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Summary. We prove that /~=#<u, 2u=#+ and "there is a non-reflecting 
stationary subset of #+ composed of ordinals of coflnality <#"  imply that there 
is a/~-complete Souslin tree on/~+. 

Introduction 

The old problem of the existence of Souslin trees has attracted the attention of 
many (see [Je] for history). While the N1 case is settled, the consistency of 
GCH+SH(N2) is still an open question. Gregory showed in [G] that 
GCH + "there is a non-reflecting stationary set of co-cofinal elements of co2" implies 
the existence of an Nz-Souslin tree. Gregory's result showed that the consistency 
strength of GCH + SH(H2) is at least that of the existence of a Mahlo cardinal. 
Without GCH, the consistency of CH+SH(H2) is known from [LvSh]. In 
[ShSt2] the equiconsistency of the existence of a weakly compact cardinal with 
"every H-Aronszajn tree is special" is shown. In [ShStl] it is shown that under 
CH, the consistency strength of "there are no Ha-complete H2-Souslin trees" is at 
least that of an inaccessible cardinal. 

We show how a Souslin tree which is #-complete (/~ regular) can be constructed 
on a cardinal #+ from a certain combinatorial principle (Theorem 2 below), and 
then show how this principle may be gotten from GCH and a non-reflecting 
stationary set of ordinals with coflnality < # in /~+ (Theorem 3 below). As a 
corollary (Corollary 5 below), GCH +"there is a non-reflecting stationary set of 
co-cofinal elements of 092" implies the existence of an Hi-complete Souslin tree 
o n  H 2 . 
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196 #-complete souslin trees on p+ 

As mentioned in [G, 1.10(3)], CH and the existence of a diamond sequence on 
{6<N2: cf6=N1} imply the existence of a Souslin tree on N2 which is 
Nt-complete. The construction of such a tree is by induction on levels, where at a 
stage of countable cofinality all branches are realized (for N t-completeness), while 
at stages of cofinality N~ the diamond is consulted to realize only a part of the 
cofinal branches in a way which kills all future big antichains. The combinatorial 
principle used in Theorem 2 to construct a #-complete Souslin tree on # + under 
GCH can be viewed as a weaker substitute for a diamond sequence on {6 <#+:  
cf6 =#}: instead of using a single guess at a stage of cofinality #, we use 
unboundedly many guesses, each at a level of cofinality < #. 

Unlike a diamond sequence on the stationary set of critical cofinality, this 
principle makes sense also in the case of an inaccessible cardinal (where there is no 
"critical cofinality"). This principle is closely related to club guessing (see [Sh-g] 
and [Sh-e]), which was discovered while the second author was trying to prove 
some results in Model Theory. This principle continues the principle that 
appears in [AbShSo], in which Souslin trees on successors of singulars are 
treated. 

We learned from the referee that Gregory presented in the seventies in a seminar 
at Buffalo a construction of a countably complete Souslin tree on ~2 from GCH 
and a square, but that this was not written. 

1. Notation. (1) If C is a set of ordinals, then accC is the set of accumulation points 
of C and nacc C d__f C\acc C. By T~ we denote the e-th level of the tree T and by T(e) 
we denote U Tp. 

b<~t 

2. Theorem. Suppose that 
(a) 2 = #  + = 2  u, #=#<~.  
(b) S* ~ {c~E2: cfc~=#} and C =  (co: 3~S*}, 6 =supc  o, co is a closed set of limit 

ordinals. 
(c) For every f i tS*  and ~ n a c c c 0 ,  P0,~_-c~(~), IP0.~[ <cf~, and if ~ S * ,  then 

IPo,~l<#. 
(d) For every set A c= 2 and club E c__ 2, there is a stationary S A, ~ C= S* such that for 

every 6 E SA,E, 6 = sup {~ ~ naccco: An~  ~ Po, ~/~ ~ ~ E}. 
(e) I f  g,6*zS*,  6zaccco., then there is some ~<6 such that (Po,~: 

fi z naccco A fi > ~> = (Po*, 8: fie (nacceon6)/x fl > c~>. 
(f) For every 7<2,  [{(P0,~: cczC0~?>: 6eS}I<#.  
Then there is a #-complete Souslin tree on 2. 

Discussion. Condition (d) is the prediction demand. It says that for every club E 
and a set A there is a stationary set of fi-s, such that for unboundedly many non- 
accumulation points e of co two things happen: e s E it and Anct is guessed by P0, ~. 

Proof. We assume, without loss of generality, that for every 6 ~ S* and a ~ c0, 
= #~. By induction on ~ < 2 we construct a tree T(e) of height ct such that: 

(i) The universe of T(a) is #(~+ 1), the fi-th level in T(a), T e, consists of the 
elements [#fi, #(fl + 1)), and every x ~ T~ for fl < ~ has an extension in Ty for every 
? < c~. Every x e T(e) such that Lev(x) + 1 < c~ has at least two immediate successors 
in T~. 

(ii) T(e) is #-complete. 
(iii) For a<fl ,  T(a)= T(fl) r IT(e)]. 
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M. Kojman and S. Shelah 197 

Also, we define a partial function (which, intuitively speaking, chooses branches 
which help us in preserving the maximality of small antichains that occur along the 
way): 

(iv) For  every x e  T(e) and a sequence t=(Po,~:  f l enaccc0ne )  such that 
sup(corse) < c~ and Lev(x) < max(c~ne) and max(cone) e naccco, y(x, t) is defined, 
and is an element in the level max(c0ne) which extends x and has the property that 
for every A e Po, max(c~) which is a maximal antichain of T(maxc0ne), there is an 
element of A below y(x, t). 

(v) If the sequence s extends the sequence t and y(x, t), y(x, s) exist, then 
T(~)~ y(x, t) < y(x, s). 

(vi) For  every increasing sequence (ti: i<  i*) there is an upper bound (in the 
tree order) to (y(x, tl): i < i*). 

The last demand is: 
(vii) If e = 3 + l ,  3eS*  then every y sT~ satisfies that there is some 

3" > 3 e accc0, and x e T(3), such that y is the least upper bound (in the tree order) of 
(y(x,t~): e e n a c c c 0 , n S A e x < e < 3  ) where ex is the least in naccc0, such that 
c~x>Lev(x), and t~=(Po, B: flenacccd*A fl <e) .  

We first show that this construction, once carried out, yields a #-complete 
Souslin tree on 2. The completeness of T =  U T(e) is clear from the regularity of 2. 
Suppose that A __c 2 is a maximal antichain of T of size 2. Let E be the club of points 
3 < 2 such that T I 3 = T(3) and A I 3 is a maximal antichain of T(3). Pick a point 
6 e S* such that 3 = sup {c~ e naccco: ~ e E A A t c~ e Po, ~}. As [T(3)I < 2 there is an 
element a e A, Lev(a) > 3. Let y be the unique such that Lev(y) = 3 and y < a. Then 
by demand (vii), there is some 3" > 3 and x e T(3) such that y is the least upper 
bound (in the tree order) of (y(x, t,): e e naccco.n3/x e >  Lev(x)). There is some 
e * < 3  such that (Po, p: e<f l<SAf l~naceco)=(P~ ,p :  e* <f lEnacceo ,~3) .  Pick 
some eenaeeco such that e>max{Lev(x) ,e*},  e e E  and A IeePo,~,. So 
e ~ naccco, and A n e  e Po*,,. Then the unique x' < y with Lev(x') = c~ [which equals 
y(x,(Po.~: 7 e ( n a c e e o . n ( e + l ) ) ) ) ]  is above an element a 'eA  Ie. But x '<a  - 
a contradiction to the fact that A is an antichain. 

Next let us show that we can carry out the construction by induction. When 
= fl + 1 and fl is a successor or zero, add two immediate successors to every point 

in the fl-th level. When fl is limit, c f f l<# ,  add an element above every infinite 
branch. This addition amounts to the total of # < u = #  points. If, in addition, 
flenaccc0 for some 6eS*, then for every xeT( f i )  define y(x,(Po,~: 
7 e naceco/x 7 < fl)) as follows: let 7o = max(confl) . When Lev(x)< 7o set Xo as the 
supremum [in T(e)] of (y(x, (Po, ~: e < e*))): e* < 7o/x e* e naccco); else, Xo = x. As 
IPo, ~l --< cffl, we can in cffl steps choose a cofinal branch above Xo which has a point 
above an element from A for every A e P0, ~ which is a maximal antichain of T~. Let 
the required y be the supremum of this branch. 

If fl is a limit and cffl = #, distinguish two cases: case (a): fl = 3 e S*. So we should 
satisfy demand (vii), namely, add bounds precisely to those branches which for 
some 3 " > 3  in S*, 3eaccco,  , are of the form (y(x,t~): 7enaccco.~f l )  where 
tr = (Po*, g: ( < 7/x ( e naec co,). By (f) this costs only the addition of # new elements. 
If, in addition, there is some 3 '~S* such that 3enaccco,,  we should define 
y(x,(Po,,7: 7enaccco, ^ 7 < 3 ) )  for all x e T(3). This presents no problem: as 
]P~,, ol < #, we attach to each x some Xo such that Xo = x or To~ Xo > x and such that 
Xo is above members from every maximal antichain in Po,,o; now Y(x,(Po,,7: 
7 e naccc0,/x 7 < 6 ) )  will be the point in level 3 above Xo we obtained anyway to 
satisfy demand (vii). 
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198 #-complete souslin trees on #+ 

Case (b): c f f i=#  and tiCS*. Then when there is some 5 such that fleaccc6 we 
realize enough limits to obtain completeness under increasing sequences of the 
form (y(x, ti): i<i*}. By (f), we add thus < #  elements. If there is no such 5, just 
make sure, by adding # points to the tree in level fl, that above every x e T(fl) 
there is a point in level ft. This takes care also of (i). If there is some 8' such that 
fle naccc~,, then for every x e T(fl) define y(x, (P~,, 7: Y e nacc@/x ? < 8}) exactly as 
in the case of smaller cofinality. [] 

We will show now how to obtain from a non-reflecting stationary set a special 
case of the prediction principle we used in the previous theorem. One should 
substitute Pa,~ in the previous theorem by B~ from the next theorem to get the 
assumptions of the previous theorem. 

3. Theorem. Suppose 2 = cf2 > N~, S __c 2 is stationary, non-reflecting, and carries a 
diamond sequence ( A~: c~ ~ S}, S* is a given non-reflecting stationary subset of 2, 
S * n S = 0  and 5eS* =~ cfS>N0. Then there are sequences C=(ce :  8eS*}  and 
/3=(B~: ~eS} such that: 

(i) B~c=a; 
(ii) super= 6 and co is a closed set of limit ordinals; 

(iii) /f 6 ,6"cS* and 6caccc**, then there is some ~<8 such that c~,n(a,8) 
= c ~ n ( ~ ,  8); 

(iv) for every club E c= 2 and set X c= 2 there are stationarily many 8 c S* such that 
8=sup{ecnaccc~:  c~c S n E  A Xnc~= A,}. 

Proof. We fix some 1-1 pairing function ( - , -  } from 2 x o) 0 onto 2 and let 
0 r  A , - { f l < a :  (fl, n}cA}. We may assume that for every countable sequence 

Jr = (X,:  n < ~o} of subsets of 2 there are stationarily many a e S such that for every 
n, X,  n a  =A~. Denote by S(X~), for a (finite or infinite) sequence of subsets of 2 the 

s t a t i o n a r y s e t { c ~ e S : ~ x , c ~ = A : } .  

To every limit ~ < 2  we attach a club of e, % satisfying e~nS=e,  nS*=O, 
otpe,=cfc~ and e, contains only limit ordinals whenever eeS*.  Let 
Co=(e6:  5~S*}. Suppose that C,=(c~:  8eS}  is a bad candidate for the job, 
namely, that there are a club E, and a set X,  such that for every 8 c E,c~S* the set 
{a e naccc]: ~ e S(X,)c~E,} is bounded below 8. (Surely, we may assume that E. is as 
thin as we like - in particular, that all its members are limits.) Define C, + 1 by 
induction on 8: For every 7 e c~, we define c~+~n(?, minc~\(7 + 1)) [-where (?, fl) 
denotes, as usual, an open interval of ordinals], and we let 
e] + ~ = c'~w (J {c'~ + ~ n(?, min el\(? + 1)):? e c]}. This is well defined, as every 7 e c~ has 
a successor in el. So denote by/~ the ordinal minc]\(? + 1), and let 

( c~+~(y,/~) if tiES* 

c]+Im(y, fl) = 0 if f leS(Xo . . . .  ,X , )  (*) 

{~: ? < ~ < fl/x (3 ~ e ep) (~ = sup(~En))} otherwise. 

Note that for the definition to be consistent, fl s c] must always be limit (and this 
is indeed the case). 

3.1 Lemma. Suppose that C, is defined for n <= m. Then for every n < m and 6 c S*: 
(0) I f  ~ e c] then fl is a limit ordinal. 
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M. Kojman and S. Shelah 199 

(1) c~ is closed. 
_n C _ n + l  ( 2 )  % = t ; ~  

(3) I f  c~eS*~accc~, then c"~ and c ~ + l n e  have a common end segment. 
(4) I f  o~ec~+lnS(Xo, . . . ,X,),  then eenaccc~  +1. 

Proof. (2) is t rue by the definition of c~ + 1 for every n and ~ e S*. (0), (1), (3), and (4) 
are proved by induct ion on n and 8. 

Fo r  n = 0 we know that  eo = c o is all limits and is closed, so (0) and (1) hold. (3) is 
vacuously true, because conS* = 0, and (4) is vacuously true because e~nS= O. 

For  n + l :  
(0): Suppose e e c~ + 1. If e e c~ then it is a limit ordinal  by (0) and the induct ion 

hypothesis  on n. If e~c~, let 7--supc~nc~. Because of (1) and the induct ion 
hypothesis  y < e. Let  ti = minc~\(c~ + 1). If t ie  S* then c~ + 1 ~(y, ti) = c}+ 1 n(7, ti). So 

e c~ + 1, and by the induct ion hypotheses on ti, e is a limit ordinal.  If ti ~ S*, the 
n + l -  c~ n(y,  ti) = {c~: y < ct < ti, (3( e ep)(~ = sup (hE , )} .  Therefore,  for some ( e e~ our  

is s u p ( ~ E , ) .  Since E,  is a club, e e E , .  But E ,  is a club of limits, so e is limit. 
(1): Suppose that  ~eaccc~ +1, and we wish to show c~ec~ +1. If ~e accc~, then 

because of (1) and the induct ion hypothesis  on n e e c] and [by (2)] e e c] + 1. Else, 
7 = s u p ~ n c ~  and t i=minc~\(a+l) ,  y<c t< t i .  If t ieS* then cteaccc~ +1. By the 
induct ion hypothesis  on ti and (1), e e c ]  +~. Otherwise, e is a limit of (a~: i< i* )  
such that  ei = s u p ~ n E ,  e c~ + 1. So clearly e e E,.  Let  (* be the minimal  in e~ above 
c~. So c ~ = s u p ( * n E , .  Therefore,  a e c ]  +1 

Before proving (3) we note:  

3.2 Fact.  Suppose ~ e c~ and ti = minc~\(~ + 1). I f  ti (i S* and ~ e c~ + ~ n(y, ti) is a limit 
of c"~ + 1, then ~ e e~. 

Indeed, if c~=sup{c~(i): i< i*} ,  where c~(i)=sup((i)caE, are elements in c] + 1, 
e E, .  Therefore,  every ((i) < e [or  else sup ((ONE, > e > c~(i)]. But ((i) > c~(i), so e is a 

limit of e~. As ~ < ti and e~ is closed, ~ e % 
,+ 1 have a (3): Let  e e a c c c ] + l n S  *, and we wish to show that  c] +~ and c~ 

c o m m o n  end segment. If e e accc], then by the induct ion hypothesis  on n and (3), 
we know that  c] and c~" have a c o m m o n  end segment;  say they agree on the interval 
(~(0),~). This means, in particular,  that  for every 7ec]n(~(0),c0,  c~ec~" and 

c,+~n~, o~ c"+lr~(7, ti), and minc~\ (?+l )=minc~\ (7+i )=: t i .  Therefore,  also ~ t~,p~= 
consequent ly  c] + ~n(a(0), ~) = c~ + ~ n(a(0), c 0. So assume that  ~ ~ accc~. The  first 
possibility is that  a ~ c~ altogether.  In this case let ~ < ~ < ti assume their t radi t ional  
roles as the last ordinal  of  c~ below a and the first above .  If tie S*, then by the 

,+1 have a c o m m o n  end induct ion hypothesis  on ti we know that  c~ +1 and c~ 
n+  1 have a segment;  but  c~ + ~n(7, t i )=c~ + tn(7,  ti), so it follows that  c~ +1 and c~ 

c o m m o n  end segment. 
* If ti ~ S*, then by the fact above, ~ e e~ -  contradic t ion to e ~ S  is empty. So this 

subcase is non-existent.  
The  last case is: a r  but  a e c ] ,  or in short  aenaccc~ .  Let  ? be the last 

element of c~nc~. Then  by (*), ,+1 ,+ i  c~ n(7, ~)= c~ n(7, ~). 
(4): Suppose that  a e S(X o .. . .  , X,)nc~ + 1. We should see that  ~ e n a c c  c~ + 1. Let  

re<n+ 1 be the minimal  such that  c~ec~'. It is enough to prove that  aenaccc~ ' ,  
because by (*) it is clear that  if ~ e S(X o . . . .  , X,~)c~naccc~" then ~ will remain a non-  
accumulat ion  point  in c~' + 1 (because nothing will be added in the interval below it). 
So wi thout  loss of generality we may  assume that  c~ e c~ + 1\c~. So denote  by (7, ti), as 
usual, the unique minimal interval with end points in c~ to which ~ belongs. First  
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200 #-complete souslin trees on # + 

case: fl e S*. So e �9 c} + 1; and by the induction hypothesis on fi, e �9 naccc~ + 1. So this 
case is done. Otherwise, tiCS*. So by the fact above, if e were a limit of c] +1, it 
would be in ep. But c~ �9 S, and therefore cannot be in e~ by the very choice of e~. 
Therefore, e �9 naccc] § ~. (This is where the non-reflection of S is used in an essential 
way.) [] 

3.3 Claim. There is some n < co for which C, and (A~: c~�9 are as required. 

Proof. Suppose not. Let J?o~ = (X, :  n < o0). Let E = N E, and E'= acc(S(3~o)nE). 
n 

So E' is a club. Pick some 3 �9 S*c~E'. For every n there is a bound below 3 of the set 
{c~�9 e�9  As cf3>No,  let e*<3  bound c~(n) for all n. Let 

> fl > e* be in S(X~,)c~E. So for every n, Xnnfl = A~, and fl �9 E,. If fl �9 c] for some n, 
then by (4) fl �9 naccc] - a contradiction to fl > e(n). So fl q~ c] for all n. Therefore, for 
every n we may define (7(n), fl(n)) as the minimal interval with ends in c] which 
contains ft. 

3.4 Claim. fi(n+ 1)<]~(n). 

Proof. By its definition, fi(n)�9 In the case fl(n)= 6*e S*, there are clearly 
elements in c~, +1 above /~ and below ]~(n), so the claim is obvious. The case 
fl(n)�9 is impossible because of (4). In the remaining case, 
c~+ln(7(n),/~(n))={~: 7(n)<c~</~(n), (~�9 Let ~*>/~ be in 
%,). As/~ �9 E__c E,, sup ~* c~E, >/~. But the right-hand side of this inequality belongs 
to c] +1, while /3 does not; therefore, sup~*nE,>/~. So we see that there are 
elements of c] + 1 in (/3,/~(n)), therefore, the least of them, namely,/~(n + 1) is smaller 
than/~(n). [] 

This is clearly a contradiction. We conclude that after finitely many steps, C, + 1 
cannot be defined due to the lack of a counterexample. This means that C, and 
(B~: e �9 S) where B~=A"~ satisfy (i), (ii), and (iv). By (3) above, they satisfy (iii) as 
well. [] 

This shows that after finitely many corrections all the requirements are satisfied, 
and our theorem is proved. [] 

4. Theorem. I f  the ea we pick in the proof of Theorem 3 satisfy the additional 
condition that for every 7 < 2 the set {e~ny: c~ �9 2 is limit} has cardinality smaller than 
2, then the resulting good C=(ca: 3eS*)  satisfies that for every y<2,  [{c~nT: 
3eS*}l<,~. 
Proof. Let 7 < 2 be given. We must show that I{c]ny: 3 �9 S*}]</~. Let N-<H(Z, �9 
for some large enough Z, INI < 2, 7 __c N, ~ �9 N, {e, nT: e < 2 is limit} = N, (e,: v < 2 is 
limit) �9 N, and E,, X, �9 N for every n. 

We shall see that for every n and 3, c~ny �9 N. Since [NI < 2, this is enough. 
First, we notice that if 3 < ~ then c o �9 N and by elementarity also c] e N for every 

n. Now we use induction on n to show that for every 3>7,  c]n7 � 9  For n=0 :  if 
3 > 7 then c~ = eeoc7 �9 N by the assumptions on N. For n + 1 we use induction on 
3. Suppose, then, that for all 6 '<3,  c~+~nT�9 

We need the easy 

4.1 Fact. I f  (o~o, ~1) is a minimal interval of c~(7 + 1) then c] + ~ ~(~o, cq)�9 N. 

Proof. By (*) above, the definition of c] + i n  (%, e ~) depends only on %,  E,, and (if 
case there is such) %"+1. All these objects are in N, so also c] + l n(e o, e~)�9 N. [] 
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M. Kojman and S. Shelah 201 

Denote y(6)= supc]nT. So 7(6)<7. If 7(6)=7, then c ]+ lnT=c~nTu  U C'o +1hI 
I 

where I runs over all minimal intervals of c]n(y + 1). So by the fact above we are 
done. Else, 7(6)< 7. In this case define fl(6)= mine]\7. If fl(6)=7 then again we are 
done by the fact. The remaining case is 7(6)<7<fl(6). By the same fact, 
c"~+lnT(f)EN. If fl(6)~S*, then ,+1 ,+1 c0 n(7(6), 7) = ca(n n(7(6), 7). By the induction 
hypothesis, and since 13(6)< 6, the latter set is in N, and we are done. If 13(6)r S*, 
then either nothing is added into (y(5), fl(6)) [when fi(5)sS(Xo, . . . ,X,)], or 
c~ + 1 n(7(6), 13(5)) = {c~: 7(6) < ~ < fl(d) (3 ( e er = sup E,c~ ()}. So in this definition 
N might not know who 13(6) is, but %~)n7 ~ N. Therefore, denoting by e* the last 
member in E,c~7, we can determine in N the set c~ + 1 c~c~*. As to whether ~* itself is 
in this set or not, we need knowledge which is not available in N, but who cares, as 
long as both possibilities are in N. [] 

5. Corollary. I f  there is a non-reflecting stationary set S__C{e<p+: cf~<#},  and 
2u=p+,  p<u=p, then there is a p-complete Souslin tree on p+. 

6. Remark. This improves the result by Gregory in [G]. 

Proof. It is known (see [G, 2.1]) that if S__C{6ep+: cf6<p} is stationary, then 
p = p <" implies G(S). As S is non-reflecting, we can, for every limit ~ < p +, choose a 
closed set % c~ = sup e~ and opt e~ = cfa such that e~ nS  = 0. # = p < u implies for every 
Y < P + the set {e~c~y: a < 2, ~ is limit} is of cardinality at most #. Use Theorem 3 and 
Theorem 4 to obtain the assumptions of Theorem 2, S being the given non- 
reflecting stationary set and S* being {6 < 2:cf5  = p}. By Theorem 2 there is an 
p-complete Souslin tree on #+. [] 

7. Problem. (1) Can the existence of such a tree be proved in Z F C + G C H ?  
(2) Can a Souslin tree on  ~2  be constructed from GCH and two stationary sets, 

each composed of ordinals of countable cofinality, which do not reflect simul- 
taneously? By [Mg] this would raise the consistency strength of GCH+ SH(N2) to 
the consistency of the existence of a weakly compact cardinal. 
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