---Uh,(a). The latter
property is equivalentto the property that every point of the Stone spates has a dense
orbit with respect to the natural group action of the group(Xgtof autohomeomorphisms
of X.

Moreover, we provide three constructions leading to new examples of homogeneous
Boolean spaces. In all cases we obtain first countable spaces which are linearly ordered.
The first construction yields separable spaces of any prescribed weight in the interval
[Ro, 2%0]. These spaces are constructed from nice subordels &fote that the space
of countable weight is homeomorphic t& 8ince up to homeomorphisn¥ s the only
Boolean space of countable weight without isolated points.

The second construction uses an easy Lowenheim-Skolem argument and gives homo-
geneous continuous images of the lexicographically ordered spacgesrilecomposable
with w < ¥y < w1. The spaces obtained using this construction can have any prescribed
weight in the intervalRo, 2%0], and their cellularity equals their weight. The third con-
struction uses a linear order on an Aronszajn tree and yields a space of weighich
is not c.c.c. and not a continuous image of any of the lexicographically ordered spaces
2,y <w1.

It should be pointed out that compact homogeneous spaces which are linearly ordered
have to be first countable (see [1] or [10]).

2. Generalizing Motorov’s results

As usual, the Stone space of a Boolean algebrés denoted by UltB) and the
Boolean algebra of clopen subsets of a Boolean spagedenoted by ClogX). In the
following, we will frequently switch between Boolean algebras and their Stone spaces, but
our presentation will be mainly in topological terms.

Note that a Boolean algebia is homogeneous if and only if every nonempty clopen
subset of UIEB) is homeomorphic to UiB).
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Lemma 2.1.Let X be a Boolean space such thi@lop(X) is homogeneous. i, y € X are
points of countable character, then there is an autohomeomorphishmadppingx to y.
In particular, X is homogeneous if it is first countable.

Proof. Assuming thatX is infinite, it follows from the homogeneity of CIgx) that X
has no isolated points. L&), <, and(B,).c» be clopen neighborhood baseswoénd
v, respectively. Since andy are not isolated, we may assume that the sequecgsc.
and (By,)nco are strictly decreasing. We may also assufige= Bo = X. For eachn € w
letC,:= A, \ Ay,+1 and D, := B, \ B,+1 and fix an homeomorphisiy, : C,, — D,. It
is easily checked that:= {(x, y)} U, ki IS an autohomeomorphism af mappingx
toy. O

new

In order to apply Lemma 2.1 we need a criterion for the homogeneity of Boolean
algebras with first countable Stone spaces-Aaseof a topological spac# is a family
F of open subsets of such that every nonempty open subseoincludes a member
of F. A family of clopen subsets of a Boolean spacds a-base if and only if it is a
dense subset of Clgj).

Lemma 2.2.Let X be a Boolean space with a dense set of points of countable character.
Then Clop(X) is homogeneous K has ax-base consisting of clopen sets which are
homeomorphic t.

Proof. First note that ifX has ar-base of clopen copies &f, thenX is either a singleton
or has no isolated points (tacitly assuming tiais nonempty). We may therefore assume
that X has no isolated points.

We show that the nonempty clopen subsets{ofre pairwise homeomorphic. Leit
be a nonempty clopen subsetXf Let x € A be a point of countable character. As in the
proof of Lemma 2.1, there is a disjoint fami{yi,;),.c, Of Nnonempty clopen subsets af
such thatA = {x} U |J,,c,, An-

Inductively we define sequences,,),c{—1ju» and(B,),ce as follows: LetC_y := 7.
Letn € w and suppose we have already defiigd;. Since the clopen subsetsXfwhich
are homeomorphic t& form ax-base ofX, there is a clopen sét, < A, such thatB, is
homeomorphic toX \ C,—1. With this choiceC,_1UB, = X. LetC, := A, \ B,.

Now

A\ )= JB,u ) =Bou [ J(CuUBusa).

new new

By the choice of theB,, n € w, | J,,c,,(Cn—1 U B,) is homeomorphic to the disjoint union
of Rg copies ofX. It follows that A is the one-point compactification of the disjoint union
of Xg copies ofX. SinceA was arbitrary, it follows that the nonempty clopen subsets of
are pairwise homeomorphic.o

Using Lemmas 2.2 and 2.1, we can give an easy proof of the homogeneity of the
lexicographically ordered space’,2, countable and indecomposable. For every y
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and everyx € 2°*1 the setl, :={y € 2: x C y} is a clopen interval in 2. By the
indecomposability of/, eachl, is homeomorphic to’2 Clearly,

{L:a<yAx €2°l+1}

is ar-base of 2. Thus, Clog2") is homogeneous by Lemma 2.2. Now the homogeneity
of 27 follows from Lemma 2.1.

Another corollary of Lemma 2.2 gives information about free products of atomic
Boolean algebras.

Corollary 2.3. Let X be a Boolean space with a dense set of isolated points. Then
Clop(X“) is homogeneous.

Proof. Let D be the set of subsets &f“ of the form{(xo, ..., x,—1)} x X®\* where
eachx; € X is isolated. Clearly,D consists of clopen sets that are homeomorphic to
X®. Since the isolated points are denseXn D is a w-base ofX®. Those sequences
(x)iew € X® for which eachy; is isolated inX form a dense subset &f“, and each of
these sequences is of countable charactef4n Now it follows from Lemma 2.2 that
Clop(X“) is homogeneous. O

Note that for every cardinad, Clop(X*) is isomorphic to the free product efcopies
of Clop(X). Itis easily checked that CIgg“) is homogeneous if there is a cardinak «
such that ClopX*) is homogeneous. Therefore Corollary 2.3 implies that for a Boolean
spaceX with a dense set of isolated points, for every infinite cardintile Boolean algebra
Clop(X*) is homogeneous. In other words Afis an atomic Boolean algebra, then every
free product of infinitely many copies & is homogeneous.

To proceed we need a technical lemma relating the cellularity of a compact space
with many autohomeomorphisms to the cellularities of its nonempty open subsets. For a
topological spac« let ¢(X) denote the cellularity oX . Recall that AutX) is the group of
autohomeomorphisms &f. Forx € X the Aut(X)-orbit of x isthe se{h(x): h € Aut(X)}.

Lemma 2.4.Let X be compact and infinite. If everye X has a dens@ut(X)-orbit, then
for every nonempty open subseiof X we haver(0) = c(X).

Proof. It is easily checked that all Aux)-orbits are dense iX if and only if for every
nonempty open se® C X, {h[O]: h € Aut(X)} coversX. Let O € X be open and
nonempty. By the compactness ¥f there aren € w andhy, ..., h, € Aut(X) such that
X =mn[OlU---Uh,[O].

Let A be an infinite family of pairwise disjoint subsets ¥f For some € {1, ..., n},
the set{A € A: AN h;[0O] # @} is of size| A|. It follows thatc(0) > |A|]. This implies
c(0)=c(X). O

Now we have collected the necessary tools to show

Theorem 2.5.Let X be a Boolean space which is not c.c.c. and has a point of countable
character. Suppose everye X has a dens@ut(X)-orbit. ThenClop(X) is homogeneous.
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Proof. SinceX is not c.c.c. X is infinite. Since every AyiX)-orbit is dense inX, X has

no isolated points. Letg € X be a point of countable character. Since the (&XQtorbit

of xg is dense inX, X has a dense set of points of countable character. By Lemma 2.2, it
remains to show that has ar -base consisting of clopen sets which are homeomorphic to
X.

Let (Uy,)new be a neighborhood base @f consisting of clopen sets. For everye w
there aren € w andhay, ..., h,, € Aut(X) such thatX = h1[U,]U---Uh,,[U,]. It follows
that for eachn € w, X is homeomorphic to a disjoint union of finitely many copies of
clopen subsets df,,.

Now let O be a nonempty open subset¥f By Lemma 2.4, there is an uncountable
family A of pairwise disjoint nonempty open subsets®@f For everyA € A let hy €
Aut(X) be such that4 (xg) € A. h4 exists since the AgK)-orbit of xg is dense. For
every A € A there isn(A) € o such thath[U,)] € A. Since A is uncountable, there
is ng € w such that for uncountably mamy € A, n(A) = ng. It follows that O includes
uncountably many pairwise disjoint open copiedf. But sinceX is homeomorphic to
a disjoint union of finitely many copies of clopen subset#/gf, O includes a clopen copy
of X. O

Corollary 2.6. Let X be a first countable Boolean space of uncountable cellularity. If
every point inX has a densdut(X)-orbit, thenClop(X) and X are both homogeneous.
In particular, X is homogeneous if and only@op(X) is.

Proof. The homogeneity of CloiX) follows immediately from Theorem 2.5. The
homogeneity ofX now follows from Lemma 2.1. O

3. Examples of homogeneous Boolean spaces

The homogeneous Boolean spaces we are going to construct will be Stone spaces of
interval algebras of certain linear orders. As usualLif<) is a linear order, we use to
denote< \ =. Similarly, if < is transitive and irreflexive, we use to denote< U =.

Definition 3.1. Let (L, <) be a linear order. Thénterval algebraB(L) of L is the
subalgebra o (L) generated by the intervals, y), x,y € L U {o0}, x < y.

Every element oB(L) is a finite union of intervals of the forix, y), x, y € L U {00},
x <y, and of the form(—oo, x), x € L U {oo} (see [6]).

The Stone space of an interval algel#tél.) is homeomorphic to the linear order of
initial segments ofL (see [6]). Using this fact, we can characterize those linear orders
whose interval algebras have a first countable Stone space.

Call a subses of alinear ordel coinitial if for all a € L there ish € S such thab < a.

The coinitiality of L is the least size of a coinitial subset bf which is the same as the
cofinality of the reversed order.
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Lemma 3.2.The Stone space of an interval algelBal) is first countable if and only
if every initial segment of. has a countable cofinality and every final segment has a
countable coinitiality.

Proof. Let X be the set of initial segments of the linear ordeX itself is linearly ordered
by C. Suppos« is first countable. We show that every initial segment a$ of countable
cofinality. The proof that every final segmentlofs of countable coinitiality is symmetric.
By the first countability ofX, for everyx € X, the set{y € X: y G x} is of countable
cofinality. Letx € X be nonempty and assume thahas no last element. Then the set
{(—00,a]: a e x}iscofinalin{y e X: y g x}. Therefore{(—oo, a]: a € x} is of countable
cofinality. This implies that is of countable cofinality.
Now suppose that every initial segmentofis of countable cofinality and that every
final segment of. is of countable coinitiality. To show the first countability ¥f it suffices
to prove that for allk € X the following two conditions hold:

(1) Ifin X there is no largest element belawthenx is the first element ok or there is
a countable sequence ¥ converging tox from the left.

(2) Ifin X there is no smallest element abovghenx is the last element oX or there is
a countable sequence Jhconverging tar from the right.

We show only the first condition since the proof of the second condition is symmetric.
Suppose that there is no largest elemenYiwhich is belowx € X. Assume further that

x is not the first element oX. Thenx as a subset of. is nonempty and does not have a
last element. By our assumption @n there is a sequende;),<, Which is cofinal inx.

We may assume thét,), <., is strictly increasing. The sequen@e-oo, a, 1) Of initial
segments ol. converges ta from the left. O

Lemma 3.2 easily implies:

Corollary 3.3. If the linear order L has no uncountable sequendesiexed by ordinals
which are strictly increasing or strictly decreasing, then the Stone spa@ bf is first

countable. In particular, the Stone spaceR(fL) is first countable ifL has a countable
dense subset.

Proof. If L has an initial segment of uncountable cofinality, then it has a strictly increasing
sequence of length1. Similarly, if L has a final segment of uncountable coinitiality, then
it has a strictly decreasing sequence of length

If L has a strictly increasing or strictly decreasing sequence of lengttihen it is not
c.c.c. and therefore cannot have a countable dense suliset.

The following lemma provides an easy criterion for the homogeneity of an interval
algebra.

Lemma 3.4.Let L be a dense linear order with the property that every two nonempty open
intervals ofL are isomorphic. The® (L) is homogeneous.
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Proof. By the density ofL, for all x, y € L with x < y the interval[x, y) is infinite. Since
every two nonempty open intervals bfare isomorphicL has no end points. Moreover,
the intervals of the fornfix, y) with x € L, y € L U {0}, x < y, are pairwise isomorphic.
It follows that for alln € w and allxo, ..., x2,+1 € L U {—00, 0o} with xg < - -+ < x2,,41,
(x0, x1) U U7_1[x2i, x2i+1) is isomorphic toL.

Let a € B(L) \ {#}. Then for somen € w there arexo, ..., x2,4+1 € L U {—00, 00}
with xg < --+ < x2,4+1 such that eitherg = —oo anda = (xg, x1) U U?:]_[le',le'_;_l)
or xo e L anda = [x0,x1) U --- U [x2,, x2,+1)- In either case, it is easily checked
that B(L) | x is isomorphic to the interval algebra @fo, x1) U [J7_1[x2i, x2i+1). Since
(x0, x1) U U7_1[x2i, x2i+1) is isomorphic toL, B(L) [ a is isomorphic toB(L). O

Combining the information we have gathered so far we obtain

Lemma 3.5.Let L be a dense linear order such that every nonempty open interval
of L isomorphic toL itself. ThenUIt(B(L)) is homogeneous if and only If has no
strictly increasing or strictly decreasing sequences of lergthln particular, Ult(B(L))

is homogeneous I is separable.

Proof. By Lemma 3.4, B(L) is homogeneous. IfL has no strictly increasing or
strictly decreasing sequences of uncountable length, themBWl}) is first countable

by Corollary 3.3 and homogeneous by Lemma 2.1. Now supposeLthets a strictly
increasing or strictly decreasing sequence of uncountable length. Then the Stone space of
B(L), being homeomorphicto the linear order of initial segments,é$ not first countable

and therefore cannot be homogeneous, as mentioned in the introdudtion.

It remains to construct linear orders with the properties required in Lemma 3.5. We first
construct some separable linear orders.

Lemma 3.6.For every cardinak e [Ro, 2°0] there is a separable dense linear ordef
sizex which is isomorphic to every one of its nonempty open intervals.

Proof. LetL be a subfield oR of sizex. ThenL is separable since it contains the rationals.
L is dense since for all, y € L we have%(x + y) € L. SinceL is a subfield ofR, for all
x € L itis closed under the order isomorphisms

Sfei(x,00) = R; vy =y Ty —x
and
8x (=00, x) = R; ye x—» "ty —x

and their inverses. This implies that for alke L, L is order-isomorphic tgq—oo, x) N L
and to(x, co) N L. It follows that L is order-isomorphic to every one of its nonempty open
intervals. O

Corollary 3.7. Letk € [Ro, 2¥%] be a cardinal. Then there is a homogeneous Boolean space
of weightx which is separable and first countable.
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Proof. LetL be alinear order of sizeas in Lemma 3.6. By Corollary 3.3, the Stone space
of B(L) isfirst countable. LeD C L be countable and dense. Then forad D, the set of
thosex € B(L) which containz is an ultrafilterF,. SinceD is dense inL and B(L) does
not contain any singletons by the densitylaf B(L) is the union of theF,, a € D, i.e.,
B(L) is o-centered. This is equivalent to the separability of B(iL)). Finally, Ult(B(L))

is homogeneous by Lemma 3.50

As the referee pointed out, the spaces in Corollary 3.7 can be obtained as variants of the
double arrow space and have already been mentioned in Section 2.5 of [3]. The description
in [3] is as follows: In order to obtain a space of weigft Zonsider the double arrow
space, i.e.[0, 1] x 2 ordered lexicographically. After removing the endpoints, we are left
with a homogeneous Boolean spatef weight 2 which is separable and first countable.

X is homeomorphic to the Stone spaceBgR). Spaces of smaller weight are obtained by
replacing[0, 1] in the construction above b, 1] N K where K is a subfield ofR of
suitable size (namely the desired weight of the space).

Note that all these spaces are continuous imagées. @o, in the end, a Léwenheim-
Skolem argument is used (when choosing subfield®)ofo obtain homogeneous zero-
dimensional quotients of of a prescribed weight.

We carry out this type of argument once more in a more explicit way in order to
construct first countable homogeneous Boolean spaces of a given weight in the interval
[Rq, 2%0] that are not c.c.c. Starting with an indecomposable countable ordinaky
we apply the downward Léwenheim-Skolem theorem to get a continuous image of the
lexicographically ordered spacé @vith the right properties.

Theorem 3.8.For every cardinalk € [Ro, 2%0] there is a first countable homogeneous
Boolean spacé& of weight and cellularity.

Proof. Let y > w be a countable indecomposable ordinal. Then the lexicographically
ordered space?2is a first countable homogeneous Boolean space. Sihds Bnearly
ordered, it is the Stone space of an interval algebra (see [6]) lbet a linear order with
2 = UIt(B(L)).

Since UI(B(L)) is first countable, inL there is no strictly increasing or strictly
decreasing sequence of length. The cellularity of 2 is 2%, as is the weight. By
Corollary 2.6,B(L) is a homogeneous Boolean algebra.

Let A be a sufficiently large cardinal and consider the structéfe €) whereH, is the
family of sets whose transitive closure is of size.. Fix an antichaind C B(L) of size
2% and letM be an elementary submodel @, €) of sizex such thatL, «, A € M and
KCM.

Let B := B(L) N M. By elementarityB = B(L N M). L N M is a linear order without
strictly increasing or strictly decreasing sequences of lengtiihus, X := Ult(B) is first
countable. Again by elementaritg, is homogeneous. By Lemma 2 X ,is homogeneous,
too.

Sincex € M, B is of sizek, and so is4A N M. It follows that the cellularity ofX
ISk. O
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There is another interesting example of a first countable homogeneous Boolean space.
This one is constructed from a linear order on an Aronszajn tree and is not the continuous
image of any of the first countable homogeneous Boolean linear orders mentioned so far.

Recall that a tree is\ronszajnif it is of height w1, has only countable levels, and does
not include an uncountable chain.Tifis a tree ordered by, we will always assume that
incomparable elements @f are disjoint.

Lemma 3.9.There is a dense linear orddr of sizeX; without endpoints and with the
following properties

(i) L has no strictly increasing or strictly decreasing sequences of lemgth
(i) L isisomorphic to every one of its nonempty open intervals.
(iii) Lisnotc.c.c.
(iv) B(L) has a subset which is an Aronszajn t(eedered byD).

Proof. For two functionsf and g with the same domain we writ¢ =* ¢ if f andg
agree on all but finitely many points of their common domain. Using the construction of
an Aronszajn tree given in [9], we obtain a seque(it;8+<«», Such that eaclf, is a 1-1
function fromea into Q N (0, 1) and for alla, 8 < w1 With o < B, fo =* fg [ a.

Now for eache < w; let

Se:={f€Q: fisl-landf =" f,}
and7y :=Jgz_, Sp- T := Uy <, T Ordered by inclusion is an Aronszajn tree.

We define a linear order off. Let x,y € T be such thatt # y. If x and y are
incomparable with respect t@, put A(x, y) := min{v € dom(x): x(v) # y(v)} and let
x < yif x(A(x,y)) < y(A(x, y)). If x Cy and dontx) = «, letx < y if y(a) > 7 and
y<xif y() <.

In other words,T is ordered lexicographically after identifying eaehe T with the
functionx ™7 where™ denotes the concatenation of sequencesramlidentified with
the sequence of length one with valoes R.

Claim 3.10.(T, <) is not c.c.c.

It is well known thatT ordered by reverse inclusion is not c.c.c. For example, for every
a < w let x € Sy41 be such thak(«) = 0. Since thexy, o < w1, are 1-1,(xg)a<w, IS
an antichain in(T, 2). Note that for allx € T, Q \ ran(x) is infinite since otherwise the
construction of thef,,, « < w1, would break down at some point. Thus, for everyg w1
there arepy, g € Q \ ran(xy) with p, < go. Now for eachy < w1, x4 ~gq andx, ™ py are
elements off. Clearly,{(xo " pa, Xa " ga): @ < w1} iS an uncountable family of pairwise
disjoint nonempty open intervals 6T, <).

Claim 3.11.In (T, <) there is no strictly increasing or strictly decreasing sequence of
lengthw; .

This claim seems to be folklore. A more general statement about so-sglleghings
of Aronszajn trees is proved in [8, Theorem 4.1@], <) is a squashing ofT, <).
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In order to prove thatT, <) is isomorphic to each of its nonempty open intervals it
suffices to show

Claim 3.12.For everyx € T, (T, <) is isomorphic to(x, co) and to(—oo, x).

We only showT = (x, co) since the proof ofl = (—o0, x) is symmetric. Lets :=
dom(x) + 1.

For eachy € S; let ext(y) :={z € T: § Cdom(z) A z | § = y}. As before, exty)
is a convex subset of. For y,z € S5, (ext(y), <[ ext(y)) and (ext(z), <| ext(z)) are
isomorphic by the isomorphism mapping evefy ext(y) to z Uy’ | (dom(y’) \ §).

As suborders ofT, <), Ts+1 andTs11 N (x, oo) both are countable dense linear orders
without endpointssS; is a dense and co-dense subseTpf; andSs N (x, co) is a dense
and co-dense subset @1 N (x, 00). By the usual back-and-forth argument, there is an
isomorphismy betweernTs, 1 andTs41 N (x, 00) mappingSs ontoSs N (x, 0o).

For everyy € S; let ¢, be an isomorphism between ext and extp(y)). Now we
can construct an isomorphisgnbetween? and(x, oo) by lettingy (y) := ¢(y) for every
y € Ts andy (y) := ¢y s(y) foreveryy e T\ Ts.

Finally, we have to find an Aronszajn tree insif#€T, <). Let T’ be the subtree of
consisting of those elements Bfwhose ranges are subsetg@f1). As (T, €), (T’, Q) is
an Aronszajn tree. This is the place where we take advantage of the fact that the ranges of
the fy, o < w1, are subsets a0, 1). Mapping every € T’ to the intervalx ™0, x~1) of
(T, <), we obtain an embedding of”’, ©) into (B(T, <), 2). Note that this embedding
maps incomparable elementsBfto disjoint members oB(T, ). O

Theorem 3.13.There is a homogeneous Boolean space of weightwhich is first
countable, not c.c.c., and not a continuous image of any of the lexicographically ordered
space’, y < w1.

Proof. Let L be a linear order as in Lemma 3.9. Then(BKL)) is first countable by
Corollary 3.3. UI{B(L)) is homogeneous by Lemma 3.5 aBdL) is of sizeX; sinceL
is. B(L) is nhot c.c.c. sincd. is not c.c.c.

Now suppose that UWIB(L)) is a continuous image of the lexicographically ordered
space 2 for somey < w1. ThenB(L) embeds into Clof2”). By condition (iv) of Lemma
3.9, this implies that Clo2”) has a subsef such that(7', 2) is an Aronszajn tree. This
contradicts

Claim 3.14.LetT C Clop(2¥) be such tha{T, D) is a tree whose levels are all countable.
ThenT is countable.

Every element of Clop(2”) can be uniquely written as a finite union of clopen intervals
that are maximal convex subsetsaofWe may assume thatis infinite. If a € Clop(2Y) is
nonempty, let deptla) be the least ordinal < y such that there are, y € a with x < y
andA(x, y) = « such that the closed intervial, y] is a maximal convex subset of

For everya € T let heighta) be the ordertype oflb € T: b ;2 a}, 2). We show that for
everya € T and everyr < w1 the following statement holds:
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(®)a.o Thesef{lbeT: b Ca Adepthh) < depthia) + «} is countable.

The claim follows from this since there is o= T with depthd) > y.

We show(x),.o by induction ona < w1 simultaneously for alk € T. Leta € T. We
start with proving(x),.1 Since (x), o is trivial, i.e., there is n& € T with b € a and
depthh) < deptha).

If b e T is such that C a and deptlb) = deptha), then there are, y € b such that
x <y, [x, y]is amaximal convex subset bfandA(x, y) = deptha). Itis easily checked
that there i € a such that either

(d) z < x, [z, y] is a maximal convex subset of and depttu) = A(z, y), or
(b) y <z, [x, z] is a maximal convex subset of and depttu) = A(x, z).

Suppose thath € T: b C a A depthb) = deptha)} is uncountable. Then there jse a
such that for uncountably marye T with b C a, p occurs asy in a) or asx in b). This
impliesthat{b € T: b C a A p € b} is uncountable. By our assumption on trees ordered by
D, any two elements df are either disjoint or comparable, andthbs T: b Ca A p € b}
is a chaininT . But this contradicts the fact that CI#¥ ) does notinclude any uncountable
well-ordered chain. This finishes the proof@j,. 1.

Now leta = g+ 1 for somes < w; and suppose we haye), g forallb e T. Leta € T.
By (x)4,p, there are only countably mamye T with a © b and deptkb) < deptha) + B.
Let § < w1 be a bound for the heights of subhlf b € T is minimal (with respect to the
order2> onT) with a 2 b and deptl) = deptha) + B, then heighth) < § + 1. It follows
that there are only countably maye T that are minimal witha 2 b and deptkb) =
deptha) + B. Since(T, D) is a tree, every € T with a 2 b and deptlp) = deptha) + 8
is above a minimal element @f with these properties. Applying)s 1 for every minimal
b e T with a © b and deptkb) = deptha) + B, we obtain(x), g+1.

Finally suppose that < w1 is a limit ordinal and for alk € T and all 8 < o we have
(%)a,p- Thenforalla € T the set

{b e T: b Ca A depthd) < deptha) +a}
= J{p e T: b<a Adepthd) < depthia) + B}

B<a

is countable, which show®), . O

References

[1] M.G. Bell, Nonhomogeneity of powers of Cor images, Rocky Mountain J. Math. 22 (3) (1992) 805-812.

[2] A. Dow, E. Pearl, Homogeneity in powers of zero-dimensional first-countable spaces, Proc. Amer. Math.
Soc. 125 (1997) 2503-2510.

[3] J.E. Hart, K. Kunen, Bohr compactifications of discrete structures, Fund. Math. 160 (1999) 101-151.

[4] E. Hewitt, A note on 0-dimensional compact groups, Fund. Math. 50 (1961/1962) 95-97.

[5] A. Hulanicki, On the topological structure of 0-dimensional topological groups, Fund. Math. 46 (1959)
317-320.

[6] S. Koppelberg, Handbook of Boolean Algebras, North-Holland, Amsterdam, 1989.



Sh:811

S. Geschke, S. Shelah / Topology and its Applications 133 (2003) 241-253 253

[7] S. Koppelberg, Homogeneous Boolean algebras may have non-simple automorphism groups, Topology
Appl. 21 (1985) 103-120.
[8] K. Kunen, Combinatorics, in: Handbook of Mathematical Logic, North-Holland, Amsterdam, 1978,
pp. 371-403.
[9] K. Kunen, Set Theory, in: Studies in Logic, Vol. 102, North-Holland, Amsterdam, 1980.
[10] K. Kunen, Large homogeneous compact spaces, in: Open Problems in Topology, North-Holland, Amster-
dam, 1990, pp. 261-270.

[11] M.A. Maurice, On homogeneous compact ordered spaces, Nederl. Akad. Wet. Proc. Ser. A 69 (1966) 30-33.
[12] D.B. Motorov, Zero-dimensional and linearly ordered bicompacta: Properties of homogeneity type, Russian
Math. Surveys 44 (6) (1989) 190-191; translation from Uspehi Mat. Nauk 44 (6(270)) (1989) 159-160.

[13] E. van Douwen, A compact space with a measure that knows which sets are homeomorphic, Adv. Math. 52

(1984) 1-33.



