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Existence of Endo-Rigid Boolean Algebras

In [Sh 2] we answering a question of Monk have explicated the notion of "a
Boolean algebra with no endomorphisms except the ones induced by
ultrafilters on it” (see §2 here) and prove the existence of one with character
density Np, assuming first <>;g1 and then only CH. The idea was that if A is an
endomorphism of B, not among the "trivial’ ones, then there are pairwise dis-
joint d, € B with h(d,) ¢ d,. Then we can, for some S € w, add an element z
such that d, =z forn € 5,z N d, =0 for n ¢ S while forbidding a solution
for fy nNhid,)=h{d,}:neSlyly nNkhid,)=0:n & S}. Further
analysis showed that the point is that we are omitting positive quantifier free
types. Continuing this Monk succeeds to prove in ZFC the existence of such

Boolean algebras of cardinality M and density character Mo In his proof he

{a) replaces some uses of the countable density character by the 8;-

chain condition

{b) generally it is hard to omit < Mo many types but because of the spe-
cial character of the types and models involve, using 28 almost digjoint sub-

sets of w, he succeeds in doing this

{¢) for another step in the proof {ensuring indecomposability - see
Definition 2.1) he (and independently by Nyikos) find it is in fact easier to do
this when for every countabe I € B there is x € B free over it.

The question of the existence of such Boolean algebras in other cardinali-
ties remains open {See [DMR] and a preliminary list of problems for the hand-
book of Boolean Algebras by Monk).

We shall prove (in ZFC) the existence of such B of density character A and

cardinality 2 whenever A> NV, We then conclude answers to some other
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questions from Monk’'s list, (combine 3.1 with 2.5). We use a combinatorial

method from [Sh 3], [Sh 4], it is represented in section 1.

In {Sh 1], [Sh 8] {and [Sh 7]) the author offers the opinion that the com-
binatorial proofs of [Sh 1], Ch. VIII (applied there for general first order
theories) should be useful for proving the existence of many non-isomorphic,
and/or pairwise non-embeddable structure which has few {(or no) automor-
phism or endomorphism or direct decomposition etc. As an illumination in
[Sh 8] a rigid Boolean algebra in every A > 8y was constructed. The combina-
torics we used here relay on [Sh 1], Ch. VIII 2.6 and it amounts to building a
model of power Ao omitting countable types along the way, the method is
proved in ZFC, nevertheless it has features of the diamond. It has been used
also in Gobel and Corner [CG] and Gobel and Shelah [GS1], [GS2]. See more on
the method and on refinements of it in [Sh 4] and [Sh 3] and mainly [Sh 5].

§1 The combinatorial principle
Content: lLet A > « be fixed infinite cardinal.

We shall deal with the case ¢f A >Ny, Ao = A*, and usually & = Ng.

Let L be a set of function symbols, each with < & places, of power < A. Let #/]
be the L-algebra freely generated by T% =>A( = {5 a sequence < w of
ordinals < A) {We could have as well considered T as a set of urele-
ments, and let %] be the family H {T) of sets hereditarily of cardinality
= i build from the urelements]. Fornp e T U ®A let orco{n) = {n{i):i < 2{(y)}{,
for a sequence 73 = <’ni:i < ﬁ> let orco (@) = orco(my), for a = 7(7) € W let
i<8
orco{n) = orco(3]) and orco (( a1 < ﬁ>) = (yorco{a,), and similarly for a set.
i<g

1.2 Explanation: We shall let By be the Boolean Algebra freely gen-

erated by {n:n € T}, B its completion and we can interprete B§ as a subset

of #] (each a € B§ has the form {J T, where T, is'a Boolean combination of
n<e

members of T, so as we have in L ¥gplace function symbols there is no
problem). As the 7 € T may be over-used we replaced them for this purpose by
z, (e.g. let F € L be amonadic function symbol, z, = F(n)).
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Our desired Boolean Algebra B will be a subalgebra of B§ containing Hg.
1.3 Definition :

1) Let L, be fixed vocabularies (= signatures), |L,| = &, L, € L, 4. (with
each predicate function symbol finitary for simplicity, let P, € L, ,,—L, be

monadic predicates.

2) Let S, be the family of sets (or sequences) of the form
$(f ¢, Ng):2 < n] satisfying

a) fg:%= k> Tis a tree embedding i.c.
{i) f g is length preserving i.e. 1, f¢{n) have the same length.
(ii) f ¢ is order preserving i.c. forpuv €%=% 5 < viff fo(n) < fo¥).
b) fesrextend fg (when+1=<n)
¢) Ng is an Ly -model of power = «,|Ng| € |W]|, where Ly C Ly.
d) Lgs1 M Lg = Lg and Ng I Ly extends Ny

€) if Py € Lyyq. then Pof= |N,, | whenm <€ <n and

f) Rang (f¢) — U Rang (f,,) is included in [Ng|= U |Nml.
{4

m< m<£

3) Let 5, be the family of pairs (f,N) such that for some
(fe.Ng){€ < w) the following holds:

(i) §(f g.Ng):2 < n} belongs to 5}, forn < w.

(i) f=UfeN=uUuDN. i e. INl = U [N, ]
|2 n<e n<ae
LIN) = UL(N,), and NTL(N,) = U Nyt L(N,)
n n<m«<a

4) For any (f ,N) € 5, let (fn N,) be as above (it is easy to show that
(fn.N,) is uniquely determined - notice d),e) in (2),) so for (f *,N%) we get
(fr' )

5) Let 3}, = H{{fn.Np): for some (fg, Ng)(€ <) {(fg.Ng)k =nj€ f;‘n and
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we adopt conventions of 4).

8) A branch of Rang {f) or of f (for f as in (3)) is just € ®X\ such
that for everyn < w, 1 n € Rang {f ).

1.4 Explanation of our Intended Plan (of Constructing e.g the Boolean
Algebra)

We will be given W = {f * N):a < a{*)}, so that every branch 5 of f¢
converge to some ¢{a), {(a) non-decreasing (in ). We have a f{ree object
generated by T {( By in our case) and by induction on a we define B,
increasing continuous, such that Bg,, is an extension of By, @4 € Bayey—By4
{usually B,y is generated by B, and a,, and a, is in the completion of
By). Every element will depend on few (=) members of T, and a,
"depends” in a peculiar way: the set Y, T on which it “depends” is
YY) U Y: where Y§ is bounded below ¢(a) (i.e. Y2 € #>¢ for some ¢ < ¢(a))

and Y} is a branch of f % or something similar. See more in 1.8.

1.5 Definition of the Game: We define for W ¢ 5, a game Gm (W), which

lasts w-moves.
In the n-th move:

Player I: Choose f,,, a tree-embedding of "®k into "=, extending ) fg.
g<n

such that Rang (f,)— U Rang (f¢) is disjoint to |y |Ng| ; then
g<n g<n

player Il chooses N, such that {(fg,Ng):l =n} €.

In the end player Twinsif { U fn, U Ng) € W.
n<w n <w
1.6 Remark: We shall be interested in W such that player 1 wins {or at
least does not lose) the game, but W is "thin”. Sometimes we need a
strengthening of the second player in two respects: he can force {in the n-th
move) Rang (fr4+,) — Rang (f,) to be outside a "small” set, and in the zero

move he can determine an arbitrary initial segment of the play.

1.7 Definition : We define, for W ¢ 5,, a game Gm'(W) which lasts w-
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moves.

In the zero move

player I choose fq a tree embedding of °=k to ™A (but there is only

one choice).

player I choosesk <wand §{(fo,Ng)l <k} €%, and X, C T, | Xo| <A

In the n-th move, n > O

player I chooses frun, a tree embedding of *+M)=g into *+™)=x, with
Range frin— U Rang fgdisjeintto U Ng U U Xg-
g<k+n Z<k+n Z<n
player II choose Ng,, such that §(fg.Ng)€ <k+n}e,, and
X, T, | X, ] <A

1.8 Remark: What do we want from W?: First that by adding an element
(to By) for each (f ,N) we can "kill” every undesirable endomorphism, for this
it has to encounter every possible endomorphism, and this will be served by
"W a barrier”. For this W =5} is 0.K. but we also want ¥ to be thin enough so
that various demands will have small interaction, for this disjointness and

more are demanded.

1.6 Definition : 1) We call W ¢ 9, a strong barrier if player I wins in

Gm (W) and even Gm/(W) {(which just means he has a winning strategy.)

2) We call W a barrier if player Il does not win in Gm (W) and even does

not win in Gm'(#).

3) We call ¥ disjoint if for any distinct (f¢,N¢) € W (€ = 1,2), fland f2

has no common branch.

1.7 The Existence Theorem : 1) If Ao = A*, cf A >R, then there is a

strong disjoint barrier.

2) Suppose AN = A, cf A >R Then there is

W={{f N :a<a"}c, and a function ¢: a” » A such that:
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(a) W is a strong disjoint barrier, moreover for every stationary
SCid<A: cf 6=8] {(fAN%:a<a’, &(a) € S} is a disjoint barrier.

(e) cf (¢(a)) =8gfora<a’.
(d) Every branch of f%is an increasing sequence converging to ¢(a).

(e) If 7 is a sequence from T (of any length 7 < k%), 7{(Z) a term,
2(z) =yand 7(7) € N*thennp C N* N T.

(N If &a) =¢(B), a+ < B < «" and 7 is a branch of ffthenntk ¢ N

for some k£ < w.

(g) If A = A* we can demand: if 7 is a branch of f* and 75tk € Nf for
all k < w (where a,8 < a") then N® ¢ N (and even NZ e NP if W= H +(T).)

§2 Preliminaries on Boolean Algebras

We review here some easy material from [Sh 2].

2.1 Definition : 1) For any endomorphism h of a Boolean Algebra B, let
Fx Ker(h) = {z,yzgh(z,) =0, and h(y) =y for everyy = z5}.

Fx Ker(h)=§{x € B: in B/ Ex Ker(h), below z/ Fr Ker(h), there are

only finitely many elements].

2) A Boolean Algebra is endo-rigid if for every endomorphism h of
B, B/ Ex Ker(h) is finite (equivalently: 15 € Ex Ker'(h)).

3) A Boolean algebra is indecomposable if there are no two disjoint ideal
Iy, Iy of B, each with no maximal member which generate a maximal ideal

(faguayag € lya, € 1)),

4) A Boolean algebra B is 8;-compact if for pairwise disjoint

d, € B(n <w)forsomez € B, x Ndopse1 =0, 7 Ndg, = doyp.

2.2 Lemmma : 1) A Boolean algebra B is endo-rigid if every endomor-
phism of B is the endomorphism of some scheme (see Definition 2.3
below).
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2) A Boolean algebra B is endo-rigid and indecomposable if every
endeomorphism of Fis the endomorphism of some simple scheme { see Def
2.3 below).

2.3 Definition : (1) A scheme of an endomorphism of B consists of a
partition aga ,bg, ..., by, €4, ... ,Cp ¢ of 1, maximal nonprincipal ideal Iy
below by for £ <m, nonprincipal disjoint ideals /§,7§ below ¢y which gen-
erates a maximal ideal below ¢y for £ <m, a number k¥ <7, and a partition
bo, . by, Chu o Cmy Of @gUbgl - U bg_;. We assume also that
[k4+m >0 =>0a,=0], [(n—k)+m >0=>a, =0] and except in those cases

there are no zero elements in the partition.
{2) the scheme is simple if m = 0.

{3) The endomorphism of the scheme is the unique endomorphism
7:B » B such that:

(i) Tt =0whenz <agorz € I3, <k, orz 6[8,@ <m.

(ii) 7 =z whenz <a,orz € [pk < <norz €l},L <m.
(iii) T(bg) = by when € <k.

(iv) T(bg) =bg |y bg whenk <€ <n.

(v) T{cg) =cg |y cg whenf <m.

24 Claim: If A is an endomorphism of a Boolean Algebra B,and
B/ Ex Ker(h) is infinite then there are pairwise disjoint d, € B(n < w) such
that h(d,} € d,. By easy manipulation we can assume that h{d,) N dp+1 # 0,

and if B satisfies the c.c.c. then {d,:n < w} is a maximal antichain.

2.5 Lemma : 1) Every endo-rigid Boolean Algebra B is Hopfian and and
dual Hopfian. Even B + B is Hopfian (and dual Hopfian) but not rigid.

Proof : FEasy to check using 2.2, 2.3.
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§3 The Construction.

3.1 Main Theorem : Suppose A >R,. Then there is a B.A. (Boolean Alge-
bra) B such that:

1) B satisfies the c.c.c.
2) B has power )\N", and density character A.
3) B is endo-rigid and indecomposable.

Proof: We concentrate on the case cf (A)=#8; (on the case
cf A=8; see [Sh 5, §2, §3]) we shall use Theorem 1.3, and let
W ={(f*N%):a < «}, the function ¢, W and T =9>A be as there.

Stage A: Let By be the B.A. freely generated by {z,n €T}, let z,, =2,
and B be its completion. For 4 ¢ B§ let <A>B§ be the Boolean subalgebra
A generates. As Hj satisfles the c.c.c every element of B§ can be represented
as a countable union of members of By, so w.lo.g B§ W Wesayz ¢ B§ is
based on J C ®’A if it is based on {z, v € J} [i.e. X = (J ¥,, each ¥y, is in the

n

subalgebra generated by {z,: v € J}{] and let d{z) be the minimal such /. We
shall now define by induction on a < a*, the truth value of "ax €J ", Ny and
members a,.b2, e df T2 of  H§ such  that letting
Ba={Bo, ;i <ai€lyg:

1) 14 is a branch of Rang (f @),n, # ng for B < a.

2)if a € J, then for some ¢ < &{a):
aq. = (13 N d,2) where <d,$,f:m < co) is a maximal antichain of non
m
zero elements (of B§) yd(a,g) C®%¢ 172 € <xp Nat™m S pp€ T> gy and
T V4,5 >0 "

3) if aed,bZdfe NS, 272 € N* (hence each is based on

fz, v € “>Av e NY), and b2Nb,E =0 forn # m.
4)forp<a, BE€J, Bpomitpg=fr NbF=cy: n <wi

Remark: Many times we shall write <a<a’ or w Ca <a’ intead

peand, wcand.
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Before we carry the construction note:

3.2 Crucial Fact: For any = € B, there are k£ < ¢, and ag < <ay
such that {{ag) = ¢(ay) = &ag) = - - = ¢(ag) = ¢, z is based on {z v € “%¢ or
v €g_(~r,‘:f), for some £ =k, m < o}, but for some & < ¢, and for no m < w and
£ €§0,... . k}isz based on {z, My, ' m & v € “A}.

Stage B. Let us carry the construction. For § < Aw ¢ o let

Iew =fywve®E  or ve ydrh)
m<w
yew
We let a € J iff |N%| € Ba.N* =(B§ t |N*|,h,) where h, is an endomorphism
of B§ I |{N®| (hence maps NZ into N for n €< w) and there are d,5 € N§ for
m<w di#0,d% NdFf =0 form # £, such that for some £ < ¢(a) each d,5
is based on “?¢, and there are a branch 7, of Rang {(f %) and 72 € N*(m < w)

as in 1), 2) above, such that if we add |y (75 N dF) to By, each pg(f < a) is

n<w
still omitted as well as {2 MR (d2) = h (dENTR) :m < w} and <d,g :m < co>
is a maximal antichain.
If a€J we choose n%*d2 1%, satisfying the above and let bg = h,(dg),

Cm = haldg N T

The Boolean algebra B is B,-. We shall investigate it and eventually prove
it is endo-rigid {(in 3.11) and indecomposable {in 3.12) {(3.1{(1), 3.1(2) are

trivial).
Note also

3.3 Fact: 1) For v € ®>A, z, is free over {z,:n € “>A,n # v} hence also

over the subalgebra of B of those elements based on {x":n € %> A n # v

) For every branch n of f® such that 7 # g for < a.& < {(a);
and finite w Ca fthere is k such that {p:prk €p €T} is disjoint to
P Y UINNT: Bew, 3+2g“$ al yuld(th n <w,B € wi.

From 3.2 we can conclude:

3.4 Fact: If £ < ¢(B),8 < a, I C T finite then every element of B,, based



Sh:229

100

onl (> ¢isin By
3.5 Notation: 1) Let B¢ be the set of @ € B§ supported by ©>¢
R)Fora € B§, € <Aletprz)=nfa € Btz =<ai
3) For £ < Rlet e(€) = Min{y:&(y) > &),
4) For ¥ < a” let Beys = <E:z,,1:7; € 9N U {zg B < 7§> B
5) For I C“>A, w C o, let B(/,w) = <§x.,, me i YlzgBew n J§>,
8) For £ < Alet By =<£x.,’ cmE 9TE Y fzg: ¢(B) = 8>B§-
3.8 Fact: 1) B¢ is a complete Boolean subalgebra of B§.
) pre(z) is well defined for x € B§.
3) if &g < &1 <A, z € Bf then pre(pre(r)) = prelz).

4) I E<AwCT is finite then for the function
Pren(z) =Ny € <B‘ Uiz, ve w{> cz <y} is well defined.

8.7 Fact: 1) For z € B,-, ¢ <A, the element pr/z) belong to
<BE Uz, V€w§>.

R) For ¢ € B,», £ <A, w C “>(¢+1), the element prg,,(z) belongs
to B(%%¢w).

Proof: 1) We prove this for z € B,, by induction on « {for all £).
Note that pr  zg) = UPT(zg).
2<n Z<n

Casei:a = 0, or even (VB8 < a) [¢(B) < £].

Easy; if z=7(aq, ... ,0q 1, Ty, . .., z, ) where T is a Boolean term,
ag € Blgp, vg € A —%*¢ ; by the remarks above wlog z= N 7y,
£<n+m

Tg €{ag,1—ag} when € <n, 74 € {z

ven17%y, } whenn <€ <n +m, and the

sequence <xu°, N ,xvﬂ_1> is with no  repetition,then clearly

pre(z) = N ¢ € By
2<n



Sh:229

101

Case ii: o limit.

Trivial as B, = U Bg.
B<a

Caseilita =8+ 1.

By the induction hypothesis wlo.g. ¢ & Bg As 2 € B, there are disjoint
eo.€1.85 € Bg such that = egiyle Nag) U (ez—ag). It suflices to prove that
pre(eg), preles M ap), preles—ag) € By, the first is trivial and wlo.g. we
concentrate on the second. There are §; < ¢(f) and k¥ < w such that e, is
based on J E¥>x — {p: ngk < p €°>Ajand each df(n < w) is based on *>¢&,
By Case i, we can assume £ < &(f) hence w.l.o.g. € < £, and by the induction
hypothesis and 3.6(3) it suffices to prove prgle;Nag) € By Wlosg
e;Nda =0 for m<k and now clearly prgleinag)=e; as
preles Ndn N TR) =e; Ndy for m =2k | (because d,e, are based on J,

o>, C J and T2 is based on ®>A — J and is > 0).
2) Same proof.
3.8 Lemma : Suppose /,w satisfles:

(7w 1€°A, w Ca, [ is closed under initial segments, and for every

a<aotif /> {(notm € 1) then 72 .d,2 are based on [ and belong to B{({,w).
m<e

Then for any countable C C B,- there is a projection from <B(I,w),C> B
onto B(I,w).

Proof : We can easily find /{*),w(*) such that w cw(*) ca’,
Jw(*)—w| <8, ICI{*C®A |I(*)-I]| <8y and if a€w(*)—w, then
T2.d% € B(I(*),w(*)). Let w(*)—w = {ag:f < w}, and we define by induction
on £ a natural number kg < w, such that the sets {v €®>\: v appears is Tl
for some m > kg} are pairwise disjoint and disjoint to /. Now we can exitend
the identity on B(/,w) to a projection hg from B{I(*),w) onto B(/,w) such
that if £ < w,m > kg, then ho(Toln dpf) = 0. Now we can define by induction
on o € (w(*)—w) Y{O,A} a projection h, from B{I(*},w y (w(*) N a)) onto
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B(l,w) extending hg for § < a (and B € (w(*)~w) Y {0}). For a =0 we have
defined, for a = A we get the conclusien, and in limit stages takes the union.

In successive stages there is no problem by the choice of hg, and the ky's.)

3.9 Claim: If B is an uncountable subalgebra of B, then there is an
antichain {d,m <w} C B andfornoz € B, z Ndy, =0, 2 N dgpy4y = d, for

every n provided that

(*) no one countable I C “>\A is a support for every e € 5
Proof : We now define by induction on a < wy,d ./, such that:
(i) Ip € ®> A is countable.

(ii) U g € I5 and for a limit, equality holds.
fi<a

(iii) d 4 € B is supported by /44, but not by /.
There is no problem in this.

By (iii) for each a there are TS € <a,,,:11 € ]a>Bg,
Tl1Z € <a,,:17 € [a+1—]a>% such that TinTi=0  dnti=d,

SN Ti=<1-d,

By Fodour's lemma w.l.o.g. 7 = 79 (i.e. does not depend on a). For each «

there is n{a) < w such that
T2€.<a":7) € [am"‘(“)a)\> 5 ,'r,,ll,’r,f€< Ayt € (Igs1— 1) m“(“)z)\> B

Again by renaming wlog n(a)=n(*) for every a. Let for

n<wd®=d,—\y dg, ™" =7 N 76 N TA, soecasilyd™ € B, <d"":'n. < w>
g<n g<n.

is an antichain, ™" <d®™ and 7" € <an:'r; € M”*A) p3- Suppose z €F
z€Baxnd® =0, z nd¥* 1 =¢g3*  Hence for n<w, z NT"=0,
z 7Tl =2m* But by 3.8 (for 7=70R27), there is such z in
<a,,:1; € “(')2)\> p5» an easy contradiction.

So we have proven that for every 8;-compact B C H,+, some countable
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I C ®>A\ support every z € 5.
3.10 Claim: No infinite subalgebra B of B,- is X;-compact.

Proof : Suppose there is such B , and let £ be minimal such that there
is such B C Brgy

Part I: if (*) a) B C B, isN-compact and infinite and
b) B' C B[E]’
then

¢) for every ¢< ¢ and z € B—{y:{z € B' : z <y} is finite}, there is
z,€B.x;<z suchthatfornoy € By, ¥y Nz =21

So assume H, satisfies a) and b) but they fail ¢) for ¢ < £ and z € B, where
fy:y = z,y € B is infinite. So for every z € B, there is g(z) € B¢ such that
g{z) Nz =2z Nz (use z;=2z N z). Let B% be the subalgebra of By gen-
erated by fg(z)z € B}]. Clearly {y € Biysz]=1{t nz:ite€B*. Let
z" = prz), (it is in Big by 3.7(1)) and let
Bt ={t nx":t € B*} y {t y(l—=z"):t € B*]. Clearly B® is a subalgebra of
B, and 1—z" is an atom of B®;B® is infinite as there are in B’ distinct

z, <z, so g{z,)€B* hence g{z,)Nnz €B® as =z=<z' and

mzm =g(z,) Nz #9(zn) Nz] clearly

[n#m =>g(z,) Nz" #9(z,) Nz"]. We shall prove that B® is §,-compact,
thus contradicting the choice of & Let d, € B® be pairwise disjoint, and we
want to find t € B®, t Mdo, =0, t M dopsy = dopyy (for n <w). Clearly
wlog d, <z° (as 1-z° is an atom of B®). So d, =t, Nz  for some
t, € B*, hence easily t, Yx €H so for some z, €85, z,<z and

t, VT =2, NZT =2,. S0z, =g(z,) Nz.Forn #m,

Tn NIm = (taNZ) N EnNZ) = (EN27) N (ErNZT) = dpNdy =0
As B' is 8;-compact there is ¥y € B, ¥ N Za, =0, ¥ N\ ZTant1 = Tonsy NOW

g(y).dp.t, belongsto Bgyand (as 2, =z <z'):

D9y Nday Nz=9W) Nty NT =
gY) N ZTon NT =Y NZTz NT =0
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(ii) GW) NAape1 NT =9W) NtgnaiNZT =gY) N Toper NT =

Y NZTone1NT = Tape1NE o1 NT = oy NE-

Now by the definition of z* =prz), [T € Bjgr T Na=0=> 1Nz’ = 0]
(as 1-7 € B¢, * < 1—7) hence by (i) (for 7 = g (y) N dzpn):

(ii) g(y) Ndap Nz" =0

Also by the definition of 27 = pr(z):
T T € Bpgj A TINT = ToNZ =D TiNZ = TpN\T°

(as 71—73 € B,z < 1—(1,—73)) hence by (ii)
(V) 9@W) Ndansr N2 =dapey Nz

But d,=<z', so from (iii) and (iv) @) nNz") Nda =0
(@) Nz") Ndansy =danyy, and g(y) € B* hence g(y) Na’ € B°. So B® is
¥i-compact this contradicts the minimality of £, so we finish Part L.

Part II: if B! is 8;-compact B! C B? B?= < Bty fz§> then B? is N;-

commpact.

The proof is straightforward. [If d, € B® are pairwise disjoint, let
d, =(d} nz) Uy (d2-=2) for some d,).d? e B. Now wlog d, ndL=0 for

n #m - otherwise replace then by d; — U dgl; Similarly d,2 iy 4,2 =0, for
g<n

n # m So there are y‘Z € B, yﬂ N dzgn =0, yﬁ N dzznﬂ = d«zgn,,_l = d§n+1, and
(y!' N z) U (y®—2) is the solution.]

Part IIL. £ cannot be a successor ordinal.
Proof: Let B satisfy (*).

Suppose £ = ¢+1, and by 3.9 there is a countable / € ®>§ which support every
a € B. wlo.g. Iis closed under initial segments and & = }/~°>¢| is minimal.
Now Part | can be applied with (Bm,fa,;:n € w§>35, for any finite w C 7 of
power <k instead Bg (using 3.7(2) instead 3.7(1)). So by applying Part I {to
(B[ﬂ,ia,,’ ‘mEw ;>BS) we can add to its conclusion:
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d) for ewery finite w Cc/ , |w| < |I-9>¢] and z € B for which
fy € B:y <z} is infinite, there is z,€ B,z;<zr such that for no

Yy €<Bm U{an:new»%,y Ne =x;.

Now [—®>¢ is infinite [otherwise let 5" = (B'U{an:n € [»"”{}> 55 casily it
is infinite and ®;-compact by Part I and then we apply Part 1 : for
I —9%¢=1{ng, ..., M} and for u € {0, ... . k—1}, let z, N {Zp 2 €ujn
{1—2,,:2 <k, & ujsozx, €B,1=lzy:uci0.. . k-1}}, hence for

some u, {y € B" 'y < =z,} is infinite; {,z,, contradict the conclusion of Part 1.

As B is N;-compact, for any z € B such that {y € By = z} is infinite, z
can be splitted in B to two elements satisfying the same ie. z =z' | z%
' nz?=0, {yeB:y=z% is infinite for the € =12 Let
I —9>¢ = {5g:€ < w}, so we can find pairwise disjoint e, € B, {y € B :y <e,}
is infinite; now by d) above for each n we can find d, ,dg, 4y, such that
en =dop U danet. Bop NEopsy =0 and that for _na
y € <B[§] Ulay, : ¢ <'n§> ¥ N (dap Udons1) = donsr. As B is ¥i-compact
there is y € B such that ¥ N (dop Udzns1) = danss for every n. So for non

y € Bl U fage: € <ni) .

As y € B clearly y € Bl¢41), but ¥ is based on “>¢ | {a,, € <] so by
3.7%) y € <B[¢] U lag:2< “’;>st hence by Stage B for some n |,
y € <B[<} U tay L < ni>86, contradiction toy My {dzn U dape1) = dg,’;{_l‘

Part IV: Let 7, satisfy (*) of Part 1. By 3.9 for some countable I C ¢,
every b € B is based on /. By Part III £ is not a successor ordinal, so neces-

sarily cf (£) =Ry, let Fi(B) ={x € B:{y € B :y <z} is finite]. Next we shall

show:

(**) for some finite w C {¥: &(y) = €} and 2 € B—Fi(B) for everyy <z'
from B, for some z € < U B Ulega € w§>35, z Nz =y
(<t

Suppose {**) fail, and we define by induction n < @, z,,%,, . W, such that :

(iz, € B,
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(i) 1—-y 2, € Fi(H)

i<n
(iii) w, C {y: &(y) = £} is finite.
(iv) w, € wy 4y
(V) Yp < TpYn € B.

{vi) for no 2 €< UBg U laga €wn§>8§ is2 N Zp =Yn-
{<¢

Forn =0 1¢ Fi(B).

For every m let w, be a finite subset of {7:{(y) = £} extending (y wy,
Z<n

such that for every £ <n , zgp,yg e( UBg U lagac wn§>55. Then as
143

1—\y z; € Fi(B), and as B is 8;-compact, there is z, < 1—-yz; , z, € B,
2<n i<n

1-yz; ¢ Fi(F) and z, & Fi(B). Now as (**) fails, w,,#, does not satisfy the
Z=n

requirements on w,z" in (**), so there is y,, € B , ¥, <%, such that for no

z e< U Brg U laga ewn{>35 sz M2, = Yn.
(<€

As B isN;-compact, for some z* € B, 2" Nz, =y, foreveryn.Asz" € B
for some finite w* C &(§), z° €< UBlg U laga e w*{>58, As w’ is finite,
{<¢

for some n(*) <w, w' N (U w,) € Wy ey Let ¢ < € be such that: d(d) € 9>¢

n<w

for a € wy sy U w', n<w and z,.Y, € <B[ﬂ U {ega e wn(.)H;) gy for
n=n{*+1and 2" €<B{{] U lega €w'§>Bg. By 3.8 we can easily get a

contradiction to (vi). So (¥*) holds.

m
Let tg, ...ty € By be such that QU tg=1 and (V€ =m)(Va€w)
=]

[tg<ayv tg M aqg=0]. There is an £ <m such that {y Ntgy <z’ and

y € B} is infinite. It is clear {(by Part II) that B = <B’,tg> 5 is Nj-compact:

also z°' Ntge B -Fi(B"). Now if ye B ,y<z" Nty then for some

yeBy=y nNnig and w.l.o.g. y =<z, so for some

z e U Bgulega e w;>55 z V2" =y hence z N (z' Ntg) =y, and by
{<¢
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the choice of tg, for some z' €y Biep the equation
{<¢
2 N (' Nnte) =2 N (=" N ty) =y holds.

So B”, 2" ¥x* Nty satisfy the requirements in (*). Now we use (c) of

Part L Ascf (§) =8, let £ = |y ¢,, and we define by induction on n < @,2,,,%,

n<w

such that :

"

()z, € B, z,<z

(ii)z* — U z; € Fi(B")

Z<n
(iii) yp € B, yp <2,

(iv) forno 2z € Bg. 1 2 N Ty = Yn-
As B"isNj-compact, for some 2° € B",2° N z, =y, for eachn.

Now as B",z'" satisfy (**), for some 2" € B 2" ne"=2" Nnz". So
{<¢
for some n 2" € By, j, contradicting (iv) above. Thus we have finished the

proof of 3.9.
3.11 Claim: B,- is endo-rigid.

Proof: Suppose h is as counterexample, i.e.h is an endomorphism of
B,+-but B,-/ Ez Ker(h)isinfinite, and we shall get a contradiction.

Clearly if for some a, N® = (|N*|,h 1 N%), h maps N° ( B,- into itself and
« € J (see Stage B) then h(a,) realizes the type p,, contradiction (by stage A,
B, omits p,.) So we shall try to find such a which satisfy the requirements in
Stage B for belonging to J. We assume N®=(|N%|, h,), [N®| C B,
ho,=ht N* h, maps N® n B, onto itself, and N§ contains some elements we
need and somewhat more {see latter). As ¥ is a barrier this is possible. We
then will choose 7, an w-branch of f¢ , distinct from 7g for g <a [if
8+ Mo < & this follows, the rest exclude < 2 branches of f & but there are
Mo such branches], a maximal antichain <dn n < co> of By, d, € N§, and
Tw € N® in {z,: 707 <V ET g, and let b, =h(d,), 0 =h(dy NTa),
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Pa=tx Nb, =c, :n<w}, and a,= |y (d, N T,) € B§. All should have

n<o

superscript d,7 (where d = <d.n n < a)>, T =<'rn n < w)) but we usually

omit them or write a [T.d], p.[T.4] etc.

The choice of d,7 {and 7, which is determined by 7) is done by listing the
demands on them (see Stage B) and showing a solution exists. The only prob-

lematic one is (a) (omitting p g for B < a) and we partition it to three cases :
(D &(B) < ¢(a) or ¢(B) = ¢(a), B + < a,
(I ¢(B) = ¢(a), B < a < g2
(1) B = a.

We shall prove that every 7,d are OK. for (I), that for any family
{atnt 7)1 < 23°§ (n a branch of f% etc.) with pairwise distinct 7*’s, all
except < Zal) many are 0.K. for instance of (II}, and that there is a family of
oMo triples (d,n,7) satisfying (III) with pairwise distinct ®*'s. This clearly

suffices.
Case I ¢(B) < ¢(a) or &(B) = &a),B + Moz a

Suppose some z € <Ba,aa[?,8?}>gg realizes pg. Clearly there is a parti-
tion (ez:ﬂ < 4) of 1 (in Bg,) such that z = egUleNealT.d] )Ules—a[T.d]).
Choose ¢<¢(a) large enough and finite w Ca so  that

[¢(B) < &la) => &) < €], dn.haldy) b, are based on {z,:v € “¢] (for n < )
and cf(¢ < w),eq.eq,ezeg are based on J={w €T :n 1 k £ v}, where k <o
also satisfies such that nga(k) > £ 7,1 & & Npg.

We claim:

(*) thereism < w suchthat b8 n (e,ye,) — U d, #0.
n<k

For suppose (*) fail, then as e [fd]lN(U dp) € By wlog.
n<k
(ejues) N U 4, = 0 (otherwise let
nsk
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eg =eg Uley NaT.d] N Udy)Ulean U dp—a,[7.d])

n<k n<k

e; =e;—Jad,,
nsk

e} =ep— U dy)
nsk
so if z realizes pg then so does eg, but ey € B, contradicting an induction
hypothesis . So (*) holds.

Now as <dn:n <ca> is a maximal antichain in B, for some € <w,

den{bfnleyes— Uy d,)) # 0. Necessarily £ >k. So for some €€ {1,2],

nsk
dg N bl ne,#0. As z realizes pg.z N(dg N bdL Ne)=denctne,
which is based on J. But we know that z N (dgnbfne,) is
de N oh Neinaa[T.dl=de N oL NeinTe (if e=1) or
denbfnen(1-a,[7.d]) = dg N bENexN1—Tg (if £=2). As dg N bENe, # 0
is based on J, € > k,n,(k) > & T4 is free over J, (see Fact 3.3(2)) necessarily
z N {(dgnbdL Ne,) is not based on J, contradiction.

CaseH:ﬁ<a<ﬁ+2n°‘

We shall prove that if nQ,T‘Q are appropriate ( for € =1,2) and ! #7n?

then pg cannot be realized in both <Bu,a, [?Q,J]>Ba.

As there is a perfect set of appropriate i's it will suffice to prove that for
each w-branch 7n of Rang {f®) for some appropriate ¥ (Ba,a?>38 omit
P a = Pal7.d] which will be in done in Case 11

Note that [§ =fe € B,: for some z=<e for every n
z Nbg Ne=cg Mejisanideal

The details are easy.

CaseIll: B = a.

This case is splitted into several subcases. Let 7, be any w-branch of
f® . My # g whenever B < a <+ 2% Let I' = Y{d(h(z)) : 2 € B,}. We shall
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assume |I"] =8y, => [" C N§, so in this case p, is omilted by By, or B,- iff
it iz omitted by B, {(by 3.7(1)). As accomplishing our aim is easier we shall

ignore this case (work as in Il 4 and use quite arbitrary pg.

Subcase III 1.: For some p' €T, and a' € B,—Fx Ker'(h) for every
p.p <peTforsomerTe <xn:p <ne 'I‘>35, e’ #0=h{Tna").

As we are interested not in (f® N?%) itself, but in k, by using Gm'(W),
w.l.o.g. p* € Range (f%). By 3.9 (for Rang (h), which by assumption, is infinite)
and easy manipulations (see 2.4 and {Sh 2]) there is a maximal antichain
<dn:n <co> of B, such that for no z € B,, z N h(dy,) =h(dy,) and
z N h(dopyy) = 0. Wlog {d,in < 0w} ¢ N§.

It suffices to prove the conclusion for any w-branch n, of
Range (f%).p" <na & {ng: B <a}. We define by induction on n, 7, € N,
Ty € <x,’:7;am < "l>55: Tn # 0,1 and h{Ts,) = 1,Lh(Tap41) = 0. {possible by the

assumption of subcase IIl 1), so we finish this subcase.

Subcase Il 2. For some a’ € B, th(z)—a':x € B. ,z <a'}isinfinite.

Clearly B®* =th(z)—a": z€Ba,z<a’} Yyl —(h(z)—a’):
z € Bge, ¢ < a,} is a subalgebra of B,- (with @” an atom). By assumption (of
this subcase) B? is infinite. So by 3.9 there are e, € B%, pairwise disjoint, and

~@z € By) N\ (z=ey, nz M eg,,1=0). As 2’ is an atom of B% w.lo.g.
n

e, <1 —a”, hence there is d, < a’ (in B,-), such that h(d,) =e,. Clearly
h{d,—\ d,)=e, — Ueg =¢e, ,sowlog thed, are pairwise disjoint. So by
g<n g<n
easy manipulation for some <dn n < w> the following holds:
(ii) < d,mn < w> is a maximal antichain of B,».
(iii) fornoz = 1—a”, 2 N\ A(dapsz)—2" = h(dap4a)—a”,

z N h(dape)—a’ =0
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We can assume that d,, h{d,) € N§&.

Let 7° = <'r7‘2:n < m> be a suitable sequence, (for our 7,) then so are
7 = <1‘-£:n < w>, for £ < 4 where

1 . 1 P ¢ .
Ton = 1=T3n, Ton+1 = Ton+

2 — 40 2 — 0 .
Ton = Ton, Ton+1 = 1= Ton+ns
3 — 0 3 — 10
Ton = 17 Ton  Tin+1 = 1 Ton4y

Suppose for each € < 4, in <Ba,aa[?’z,cﬂ>ﬂs there is an element yQ
which satisfies %% nh(dD—a’ =h(zfNnd,)—a" for 1=n <w Wlog.
y?<1-a” = dg hence y% € B,. Now (¥°Uy?!) n (WPUy?) € B, contradict (iii)

above.

Subcase Il 3. For some a’ € By-—Ex Ker'(h), and p* €T, for every
p,p <peT there is T € <xv:p SV E T> B such that

ritne*) nae' =1ne’.

Clearly the function ' : By-ta” = B,-ta” defined by h'(z) =h(z) n e’
is an endomorphism; W.l.o.g. the assumption of subcase III 2 fail hence
{h(z)—a” iz <a”} is finite, hence the range of h' is infinite (as
a® & Er Ker'(h), so by 2.4 there is x <a"’ such that h{(z) na"—z # 0; we
know that d(z) is countable, hence for some p . p" <p” €T and
fvip”’ < v €T is disjoint to d(e”) U d(z) N d(h(z)). Now by the hypothesis
of subcase Il 3 we can easily find 7,, € <x,,:p" Qv E 'I'> By » With pairwise dis-

jointd(m,)andh(t,Na") e’ =7, na’. So

h{t,Nz)N(a"~z) =
h(r,na" ) nz)nle'—z)=h(t,Nna") nhiz) N (a"—=z) =
(h(tpne’) ne’) nkhiz) na'—z)=(t,Nne’) nhz)n(a’"~z) =
=1, Nhiz) N (a'—=2) =7, N (h(z) Na’—=)
It is #0 [as d(1,) N{@(z)Ud(r()Ud(a")) = ¢) and A(z) Na'~z # 0,

T, 20)], and for different n we get different values. So
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{hiy nNz) N (e"—z):z € By, is infinite. Hence {h(yNz)—z;y € By} is

infinite, leading to the assumption of Subcase III 2 {with z here for a” there).

Subcase III. 4. For some p* €T, and a* € B,- — Ezx Ker'(h) for every

TE <xV:p' {ve T>Bg h(tnae*) na’ isbasedon frp" € veT}.

Wlog. the hypothesis of subcase 1 1 fail, hence
thitne') 1€ <x,, ptQve T> g5} is infinite. As also w.l.o.g. the hypothesis

of subcase Il 2 fail we get (h(tna')ne’:7€ (x,, pt <ve T>Bg; is
infinite. So by 3.9 we we can find d, € <2:V:p' qve T>Bf, such that
<dn_.n < w> is a maximal antichains in B§, and there is no z € H-,

z h(da) =h(dz,), 2 N h(dgps) =0, anddg = 1-a’.

As before we can assume p* € Rang (") and d,, € N§ for n < @. We sup-

pose 71, € {ng: B < a}is an w-branch of f%,p" < N,
For any  suitable 7, if y[7.d]e€ <Ba,aa{?,§]> p;  satisfies
Th E(:z:v:p' SvE T>Bg and y{7.d] nh{d,) =h{T,Nd,), (for every n)

then by 3.3 we easily get y[7,d] € B,, and then get contradiction by trying

four T's, as in subcase 112

Subcase Ill. 5. There are p* € T and atomless countable subalgebra
Y ¢ B,- and pairwise disjoint ¢y € Y(€ < @) such that for every ¢ and

pgElp:p’ <peT] for some 74 € <x,:pg SveE T> g the following holds: for
no z € B§ is dizyCivpg €4 veT and
z N h(cg) N ecg—Te=h(cgNTe) Nce—Te

Let < d, n< m> be a maximal antichain of B~ such that d,, =cg,.

So wlog. YyUld, n<w}]cNg&p" €Rang (f*) (using Gm'(W)), and
even p° < 7, and each N2 is closed under the functions k and pg » 74 (impli-

cit in the assumption of the subcase).

We can now choose by induction onn, T, € N,
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Ty =<x,,:77arn <}V€T>B§
such that

(*) (a) for even n, for no z € B§ based on v tn L veTl is
zNr{dn)Ndn = Tn =R (A NTaINEn — Th.

Why is this sufficient? We let d=d,mn < w>, and T ={1,n <wy. So
assume some ¥F[T.d]¢€ <Ba,aa[’f‘,&}>5§ realizes p,[7,d], ie. satisfies
y[T.dl nh(d,) =h(d,NT,) for every n. As y[T.d] € <Ba,aa[7_-,cf]>55 for
some pairwise disjoint eg[7,d ],e,[7,.d ],e[7.d] € By,

y[r.d] =eo7.dly (e,[1.d] N ealT.d]) U (eT.d]—aql7.d]).
For some m(*) <o, d(ey7.d]) yd(e,[7.d]) Ud(ey[7.d]) is disjoint to
frmm (*) < v €T} (see 3.3(2)).

Now we compute forn even > m(*):
z Zh (A NTR) N Bp—Tn =

=y[7.d] nh{d,) N d,—7, (by the choice of y[7,d])

= (eo[T.dule [T.d] N ag[T.d]) U (ex[T.d]-a[T.d]))Nh(d, ) Ndp—Ty =
= (eo[T.d Nk (dn) Ndrn —T2) V(e [T.d]Na[T.d ) N (dp)Ndy — 75) U
Ulea[T.d]—aq[T.d)Nh{dy) Ndy — Ty)

But e [T.d]l N d, =71, N d, hence
(es[T.2]Maa[T.d)Ndn = (e1[T.d]NT)Nn
(eolT.d]-a,[7.d])Nd,, = (ep[7.d]-T)Ndy
Hence
z = (eg[T.d]Nh(d,) Ny —7,) Ule [T.dINTR) N (AR ) Ndy — 70 ) U
((92[7,5]—’Tn)ﬂh(dn)ﬁdn _T'n.)
But the second term is zero and in the third the first —7,, is redundant, so

z = (eo[?-&] r\h’(dn)ndn_Tn)U(eznh(dn)mdn_Tn) =



Sh:229

114

= (eolT.@Tue[T.d)NA(dy ) Ndy — Ty
We can conclude
(eofT.dlueT.d)NA(dy) N —Tn = (A NTR)NEn—Tn
contradicting the choice of 1.
To finish Case 11l (hence the proof of 3(10) we need only

Why the five subcases exhaust all possibilities?
Suppose none of 111 1-5 occurs. By not subcase IIl 1 for some p° € T,
a) h(1) # 0 for every T € <:z:,,:pD <ne T> 55
Let Y be the <xpoh st < m> ps- As Y is countable, for some 1(*) <A,

fv 00 ~ <i(*)> < v € T} is disjoint to Uid{(y) Ud(h(y)):y € Y}. As "not sub-
case 111 5" for some p!, p0 ~ <?,( ‘}) < pleT, and

(b) there are no pairwise disjoint non zero cg € Y(£ < w), such that for

every pd.p! < pd € T for some 1y € <xu:pd <ve T> g the following holds:

(fornoz € B, d{z) C {vipd € v €T} and
zNh{cg) Meg—Tg = h(cgNTg) N cg—Tg
Clearly
c) uld(y) yd(h(y)):y € Y}is disjoint to {v: pl <v €T
let Z=1{c € ¥: for some plpl<plecTfornote <x,‘,:p1 <veE T>55 does
(*) of (b) hold (with ¢, T instead cp,Tg)}.

By (b) among any ¥g pairwise disjoint members of ¥, at least one belong to Z.
It is quite easy to define y, €Z((n<w) such that

[yp € Ex Ker*(h) => y, € Ex Ker(h)], [m <n =y, N¥Ym =0], and for
every y € Y0} for somen,y N{(Uye) # 0 or ¥, =y. So (by the choice of
Z<n
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Y) <yn n < co> is a maximal antichain of B§. We shall show ¥y, € Ex Ker(h);
fix n for a while, and suppose y,, & Bz Ker(h), and let pl,p! < p} €T be such

that forno7 € <x,, cpp <VE T> z; does (*) of (b) hold.

Now for each T € <zv:p,{ Sve T> B as Yn € Z, clearly [as () of (b) fail
for vy, 7 (and pl)] for some z,€B§, d(z,)Clv:pig veT] and

Zy NV R WUn) N Yn—T = h{y, N\T)NYn — 7. Applying the failure of (*) of (b) for
Y, 1—T.0L we get z,€ BY, diz)Civ:pl € vet] and

Tz N h(Yn) N yn—(1-7) = h(Yp N(1—T)) MY —(1—T); note that
h{y, NT) < h{y,), and A{y, N{1-7)) = A (yn)—h{y, NT). By these equations
and as Yy, h(y,),z,,x5 are based on {v:pl € v €T} (by (c) and their choice

resp.) clearly for some partition of 1,eJ,e{,ef.ef € B, based on
fvpl! 4 veT}

(1) R(TNVYR) MY = ef Ue T NT) U (e —T).

Now for any 1,0 € <x,,:p,{ S vE T> , easily (as h is an endomorphism):

(i) A ((TUO) NYn) Y =(h (TNYR) NYR) N (RIONYR) N Yn)-
(iil) A (7o) NYn) Yn =R (T(Yn) NYn) U (R (0NYR) NYR)-
We can apply (i) to 7,0 and also to T(\o,T o, and substitute in (ii) (iii).

We get that

(a) el Nef =0ifd(r)ynd(o) =0, T0€ <x,,:p1 Sve T> g (otherwise
substitute (i) in (ii) and intersect with eJnef) and get
(r((tno) Nym) Ned Nef)= (eI-TIN(ef—0) =ef N 7§ N(TYo). and
by the assumptions on the d(eJ), d(ef).d(7).d (o) we get
(R (TN NYn) N Yn) N(einef) e
< fzr:d(z)cfv:pL <veTiyU (T(‘\a)>35 contradiction to (i) for oT).
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So let {1*:41 <&} be maximal such that d(r;) are pairwise disjoint
e{‘ #0, and 7 € <a:v : p,} v €T>Ba, then a < w,, and we can choose p,%

such that:
pl<pZeT, and[‘re:<::,,:p,% <V€'r>B6 = e =0].

Next we can get

B)eTned =0(ifd(t)Nd(o) =0, and 1,0 € <x,,:p.,% Sve T>Bs)'
The proof is similar to that of (a), using TNo.

As B§ satisfies the 8;-c.c. we can find §7%11 < w} C (::,,:p,% <veE T>B§, such
that (in B3) e; # yeg' = yted:m € {2, p2 <v ET) z} for £ =0,1. We can
i<w -

find p3,p% < ps €T, such that d(r¥) is disjoint to {v:pS <v € T}. So for
- L<w -

every T € <ar:,,:p,3L Sve T>88’ el <e} (by the choice of e}), and eJ nef =0
fori < w (by (B)) hence ey ne] = 0, hence
(7) ed =eg—ej.
Similarly
(8)e] =ei—ej.

Now we can prove that ef =ef when d(7)Nnd(o)=0,
7,0 € <x,,:p.,3t SVeE T>55, (repeat the proof of {«) intersecting with e7 —e ¥ or
with ef—ef). By the transitivity of equality ef =ef when
T,0 € <x,, pS<tve T> g Solet ey € B,- be the common value, so

(D RTNY)NYn =edUle; NT) for 7 e z,p3 <v €Ty g ;anded <y,—ey,

Leteg=y,—€4, 50y, =eglye;, egn e =0

soed <egforevery €z, p3 <:v€T>B§.
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As y, & Fx Ker®(h), at least one of the elements, ege, is not in
Ex Ker®(h). As not subcase III 2, for ¢ = 1,2 the homomorphism gg from
Bartegto Byt {1—eyp), gg{z) = h(z)—ey (for z = e,) has a finite range. Hence

for some ideal Jof B§ y,/ Jis a finite union of atoms and

for every re z,pd < v € 'i‘> NI

for = 0,1 R{TN\Yn) Neg=h{(TNeg) Neg

hence h(rNeg)neg = (e§UleI NT)) Neg
So (for r€{ 2, : p3 <V€T>55 SW)F

h(tNeg) Neo=eg
h(tney) Ne; =T1Ne,

If e, & Er Ker®(h), we get contradiction to "not subcase III 3" [use pg for

p’ there, now for any p, p3<peT choose pairwise disjoint
Tg € <x,, pSVE T>Bg for ¢ < @ now by the choice of J for at least one

2,19 € T so 1y is as required there]. So assume ey & Fz Ker'(h) and get con-

tradiction to "not subcase 111 4" [for some £ <M < © Z,3~c05~Tp3ncn> IS ID 3.

use po =~ <a>, ey N (% p3~ce> T pg~cn>) for p°,a” with « large enough].

So for each m,y, € Ex Ker'(h) (the y, were chosen after (b)) hence
Yn € Ex Ker(h), (by their choice) so let y, =¥, U¥a (both in B ),
R{yd) =0, h(z)=z for z =y, z € B,-. Let I €T be a countable set such
that d{y2),.d(y,d) c I, and for z € B,». d{h(z—y,)NYn) €I (by "not subcase

ITT 2", for each n we have only finitely many elements of this form).

We can easily show that for every z € B,+ for some a € B§ based on /,
h(z) —x =a—zx, [as <yn n < w> is a maximal antichain in Bg-, for this it
suffices to show that for every m < w there is a, € B, a, =y, such that
(hiz)—z) Ny, =a,~—zx; But (hz)~2) N\ Yn is the union of
(h{xNy,) —2) Y, which is =zero as (Vz=y,)h(z)=2z and of
(h(z—yp)—2) VY, which we know is based as wanted] So
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hz)=efulef Nz)ylei—2)

where each eg is based on 7, <e£ 2 < 8> pairwise disjoint eg € H§. Asin the
analysis above of h{z N\Y,) M ¥, possibly increasing I, applied to z € B- with
&

a{z) "I =0, we get e =0,e% =ey. If e, & Fx Ker’{h) we get contradiction
to "not subcase 11 3.". So 1—e,; & £z Ker'(h) and apply "not subcase 111 4."

So we finish the proof of 3.11; so B~ is endo-rigid.
3.12 Lemma : 7, is indecomposable.

Proof : Suppose K, K are disjoint ideals of B,-, each with no maximal
members, which generate a maximal ideal of B, For £ = 1,2 let fd,f:ﬁ < wl
be a maximal antichain ¢ Kp (they are countable as B,- satisfles the c.c.c,,
and may be chosen infinite as Ky # {0}, B,- is atomless). Let X be the ideal
Ky U K generates.

Now, e.g. for some ¢ <A, §d.2:€ <2n <w}cC Brg. Clearly @y € K or
1—a ¢ € K. For notational simplicity assume acpy € K. So @ = bobl,
b¥ € Kp. Now pré(bz) € Blg and is disjoint to each dnl“z, ( as b% and is,
df € Bgp), so by the maximality of fd,}_gzn < wi, pr£(bg) is disjoint to every
member of K;_g. As KoUKy generate a maximal ideal, clearly pr;(b’z) € Ky
[otherwise pr;(bz) =1—c! |y c? for some cl € K, c? € K,, and then ¢l ig

necessarily a maximal member of K;_g, so K;_g is principal contradiction].

2
Sopre(b?) U preg(b®) < 1but 1 =prylacs) = U pre(b?) contradiction.
£2=0

8
3.13 Theorem : In 3.1 we can get 2* ’such B. A. such that any homomor-

phism from one to the other has finite range.

Proof : Left to the reader (see [Sh 4, 3 ]).
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