Sh:560

Arch. Math. Logic 40, 69-88 (2001) i i
Digital Object Identifier (DOI): Mathematical Loglc

10.1007/s001530000047

M.C. Laskowski - S. Shelah
The Karp complexity of unstable classes

Received: 23 September 1998 / Revised version: 6 July 1999 /
Published online: 21 December 2000 —© Springer-Verlag 2000

Abstract. A classK of structuresis controlled if, for al cardinals A, therelation of L ;-
equivalence partitions K into a set of equivalence classes (as opposed to a proper class). We
prove that the class of doubly transitive linear orders is controlled, while any pseudo-ele-
mentary class with the w-independence property is not controlled.

1. Introduction

One of the major accomplishments of model theory has been the discovery of a
dividing line between those theories in a countable language whose models can
be described up to isomorphism by areasonable set of invariants and those whose
models cannot be so described. Models of classifiable theories are described up to
isomorphism by an ‘independent tree’ of countable elementary submodels, while
the isomorphism type of any unclassifiable theory cannot be described by any rea-
sonable set of invariants (see [9]). Unfortunately, the great majority of classes of
structures studied in mathematics are unstable, and thus fall on the * non-structure’
sideof thisdivide. Thus, itisdesirableto search for dividing lines between unstable
classes of structures. Our thesisisthat while an unstable (pseudo-elementary) class
necessarily has the maximal number of non-isomorphic modelsin every uncount-
able cardinality, it is still possible to assign a set of invariants to some unstable
classes of structures. In some cases (see e.g., Example 3.6.) the large humber of
non-isomorphic models is due simply to our ability to code arbitrary stationary
setsinto the skeletons of Ehrenfeucht-Mostowski models. In other words, for some
classes of structures the reason for the non-isomorphism of two structures in the
class need not be very robust. Indeed, in such cases the structures can be forced to
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be isomorphic by a forcing that merely adds a new closed, unbounded subset of
some cardinal to the universe. That is, although they are nonisomorphic, the struc-
tures are not very different from each other. On the other hand, for other classes
of structures (see Theorem 2.5.) there are more serious obstructions to a structure
theorem.

Our ultimate goal is to determine to which unstable classes of structures one
can associate a reasonable set of structural invariants. These invariants need not
(and typically will not) determine the structures up to isomorphism. Instead, we
ask that any two structures with the same invariants be very much the same. In this
paper wefocuson L, -equivalencefor various cardinals A and ask which unstable
classesare partitioned into only aset of equivalence classes (as opposed to a proper
class). Wecall aclassK controlled if K hasonly aset of L ;-equivalence classes
for dl cardinals 1. Typically, L ;-equivalence does not characterize models up to
isomorphism even when we fix the cardinalities of the models. (In [8] the second
author shows that for any unstable pseudo-elementary class and any uncountable
regular cardinal A, there are 2* non-isomorphic models of size A that are Lo ;.-
equivalent.) However, in some sense two L -equivalent structures of the same
cardinality are very much the same. For instance, if one uses the back-and-forth
system witnessing their equivalence as a notion of forcing, then the two structures
will become isomorphic in the corresponding forcing extension.

In this paper we obtain two complementary results. On one hand, in Section 3
we analyze the pseudo-elementary class K o, of doubly transitive linear orders.
This class is unstable, hence the stigma of non-structure applies. Despite this, we
provethat K C,,+(Kot) < w (see Definition 2.3.) for all uncountable cardinals i,
hence K o, is controlled. Thisis one of very few theorems in which an unstable
pseudo-elementary class shows any sign of structure. On the other hand, in Sec-
tion 4 we provethat any pseudo-elementary classwith the w-independence property
(see Definition 4.4.) is not controlled. In fact, if the language used in describing K
is countablethen K C; (K) = oo for dl cardinals A > RK3.

Thereis still much that we do not know about the notion of control. A funda-
mental question that remains open iswhether there is an unstable elementary class
that is controlled. We conjecture, and hope to prove, that any pseudo-elementary
class with the independence property is not controlled; this would substantially
strengthen our second resullt.

2. Controlled classes

In this section we state a series of definitions that lead to the concept of a class of
structures being controlled (see Definition 2.5.). We apply these definitions to the
theory of dense linear ordersto illustrate why it is desirable to consider the A-Karp
complexity of a class for uncountable cardinals A. We first reintroduce the notion
of apartial isomorphism, but with aslight variation. Aswe are only concerned with
the definable subsets of structures (and not their quantifier complexity) we insist
that all partial isomorphisms are elementary maps.

Definition 2.1. Giventwo elementarily equivalent structures M and N inthe same
language and an infinite cardinal 1, a A-partial isomorphismisapartial elementary



Sh:560

The Karp complexity of unstable classes 71

map with domain of cardinality less than A, that is: afunction f from a subset D
of M into N of sizelessthan A satisfying

MEg...d) ifandonlyif N e(f(d),.... f(d)

for al formulas ¢ (x1, ..., x,) of thelanguageand all d1, . .., d, from D. We de-
note the family of A-partial isomorphisms by %, (M, N). If M = N we simply
write 7, (M).

The complexity of &, (M) is a measure of how deeply one needs to look to
understand the relationship of asmall subset (i.e., of sizelessthan 1) with the rest
of themodel. In order to measure thisdepth we endow the family with thefollowing
rank.

Definition 2.2. For f € #,(M, N),

1. Rank(f) > 0 aways,
2. For o limit, Rank(f) > « if and only if Rank(f) > g foral 8 < «;
3. Rank(f) > o + 1if and only if
(a) foral C € M of sizelessthan A, thereisg € %, (M, N) extending f
with C € dom(g) and Rank(g) > «; and
(b) dually,forall C C N of sizelessthan A, thereisg € 7, (M, N) extending
f with C C range(g) and Rank(g) > «.

The A-Karp complexity K C, (M, N) of the pair of structures M, N istheleast or-
dinal « such that Rank(f) > « impliesRank(f) > « + 1foral f € #,(M, N).
Again, if M = N we simply write K Cy (M).

The 1-Karp complexity of a structure is related to the notions of L »-Scott
height and back-and-forth systems. It isaroutine diagram-chasing exercise to show
that if two structures M and N are L« 5 -equivalent (hencethereisaback-and-forth
systemin &, (M, N)) then KC; (M) = KC, (N).

If one fixes the signature, then for any cardinals « and A it is easy to find an
ordinal bounding the A-Karp complexity of any structure of that signature of size
at most «. By contrast, whether or not there is a upper bound on the A-Karp com-
plexities of all structuresin aclassK that does not depend on « provides a robust
dichotomy between classes. Thisis demonstrated by the following definition and
proposition. The reader is referred to [2] for the undefined notions.

Definition 2.3. For K aclass of structures, the A-Karp complexity of K, written
K C, (K), is the supremum of the ordinas KC, (M) among adll M € K if the
supremum exists. Otherwise, we set KC; (K) = oc.

Proposition 2.4. The following conditions are equivalent for a class K of struc-
tures and an infinite cardinal A.

1. KG,(K) < o0;

2. Therelation of L ;-equivalence on K has only a set of equivalence classes,

3. There are only a set of Lo ) -types of subsets of size less than A realized in
dementsof K;
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4. Thereareonly a set of distinct L ) -Scott sentences among the elements of K;
5. Thereisacardinal « suchthat thenotionsof L, ;-equivalenceand L ;-equiv-
alence coincideon K.

Proof. Theimplication (2) = (1) follows from the observation that A-Karp com-
plexity is preserved under L ,-equivalence. The implications (1) = (4) =
5) = 3) = (2 dl follow easily. O

When A = Rg the A-Karp complexity often does not yield much information
about theinherent complexity of aclassK. For example, if K isthe class of models
of an Rp-categorical theory, then K Cy,(K) = 0 since every model is Ro-homo-
geneous. However, our thesisis that for larger A, A-Karp complexity gives a good
measure of the complexity of the class. It follows from Proposition 2.4.(3) that if
K C) (K) = oo for some cardina A, then KC,(K) = oo for all larger cardinals «.
Thisleads us to the crucial definition of the paper.

Definition 2.5. A classK of structuresiscontrolled if KC; (K) < oo foralinfinite
cardinals .

Note that if a class K is controlled, then it follows from Proposition 2.4.(2)
that for every cardinal A, therelation of L., »-equivalence partitionsK into only a
set of equivalence classes (as opposed to a proper class). Continuing our example,
KCyxy(DLO) = 0,as DLO, thetheory of denselinear orderswith no endpointsis
No-categorical. However, this observation hides the fact that one can code arbitrary
ordinalsinto dense linear orders. This ability to code ordinalsimpliesthat the class
DLO is not controlled. In fact, KC; (DLO) = oo for al uncountable cardinas
A. To see this, fix an uncountable cardina 2 and, for each non-zero ordina «, let
J, bethelinear order with universe ( - 1) - «, where n denotes the order type of
therationals. In light of Proposition 2.4.(2) it suffices to show that J, isnot Lo 3 -
equivalent to Jg whenever o # . So choose non-zero ordinals e and g such that
Ju 1S Lo s -€quivalent to Jg. Let E bethe equivalencerelation such that E (x, y) if
and only if there are fewer than A elementsbetween x and y. Since E isexpressible
inthelogic L., thisimplies that the condensation J, /E is Lo, x-€quivalent to
Jg/E.But (Ju/E, <) ~ (a, <), (Jg/E, <) =~ (B, <), and it is readily checked
that distinct ordinals are not even L ,,-equivalent. Hence o« must equal §.

3. Doubly transitivelinear orders

In this section we investigate the class Ko, of infinite doubly transitive linear
orders. That is, (1, <) € Koy if and only if the linear order / is dense with no
endpointsand for al pairsa < b, ¢ < d from I, theinterval [a, b] isisomorphic to
theinterval [c, d]. Such orders arise naturally: The underlying linear order of any
ordered field is necessarily doubly transitive. Clearly, there is only one countable
structure in K op up to isomorphism. The class K o, is a pseudo-€lementary (PC)
class that is visibly unstable, so by [9] there are 2* non-isomorphic structures in
Koty of size 2 for all uncountable cardinals 1. Further, by [8], for all uncountable
regular cardinals A there is a family of 2* structures in Koy, of size A that are
Lo -equivalent, yet pairwise non-embeddable.
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Nonetheless, the class of doubly transitive linear ordersis not entirely without
structure. Therearenatura ‘invariants onecan associatewith such orders. Thesein-
variantswill not determine the orders up to isomorphism, but they will be sufficient
to demonstrate that the A-Karp complexity of K o, is bounded for all cardinals i.

Themost natural invariant of adoubly transitivelinear order istheisomorphism
type of its closed intervals. Accordingly, we call I, I1 € Koy locally isomorphic
and write

Io~ 11

if [a, b] >~ [c, d]fora < bfromIpandc < d from I1. Evidently local isomorphism
isan equivalencerelation on Koy and 7 ~ J for any infinite convex subset J C 1,
if I € K2tr-

The second invariant was developed by Droste and Shelah in [4]. The defi-
nitions that follow are slight adaptations of similar notions used there. The most
notable variation is that in [4] there is no bound on the number of levels of the
decomposition tree and the cardinals A,, can be any uncountable regular cardinal.

For the whole of this section, fix an uncountable cardinal 1.

Definition 3.1. A u-decomposition treeisasubtree T of (J{%u 1 o < u*} satis-
fying:

1. T isdownward closed, i.e.,, n € T impliesn|a € T foral a < Ig(n);

2. If lg(n) isalimit ordinal or 0 and n|le € T for al o < Ig(n) thenn € T
and n has exactly two immediate successors; more specifically, we require
Sucer(m) = {n (0), 7 (1)};

3. If n € T and Ig(n) is a successor ordina, then either Succr(n) = @ or
Succr(n) = {n {a) : @ € C} for some club subset C of aregular cardinal

)“77 € [le I'L]
LetT* ={n e T :lg(n) isasuccessor ordinal}.

We define alinear order on 7* which is a cross between lexicographic and an-
tilexicographic order. To every node n of T* wefirst associate adirection dir(n) €
{LEFT, RIGHT}. Supposelg(n) = § +n,whered isalimitordinal orOandn € w.
Then

e dir(n) = LEFT if n(8) + n iseven;
e dir(n) = RIGHT if n(8) + n isodd.

Theideaisthat if dir(n) =LEFT, then the successorsof  will al beto theleft of .
Each of these successors will have direction RIGHT, so their successors will be to
their right and so forth. Formally, the linear order <”” is defined by the following
clauses.

If n<vthenn <T" vif and only if dir(n) =RIGHT;

If n, v areincomparable, let y beleast suchthat n(y) # v(y) andlet p = n|y.
If y isalimit ordinal or 0thenn <”" v if and only if n(y) = 0and v(y) = 1;
If y isasuccessor ordinal (so p € T*) anddir(p) = LEFT thenn <" v if and
only if n(y) < v(y);



Sh:560

74 M.C. Laskowski, S. Shelah

— If y isasuccessor ordinal and dir(p) =RIGHT, then n <”" v if and only if
ny) > v(y).

The following definition differs slightly from normal usage as we include the
endpoints.

Definition 3.2. For I a dense linear order, the Dedekind completion of / is the
linear order (7, <) with universe

1 ={A CI: Adownward closed with no largest element}

and A </ Bifandonly if A € B. Welet —oo denote the smallest element of 1
and +oo denote the largest. To simplify notation we identify the element a € I
with{x € I : x <a} € T andwritee.g., I C 1. If J isaconvex subset of I, then
J denotes the smallest closed interval in T that contains J and we identify J with
the Dedekind completion of J.

Definition 3.3. A p-representation of alinear ordering / is apair (7, g), where
T is a u-decomposition tree and ¢ : T* — 1 is an order-preserving function
satisfying the following conditions:

1 g({0)) = —o0, g((1)) = +o0;
2 1flg(n) =y + 1, wherey > Oisalimit ordinal, let D be the largest interval
[a, b] of I such that for all successor ordinalsa < y, D isbetween g(n|«) and

g(nle +1).

1 If n(y) =0theng(n) = a;
3. If a = b thenwe call n degenerate.

3 If dir(n) = LEFT then

1. nismaximal in T if and only if one of the three conditions hold:
(d) n isdegenerate;
(b) cof(g(m)) = Ro;
(©) cof(g(m) > u;

2. If n isnot maximal in T, then Succr(n) = {5 {a) : « € C} for some
club subset of cof(g(n)), and {g(7 (a)) : « € C} iscontinuous, strictly
increasing, and has supremum g (7).

3* If dir(n) = RIGHT then

1. nismaximal in T if and only if one of the three conditions hold:
(a) nisdegenerate;
(b) coi(g(n)) = Ro;
(¢) coi(g(m) > 1;

2. If np isnot maximal in T, then Succr(n) = {5 {a) : « € C} for some
club subset of cof(g(n)), and {g(7 («)) : « € C} iscontinuous, strictly
decreasing, and has infimum g(n).
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A p-representation (7T, g) partitions 7 into a set of intervals {I, :neT*
where I,~0) = I,~1) = (g(n (0)), g(n (1)) for al n € T of limit length, and if
Succy(n) = {7 {a) : a € C} foraclub C then

[ | (et te)), g )) ifdir(p) = LEFT,
T ey, g0 ) ifdir(n) = RIGHT

where ot isthe least element of C larger than «. It is easily shown by induction
that the intervals {1, : n € T* N *u} are pairwise disjoint for any fixed successor
ordinal «.

For any dense linear order 7, one can build a u-representation (7', g) of I level
by level by successively choosing a continuous, strictly increasing [or decreasing]
sequence (g(n (a)) : a € A,) from theinterval I,,. At first blush, it appears that
one has considerable freedom in such a construction. However, our freedom is
considerably limited by the following observation.

Observation. Let J be any linear order of cofinality 1 > Rg. For any club sub-
sets C1, C2 of A and any two continuous, strictly increasing, cofinal sequences
(a; vieCryand(b; :i € Co)inJ,theset D ={i € C1NCz:a; = b;}isaclub
subset of A.

By repeatedly applying thisobservation to apair of u-representationsof alinear
order, we see that they must ‘agree on a club! More precisely, call a subtree 7’
of a u-decomposition tree T a club subtree if 77 itself is a u-decomposition tree
and, for each n € T’ that isnot maximal in T’, Succr (n) and Succy () are both
indexed by club subsets of the same regular cardinal. If (71, g1) and (7>, g2) are
two u-representations of 1, then by using the observation above at each node there
isa u-representation (7, g) of I such that T is a club subtree of both 77 and T»
with g(n) = g1(n) = g2(n) for adl n € T*. More generally we have the following
definition and lemma.

Definition 3.4. A subset A of a u-decomposition tree T is closed if A is down-
ward closed, (i.e., if n € A thennla € A foral a < Ig(n)) and A is closed under
successor, (i.e., if n € A then Sucer(n) C A).

Notethat for any subset A C T of sizeat most 1, thereisaclosed subset B O A
of size at most .

Lemma 3.5. Suppose (T, g) is a u-representation of Ip, S C T is closed, and
fo, f1 : To — 11 are order-preserving, continuous partial functions whose do-
mainscontain{g(n) : n € SNT*}that satisfy fo(—oo) = f1(—o0) and fo(+00) =
f1(+00). Thenthereisa club subtree Y < T such that

Jfo(gm) = f1(gm))
forallne SNY*.

Proof. We construct Y by induction on the levelsof T. Assume that we have found
Y,, aclub subtree of 7 N (J{Pu : B < y} such that fo(g(n) = fi(g(n)) for
alnpesSn Y;‘. If y isalimit ordinal or O then put Y11 = Y, U {n € "u}
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and there is nothing to check. If y = § + 1 where § is a limit ordinal or O, let
Y1 =Y, UU{Sucer(m) : n € Y, NYu}. Now if n € SN Y,4q for some
ne’u thennpesny, foral g <4, 50 fo(gmp) = fi(gnlp)) for all
B < 8. Asboth fo and f1 are order-preserving and continuous, it follows that
folg(™ (i) = fi(g(y{i))) for i = 0,1 so our inductive hypothesis is main-
tained.

Finaly, assume y = § + n, where § isalimit ordina or 0 and n > 1. Fix
n € Y, N1y and we specify its successorsin ¥, 41

o Ifn & Sorif Sucer(n) = 0, then let Succy,,(n) = Succr(n) and thereis no
problem.

o Ifne SandSuccer(n) = {1 {(a) : a € C} for some club subset of an uncount-
able regular cardinal 1, then our hypotheses imply that fo(g(n)) = fi1(g(n))
and {g( (a)) : « € C} isacontinuous, strictly increasing (or decreasing) se-
guence converging to g(n). Thus, as both fy and f; are order-preserving and
continuous, thereisaclub C’ € C such that fo(g(n () = f1(g(n {a))) for
dla e C'. Soput Succy, (1) = {n {a) 1 € C'}. |

Asnoted above, theseinvariantsare not sufficient to determinetheisomorphism
typeof anelement of K o, In particul ar, the second invariant does not specify which
elements of the representation arein I (as opposed to 7). This affords considerable
freedom in choosing the isomorphism type of the order. The family of structures
in the example below was first studied by Conway [3] and was later used as an
example by Nadel and Stavi [6].

Example 3.6. There is a family of 2%t locally isomorphic, L x,-€quivaent
doubly transitive linear orders of size X1, al of whom have isomorphic 81-rep-
resentations; yet the orders are pairwise non-embeddable.

Let % beacollection of 281 stationary subsets of wy \ {0} with X \ Y stationary
forall distinct X, Y € & (see[13] for aconstruction of such afamily). Asnotation,
let @0 bethe set @ N[0, 00). For X € &, let

Iy = Z JX whee  JX = {gzo :Iz Zf(
1ew]

Clearly (a,b) = Qforadla < bfromIx,solxy ~ Iy fordl X,Y € <. It
was first noted by Silver that for any sets X, Y € &, the set #(X, Y) of al or-
der-preserving partial functions f : Ix — Iy, whose domain D is a proper initial
segment of Iy suchthat Ix\ D hasno least element, and whose range R isa proper
initial segment of Iy such that 7y \ R has no least element, is an R1-back and
forth system; hence the orders Iy and Iy are L x,-equivaent. As the Dedekind
completions of the Iy’s are isomorphic we can identify them. After thisidentifica-
tion, each of the orders Iy sharethe same X1-representation, namely (7, g), where
T = {{0), ()} U {(1,6) : § € w1} and g({(1, 8)) is the element of the Dedekind
completion redlizing the cut preceding Js for al § > 0.

It remainsto show that 7x isnot embeddablein 7y whenever X # Y. (Thiswas
proved in [3] but is repeated here for convenience.) So fix X # Y and assume by
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way of contradiction that thereisan embedding f : Ix — Iy. Itisreadily verified

that the set
C=focwr: fOQ_JH=) J"
lea lea
isaclub subset of wy. Thus, since X \ Y isstationary, thereisana e CN X \ Y.
But Iy \ Z JX has a least element, whereas Iy \ Z JY does not, which is a
LEa LEa

contradiction. O

Despite the limitations demonstrated by the example above, the invariants de-
scribed in this section do allow usto abtain an upper bound on the Karp complexity
of Kot. The following definitions establish our notation.

Definition 3.7. For D C 1, aD-cut v isapartition of D intotwo sets, D, and D}
(either may be empty) suchthat D U D;f = D, D,y N D} = @, and D isdown-
ward closed. Wewritev = (D", D) andlet I(v) = {x € I : D, <x < D;}.

Definition 3.8. Suppose I and J aretwo linear orders. If D C Tand f : D — J
is any order-preserving function then f(v) isthe f(D)-cut (f(D;), f(D})). A
function f : D — J is proper if {—oo, +00} € D and f is order-preserving,
continuous, f(—o0) = —o0, f(+00) = +o00, and satisfiesd € I & f(d) € J
foral d € D.

If D < Tand f: D — Jisaproper function, then 7 \ D and J \ f(D) are
partitioned into corresponding families of D-cuts and f(D)-cuts. The following
definitions measure the similarity of these cuts.

Definition 3.9. Two (possibly empty) linear orders 7 and J are (u™, «)-equiva-
lent, written I =+, J, if I and J are elementarily equivalent and the empty
functionin .7 ,+ (I, J) has Rank at least o (see Definition 2.2.).

By allowing linear orders to be empty and by insisting on elementary equiva-
lenceweintendthat / = @ ifandonlyif J =@ and|I| = lifandonlyif |J| =1
whenever I =, , J for some ordinal o.

Definition 3.10. If D < T and f : D — J is proper, then f is a-strong if
I(v) =+ o J(f(v)) foral D-cutsv.

If fe7,+,J)hasdomain A and has Rank at least 2, then it is easily seen
that f is continuous and extends uniquely to a proper function

g AUlim(A) U {—o0, 400} — J,

wherelim(A) denotes the set of limit pointsof A in 7. Also, itis easily established
by induction on« > 1that if g : D — J isaproper function with domain D € T
and the restriction f = g|(D N 1) isin # ,+(I, J), then g isa-strong if and only
if Rank(f) > a.

For « > 1 the class of «-strong proper functions has desirable closure prop-
erties. It is routine to show that the restriction of any «-strong proper function to
any set that contains {—oo, +o0} isaso proper and «-strong. Aswell, we have the
following lemma, which is proved by a straightforward induction on «.
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Lemma3.11. Leto > 1. Supposethat D C I, f : D — J isan a-strong proper
function, and for each D-cut v thereisa set £, C I(v) and an «-strong proper
function g, : E, — J(f(v)). Then f U, gv isproper and a-strong.

Lemma3.12. Let Io, I1 € Koy satisfy Io ~ Iy and Io =+, 11 for some ordinal
o > 2. Assumethat A C Iy isof size at most 1« and satisfies

1. A isbounded below or coi(A) = Rg; and
2. A isbounded above or cof(A) = Rp.

Thenthereisan f € 7+ (lo, I1) with domain A of Rank at least .

Proof. We show that infact A iscontained in aninterval of Ig which isisomorphic
to an interval of I1. This interval will be of the form (a, b), where a is a lower
bound for A if one exists, or the symbol —oo, and b is defined similarly. Take as
atypical case that in which a € Ip and b = oco. Then we claim that the interval
(a, 00) isisomorphicto (a’, co) for any a’ € I1. The point isthat (a, co) has cofi-
nality Ko, hence (a’, co) doesby (1T, «)-equivalence. So we can build the desired
isomorphism in a countable sequence of steps, using double transitivity and the
local isomorphism of Iy and 1.

Aswell, it follows from the relations Ip ~ 11 and Ip =+ , 11 and another in-
stance of double transitivity that theintervals (—oo, @) and (—oco, a’) are (ut, a)-
equivalent. Thus, the the restriction of the isomorphism to A has Rank at least «.

|

The following Proposition is the key to the proof of Theorem 3.14.Before em-
barking on it, we introduce some more notation. For C C 2, let

Co = {a € C : aisalimit point of C N «}

and for T a p-decomposition tree, let Ty be the club subtree of T satisfying
Sucery(n) = {n (@) : @ € Co}, where Sucer(n) = {n (@) : « € C} for all
non-maximal nodes n € 7. Note that if (T, g) is a u-representation of 7, then
(To, g|Ty) is aso a u-representation of T with the additional property that g ()
either has cofinality or coinitiality at most w for all n € 75 \ {(0), (1)}.

Proposition 3.13. Assume Io, /1 € Koy, Io ~ I1and Io =+, 11. 1f A C Ip and
|A| < u, thenthereisafunction f : A — I1 of Rank at least w.

Proof. Pick A C Iy of sizeat most w. In order to produceah : A — I1 of Rank
at least w, we first construct a desirable proper function j : D — 1;. Choose a
w-representation (7', g) of 1. By passing to the subtree Tp in the notation preceding
this proposition, we may assume that g(n) either has cofinality or coinitiaity at
most u foral n € T*\ {(0), (1)}. Let B = By, U Bg, Where

Br ={neT*:dir(n) =LEFT and A iscofina in1,,} and
Br ={n € T":dir(n) = RIGHT and A iscoinitia in I,}.

We claimthat B hassizeat most 1. To seethis, it suffices by symmetry to show that
|Br| < w. Recall that for every successor ordinal o, theintervals{z, : n € T*N%u}
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aredigoint. Sincen € By implies A N I, # @, thisimplies |[By, N *u| < p for all
successor ordinals «. Further, since |[A| < u, we can choose a successor ordina y
so that for every pair a,a’ € A, thereisn € T* of length less than y satisfying
a < g(n) < a’ whenever thereisany v € T* witha < g(v) < a’. But now, by our
choiceof y,if v, v’ € B, havelength >y and have v|y = Vv'|y, then

g(v) = SUp(A N Iv|)/) = g(V/),
sov=v'andl,, NA#§. Thus,
veBr:lgWw) >yl <lneT " lglp=yadl,NA#D} <

SO |BL| < p.

Let B* © B beaclosed subset of T of size at most . As g(n) has cofinality
or coinitiality at most 1 in To for each n € B’ \ {(0), (1)}, thereisaset X C I
of size a most 1 such that g(B’) < lim(X) U {—oo, +-00}. Since Ip =+, 11,
for each n > 2 we can choose an order-preserving j, : X — I of Rank at least
n.As g(B’) C lim(X), each j, extends uniquely to a proper function (also called
jn) from X U g(B’) to 1. As B’ C T isclosed, by Lemma 3.5. there is a club
subtree 7, for eachn > 2 suchthat j,(g(n)) = ju+1(g(n)) fordln € B'NT,. Let
Y =(,»27T, andlet D = {g(n) : n € B’ N Yo}, where Yy is the club subtree of
Y described in the notation preceding this proposition. As the functions j, agree
on D foralln > 2, welet j : D — I denote this common (proper) function. As
each j, was n-strong, the function j is w-strong.

By Lemma3.11., in order to ascertain the existence of an w-strong h : A — I,
it suffices to construct an order-preserving function f : A N Ip(v) — I1(j(v)) of
Rank at least w for every D-cut v of Ip. So fix a D-cut v = (D;, D). Wefinish
the proof by showing that the hypotheses of Lemma 3.12. are satisfied for Ip(v)
and I1(j (v)). As Ip(v) and I1(j (v)) are convex subsets of Ip and I respectively,
Io(v) ~ I1(j(v)). Since j is w-strong, Io(v) =,+ , 11(j(v)). Finally, assume by
way of contradiction that A N Ip(v) isunbounded abovein Ip(v) and has uncount-
able cofinality. (The case of A N Ip(v) unbounded below in Ip(v) of uncountable
cardinality is symmetric.) Let b = sup(A N Ip(v)) and let x = cof(A N Ip(v)).
We will obtain a contradiction by showing that b = sup(D,), which would make
Io(v) empty. First, since Yo isaclub subtree of T and b = inf (D;"), b = g(n) for
somen € Yo. Asweassumed A cofina below b, b € B aswell. There are now four
cases to consider, all of which imply 5 = sup(D;") or contradict our hypotheses.

Casel.dir(n) = RIGHT and /g(n) = § + 1 where § isalimit ordinal or 0.

Say n = p {0). Sincecof () = k > Vg thereisastrictly increasing sequence
of limitordinals (y; : i < «) suchthat b = sup{g(p|(y; +1)) : i < «}. Since B is
closed, p|ly € B forall y <ig(p),s0g(ply) € D, andb = sup(Dy,).
Case2.dir(n) = RIGHT andlg(n) = § + n for somen > 1.

Say n = p {a) for somea € Cp, where C is such that Succy (p) = {0~ (B) :
B € C}. Ascof(b) = « thereis acontinuous, strictly increasing segquence of or-
dinals (B; : i < «) from C with limit . Again, as B’ is closed, o {(8;) € B’ for



Sh:560

80 M.C. Laskowski, S. Shelah

ali € «. It followsthat p~(8;) € B’ N Yy for al limit ordinasi € «, so again
b =sup(D,).

Case 3.dir(n) = LEFT and n isnot maximal in Yg.

Say Succy,(n) = { {a) : @ € Co}. As A isunbounded below b and x > Ro,
thereisaclub C’ € Cg such that A is unbounded below g( {«)) foral a € C’.
Thus, n (a) €e BN Y foral a € C’, soagain b = sup(D;)).

Case4.dir(n) = LEFT and n ismaximal in Y.

Asn maxima in Yo implies n maximal in T, it follows from the definition of

a u-representation that cof (g(n)) = R or cof(g(n)) > w. However, we assumed
that cof (g(n7)) > Rg and A witnesses that cof (g(n)) < u, so both are impossible.
|

Our theorem now follows easily.
Theorem 3.14. KC,+(Kog) < o for all uncountable cardinals .

Proof. Fix I € Kot and anuncountablecardinal . Let f € 7+ (1) have Rank at
least w. Weclaimthat Rank( f) > w+1. To seethis, it sufficesby symmetry to show
thatif A C 1, |A] < pthenthereisafunction g € 7+ (1) extending f of Rank at
least wwith A € dom(g). Sofix suchaset A and et f denotetheproper function ex-
tending f with domain dom( f) U {—o0, +-00}. SinceRank( f) > w, f isw-strong.
Now fix adom( f)-cut v. Clearly, I (v) =ut+.0 [(f()and I (v) ~ I(f(v)),soit
follows from Proposition 3.13. that thereisafunction g, : ANI(v) — I(f(v))in
F (1 (v), I(f(v)) of Rank at least w. Thus, it follows from Lemma3.11. that the
proper function g = f U U{gv : v adom( f)-cut} is w-strong, hence the restriction
of g to A U dom(f) has Rank at least w. |

4. The w-independence property

This section is devoted to proving that any pseudo-elementary class with the
w-independence property (see Definition 4.4.) is not controlled. We begin the sec-
tionby proving Proposition 4.3., which will provide uswithamethod for concluding
that K C, (K) = oo by looking at the family of A-partial isomorphisms from one
element of K into another.

Definition 4.1. Anw-tree.7 isadownward closed subset of <® A for some ordinal
L. Wecall 7 well-founded if it does not have an infinite branch. For atree 7 and
n € 7, thedepth of 7 above n, dp s (n) is defined inductively by

dp7(n) = sup{dp(v) + 1} : n<v} if n has asuccessor
P7iP =10 otherwise.

and the depth of 7, dp(7) = dp7 ({)).
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Clearly, dp(7) < oo if and only if 7 is well-founded. The most insightful
exampleisthat for any ordina «, the tree des(«) consisting of all descending se-
guences of ordinals < « ordered by initial segment has depth «. The proof of the
following lemmais reminiscent of the proof of Morley’s Omitting Types Theorem.

Lemma4.2. If 7 € <®)xiswell-foundedand dp (") > k™, thenfor any coloring
c: 7 — k,thereisasubtree ¥ C 7 of depth at least w such that ¢| oy, is
constant for eachn € w.

Proof. Sincedps > « T, thereisann € 7 withdps () = k. Thus, by concen-
trating on subtrees extending n, we may assume that dp(7) =« .

For each n € w we will name a subset X,, € «* of size x™ and a function
fo i Xp > Z N"rsuchthat X,411 € X, every element of f,11(X,+1) isa
successor of an element of f,(X,), dp7(fu(@)) > a and c| , (x,,) iS constant.

Tobegin, let Xo = «T and let fo: Xo — {{)}. Given X,, and f,, satisfying our
demands, we define X,, 11 and f,+1: Xp41 — 7 N n+1) asfollows. For a € X,,,
let B betheleast element of X, greater than «. Asdp s (f,(B8)) > B, wecan define
fra1(ar) to be asuccessor of f,(B) of depth at least «. Since X, hassize k™, let
X,4+1 beasubset of X, of sizex™ suchthat c|, ., ,(x,,) iSmonochromatic.

Now let R = {f,,(B,) : n € w}, where B, isthe least element of X,, and let &
be the subtree of .7~ generated by R. ]

Supposethat N = M and§ = Ag € A1 € ... C N isan w-sequence of
subsets of N of sizelessthan A. Let

I, ={Range(f) : f € #(N, M), fhasdomainA,}

andlet 7 = | {7, : n € w} beatreeunder inclusion. Typicaly 7 will be an w-
tree and we can ask whether or not it iswell-founded. Therelationship between this
question and Karp complexity is partially explained by the following proposition.

Proposition 4.3. If KC; (K) < oo then thereisan ordinal «* such that whenever
N=MeceKandy = Ag C A1 C ... C N arechosen with |A;| < A, then the
induced tree .7 either has depth at most «* or has an infinite branch.

Proof. If KC; (K) < oo then by Proposition 2.4., thereisacardinal « bounding the
number of L ;-types realized in elements of K. We claim that o* = «* hasthe
desired property. To seethis, choose N = M fromK andd = A C A1 C...C N
and assumethat dp(7) > «+. By Lemma4.2., thereisasubtree ¥ of 7 of depth
w such that the L ,-types of the elements of .’ depend only on their level in &
In particular, for each n thereisan element B,, € .% at level n that has a successor
in .. Consequently, for each n € w the L ,-formula

0X,) = EIYntPoo,)»(Xm Y, = tpoo,A(Bn+l)

isimplied by 7poo 1 (Bn). Applying this iteratively produces an elementary partial
function f : N — M with domain | J{A, : n € w}, S0.Z has an infinite branch.
|
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Definition 4.4. A classK of L-structureshasthe w-independence property if there
isaset {¢,(x0,...,%y-1,¥,) : n € w} of L-formulas such that for al M € K
thereisasequence (a; : i < w) from M such that for all n € w and all functions
f 1n — {0, 1} thereisasequence (b; : i < n) from M suchthat for al i < n,

M = gi(bo, ..., bi_1,a;) if and only if f@) =1

As an example, the model completion of the empty theory in the language
L = {R, : n € w}consisting of onen-ary relation for every n isacomplete, simple
theory with the w-independence property. (In this example, the y,’s do not ap-
pear.) Clearly, if K hasthe w-independence property, then K has the independence
property. However, the theory of the random graph has the independence property,
but fails to have the w-independence property. We remark that despite this failure,
the theory of the random graph is not controlled. We do not attempt to prove this
assertion here.

Our interest in the notion of w-independenceis largely captured by the propo-
sition given below.

Definition 4.5. An ordered multigraph is a structure (G, <, R;),eo Where < is
interpreted as alinear order and each R, isasymmetric n-ary relation on G.

Proposition 4.6. If L1 D Lo, T1 isan L1-theory with Skolemfunctionsand K, the
classof reductsof modelsof T1 to L hasthe w-independence property witnessed by
{¢n : n € w} then for every ordered multigraph (G, <, R,),e, thereisa structure
Mg € K and sequences (a,, : n € w) and (Bg : g € G) from Mg such that

1. Mg isthe L1-Skolemhull of {@, : n € w} U {b, : g € G};

2. Ifgq, ..., gnandhy, ..., h, havethesamequantifier-freetypein (G, <, Ry)nco
then the sequences by, ..., by, and by, ..., by, have the same type over
{a, :n ewlinMg;

3. Mg k= ¢u(bgy, ..., by, ay) ifand only if G = R, (g1, ..., gn) for all n and
al g1,..., g, fromG.

The proof of Proposition 4.6. isword for word like the proof of the existence of
Ehrenfeucht-Mostowski models for unstable pseudo-elementary classes (see e.g.,
Section 11.3 of [5]) but with the Ne3etfil-Rodl theorem (see [7] or [1]) in place of
Ramsey’s theorem.

Thefollowing lemmatells us that we need not explicitly consider the constants
{a, : n € w} inthe proof of Theorem 4.9.

Lemma4.7. Let K be a class of L-structures and let C be a set of fewer than A
new constant symbols. Let K* be the class of all expansions of elements of K to
L U C-sgtructures. Then KC; (K*) < KCj (K).

Proof. Forany M* € K*, let M beitsreduct to thelanguage of L. For every partia
function f € Z,(M*),let f € 7 ,(M) betheextension of f that istheidentity on
every element of C¥ . Itiseasy to show by inductionthat Rank 77« ( f) = Rank;,;(f).
Hence, KC;, (M*) < KC) (M), s0 KC,(K*) < KC; (K). O
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The other theorem we will need isthat there exist very complicated colorings of
anumber of cardinals. Asnotation, for x afinitesubset of ., let x™ denotethem™ el-
ement of x inincreasing order. Followingthenotationin[11], let Pro(u, ., Ro, Ro)
denote the following statement:

e There is a symmetric two-place function ¢ : © x u© — o such that for every
n € w, every collection of  digoint, n-element subsets {x, : « € u} of u, and
every function f : n x n — o, therearea < B < u such that

c(xl, x;’f/) = f(m,m")

forall m, m’ < n.

It isshown in [10] that Pro(X, A, Rg, Ro) holds for an uncountable cardinal A
whenever there exists a nonreflecting stationary subset of A of ordinals of uncount-
able cofinality. (A stationary subset S C X isnonreflecting if S N« isnot stationary
ina for al limit ordinalsa < A.) In particular, Pro(R3, X3, Rg, Rg) holds. More
recently, in [12] the second author has shown that Pro(R2, N2, 8o, Rg) holds as
well. This suffices for our purpose. See [11] for more of the history of Prg and its
cousins.

The following Lemma recasts Pro(u, 1, Ro, Rg) into the form we will usein
the proof of Theorem 4.9..

Lemma4.8. Let ¢ : [u]?® — w witness Pro(i, i1, Ro, Ro). For every k, n € o,
every collection {x, : o € pu} of u digoint, n-element subsets of , and every
family of colorings { f; ; : n° > w:i<j<kjtherearefo < f1 < ... < Br-1
such that

C(ng.,xgj) = fi.j(m,m")
foralli < j <kandal m,m < n.

Proof. Fix k,n, {xy : @ € p},and {fi; : i < j < k} satisfying the hypoth-
eses. Without loss, we may assume that x7 ! < x2+l for al . For « limit, let
Yo = U{xa+i 11 < k}andlet Wo = {a € p : o limit}. By inductionon &’ < k
we will build a sequence o < B1 < ... < Br_1 and a subset Wy, of size u
such that Wy.1 € Wi and ey, yi/ ™) = f; j(m, m') for all m,m’ < n, all
i < j < kwithi <k’,andal y € Wy.. Fork’ = Othereisnothingto do. Assuming
Bo < ... < Br—1 and Wy have been chosen, it follows from Pro(u, u, No, Ro)
that there is 8 such that the set

ly € Wo iy > B and et v, 3" = fo j(m,m') for j > k')
has size i, henceisasuitable choice for Wy 1. (If there were no such gy then one
could successively build a subset Z of W of size u on which there would be no
a < B from Z satisfying the coloring.) |
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Theorem 4.9. Let L1 O Lo befirst order languages, let 71 be an L1-theory and
let K denotethe class of reducts of modelsof Ty to Lg. If K hasthe w-independence
property then K isnot controlled. More precisely, if a cardinal i > |Ty| isregular
and there is a coloring of [11]? satisfying Pro(t, 11, 8o, Ro), then KC; (K) = oo
for all cardinals A > p.

Proof. First, by adding countably many constantsto the language Lo and invoking
Lemma4.7., we may assume that the w-independence of K iswitnessed by formu-
las ¢, (Xo, . .., X,_1) With no additional constants. Second, by considering M in
place of M for each M € K, we may assume that each X isasingleton. Third, by
expanding Ty if necessary, we may assumethat it has built-in Skolem functions. Fix
acoloringc : [u]? — o that witnesses Pro(u, it, Ro, Ro) and fix an ordinal o*. We
will use the coloring to define two rather complicated ordered multigraphs 7 and
J and then use Proposition 4.6. to get Ehrenfeucht-Mostowski models M, N € K
that are built from I and J respectively. We will find a tree of A-partial isomor-
phismsfrom N into M that iswell-founded, yet has depth at least o*. Since o* was
arbitrary, it follows immediately from Proposition 4.3. that K C, (K) = oco. So, let

des(a*) = {strictly decreasing sequences of ordinals < a*}

and let (1, <) bethelinear order with universe u x des(a*), ordered lexicograph-
icaly. Let (J, <) be the linear order with universe © x {p, : n € w}, where
on =1{0,-1,-2, ..., —n + 1), also ordered lexicographically.

As notation, for finite sequences n, v we write n < v when » is a proper initial
segment of v. Forr € TU J, lett = (of, n*), where o’ € p and n' is a finite,
decreasing sequence. For s, t € I U J, wewrite s <* r when n* < n’. Fix, for the
whole of this section, a partition of w \ {0} into digoint, infinitesets{Z,, : n € w}.

We expand (1, <) into an ordered multigraph (1, <, R;),c, 8s follows: We
posit that Ro holds, R1(¢) holdsforal ¢ € I,andforn > 1, R,(to, ..., t,—1) holds
if and only if for some permutation o € Sym(n),

n'e® ... anloe-D;

lg(nle®) =i forall i;

ali £a'i andc(ai,a'i) € Z, fordli < j < n;and

c(ali,ali) = c(a, a) fordli, j, k,l <nwithi # jandk #[.

Similarly, expand (J, <) to an ordered multigraph (J, <, R;),ee by positing
that Rg holds, R1(¢) holdsfordl r € J,and fordl n > 1R, (1o, ..., t,_1) holdsif
and only if for someo € Sym(n),

o nle) = p; forali < n;
o afi £aliandc(ali,ali) e Z,forali < j <n;and
o c(ali,ali) = c(a, o) forali, j,k,I <nwithi # jandk # 1.

Now build Ehrenfeucht-Mostowski models M, N € K from I and J respec-
tively that satisfy Conditions 1-3 of Proposition 4.6.. To avoid wanton use of nested
subscripts, weidentify theelementsb, € M and g € I (and similarly for N and J).

Foreachn c wlet A, = {t € N :lg(n") < n}andlet 7, = {Range(f) :
f € Z,(N, M) hasdomain A,}. Wewill show that 7 = | J{7,, : n € w} isboth
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well-founded and has depth «*. As noted above, thisis sufficient to conclude that
KC,(K) = oo. If weassumethat 7 iswell-founded then the family of maps

In P Aigy > M

for n € des(a*) defined by f,((a, n;)) = (o, nli) witness that the depth of I is
at least ™.

So it remains to show that .7 is well-founded. The obvious distinction
between the ordered multigraphs 7 and J is that J has an infinite, strictly in-
creasing sequence (n, : n € w), whereas I does not. Suppose that an elementary
map g : |U{A, : n € } — M isgiven. We will obtain a contradiction by con-
structing an infinite strictly increasing sequence in des(a*). The construction of
this sequence proceeds in three stages. First, since u > |T1] is regular, for every
I € wthereisaninteger n(l), an Li-term gy (xq, . .., X)), asubset X; of u of size
w, and functions ; ,,, : X; — I such that for each

B € Xig((B. ) = u(di(B)),

where d;(B) = (t1,1(B). - ... t1.nq)(B)). Asnotation, let W = {(I,m) : | € w and
me[1,...,n()]}andforeach (I, m) € W, let oy, and n; ,, bethefunctionswith
domain X; satisfying

t1m(B) = (1,m(B)s ni.m(B))-

Next, we state two claims, whose proofs we defer until the end of the argument.

Claim 1. Thereisasequence (Y; : | € w) suchthat each ¥; C X; has size 1 and
for each

k € odftp(do(Bo), - - - , dk—1(B—1)) = Aftp(do(Bo). - - -, dk—1(B;_1))

in the structure (1, <, <*) for all sequences o < ... < br—1, By < ... < bj_;
with g;, B/ € Y; for each I < k.

Claim 2. For every k > 1thereisasequence (m; : | < k) and apermutation o of
k such that

t5:0).ma0) Bo (@) < to1).meq Bo@) < -+ < tok-1).myu_1) Bok—1))

for every sequence g < ... < Br_1 with g € Y, foreachl < k.

Given these two claims, it follows from Konig's Lemma (and the fact that the
permutation o is uniquely determined by the lengths of the »'’s) that there is an
infinite sequence (m; : | € w) and a permutation o € Sym(w) such that, letting
n = nle®me® for eachl € w,

n0(Bs0)) <M(Bo) <- -

for all sequences B < B1 < ... satisfying B; € Y; foreachl € w. Butthe existence
of such asequenceis clearly impossible as each 1;(8) € des(a™). O

Thus, to complete the proof of the theorem it suffices to prove the claims. The
proof of Claim 1 istedious, but straightforward. First, by trimming each of the sets
X; we may assume that for each (I, m) € W,
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1. «;,, isconstant on X;;
2. a1 (B)=pfordl g € Xy;0r
3. {oy.m(B) : B € X;} isdtrictly increasing and disjoint from X;.

Wecal (I, m) a-constant if (1) holdsand call (I, m) a-trivial if (2) holds. Similarly,
we may assume that for each (I, m) € W,

o Ig(n.m(B)) isconstant for al 8 € X; and
e 1., iSconstant on X; or else {n; ,(B) : B € X;} isstrictly increasing (in lexi-
cographic order).

Additionally, we may assume that for each pair (I, m), (I, m’') € W with the
same [, the truth values of

o ‘o m(B) <y (B);

o nl,m(ﬂ) < nl,m’(ﬂ)”;

o “nim(B) <iex M. (B)"; and hence of
o “tl,m(:B) < tl,m’(,B)“

are constant for all 8 € X;. By trimming each X; further, we may additionally
assume that for all pairsm, m’ € [1, ...n(l)], the truth values of

‘o m(B1) < o (B2)";

“N1,m (BL) <M1 (B2)"

“N1m (B1) <tex Mi,m'(B2)"; and hence of
“t1m(B1) < t1,m(B2)”

are constant for all pairs 81 < B2 from X;.

So far, each of our trimmings has concentrated on asingle set X;. However, to
complete the proof of the claim, we must consider pairs of setsaswell. Fortunately,
this presents no problem. We illustrate one such reduction and leave the other (vir-
tually identical) reductions to the reader. We claim that there are subsets ¥; C X,
each of size u, such that for al (I1, m1), (I2, m») € W the truth value of

“rymy (BL) < oipmy(B2) " (%)

is constant for all pairs (81, B2) satisfying 81 € Yy, B2 € Y1, and B1 < 2. To see
this, let C be the a-constant pairs (I, m) € W and let § < 1 be the supremum of
al a,,(B) for (I,m) € C, B € X;. By removing fewer than . elements from each
X, we may assume that «; ,,(8) > 8 for all non-e-constant (I, m) € W and all
B € X;. Itisnow routine to inductively construct the sets{Y; : I € w} in u stepsso
asto ensure

a1.my (B1) < Qpmp (B2)

whenever (I1, m1), (I2, m2) are not a-constant, /1 < Ip, 1 € Y1, B2 € Yo and
B1 < B2. Combining this with the earlier trimmings of the X;’s establish (x).
Finally, we prove Claim 2. This is the heart of the argument and is where
properties of the coloring ¢ are used. Fix an integer k > 1. In light of Claim 1,
it suffices to find a sequence (m; : I < k) and a permutation o of k such that
Io(0),m4(0) (/30(0)) <L o (k—1),mq 1) (ﬂo(k—l)) for some sequence fo < ... <
Br—1with g; € Y; foreachl < k. Consequently, we cantrimthe sets Y; still further.
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Asnotation, let W, denotethefinite set of al pairs (I, m) € W with! < k. For each
[ < k,let hy enumerate Yy, i.e., h;(8) = the §th element of ¥;.
By trimming each Y; for I < k, we may additionally assume that:

e Thesetsy; aredigoint and o, (B) & |, Y7 unless (I, m) is «e-trivial;

o 81 < Sy impliesh;(81) < hy(82) foral l, I’ < k;

o For al pairs (I, m), (I'’,m") € Wi with (I, m) a-constant, there is an integer
c*(,m,l',m") € wsuch that

C(al,m(ﬁ)’ al/,ln/(ﬂ/)) = C*(lv mv l/v m/)
for all distinct 8, g’ from Y;, Y/ respectively.
Let C* denote the (finite) set of al integersc*(I, m, I’, m’), where the pairs (I, m),

(', m") are from Wy, and (I, m) is a-constant. Choose integers p € Z;\C* and
q € Z, for somer > |W|. Asnotation, for each ordina § € u, let

Bi(8) = {am(hi(8)) : (I, m) € W, (I, m) not a-constant} U {/;(8)}

Fors =80 <81 < ... < &1, let B(8) = U, Bi(8)). By trimming the sets ¥,
I < k till further, we may assume that the order type of B(é) is constant anong
all increasing k-tuples §. Thus, by employing Lemma 4.8., we can choose two

increasing k-tuples 3° and 3" satisfying:

o c(a, ) =g forala, g € BE"); and
o c(@,B) = q foral a, p € B(") EXCEPT that c(h,-(a}),h.,(a})) = p for all
i #j.
As notation, let v, = h;(89), pv = vo < ... < vg_1, ad D(pv) = {tr,m(v)) :
(,m) € Wi}. Dudly, let ; = hi(8%), P = Po < ... < Pr—1, and D(pp) =

{tim(Br) = (L, m) € Wi}.
Now, working in the multigraph J,

J = =Rk ((vo, po), - .., (Vk—1, px—1)) A Ri((Bo, po), - - -, (Br—1, pk—1)),

N & =g ((vo, p0), - - - » k=1, Pk—1)) A 9k ((Bos 0) - - - s (Bk—1, Pk—1))-
Hence, by the elementarity of the map g,

M = —pr(to(do(vo)), - . ., Tk—1(dr—1(vk-1))) and

M = o (to(do(Bo)), - - - » Th—1(dk—1(Br-1)))-

It follows from Proposition 4.6. that the discrepancy in ¢ implies that gftp
(D(pv)) # dftp(D(pp)) inthe ordered multigraph (1, <, R,)new- HOWever, since
gftp(D(pv)) = gftp(D(pB)) inthestructure (I, <, <*),thesets D(pv) and D(pB)
must differ on some R,,. This difference can only be explained by a discrepancy of
thefunction ¢ on somepairsof elementsfromthesets B(pv) and B(pB). Sincec can
only attainthevaluesof p andg onpairsfrom B(pv) and B(pg), our choiceof p and
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g impliesthat Ry isthe only relation that can differ between D(pv) and D(pB).

Thus, there are sequences so, ..., sk—1 € D(pp) and sg, ..., s;,_, € D(pv) of
corresponding elements such that
I = Ri(so, ..., Sk—1) A —'Rk(sé, e, s,/(_l).

In particular, so <* ... <*sg_g and foral i < j < k we have o # % and
c(a’i,a’) = p. Aseachs; € D(pB), therearefunctions/, m with domain k such
that
si = 11G),m@) (Bii))-

Now fix i < k. Sincek > 1land c(a®, o) = p & C* forany j # i, the pair
(I(i), m(@)) isnot a-constant. Aswell, the choice of the coloring of B(pB) ensures
that o’ = h,(cS,l) € Y, for somer < k. Thus, the digointness of the Y;'s imply
that r = [(i) and the pair (I(i), m(i)) isa-trividl. That is, & = ;. Further, since
o’ #£ ofi whenever i # j, the function  must be a permutation of the set k. So,
letting m; = m(I~1(i)) and o = [, the sequence (m; : i < k) and permutation o
are asdesired. |
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