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Abstract. A class K of structures is controlled if, for all cardinals λ, the relation of L∞,λ-
equivalence partitions K into a set of equivalence classes (as opposed to a proper class). We
prove that the class of doubly transitive linear orders is controlled, while any pseudo-ele-
mentary class with the ω-independence property is not controlled.

1. Introduction

One of the major accomplishments of model theory has been the discovery of a
dividing line between those theories in a countable language whose models can
be described up to isomorphism by a reasonable set of invariants and those whose
models cannot be so described. Models of classifiable theories are described up to
isomorphism by an ‘independent tree’ of countable elementary submodels, while
the isomorphism type of any unclassifiable theory cannot be described by any rea-
sonable set of invariants (see [9]). Unfortunately, the great majority of classes of
structures studied in mathematics are unstable, and thus fall on the ‘non-structure’
side of this divide. Thus, it is desirable to search for dividing lines between unstable
classes of structures. Our thesis is that while an unstable (pseudo-elementary) class
necessarily has the maximal number of non-isomorphic models in every uncount-
able cardinality, it is still possible to assign a set of invariants to some unstable
classes of structures. In some cases (see e.g., Example 3.6.) the large number of
non-isomorphic models is due simply to our ability to code arbitrary stationary
sets into the skeletons of Ehrenfeucht-Mostowski models. In other words, for some
classes of structures the reason for the non-isomorphism of two structures in the
class need not be very robust. Indeed, in such cases the structures can be forced to
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70 M.C. Laskowski, S. Shelah

be isomorphic by a forcing that merely adds a new closed, unbounded subset of
some cardinal to the universe. That is, although they are nonisomorphic, the struc-
tures are not very different from each other. On the other hand, for other classes
of structures (see Theorem 2.5.) there are more serious obstructions to a structure
theorem.

Our ultimate goal is to determine to which unstable classes of structures one
can associate a reasonable set of structural invariants. These invariants need not
(and typically will not) determine the structures up to isomorphism. Instead, we
ask that any two structures with the same invariants be very much the same. In this
paper we focus onL∞,λ-equivalence for various cardinals λ and ask which unstable
classes are partitioned into only a set of equivalence classes (as opposed to a proper
class). We call a class K controlled if K has only a set of L∞,λ-equivalence classes
for all cardinals λ. Typically, L∞,λ-equivalence does not characterize models up to
isomorphism even when we fix the cardinalities of the models. (In [8] the second
author shows that for any unstable pseudo-elementary class and any uncountable
regular cardinal λ, there are 2λ non-isomorphic models of size λ that are L∞,λ-
equivalent.) However, in some sense two L∞,λ-equivalent structures of the same
cardinality are very much the same. For instance, if one uses the back-and-forth
system witnessing their equivalence as a notion of forcing, then the two structures
will become isomorphic in the corresponding forcing extension.

In this paper we obtain two complementary results. On one hand, in Section 3
we analyze the pseudo-elementary class K2tr of doubly transitive linear orders.
This class is unstable, hence the stigma of non-structure applies. Despite this, we
prove that KCµ+(K2tr) ≤ ω (see Definition 2.3.) for all uncountable cardinals µ,
hence K2tr is controlled. This is one of very few theorems in which an unstable
pseudo-elementary class shows any sign of structure. On the other hand, in Sec-
tion 4 we prove that any pseudo-elementary class with theω-independence property
(see Definition 4.4.) is not controlled. In fact, if the language used in describing K
is countable then KCλ(K) = ∞ for all cardinals λ ≥ ℵ3.

There is still much that we do not know about the notion of control. A funda-
mental question that remains open is whether there is an unstable elementary class
that is controlled. We conjecture, and hope to prove, that any pseudo-elementary
class with the independence property is not controlled; this would substantially
strengthen our second result.

2. Controlled classes

In this section we state a series of definitions that lead to the concept of a class of
structures being controlled (see Definition 2.5.). We apply these definitions to the
theory of dense linear orders to illustrate why it is desirable to consider the λ-Karp
complexity of a class for uncountable cardinals λ. We first reintroduce the notion
of a partial isomorphism, but with a slight variation. As we are only concerned with
the definable subsets of structures (and not their quantifier complexity) we insist
that all partial isomorphisms are elementary maps.

Definition 2.1. Given two elementarily equivalent structures M and N in the same
language and an infinite cardinal λ, a λ-partial isomorphism is a partial elementary
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The Karp complexity of unstable classes 71

map with domain of cardinality less than λ, that is: a function f from a subset D
of M into N of size less than λ satisfying

M |= ϕ(d1 . . . dn) if and only if N |= ϕ(f (d1), . . . , f (dn))

for all formulas ϕ(x1, . . . , xn) of the language and all d1, . . . , dn from D. We de-
note the family of λ-partial isomorphisms by Fλ(M,N). If M = N we simply
write Fλ(M).

The complexity of Fλ(M) is a measure of how deeply one needs to look to
understand the relationship of a small subset (i.e., of size less than λ) with the rest
of the model. In order to measure this depth we endow the family with the following
rank.

Definition 2.2. For f ∈Fλ(M,N),

1. Rank(f ) ≥ 0 always;
2. For α limit, Rank(f ) ≥ α if and only if Rank(f ) ≥ β for all β < α;
3. Rank(f ) ≥ α + 1 if and only if

(a) for all C ⊆ M of size less than λ, there is g ∈ Fλ(M,N) extending f

with C ⊆ dom(g) and Rank(g) ≥ α; and
(b) dually, for allC ⊆ N of size less than λ, there is g ∈Fλ(M,N) extending

f with C ⊆ range(g) and Rank(g) ≥ α.

The λ-Karp complexity KCλ(M,N) of the pair of structures M,N is the least or-
dinal α such that Rank(f ) ≥ α implies Rank(f ) ≥ α + 1 for all f ∈Fλ(M,N).
Again, if M = N we simply write KCλ(M).

The λ-Karp complexity of a structure is related to the notions of L∞,λ-Scott
height and back-and-forth systems. It is a routine diagram-chasing exercise to show
that if two structuresM andN areL∞,λ-equivalent (hence there is a back-and-forth
system in Fλ(M,N)) then KCλ(M) = KCλ(N).

If one fixes the signature, then for any cardinals κ and λ it is easy to find an
ordinal bounding the λ-Karp complexity of any structure of that signature of size
at most κ . By contrast, whether or not there is a upper bound on the λ-Karp com-
plexities of all structures in a class K that does not depend on κ provides a robust
dichotomy between classes. This is demonstrated by the following definition and
proposition. The reader is referred to [2] for the undefined notions.

Definition 2.3. For K a class of structures, the λ-Karp complexity of K, written
KCλ(K), is the supremum of the ordinals KCλ(M) among all M ∈ K if the
supremum exists. Otherwise, we set KCλ(K) = ∞.

Proposition 2.4. The following conditions are equivalent for a class K of struc-
tures and an infinite cardinal λ.

1. KCλ(K) <∞;
2. The relation of L∞,λ-equivalence on K has only a set of equivalence classes;
3. There are only a set of L∞,λ-types of subsets of size less than λ realized in

elements of K;

Sh:560



72 M.C. Laskowski, S. Shelah

4. There are only a set of distinct L∞,λ-Scott sentences among the elements of K;
5. There is a cardinal κ such that the notions ofLκ,λ-equivalence andL∞,λ-equiv-

alence coincide on K.

Proof. The implication (2)⇒ (1) follows from the observation that λ-Karp com-
plexity is preserved under L∞,λ-equivalence. The implications (1) ⇒ (4) ⇒
(5)⇒ (3)⇒ (2) all follow easily. �


When λ = ℵ0 the λ-Karp complexity often does not yield much information
about the inherent complexity of a class K. For example, if K is the class of models
of an ℵ0-categorical theory, then KCℵ0(K) = 0 since every model is ℵ0-homo-
geneous. However, our thesis is that for larger λ, λ-Karp complexity gives a good
measure of the complexity of the class. It follows from Proposition 2.4.(3) that if
KCλ(K) = ∞ for some cardinal λ, then KCκ(K) = ∞ for all larger cardinals κ .
This leads us to the crucial definition of the paper.

Definition 2.5. A class K of structures is controlled ifKCλ(K) <∞ for all infinite
cardinals λ.

Note that if a class K is controlled, then it follows from Proposition 2.4.(2)
that for every cardinal λ, the relation of L∞,λ-equivalence partitions K into only a
set of equivalence classes (as opposed to a proper class). Continuing our example,
KCℵ0(DLO) = 0, as DLO, the theory of dense linear orders with no endpoints is
ℵ0-categorical. However, this observation hides the fact that one can code arbitrary
ordinals into dense linear orders. This ability to code ordinals implies that the class
DLO is not controlled. In fact, KCλ(DLO) = ∞ for all uncountable cardinals
λ. To see this, fix an uncountable cardinal λ and, for each non-zero ordinal α, let
Jα be the linear order with universe (η · λ) · α, where η denotes the order type of
the rationals. In light of Proposition 2.4.(2) it suffices to show that Jα is not L∞,λ-
equivalent to Jβ whenever α �= β. So choose non-zero ordinals α and β such that
Jα is L∞,λ-equivalent to Jβ . Let E be the equivalence relation such that E(x, y) if
and only if there are fewer than λ elements between x and y. Since E is expressible
in the logic L∞,λ, this implies that the condensation Jα/E is L∞,λ-equivalent to
Jβ/E. But (Jα/E,≤) � (α,≤), (Jβ/E,≤) � (β,≤), and it is readily checked
that distinct ordinals are not even L∞,ω-equivalent. Hence α must equal β.

3. Doubly transitive linear orders

In this section we investigate the class K2tr of infinite doubly transitive linear
orders. That is, (I,≤) ∈ K2tr if and only if the linear order I is dense with no
endpoints and for all pairs a < b, c < d from I , the interval [a, b] is isomorphic to
the interval [c, d]. Such orders arise naturally: The underlying linear order of any
ordered field is necessarily doubly transitive. Clearly, there is only one countable
structure in K2tr up to isomorphism. The class K2tr is a pseudo-elementary (PC)
class that is visibly unstable, so by [9] there are 2λ non-isomorphic structures in
K2tr of size λ for all uncountable cardinals λ. Further, by [8], for all uncountable
regular cardinals λ there is a family of 2λ structures in K2tr of size λ that are
L∞,λ-equivalent, yet pairwise non-embeddable.
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The Karp complexity of unstable classes 73

Nonetheless, the class of doubly transitive linear orders is not entirely without
structure. There are natural ‘invariants’ one can associate with such orders. These in-
variants will not determine the orders up to isomorphism, but they will be sufficient
to demonstrate that the λ-Karp complexity of K2tr is bounded for all cardinals λ.

The most natural invariant of a doubly transitive linear order is the isomorphism
type of its closed intervals. Accordingly, we call I0, I1 ∈ K2tr locally isomorphic
and write

I0 ∼ I1

if [a, b] � [c, d] for a < b from I0 and c < d from I1. Evidently local isomorphism
is an equivalence relation on K2tr and I ∼ J for any infinite convex subset J ⊆ I ,
if I ∈ K2tr.

The second invariant was developed by Droste and Shelah in [4]. The defi-
nitions that follow are slight adaptations of similar notions used there. The most
notable variation is that in [4] there is no bound on the number of levels of the
decomposition tree and the cardinals λη can be any uncountable regular cardinal.

For the whole of this section, fix an uncountable cardinal µ.

Definition 3.1. A µ-decomposition tree is a subtree T of
⋃{αµ : α < µ+} satis-

fying:

1. T is downward closed, i.e., η ∈ T implies η|α ∈ T for all α < lg(η);
2. If lg(η) is a limit ordinal or 0 and η|α ∈ T for all α < lg(η) then η ∈ T

and η has exactly two immediate successors; more specifically, we require
SuccT (η) = {η̂ 〈0〉, η̂ 〈1〉};

3. If η ∈ T and lg(η) is a successor ordinal, then either SuccT (η) = ∅ or
SuccT (η) = {η̂ 〈α〉 : α ∈ C} for some club subset C of a regular cardinal
λη ∈ [ℵ1, µ].

Let T ∗ = {η ∈ T : lg(η) is a successor ordinal}.
We define a linear order on T ∗ which is a cross between lexicographic and an-

tilexicographic order. To every node η of T ∗ we first associate a direction dir(η) ∈
{LEFT,RIGHT}. Suppose lg(η) = δ+n, where δ is a limit ordinal or 0 and n ∈ ω.
Then

• dir(η) = LEFT if η(δ)+ n is even;
• dir(η) = RIGHT if η(δ)+ n is odd.

The idea is that if dir(η) =LEFT, then the successors of η will all be to the left of η.
Each of these successors will have direction RIGHT, so their successors will be to
their right and so forth. Formally, the linear order <T ∗ is defined by the following
clauses.

• If η � ν then η <T ∗ ν if and only if dir(η) =RIGHT;
• If η, ν are incomparable, let γ be least such that η(γ ) �= ν(γ ) and let ρ = η|γ .
– If γ is a limit ordinal or 0 then η <T ∗ ν if and only if η(γ ) = 0 and ν(γ ) = 1;
– If γ is a successor ordinal (so ρ ∈ T ∗) and dir(ρ) =LEFT then η <T ∗ ν if and

only if η(γ ) < ν(γ );
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– If γ is a successor ordinal and dir(ρ) =RIGHT, then η <T ∗ ν if and only if
η(γ ) > ν(γ ).

The following definition differs slightly from normal usage as we include the
endpoints.

Definition 3.2. For I a dense linear order, the Dedekind completion of I is the
linear order (I ,≤I ) with universe

I = {A ⊆ I : A downward closed with no largest element}

and A ≤I B if and only if A ⊆ B. We let −∞ denote the smallest element of I
and +∞ denote the largest. To simplify notation we identify the element a ∈ I

with {x ∈ I : x < a} ∈ I and write e.g., I ⊆ I . If J is a convex subset of I , then
J denotes the smallest closed interval in I that contains J and we identify J with
the Dedekind completion of J .

Definition 3.3. A µ-representation of a linear ordering I is a pair (T , g), where
T is a µ-decomposition tree and g : T ∗ → I is an order-preserving function
satisfying the following conditions:

1 g(〈0〉) = −∞, g(〈1〉) = +∞;
2 If lg(η) = γ + 1, where γ > 0 is a limit ordinal, let D be the largest interval

[a, b] of I such that for all successor ordinals α < γ , D is between g(η|α) and
g(η|α + 1).

1. If η(γ ) = 0 then g(η) = a;
2. If η(γ ) = 1 then g(η) = b;
3. If a = b then we call η degenerate.

3 If dir(η) = LEFT then

1. η is maximal in T if and only if one of the three conditions hold:
(a) η is degenerate;
(b) cof(g(η)) = ℵ0;
(c) cof(g(η)) > µ;

2. If η is not maximal in T , then SuccT (η) = {η̂ 〈α〉 : α ∈ C} for some
club subset of cof(g(η)), and {g(η̂ 〈α〉) : α ∈ C} is continuous, strictly
increasing, and has supremum g(η).

3∗ If dir(η) = RIGHT then

1. η is maximal in T if and only if one of the three conditions hold:
(a) η is degenerate;
(b) coi(g(η)) = ℵ0;
(c) coi(g(η)) > µ;

2. If η is not maximal in T , then SuccT (η) = {η̂ 〈α〉 : α ∈ C} for some
club subset of cof(g(η)), and {g(η̂ 〈α〉) : α ∈ C} is continuous, strictly
decreasing, and has infimum g(η).
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The Karp complexity of unstable classes 75

A µ-representation (T , g) partitions I into a set of intervals {Iη : η ∈ T ∗}
where Iη̂〈0〉 = Iη̂〈1〉 = (g(η̂ 〈0〉), g(η̂ 〈1〉)) for all η ∈ T of limit length, and if
SuccT (η) = {η̂ 〈α〉 : α ∈ C} for a club C then

Iη̂〈α〉 =
{
(g(η̂ 〈α〉), g(η̂ 〈α+〉)) if dir(η) = LEFT;
(g(η̂ 〈α+〉), g(η̂ 〈α〉)) if dir(η) = RIGHT

where α+ is the least element of C larger than α. It is easily shown by induction
that the intervals {Iη : η ∈ T ∗ ∩ αµ} are pairwise disjoint for any fixed successor
ordinal α.

For any dense linear order I , one can build a µ-representation (T , g) of I level
by level by successively choosing a continuous, strictly increasing [or decreasing]
sequence 〈g(η̂ 〈α〉) : α ∈ λη〉 from the interval Iη. At first blush, it appears that
one has considerable freedom in such a construction. However, our freedom is
considerably limited by the following observation.

Observation. Let J be any linear order of cofinality λ > ℵ0. For any club sub-
sets C1, C2 of λ and any two continuous, strictly increasing, cofinal sequences
〈ai : i ∈ C1〉 and 〈bi : i ∈ C2〉 in J , the set D = {i ∈ C1 ∩ C2 : ai = bi} is a club
subset of λ.

By repeatedly applying this observation to a pair ofµ-representations of a linear
order, we see that they must ‘agree on a club.’ More precisely, call a subtree T ′
of a µ-decomposition tree T a club subtree if T ′ itself is a µ-decomposition tree
and, for each η ∈ T ′ that is not maximal in T ′, SuccT (η) and SuccT ′(η) are both
indexed by club subsets of the same regular cardinal. If (T1, g1) and (T2, g2) are
two µ-representations of I , then by using the observation above at each node there
is a µ-representation (T , g) of I such that T is a club subtree of both T1 and T2
with g(η) = g1(η) = g2(η) for all η ∈ T ∗. More generally we have the following
definition and lemma.

Definition 3.4. A subset A of a µ-decomposition tree T is closed if A is down-
ward closed, (i.e., if η ∈ A then η|α ∈ A for all α < lg(η)) and A is closed under
successor, (i.e., if η ∈ A then SuccT (η) ⊆ A).

Note that for any subsetA ⊆ T of size at mostµ, there is a closed subsetB ⊇ A

of size at most µ.

Lemma 3.5. Suppose (T , g) is a µ-representation of I0, S ⊆ T is closed, and
f0, f1 : I 0 → I 1 are order-preserving, continuous partial functions whose do-
mains contain {g(η) : η ∈ S∩T ∗} that satisfyf0(−∞) = f1(−∞) andf0(+∞) =
f1(+∞). Then there is a club subtree Y ⊆ T such that

f0(g(η)) = f1(g(η))

for all η ∈ S ∩ Y ∗.

Proof. We construct Y by induction on the levels of T . Assume that we have found
Yγ , a club subtree of T ∩ ⋃{βµ : β < γ } such that f0(g(η)) = f1(g(η)) for
all η ∈ S ∩ Y ∗γ . If γ is a limit ordinal or 0 then put Yγ+1 = Yγ ∪ {η ∈ γ µ}
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and there is nothing to check. If γ = δ + 1 where δ is a limit ordinal or 0, let
Yγ+1 = Yγ ∪

⋃{SuccT (η) : η ∈ Yγ ∩ γ µ}. Now if η ∈ S ∩ Yγ+1 for some
η ∈ γ µ, then η|β ∈ S ∩ Yγ for all β < δ, so f0(g(η|β)) = f1(g(η|β)) for all
β < δ. As both f0 and f1 are order-preserving and continuous, it follows that
f0(g(η̂ 〈i〉)) = f1(g(η̂ 〈i〉)) for i = 0, 1 so our inductive hypothesis is main-
tained.

Finally, assume γ = δ + n, where δ is a limit ordinal or 0 and n > 1. Fix
η ∈ Yγ ∩ δ+n−1µ and we specify its successors in Yγ+1:

• If η �∈ S or if SuccT (η) = ∅, then let SuccYγ+1(η) = SuccT (η) and there is no
problem.
• If η ∈ S and SuccT (η) = {η̂ 〈α〉 : α ∈ C} for some club subset of an uncount-

able regular cardinal λη, then our hypotheses imply that f0(g(η)) = f1(g(η))

and {g(η̂ 〈α〉) : α ∈ C} is a continuous, strictly increasing (or decreasing) se-
quence converging to g(η). Thus, as both f0 and f1 are order-preserving and
continuous, there is a club C′ ⊆ C such that f0(g(η̂ 〈α〉)) = f1(g(η̂ 〈α〉)) for
all α ∈ C′. So put SuccYγ+1(η) = {η̂ 〈α〉 : α ∈ C′}. �

As noted above, these invariants are not sufficient to determine the isomorphism

type of an element of K2tr. In particular, the second invariant does not specify which
elements of the representation are in I (as opposed to I ). This affords considerable
freedom in choosing the isomorphism type of the order. The family of structures
in the example below was first studied by Conway [3] and was later used as an
example by Nadel and Stavi [6].

Example 3.6. There is a family of 2ℵ1 locally isomorphic, L∞,ℵ1 -equivalent
doubly transitive linear orders of size ℵ1, all of whom have isomorphic ℵ1-rep-
resentations; yet the orders are pairwise non-embeddable.

Let S be a collection of 2ℵ1 stationary subsets of ω1 \ {0}with X \Y stationary
for all distinct X, Y ∈S (see [13] for a construction of such a family). As notation,
let �≥0 be the set � ∩ [0,∞). For X ∈S, let

IX =
∑
i∈ω1

JX
i where JX

i =
{

� if i �∈ X;
�≥0 if i ∈ X.

Clearly (a, b) ∼= � for all a < b from IX, so IX ∼ IY for all X, Y ∈ S. It
was first noted by Silver that for any sets X, Y ∈ S, the set B(X, Y ) of all or-
der-preserving partial functions f : IX → IY , whose domain D is a proper initial
segment of IX such that IX\D has no least element, and whose range R is a proper
initial segment of IY such that IY \ R has no least element, is an ℵ1-back and
forth system; hence the orders IX and IY are L∞,ℵ1 -equivalent. As the Dedekind
completions of the IX’s are isomorphic we can identify them. After this identifica-
tion, each of the orders IX share the same ℵ1-representation, namely (T , g), where
T = {〈0〉, 〈1〉} ∪ {〈1, δ〉 : δ ∈ ω1} and g(〈1, δ〉) is the element of the Dedekind
completion realizing the cut preceding Jδ for all δ > 0.

It remains to show that IX is not embeddable in IY whenever X �= Y . (This was
proved in [3] but is repeated here for convenience.) So fix X �= Y and assume by
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The Karp complexity of unstable classes 77

way of contradiction that there is an embedding f : IX → IY . It is readily verified
that the set

C = {α ∈ ω1 : f (
∑
i∈α

JX
i ) =

∑
i∈α

J Y
i }

is a club subset of ω1. Thus, since X \ Y is stationary, there is an α ∈ C ∩ X \ Y .
But IX \

∑
i∈α

JX
i has a least element, whereas IY \

∑
i∈α

J Y
i does not, which is a

contradiction. �

Despite the limitations demonstrated by the example above, the invariants de-

scribed in this section do allow us to obtain an upper bound on the Karp complexity
of K2tr. The following definitions establish our notation.

Definition 3.7. For D ⊆ I , a D-cut ν is a partition of D into two sets, D−ν and D+ν
(either may be empty) such that D−ν ∪D+ν = D, D−ν ∩D+ν = ∅, and D−ν is down-
ward closed. We write ν = (D−ν ,D+ν ) and let I (ν) = {x ∈ I : D−ν < x < D+ν }.
Definition 3.8. Suppose I and J are two linear orders. If D ⊆ I and f : D → J

is any order-preserving function then f (ν) is the f (D)-cut (f (D−ν ), f (D+ν )). A
function f : D → J is proper if {−∞,+∞} ⊆ D and f is order-preserving,
continuous, f (−∞) = −∞, f (+∞) = +∞, and satisfies d ∈ I ⇔ f (d) ∈ J

for all d ∈ D.

If D ⊆ I and f : D → J is a proper function, then I \ D and J \ f (D) are
partitioned into corresponding families of D-cuts and f (D)-cuts. The following
definitions measure the similarity of these cuts.

Definition 3.9. Two (possibly empty) linear orders I and J are (µ+, α)-equiva-
lent, written I ≡µ+,α J , if I and J are elementarily equivalent and the empty
function in Fµ+(I, J ) has Rank at least α (see Definition 2.2.).

By allowing linear orders to be empty and by insisting on elementary equiva-
lence we intend that I = ∅ if and only if J = ∅ and |I | = 1 if and only if |J | = 1
whenever I ≡µ+,α J for some ordinal α.

Definition 3.10. If D ⊆ I and f : D → J is proper, then f is α-strong if
I (ν) ≡µ+,α J (f (ν)) for all D-cuts ν.

If f ∈Fµ+(I, J ) has domain A and has Rank at least 2, then it is easily seen
that f is continuous and extends uniquely to a proper function

g : A ∪ lim(A) ∪ {−∞,+∞} → J ,

where lim(A) denotes the set of limit points of A in I . Also, it is easily established
by induction on α ≥ 1 that if g : D→ J is a proper function with domain D ⊆ I

and the restriction f = g|(D ∩ I ) is in Fµ+(I, J ), then g is α-strong if and only
if Rank(f ) ≥ α.

For α ≥ 1 the class of α-strong proper functions has desirable closure prop-
erties. It is routine to show that the restriction of any α-strong proper function to
any set that contains {−∞,+∞} is also proper and α-strong. As well, we have the
following lemma, which is proved by a straightforward induction on α.
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Lemma 3.11. Let α ≥ 1. Suppose that D ⊆ I , f : D→ J is an α-strong proper
function, and for each D-cut ν there is a set Eν ⊆ I (ν) and an α-strong proper
function gν : Eν → J (f (ν)). Then f ∪⋃

ν gν is proper and α-strong.

Lemma 3.12. Let I0, I1 ∈ K2tr satisfy I0 ∼ I1 and I0 ≡µ+,α I1 for some ordinal
α ≥ 2. Assume that A ⊆ I0 is of size at most µ and satisfies

1. A is bounded below or coi(A) = ℵ0; and
2. A is bounded above or cof(A) = ℵ0.

Then there is an f ∈Fµ+(I0, I1) with domain A of Rank at least α.

Proof. We show that in fact A is contained in an interval of I0 which is isomorphic
to an interval of I1. This interval will be of the form (a, b), where a is a lower
bound for A if one exists, or the symbol −∞, and b is defined similarly. Take as
a typical case that in which a ∈ I0 and b = ∞. Then we claim that the interval
(a,∞) is isomorphic to (a′,∞) for any a′ ∈ I1. The point is that (a,∞) has cofi-
nality ℵ0, hence (a′,∞) does by (µ+, α)-equivalence. So we can build the desired
isomorphism in a countable sequence of steps, using double transitivity and the
local isomorphism of I0 and I1.

As well, it follows from the relations I0 ∼ I1 and I0 ≡µ+,α I1 and another in-
stance of double transitivity that the intervals (−∞, a) and (−∞, a′) are (µ+, α)-
equivalent. Thus, the the restriction of the isomorphism to A has Rank at least α.

�


The following Proposition is the key to the proof of Theorem 3.14.Before em-
barking on it, we introduce some more notation. For C ⊆ λ, let

C0 = {α ∈ C : α is a limit point of C ∩ α}
and for T a µ-decomposition tree, let T0 be the club subtree of T satisfying
SuccT0(η) = {η̂ 〈α〉 : α ∈ C0}, where SuccT (η) = {η̂ 〈α〉 : α ∈ C} for all
non-maximal nodes η ∈ T ∗0 . Note that if (T , g) is a µ-representation of I , then
(T0, g|T ∗0 ) is also a µ-representation of I with the additional property that g(η)
either has cofinality or coinitiality at most µ for all η ∈ T ∗0 \ {〈0〉, 〈1〉}.
Proposition 3.13. Assume I0, I1 ∈ K2tr, I0 ∼ I1 and I0 ≡µ+,ω I1. If A ⊆ I0 and
|A| ≤ µ, then there is a function f : A→ I1 of Rank at least ω.

Proof. Pick A ⊆ I0 of size at most µ. In order to produce a h : A→ I1 of Rank
at least ω, we first construct a desirable proper function j : D → I 1. Choose a
µ-representation (T , g) of I 0. By passing to the subtree T0 in the notation preceding
this proposition, we may assume that g(η) either has cofinality or coinitiality at
most µ for all η ∈ T ∗ \ {〈0〉, 〈1〉}. Let B = BL ∪ BR , where

BL = {η ∈ T ∗ : dir(η) = LEFT and A is cofinal in Iη} and

BR = {η ∈ T ∗ : dir(η) = RIGHT and A is coinitial in Iη}.
We claim that B has size at most µ. To see this, it suffices by symmetry to show that
|BL| ≤ µ. Recall that for every successor ordinalα, the intervals {Iη : η ∈ T ∗∩αµ}
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are disjoint. Since η ∈ BL implies A ∩ Iη �= ∅, this implies |BL ∩ αµ| ≤ µ for all
successor ordinals α. Further, since |A| ≤ µ, we can choose a successor ordinal γ
so that for every pair a, a′ ∈ A, there is η ∈ T ∗ of length less than γ satisfying
a < g(η) < a′ whenever there is any ν ∈ T ∗ with a < g(ν) < a′. But now, by our
choice of γ , if ν, ν′ ∈ BL have length >γ and have ν|γ = ν′|γ , then

g(ν) = sup(A ∩ Iν|γ ) = g(ν′),

so ν = ν′ and Iν|γ ∩ A �= ∅. Thus,

|{ν ∈ BL : lg(ν) > γ }| ≤ |{η ∈ T ∗ : lg(η) = γ and Iη ∩ A �= ∅}| ≤ µ

so |BL| ≤ µ.
Let B ′ ⊇ B be a closed subset of T of size at most µ. As g(η) has cofinality

or coinitiality at most µ in I 0 for each η ∈ B ′ \ {〈0〉, 〈1〉}, there is a set X ⊆ I0
of size at most µ such that g(B ′) ⊆ lim(X) ∪ {−∞,+∞}. Since I0 ≡µ+,ω I1,
for each n ≥ 2 we can choose an order-preserving jn : X → I1 of Rank at least
n. As g(B ′) ⊆ lim(X), each jn extends uniquely to a proper function (also called
jn) from X ∪ g(B ′) to I 1. As B ′ ⊆ T is closed, by Lemma 3.5. there is a club
subtree T ′n for each n ≥ 2 such that jn(g(η)) = jn+1(g(η)) for all η ∈ B ′ ∩T ′n. Let
Y = ⋂

n≥2 T
′
n and let D = {g(η) : η ∈ B ′ ∩ Y0}, where Y0 is the club subtree of

Y described in the notation preceding this proposition. As the functions jn agree
on D for all n ≥ 2, we let j : D → I 1 denote this common (proper) function. As
each jn was n-strong, the function j is ω-strong.

By Lemma 3.11., in order to ascertain the existence of an ω-strong h : A→ I1,
it suffices to construct an order-preserving function f : A ∩ I0(ν)→ I1(j (ν)) of
Rank at least ω for every D-cut ν of I0. So fix a D-cut ν = (D−ν ,D+ν ). We finish
the proof by showing that the hypotheses of Lemma 3.12. are satisfied for I0(ν)

and I1(j (ν)). As I0(ν) and I1(j (ν)) are convex subsets of I0 and I1 respectively,
I0(ν) ∼ I1(j (ν)). Since j is ω-strong, I0(ν) ≡µ+,ω I1(j (ν)). Finally, assume by
way of contradiction that A∩ I0(ν) is unbounded above in I0(ν) and has uncount-
able cofinality. (The case of A ∩ I0(ν) unbounded below in I0(ν) of uncountable
cardinality is symmetric.) Let b = sup(A ∩ I0(ν)) and let κ = cof(A ∩ I0(ν)).
We will obtain a contradiction by showing that b = sup(D−ν ), which would make
I0(ν) empty. First, since Y0 is a club subtree of T and b = inf(D+ν ), b = g(η) for
some η ∈ Y0. As we assumed A cofinal below b, b ∈ B as well. There are now four
cases to consider, all of which imply b = sup(D−ν ) or contradict our hypotheses.

Case 1. dir(η) = RIGHT and lg(η) = δ + 1 where δ is a limit ordinal or 0.

Say η = ρ 〈̂0〉. Since cof(b) = κ > ℵ0 there is a strictly increasing sequence
of limit ordinals 〈γi : i < κ〉 such that b = sup{g(ρ|(γi + 1)) : i < κ}. Since B ′ is
closed, ρ|γ ∈ B ′ for all γ < lg(ρ), so g(ρ|γ ) ∈ Dν and b = sup(D−ν ).
Case 2. dir(η) = RIGHT and lg(η) = δ + n for some n > 1.

Say η = ρ 〈̂α〉 for some α ∈ C0, where C is such that SuccY (ρ) = {ρ 〈̂β〉 :
β ∈ C}. As cof(b) = κ there is a continuous, strictly increasing sequence of or-
dinals 〈βi : i < κ〉 from C with limit α. Again, as B ′ is closed, ρ 〈̂βi〉 ∈ B ′ for
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all i ∈ κ . It follows that ρ 〈̂βi〉 ∈ B ′ ∩ Y0 for all limit ordinals i ∈ κ , so again
b = sup(D−ν ).
Case 3. dir(η) = LEFT and η is not maximal in Y0.

Say SuccY0(η) = {η̂ 〈α〉 : α ∈ C0}. As A is unbounded below b and κ > ℵ0,
there is a club C′ ⊆ C0 such that A is unbounded below g(η̂ 〈α〉) for all α ∈ C′.
Thus, η̂ 〈α〉 ∈ B ∩ Y ∗0 for all α ∈ C′, so again b = sup(D−ν ).
Case 4. dir(η) = LEFT and η is maximal in Y0.

As η maximal in Y0 implies η maximal in T , it follows from the definition of
a µ-representation that cof(g(η)) = ℵ0 or cof(g(η)) > µ. However, we assumed
that cof(g(η)) > ℵ0 and A witnesses that cof(g(η)) ≤ µ, so both are impossible.

�


Our theorem now follows easily.

Theorem 3.14. KCµ+(K2tr) ≤ ω for all uncountable cardinals µ.

Proof. Fix I ∈ K2tr and an uncountable cardinal µ. Let f ∈Fµ+(I ) have Rank at
leastω. We claim that Rank(f ) ≥ ω+1. To see this, it suffices by symmetry to show
that if A ⊆ I , |A| ≤ µ then there is a function g ∈Fµ+(I ) extending f of Rank at
leastωwithA ⊆ dom(g). So fix such a setA and let f̃ denote the proper function ex-
tending f with domain dom(f )∪{−∞,+∞}. Since Rank(f ) ≥ ω, f̃ is ω-strong.
Now fix a dom(f̃ )-cut ν. Clearly, I (ν) ≡µ+,ω I (f (ν)) and I (ν) ∼ I (f (ν)), so it
follows from Proposition 3.13. that there is a function gν : A∩ I (ν)→ I (f̃ (ν)) in
Fµ+(I (ν), I (f̃ (ν)) of Rank at least ω. Thus, it follows from Lemma 3.11. that the
proper function g = f̃ ∪⋃{gν : ν a dom(f̃ )-cut} is ω-strong, hence the restriction
of g to A ∪ dom(f ) has Rank at least ω. �


4. The ω-independence property

This section is devoted to proving that any pseudo-elementary class with the
ω-independence property (see Definition 4.4.) is not controlled. We begin the sec-
tion by proving Proposition 4.3., which will provide us with a method for concluding
that KCλ(K) = ∞ by looking at the family of λ-partial isomorphisms from one
element of K into another.

Definition 4.1. An ω-tree T is a downward closed subset of <ωλ for some ordinal
λ. We call T well-founded if it does not have an infinite branch. For a tree T and
η ∈T, the depth of T above η, dpT(η) is defined inductively by

dpT(η) =
{

sup{dpT(ν)+ 1} : η � ν} if η has a successor
0 otherwise.

and the depth of T, dp(T) = dpT(〈〉).
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Clearly, dp(T) < ∞ if and only if T is well-founded. The most insightful
example is that for any ordinal α, the tree des(α) consisting of all descending se-
quences of ordinals < α ordered by initial segment has depth α. The proof of the
following lemma is reminiscent of the proof of Morley’s Omitting Types Theorem.

Lemma 4.2. If T ⊆ <ωλ is well-founded and dp(T) ≥ κ+, then for any coloring
c : T → κ , there is a subtree S ⊆ T of depth at least ω such that c|S∩nλ is
constant for each n ∈ ω.

Proof. Since dpT ≥ κ+, there is an η ∈T with dpT(η) = κ+. Thus, by concen-
trating on subtrees extending η, we may assume that dp(T) = κ+.

For each n ∈ ω we will name a subset Xn ⊆ κ+ of size κ+ and a function
fn : Xn → T ∩ nλ such that Xn+1 ⊆ Xn, every element of fn+1(Xn+1) is a
successor of an element of fn(Xn), dpT(fn(α)) ≥ α and c|fn(Xn) is constant.

To begin, let X0 = κ+ and let f0 : X0 → {〈〉}. Given Xn and fn satisfying our
demands, we define Xn+1 and fn+1 : Xn+1 →T ∩ n+1λ as follows. For α ∈ Xn,
let β be the least element of Xn greater than α. As dpT(fn(β)) ≥ β, we can define
fn+1(α) to be a successor of fn(β) of depth at least α. Since Xn has size κ+, let
Xn+1 be a subset of Xn of size κ+ such that c|fn+1(Xn+1) is monochromatic.

Now let R = {fn(βn) : n ∈ ω}, where βn is the least element of Xn and let S
be the subtree of T generated by R. �


Suppose that N ≡ M and ∅ = A0 ⊆ A1 ⊆ . . . ⊆ N is an ω-sequence of
subsets of N of size less than λ. Let

Tn = {Range(f ) : f ∈Fλ(N,M), f has domain An}
and let T =⋃{Tn : n ∈ ω} be a tree under inclusion. Typically T will be an ω-
tree and we can ask whether or not it is well-founded. The relationship between this
question and Karp complexity is partially explained by the following proposition.

Proposition 4.3. If KCλ(K) <∞ then there is an ordinal α∗ such that whenever
N ≡ M ∈ K and ∅ = A0 ⊆ A1 ⊆ . . . ⊆ N are chosen with |Ai | < λ, then the
induced tree T either has depth at most α∗ or has an infinite branch.

Proof. If KCλ(K) <∞ then by Proposition 2.4., there is a cardinal κ bounding the
number of L∞,λ-types realized in elements of K. We claim that α∗ = κ+ has the
desired property. To see this, chooseN ≡ M from K and ∅ = A0 ⊆ A1 ⊆ . . . ⊆ N

and assume that dp(T) ≥ κ+. By Lemma 4.2., there is a subtree S of T of depth
ω such that the L∞,λ-types of the elements of S depend only on their level in S.
In particular, for each n there is an element Bn ∈S at level n that has a successor
in S. Consequently, for each n ∈ ω the L∞,λ-formula

8(Xn) = ∃Yntp∞,λ(Xn, Yn) = tp∞,λ(Bn+1)

is implied by tp∞,λ(Bn). Applying this iteratively produces an elementary partial
function f : N → M with domain

⋃{An : n ∈ ω}, so T has an infinite branch.
�
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Definition 4.4. A class K of L-structures has the ω-independence property if there
is a set {ϕn(x0, . . . , xn−1, yn) : n ∈ ω} of L-formulas such that for all M ∈ K
there is a sequence 〈ai : i < ω〉 from M such that for all n ∈ ω and all functions
f : n→ {0, 1} there is a sequence 〈bi : i < n〉 from M such that for all i < n,

M |= ϕi(b0, . . . , bi−1, ai) if and only if f (i) = 1.

As an example, the model completion of the empty theory in the language
L = {Rn : n ∈ ω} consisting of one n-ary relation for every n is a complete, simple
theory with the ω-independence property. (In this example, the yn’s do not ap-
pear.) Clearly, if K has the ω-independence property, then K has the independence
property. However, the theory of the random graph has the independence property,
but fails to have the ω-independence property. We remark that despite this failure,
the theory of the random graph is not controlled. We do not attempt to prove this
assertion here.

Our interest in the notion of ω-independence is largely captured by the propo-
sition given below.

Definition 4.5. An ordered multigraph is a structure (G,<,Rn)n∈ω where < is
interpreted as a linear order and each Rn is a symmetric n-ary relation on G.

Proposition 4.6. If L1 ⊇ L0, T1 is an L1-theory with Skolem functions and K, the
class of reducts of models of T1 toL0 has theω-independence property witnessed by
{ϕn : n ∈ ω} then for every ordered multigraph (G,<,Rn)n∈ω there is a structure
MG ∈ K and sequences 〈an : n ∈ ω〉 and 〈bg : g ∈ G〉 from MG such that

1. MG is the L1-Skolem hull of {an : n ∈ ω} ∪ {bg : g ∈ G};
2. Ifg1, . . . , gn andh1, . . . , hn have the same quantifier-free type in (G,<,Rn)n∈ω

then the sequences bg1 , . . . , bgn and bh1 , . . . , bhn have the same type over
{an : n ∈ ω} in MG;

3. MG |= ϕn(bg1 , . . . , bgn, an) if and only if G |= Rn(g1, . . . , gn) for all n and
all g1, . . . , gn from G.

The proof of Proposition 4.6. is word for word like the proof of the existence of
Ehrenfeucht-Mostowski models for unstable pseudo-elementary classes (see e.g.,
Section 11.3 of [5]) but with the Nes̆etr̆il-Rödl theorem (see [7] or [1]) in place of
Ramsey’s theorem.

The following lemma tells us that we need not explicitly consider the constants
{an : n ∈ ω} in the proof of Theorem 4.9.

Lemma 4.7. Let K be a class of L-structures and let C be a set of fewer than λ

new constant symbols. Let K∗ be the class of all expansions of elements of K to
L ∪ C-structures. Then KCλ(K∗) ≤ KCλ(K).

Proof. For any M∗ ∈ K∗, let M be its reduct to the language of L. For every partial
function f ∈Fλ(M

∗), let f̃ ∈Fλ(M) be the extension of f that is the identity on
every element ofCM . It is easy to show by induction that RankF∗(f ) = RankF(f̃ ).
Hence, KCλ(M

∗) ≤ KCλ(M), so KCλ(K∗) ≤ KCλ(K). �
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The other theorem we will need is that there exist very complicated colorings of
a number of cardinals. As notation, for x a finite subset ofµ, let xm denote themth el-
ement of x in increasing order. Following the notation in [11], letPr0(µ,µ,ℵ0,ℵ0)

denote the following statement:

• There is a symmetric two-place function c : µ × µ → ω such that for every
n ∈ ω, every collection of µ disjoint, n-element subsets {xα : α ∈ µ} of µ, and
every function f : n× n→ ω, there are α < β < µ such that

c(xmα , x
m′
β ) = f (m,m′)

for all m,m′ < n.

It is shown in [10] that Pr0(λ, λ,ℵ0,ℵ0) holds for an uncountable cardinal λ
whenever there exists a nonreflecting stationary subset of λ of ordinals of uncount-
able cofinality. (A stationary subset S ⊆ λ is nonreflecting if S∩α is not stationary
in α for all limit ordinals α < λ.) In particular, Pr0(ℵ3,ℵ3,ℵ0,ℵ0) holds. More
recently, in [12] the second author has shown that Pr0(ℵ2,ℵ2,ℵ0,ℵ0) holds as
well. This suffices for our purpose. See [11] for more of the history of Pr0 and its
cousins.

The following Lemma recasts Pr0(µ,µ,ℵ0,ℵ0) into the form we will use in
the proof of Theorem 4.9..

Lemma 4.8. Let c : [µ]2 → ω witness Pr0(µ,µ,ℵ0,ℵ0). For every k, n ∈ ω,
every collection {xα : α ∈ µ} of µ disjoint, n-element subsets of µ, and every
family of colorings {fi,j : n2 → ω : i < j < k}, there are β0 < β1 < . . . < βk−1
such that

c(xmβi , x
m′
βj
) = fi,j (m,m′)

for all i < j < k and all m,m′ < n.

Proof. Fix k, n, {xα : α ∈ µ}, and {fi,j : i < j < k} satisfying the hypoth-
eses. Without loss, we may assume that xn−1

α < x0
α+1 for all α. For α limit, let

yα =
⋃{xα+i : i < k} and let W0 = {α ∈ µ : α limit}. By induction on k′ ≤ k

we will build a sequence β0 < β1 < . . . < βk′−1 and a subset Wk′ of size µ

such that Wk′+1 ⊆ Wk′ and c(yni+mβi
, y

nj+m′
γ ) = fi,j (m,m′) for all m,m′ < n, all

i < j < k with i < k′, and all γ ∈ Wk′ . For k′ = 0 there is nothing to do. Assuming
β0 < . . . < βk′−1 and Wk′ have been chosen, it follows from Pr0(µ,µ,ℵ0,ℵ0)

that there is βk′ such that the set

{γ ∈ Wk′ : γ > βk′ and c(ynk
′+m

βk′
, yjn+m

′
γ ) = fk′,j (m,m′) for j > k′}

has size µ, hence is a suitable choice for Wk′+1. (If there were no such βk′ then one
could successively build a subset Z of Wk′ of size µ on which there would be no
α < β from Z satisfying the coloring.) �
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Theorem 4.9. Let L1 ⊇ L0 be first order languages, let T1 be an L1-theory and
let K denote the class of reducts of models of T1 to L0. If K has the ω-independence
property then K is not controlled. More precisely, if a cardinal µ > |T1| is regular
and there is a coloring of [µ]2 satisfying Pr0(µ,µ,ℵ0,ℵ0), then KCλ(K) = ∞
for all cardinals λ > µ.

Proof. First, by adding countably many constants to the language L0 and invoking
Lemma 4.7., we may assume that the ω-independence of K is witnessed by formu-
las ϕn(x0, . . . , xn−1) with no additional constants. Second, by considering Meq in
place of M for each M ∈ K, we may assume that each x is a singleton. Third, by
expanding T1 if necessary, we may assume that it has built-in Skolem functions. Fix
a coloring c : [µ]2 → ω that witnessesPr0(µ,µ,ℵ0,ℵ0) and fix an ordinal α∗. We
will use the coloring to define two rather complicated ordered multigraphs I and
J and then use Proposition 4.6. to get Ehrenfeucht-Mostowski models M,N ∈ K
that are built from I and J respectively. We will find a tree of λ-partial isomor-
phisms from N into M that is well-founded, yet has depth at least α∗. Since α∗ was
arbitrary, it follows immediately from Proposition 4.3. that KCλ(K) = ∞. So, let

des(α∗) = {strictly decreasing sequences of ordinals < α∗}
and let (I,<) be the linear order with universe µ× des(α∗), ordered lexicograph-
ically. Let (J,<) be the linear order with universe µ × {ρn : n ∈ ω}, where
ρn = 〈0,−1,−2, . . . ,−n+ 1〉, also ordered lexicographically.

As notation, for finite sequences η, ν we write η � ν when η is a proper initial
segment of ν. For t ∈ I ∪ J , let t = (αt , ηt ), where αt ∈ µ and ηt is a finite,
decreasing sequence. For s, t ∈ I ∪ J , we write s �∗ t when ηs � ηt . Fix, for the
whole of this section, a partition of ω \ {0} into disjoint, infinite sets {Zn : n ∈ ω}.

We expand (I,<) into an ordered multigraph (I,<,Rn)n∈ω as follows: We
posit that R0 holds, R1(t) holds for all t ∈ I , and for n > 1, Rn(t0, . . . , tn−1) holds
if and only if for some permutation σ ∈ Sym(n),

• ηtσ(0) � . . . � ηtσ(n−1) ;
• lg(ηtσ(i) ) = i for all i;
• αti �= αtj and c(αti , αtj ) ∈ Zn for all i < j < n; and
• c(αti , αtj ) = c(αtk , αtl ) for all i, j, k, l < n with i �= j and k �= l.

Similarly, expand (J,<) to an ordered multigraph (J,<,Rn)n∈ω by positing
that R0 holds, R1(t) holds for all t ∈ J , and for all n > 1Rn(t0, . . . , tn−1) holds if
and only if for some σ ∈ Sym(n),

• ηtσ(i) = ρi for all i < n;
• αti �= αtj and c(αti , αtj ) ∈ Zn for all i < j < n; and
• c(αti , αtj ) = c(αtk , αtl ) for all i, j, k, l < n with i �= j and k �= l.

Now build Ehrenfeucht-Mostowski models M,N ∈ K from I and J respec-
tively that satisfy Conditions 1–3 of Proposition 4.6.. To avoid wanton use of nested
subscripts, we identify the elements bg ∈ M and g ∈ I (and similarly for N and J ).

For each n ∈ ω let An = {t ∈ N : lg(ηt ) < n} and let Tn = {Range(f ) :
f ∈Fλ(N,M) has domain An}. We will show that T =⋃{Tn : n ∈ ω} is both
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well-founded and has depth α∗. As noted above, this is sufficient to conclude that
KCλ(K) = ∞. If we assume that T is well-founded then the family of maps

fη : Alg(η)→ M

for η ∈ des(α∗) defined by fη((α, ηi)) = (α, η|i) witness that the depth of T is
at least α∗.

So it remains to show that T is well-founded. The obvious distinction
between the ordered multigraphs I and J is that J has an infinite, strictly in-
creasing sequence 〈ηn : n ∈ ω〉, whereas I does not. Suppose that an elementary
map g :

⋃{An : n ∈ ω} → M is given. We will obtain a contradiction by con-
structing an infinite strictly increasing sequence in des(α∗). The construction of
this sequence proceeds in three stages. First, since µ > |T1| is regular, for every
l ∈ ω there is an integer n(l), an L1-term τl(x1, . . . , xn(l)), a subset Xl of µ of size
µ, and functions tl,m : Xl → I such that for each

β ∈ Xlg((β, ηl)) = τl(dl(β)),

where dl(β) = 〈tl,1(β), . . . , tl,n(l)(β)〉. As notation, let W = {(l, m) : l ∈ ω and
m ∈ [1, . . . , n(l)]} and for each (l, m) ∈ W , let αl,m and ηl,m be the functions with
domain Xl satisfying

tl,m(β) = (αl,m(β), ηl,m(β)).

Next, we state two claims, whose proofs we defer until the end of the argument.

Claim 1. There is a sequence 〈Yl : l ∈ ω〉 such that each Yl ⊆ Xl has size µ and
for each

k ∈ ωqftp(d0(β0), . . . , dk−1(βk−1)) = qftp(d0(β
′
0), . . . , dk−1(β

′
k−1))

in the structure (I,<, �∗) for all sequences β0 < . . . < bk−1, β ′0 < . . . < b′k−1
with βl, β

′
l ∈ Yl for each l < k.

Claim 2. For every k > 1 there is a sequence 〈ml : l < k〉 and a permutation σ of
k such that

tσ (0),mσ(0) (βσ(0)) �∗ tσ (1),mσ(1) (βσ(1)) �∗ . . . �∗ tσ (k−1),mσ(k−1) (βσ(k−1))

for every sequence β0 < . . . < βk−1 with βl ∈ Yl for each l < k.
Given these two claims, it follows from König’s Lemma (and the fact that the

permutation σ is uniquely determined by the lengths of the ηt ’s) that there is an
infinite sequence 〈ml : l ∈ ω〉 and a permutation σ ∈ Sym(ω) such that, letting
ηl = ηtσ(l),mσ (l) for each l ∈ ω,

η0(βσ(0)) � η1(βσ(1)) � . . .
for all sequences β0 < β1 < . . . satisfying βl ∈ Yl for each l ∈ ω. But the existence
of such a sequence is clearly impossible as each ηl(β) ∈ des(α∗). �


Thus, to complete the proof of the theorem it suffices to prove the claims. The
proof of Claim 1 is tedious, but straightforward. First, by trimming each of the sets
Xl we may assume that for each (l, m) ∈ W ,
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1. αl,m is constant on Xl ;
2. αl,m(β) = β for all β ∈ Xl ; or
3. {αl,m(β) : β ∈ Xl} is strictly increasing and disjoint from Xl .

We call (l, m) α-constant if (1) holds and call (l, m) α-trivial if (2) holds. Similarly,
we may assume that for each (l, m) ∈ W ,

• lg(ηl,m(β)) is constant for all β ∈ Xl and
• ηl,m is constant on Xl or else {ηl,m(β) : β ∈ Xl} is strictly increasing (in lexi-

cographic order).

Additionally, we may assume that for each pair (l, m), (l,m′) ∈ W with the
same l, the truth values of

• “αl,m(β) < αl,m′(β)”;
• “ηl,m(β) � ηl,m′(β)”;
• “ηl,m(β) <lex ηl,m′(β)”; and hence of
• “tl,m(β) < tl,m′(β)”

are constant for all β ∈ Xl . By trimming each Xl further, we may additionally
assume that for all pairs m,m′ ∈ [1, . . . n(l)], the truth values of

• “αl,m(β1) < αl,m′(β2)”;
• “ηl,m(β1) � ηl,m′(β2)”;
• “ηl,m(β1) <lex ηl,m′(β2)”; and hence of
• “tl,m(β1) < tl,m′(β2)”

are constant for all pairs β1 < β2 from Xl .
So far, each of our trimmings has concentrated on a single set Xl . However, to

complete the proof of the claim, we must consider pairs of sets as well. Fortunately,
this presents no problem. We illustrate one such reduction and leave the other (vir-
tually identical) reductions to the reader. We claim that there are subsets Yl ⊆ Xl ,
each of size µ, such that for all (l1,m1), (l2,m2) ∈ W the truth value of

“αl1,m1(β1) < αl2,m2(β2) ” (∗)
is constant for all pairs (β1, β2) satisfying β1 ∈ Yl1 , β2 ∈ Yl2 , and β1 < β2. To see
this, let C be the α-constant pairs (l, m) ∈ W and let δ < µ be the supremum of
all αl,m(β) for (l, m) ∈ C, β ∈ Xl . By removing fewer than µ elements from each
Xl , we may assume that αl,m(β) > δ for all non-α-constant (l, m) ∈ W and all
β ∈ Xl . It is now routine to inductively construct the sets {Yl : l ∈ ω} in µ steps so
as to ensure

αl1,m1(β1) < αl2,m2(β2)

whenever (l1,m1), (l2,m2) are not α-constant, l1 < l2, β1 ∈ Y1, β2 ∈ Y2 and
β1 < β2. Combining this with the earlier trimmings of the Xl’s establish (∗).

Finally, we prove Claim 2. This is the heart of the argument and is where
properties of the coloring c are used. Fix an integer k > 1. In light of Claim 1,
it suffices to find a sequence 〈ml : l < k〉 and a permutation σ of k such that
tσ (0),mσ(0) (βσ(0)) �∗ . . . �∗ tσ (k−1),mσ(k−1) (βσ(k−1)) for some sequence β0 < . . . <

βk−1 with βl ∈ Yl for each l < k. Consequently, we can trim the sets Yl still further.
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As notation, let Wk denote the finite set of all pairs (l, m) ∈ W with l < k. For each
l < k, let hl enumerate Yl , i.e., hl(δ) = the δth element of Yl .

By trimming each Yl for l < k, we may additionally assume that:

• The sets Yl are disjoint and αl,m(β) �∈
⋃

l<k Yl unless (l, m) is α-trivial;
• δ1 < δ2 implies hl(δ1) < hl′(δ2) for all l, l′ < k;
• For all pairs (l, m), (l′,m′) ∈ Wk with (l, m) α-constant, there is an integer
c∗(l, m, l′,m′) ∈ ω such that

c(αl,m(β), αl′,m′(β
′)) = c∗(l, m, l′,m′)

for all distinct β, β ′ from Yl, Y
′
l respectively.

Let C∗ denote the (finite) set of all integers c∗(l, m, l′,m′), where the pairs (l, m),

(l′,m′) are from Wk and (l, m) is α-constant. Choose integers p ∈ Zk\C∗ and
q ∈ Zr for some r > |Wk|. As notation, for each ordinal δ ∈ µ, let

Bl(δ) = {αl,m(hl(δ)) : (l, m) ∈ W, (l,m) not α-constant} ∪ {hl(δ)}
For δ = δ0 < δ1 < . . . < δk−1, let B(δ) = ⋃

l<k Bl(δl). By trimming the sets Yl ,
l < k still further, we may assume that the order type of B(δ) is constant among
all increasing k-tuples δ. Thus, by employing Lemma 4.8., we can choose two

increasing k-tuples δ
0

and δ
1

satisfying:

• c(α, β) = q for all α, β ∈ B(δ
0
); and

• c(α, β) = q for all α, β ∈ B(δ
1
) EXCEPT that c(hi(δ1

i ), hj (δ
1
j )) = p for all

i �= j .

As notation, let νl = hl(δ
0
l ), pν = ν0 < . . . < νk−1, and D(pν) = {tl,m(νl) :

(l, m) ∈ Wk}. Dually, let βl = hl(δ
1
l ), pβ = β0 < . . . < βk−1, and D(pβ) =

{tl,m(βl) : (l, m) ∈ Wk}.
Now, working in the multigraph J ,

J |= ¬Rk((ν0, ρ0), . . . , (νk−1, ρk−1)) ∧ Rk((β0, ρ0), . . . , (βk−1, ρk−1)),

so

N |= ¬ϕk((ν0, ρ0), . . . , (νk−1, ρk−1)) ∧ ϕk((β0, ρ0), . . . , (βk−1, ρk−1)).

Hence, by the elementarity of the map g,

M |= ¬ϕk(τ0(d0(ν0)), . . . , τk−1(dk−1(νk−1))) and

M |= ϕk(τ0(d0(β0)), . . . , τk−1(dk−1(βk−1))).

It follows from Proposition 4.6. that the discrepancy in ϕk implies that qftp
(D(pν)) �= qftp(D(pβ)) in the ordered multigraph (I,<,Rn)n∈ω. However, since
qftp(D(pν)) = qftp(D(pβ)) in the structure (I,<, �∗), the setsD(pν) andD(pβ)

must differ on some Rn. This difference can only be explained by a discrepancy of
the function c on some pairs of elements from the setsB(pν) andB(pβ). Since c can
only attain the values ofp andq on pairs fromB(pν) andB(pβ), our choice ofp and

Sh:560



88 M.C. Laskowski, S. Shelah

q implies that Rk is the only relation that can differ between D(pν) and D(pβ).
Thus, there are sequences s0, . . . , sk−1 ∈ D(pβ) and s′0, . . . , s

′
k−1 ∈ D(pν) of

corresponding elements such that

I |= Rk(s0, . . . , sk−1) ∧ ¬Rk(s
′
0, . . . , s

′
k−1).

In particular, s0 �∗ . . . �∗ sk−1 and for all i < j < k we have αsi �= αsj and
c(αsi , αsj ) = p. As each si ∈ D(pβ), there are functions l, m with domain k such
that

si = tl(i),m(i)(βl(i)).

Now fix i < k. Since k > 1 and c(αsi , αsj ) = p �∈ C∗ for any j �= i, the pair
(l(i),m(i)) is not α-constant. As well, the choice of the coloring of B(pβ) ensures
that αsi = hr(δ

1
r ) ∈ Yr for some r < k. Thus, the disjointness of the Yl’s imply

that r = l(i) and the pair (l(i),m(i)) is α-trivial. That is, αsi = βl(i). Further, since
αsi �= αsj whenever i �= j , the function l must be a permutation of the set k. So,
letting mi = m(l−1(i)) and σ = l, the sequence 〈mi : i < k〉 and permutation σ

are as desired. �
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