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Abstract 

We study combinatorial principles known as stick and club. Several variants of these principles 
and cardinal invariants connected to them are also considered. We introduce a new kind of side- 
by-side product of partial orderings which we call pseudo-product. Using such products, we 
give several generic extensions where some of these principles hold together with 4ZH and 
Martin’s axiom for countable p.o.-sets. An iterative version of the pseudo-product is used under 
an inaccessible cardinal to show the consistency of the club principle for every stationary subset 
of limits of wI together with XH and Martin’s axiom for countable p.o.-sets. 
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1. Beating with sticks and clubs 

In this paper, we study combinatorial principles known as ‘stick’ and ‘club’, and their 

diverse variants which are all weakenings of 0. Hence some of the consequences of 

0 still hold under these principles. On the other hand, they are weak enough to be 

consistent with the negation of the continuum hypothesis or even with a weak version 

of Martin’s axiom in addition. See e.g. [2, 4, lo] for applications of these principles. 

We shall begin with introducing the principles and some cardinal numbers connected 

to them. 

( 7 ) (read “stick”) is the following principle introduced by Broverman et al. [2]: 

( 7 ): There exists a sequence (x,),,,, of countable subsets of WI such that for any 

y E [ollNF there exists CI < w1 such that x:, C: y. 
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Of course the sequence (xol)Xiwl above is a bluff. What is essential here is that there 

exists an X C [c~r]~O of cardinal&y N1 such that for any y E [ollN1 there is an x EX 

with x C y. The formulation above is chosen here merely to make the connection to 

the principle (4) introduced later, more apparent. 

Note that ( 7 ) follows from CH. 

The principle ( 7 ) suggests the following cardinal number: 

7 =min{(X( :XC [OilNO, VyE [~r]~’ SEX xcy}. 

We have Ni d 7 <2N0 and ( 7 ) holds if and only if 7 = Ni. We also consider the 

following variants of 7 : 

f’=min{rc:rc>Ni, there is anXC[iclNO 

such that ]X)=rc and tty~[rc]~’ 3x~XxCy); 

f”=min{lc:rc>~1, there is an X(Z[K]‘” 

such that IX]= K and ‘v’y E [rclK 3x EX n C y}; 

Tj. =min{(X] :XC [;I]~” 

such that Vy E [AIN 3x EX x C y}. 

We have NAG T”< f’<2’0 and A<T~G~‘o. (7) holds if and only if 7 = I’= 

7 ” = ~1. Let us call x as in the definition of 7 ( 7 ‘, 7 ” and Ti respectively) a 7 -set 

( 7 ‘-set, 7 “-set and T,-set respectively). 

Lemma 1.1. 

(a> TGT’. 
(b) IJ’ 7 <N,, then 7 = 7 ‘. In particular, we have then 7 ” < 7. 
(c) of /? < 1,’ then Tl, < Ti,,. 

(4 T d It 6 T’. 

Proof. (a): Let X 2 [rc]‘@ be a 7 ‘-set of cardinality 7’. Then Xc =X n [co~]~O is a 

7 -set of cardinality < 7 ‘. 

(b): By (a), it is enough to show 7’ d 7. We show inductively that, for every 

uncountable K < 7 , 

(*)x there exists an X, C [IC]~O such that IX,1 < 7 and 
‘dv E [lc]“’ 3x EX, (x c y). 

For K = Nl this is clear. 

Assume that we have shown (*)A for all I <K. If K is a successor then by induction 

hypothesis, we can find X, C [c(]~o for all o! < K such that IX,] < 7 and Vy E [xlN1 3x E 

X,x C y. Let X, = u,,, X,. Then X, has the desired property: IX,] < 7 is clear. If 

Y E [fP’ > there is some cy < K such that y E [a]“. Hence there is an x EX, CX such 

that x c y. 
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Suppose now that K is a limit. By assumption, we have cof(ti) = o. Let (K,)~~(,, 

be an increasing sequence of cardinals below fc such that K = UnEw IC,. For each n, 

let X,,, 5 [K,,]~o be as in (*)K, and let X, = UnEw X,“. Then X, is as desired: clearly 

IX,1 d 7. If ?/ E [K]~’ there is an n E o such that JJ f’ K, is uncountable. Hence there 

exists an x E X,,, C X, such that x 2 y n rcc, C y. 

In particular we have shown that (*)? holds and hence 7’ < 7. 

(c): Similarly to (a). 

(d): By (a) and (c), we have 7 = 7 N, < 7 1 < T?f = 7 ‘. ? 

The question, whether 7 < 7 ’ IS consistent, turned out to be a very delicate one: 

the problem is connected with some natural weakenings of GCH whose status (i.e. 

whether they are theorems in ZFC) is still open. One of them implies that 7 = 7’ 

(this is essentially stated in [14, 1.2, 1.2A] in the light of [ 13, 6.1 [D]]; for more 

see [15]) while the negation of the other implies that the inequality is consistent. In 

this paper, we shall treat the latter consistency proof (Proposition 3.4). In contrast, 

the consistency of the inequality 7” < 7 can be shown without any such additional 

set-theoretic assumptions (Proposition 3.5). 

The principle (4) (‘club’), a strengthening of ( 7 ), was first formulated in 

Ostaszewski [IO]. Let Lim(tu,) = {1;<~i :;j is a limit}. For a stationary E 2 Lim(tol ), 

h(E): There exists a sequence (x;,)~Q; of countable subsets qf’ 01 such that fi)~ 

w:erJ 1% E E, x7 is a cqfinal subset qf y with Ok = o and ,fiw cw~~~ 
JE [to,IN1 there is ;I E E such thut n-. C Y. , - . 

Let us call (x;. );!E~ as above a C(E)-sequence. For E = Lim(ol ) we shall simply write 

(4) in place of &(Eim(cui)). Clearly ( 7 ) follows from (a). Unlike (7 ), (2) does 

not follow from CH since (4) + CH is known to be equivalent to 0 (K. Devlin, 

see [lo]). This equivalence holds also in the version argumented with a stationary 

E c: Lim(o~, ). 

Fact 1.2. For any stationary EC Lim(o>, ), b(E) + CH is equivalent to O(E) 

Proof. The proof in [lo] argumented with E works. 11 

Shelah [ 1 l] proved the consistency of CH + (4) in a model obtained from a model 

of GCH by making the size of &ot ) to be NJ by countable conditions and then 

collapsing N, to be countable. Soon after that, in an unpublished note, J. Baumgartner 

gave a model of -CH + 4 where collapsing of cardinals is not involved: his model 

was obtained from a model of V = L by adding many Sacks reals by side by side 

product. I. Juhasz then proved in an unpublished note that “-CH + MA(countahle) 

+ (3)” is consistent. Here MA(counrahle) stands for Martin’s axiom restricted to 

countable partial orderings. Later Komjath [7] cited a remark by Baumgartner that 

Shelah’s model mentioned above also satisfies -CH + MA(countable) + (4). In 

Section 3, we shall give yet another model of -CH + MA(countable) + (a) in 

which collapsing of cardinals is not involved (Theorem 3.8). In Section 5, we construct 
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a model of -CH + MA(countabZe) + “a(E) for every stationary E 5 Lim(ol >,’ starting 

from a model of ZFC with an inaccessible cardinal (Theorem 5.6). 

These results are rather optimal in the sense that a slight strengthening of 

MA(countabZe) implies the negation of (4). Let MA(Cohen) denote Martin’s axiom 

restricted to the partial orderings of the form Fn(rc, 2) for some K where, as in [8], 

Fn(rc,2) is the p.o.-set for adding IC Cohen reals, i.e. the set of functions from some 

finite subset of K to 2 ordered by reverse inclusion. 

Fact 1.3. MA for the partial ordering Fn(wl,2) implies 7 = 7’ = 2No. Further, if 

MA(Cohen) holds, then we have also 7 ” = 2No. 

Proof, Both equations can be proved similarly. For the first equation, it is enough to 

show 7 = 2n0 by Lemma 1.1. Suppose that X C [cc)I]~O is of cardinality less than 2*“. 

We show that X is not a 7 -set. Let P = Fn(wr,2). Then for each x EX the set 

D,={qEFn(or,2):3aEdom(q)flx q(u)=O} 

is dense in P. For each LX < 01, 

E,={qEFn(wt,2):g/_?>a(PEdom(q)Aq(b)=l)} 

is also a dense subset of P. Let 9 = {D, :x E X} U {E, : ct < 01) and G be a g-generic 

filter over P. Then the uncountable set 

Y={cl<or :q(a)=l for some qEG} 

contains no x EX as a subset. q 

We shall see in Proposition 3.5 that MA for the partial ordering Fn(or,2) is not 

enough for the last assertion in Fact 1.3. 

a(E) is equivalent to the following seemingly much stronger statement. Let 

E C Lim(ol) be a stationary set. 

&t(E): There exists a sequence (xy)y,&~ of countable subsets of co1 such that for 
every y E E, x7 is a cojinal subset of y with otp(x,) = o and for every 
X E [ollN1, {LX E E :x, CX} is stationary. 

Fact 1.4. For any stationary EC Lim(ol), 4(E) and it(E) are equivalent. 

Proof. Like Fact 1.2, an easy modification of the corresponding proof in [lo] will 

work. Nevertheless, we give here a proof for convenience of the reader. 

Clearly it is enough to show (SC(E) +4+(E). Suppose that (x?)?~E is a /(E)- 
sequence. We claim that (x~)~~E is then also a 4+(E)-sequence. Otherwise there would 

be a Y E [otlN1 and a club C C Lim(ol) such that x7 $4 Y for every y E C n E. By thin- 

ning out C if necessary, we may assume that Y n a is cofinal in a for each a E C. For 

LX E C, denoting by a+ the next element to a in C, let ylr C [a, IX+) n Y be a cofinal 
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subset in c(+ with otp(y,) = w. Now let Y’ = UllEC yX. Then Y’ E [o~]~l and Y’ C_ Y. 

We show that {y E E : xy C_ Y’} = 0 which is a contradiction: if y E E fl C then x7 $ Y’ 

follows from Y’ C Y. If y E E\C then there is a E C such that CI < y <a+. By the choice 

of y,, Y’ f’ 7 is not cofinal in y. Hence again x7 $Z Y’. C 

Now, let us consider the following variants of the (/)-principle: 

(&): There exists a sequence (x~)~~L~,,,(~~,) of countable subsets of ~1 such that 

for every y E Lim(ol ), xY is cqjinal subset of y, otp(x,) = o and ji)r every 

y E [WIN’, there is y <WI such that xr\y is jinite. 
(&,I): There exists a sequence (x~)~~L~,,,(~,) of countable subsets of ~1 such that 

for every y E Lim(ol ), x7 is cqjinal subset of y, otp(x,,) = w and ,for every 

YE [ollN’ 

{a<ol :x, f? y is finite} U {ci<fq :xol\y is jinite} 

is stationary in WI. 

Clearly, (4) implies (4,). Similarly to Fact 1.4, we can prove the equivalence of 

(a,) with (rCL> which IS obtained from (&,) by replacing “there is an u < 01 . .” 

with “there are stationary may z c0.11 . .“. Hence (4,) implies (a+). It is also easy 

to see that (4,) implies ( 7 ): if (x~&L;~(~, 1 is a sequence as in the definition of 

(&), then {x,\u : y E Lim(wl), u E [o,]<~O} is a 7 -set of cardinality NI Diamonja 

and Shelah [3] gave a model of XH + (4,) + -0). By the remark above this 

model also shows the consistency of non-equivalence of ( 7 ) and (4) under -CH. In 

this paper we prove that (4,~) is strictly weaker than (5,) by showing the consistency 

of -( 7 ) + (4,~) (Corollary 3.12). The partial ordering used in Corollary 3.12 does 

not force MA(countable) hence the following problem remains open: 

Problem 1.5. Is MA(countabZe) + ~(7 ) + (&z) consistent? 

2. Pseudo product of partial orderings 

In this section, we introduce a new kind of side-by-side product of p.o.‘s which will 

be used in the next section to prove various consistency results. Let X be any set and 

(c)iEx be a family of partial orderings. For p E &, Pi the support of p is defined 

by suPp(p)={i~X:p(i)# 1~). For a cardinal K, let n:,,,,fi be the set 

PC nfi:IsuPP(P)i<K 
IEX 

with the partial ordering 

p<q H p(i) <q(i) for all i EX and 

{iEX: p(i) ; q(i) 2 1~) is finite. 
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For K = Na this is just a finite support product. We are mainly interested in the case 

where K= Ni. In this case we shall drop the subscript Ni and write simply n:,, P. 

Further, if P = P for some partial ordering P for every x EX, we shall write n:,, P 

(or even ni P when K = Ni) to denote this partial ordering. 

For p, q E n:,i,, fi the relation p 6q can be represented as a combination of the 

two other distinct relations which we shall call horizontal and vertical, and denote by 

<h and Gv respectively: 

P d h 4 @ SUPP(P> 2 suPP(q) and P t supP(q) c 4; 

pd,q H supp(p)= supp(q), p(i)bq(i) for ail I’EX and 

{i E X : p(i) < q(i) < 1 } is finite. 
# # s 

For p E nj$Expi and Y LX let p[Y denote the element of n:,,,, Z$ defined by 

pry(i)= 1, for every i~x\Y and pry(i)= p(i) for in Y. 

The following is immediate from definition: 

Lemma 2.1. For p, q E n:,it-xfi, the following are eqUiValent: 

(a) pdq; 
(b) There is an r E n:,,,, P; such that p Gh r d u 4; 

(c) There is a8 s E n:,,, 9 such that p G<,, s <h q. 

Proof. (b) +(a) and (c)+(a) are clear. For (a) + (b), let r = plsuppq; for (a)+(c), 

s = 4 t SUPPG?) u P t w\ suPP(q)). 0 

Lemma 2.2. (1) If P, has the property Kfor all i EX then P = n,*,, P; preserves N,. 

(2) Suppose that /Z<IC. If Pi has the strong A-cc (i.e. for every C E [Pi]” there is 

pairwise compatible D E [Cl’.), then P = n: iEx fi preserves A. 

Proof. This proof is a prototype of the arguments we are going to apply repeatedly. 

(1) and (2) can be proved similarly. For (1 ), assume that there would be p E P and a 

P-name f such that 

(*) plkp”f :(wl)V+w and f. is l-1”. 

Then, let (P~)~~~, and (qE)atwl be sequences of elements of P such that 

(a) PO d P and (P~)~<~, is a descending sequence with respect to <h; 

(b) qr d u px and qa decides f(a) for all CI < WI ; 

(c) per r S, = qr IS, for every CI < 01 where 

s, = SUPP(%) 

\( 

SUPP(P) u u suPP(qa) . 
8<1 1 

For a<w let d, =UBczwdqp). Then (dz)xc,,, is a continuously increasing se- 

quence in [X] <O1. Let uE = {BE wp(q,): qdP># P&Q) for a <WI. BY (bYI, u, is 
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finite and by (c) we have u, C d,. Hence by Fodor’s lemma, there exists an uncount- 

able (actually even stationary) Y C 01 such that u, = U* for all r E Y, for some fixed 

U* E [Xl<““. Since nztu* fi has the property K, there exists an uncountable Y’ C Y 

such that {qa ru* : a E Y’} is pairwise compatible. It follows that qy, ;[ E Y’ are pair- 

wise compatible. For each CI E Y’ there exists an n, E o such that 4% lb “n2 = ,f(cc)” 

by (b). BY (*h nx, a E Y’ must be pairwise distinct. But this is impossible as Y’ is 

uncountable. 

For (2), essentially the same proof works with sequences of elements of P of 

length 2, using the d-system lemma argument in place of Fodor’s lemma. C 

Lemma 2.3. y’ 191<2<” for all i EX, then n:.,,.,. I: has the (~(“)+-cc 

Proof. By the usual d-system lemma argument. 17 

Corollary 2.4. (a) Under CH, iJ’ 4 satisfies the property K und 141 <N, jbr ever) 

i EX, then P = ny,, e preserves N1 and bus the Hz-cc. In particular P preserws 

every cardinuls. 

(b) Suppose that 2<” = K. If F: satisjies the strong R-cc for every H, <i, < IC and 

lP,l <x then nz,,,., I: preserves every curdinalities <K and has the JC~-CC. In parti- 

cular, n* K, iEx P, preserves every cardinals. 

Proof. By Lemmas 2.2, 2.3. 0 

Lemma 2.5. For any Y C: X and x EX\Y, IVP have 

Proof. The mapping from n:,i,, fl to HE,,,, 9 x P, x n:.icx\(ruix)) 9 defined by 

PH(PrY>P(X),Pr(X\(YU {x1))) 

is an isomorphism. Cl 

In the following we mainly use the partial orderings of the form Fn(;1,2) for some j, 

as fi in n:,,,, q. Note that Fn(1,,2) has the property K and strong JC-cc in the sense 

above for every regular IC. 

For a pseudo product of the form n:,, Fn( Ki, 2), Lemma 2.2 can be still improved: 

Theorem 2.6 (T. Miyamoto). For any set X, and sequence (xi)iEx, the purtiul 

ordering P = n:,, Fn(Ki, 2) satisfies the Axiom A. 

Proof. The sequence of partial orderings ( <n)nEo, defined by: p do q H p <q and 

p dn q H p d h q for every n > 0 witnesses the Axiom A of P. We omit here the details 
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of the proof since this assertion is never used in the following. The idea of the proof 

needed here is to be found in the proof of Lemmas 2.7 and 5.2. 0 

Lemma 2.7. Suppose that 181 d K for every i EX and P = n:+,i,, 5. Then 
(1) If i is a P-name with lkp “i E V”, then for any p E P there is q E P such that 

q<h p and 

(t) for any r bq, if r decides ,x! then r [supp(q) already decides X. 

(2) Let G be P-generic. If u E V[G] is a subset of V of cardinality <K+, then 
there is a ground model set X’ c X of cardinality < K (in the sense of V) such that 

u E V[G ’ (n:+,iEX/ 811. 

Proof. (1): Let @:K+IC x rc; cr~((p~(a),(~~(a)) be a surjection such that rpl(a)<a 

for every CI<K. Let (JI~)@<~, (P:)~<, and (ra,p)EiK,p<K be sequences of elements of 

P defined inductively by 

(a) PO = P; (P&<~ is a descending sequence with respect to <h; 

(b) for a limit y < K, py is such that supp(p,) = Ulcy supp( px) and, for i E supp(py ), 

pr(i) = pd(i) for some a<y such that i E supp(p,); 

(c) (ra,P)kK is an enumeration of {r E P : r < U p,}; 

(d) let r = rrp+Xrp+) and 

PL = r t supp(r) U pa t <X\ supp(r)). 

If there is s <h p: such that s decides J?, then Let 

pa+1 = PG( t SUPP(Pa) LJS t(X\suPP(Pa)). 

Otherwise let px+l = par. 

Let q c JJ:,,Exfi be defined by supp(q) = U,,, SUPP(P,) and, for i E =qp(q), q(i) = 
pi(i) for some a < JC such that i E supp(P~)). We show that this q is as desired: suppose 

that r <q decides X. Then there is some a < K such that 

r[suPP(q) = Pk t wP(P3 U 4 t(X\wPbO). 

By (d), it follows that r [supp(q) d r [supp(p,+l ) decides i. 

(2): Let zi be a P-name for u and let X,, o! < rc be P-names such that lkp “.& E V” for 

every a<Ic and It-p“u={_&:a<~}“. By (I), for each p E P, we can build a sequence 

(Pa)or<lc of elements of P decreasing with respect to <h such that po <h p and 

(t)z for any r<p,, if r decides X,, then r [supp( plx ) already decides .&. 

Let q E P be defined by supp(q) = u,,, supp(p,) and, for if supp(q), q(i) = p&i) for 

some a < K such that i E supp(p,). Then q satisfies: 

(tt) for any r <q, if r decides s+-, for some a< IC, then r[supp(q) already 

decides X,. 
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The argument above shows that q’s with the property (tt) are dense in P. Hence, by 

generic@, there is such q E G. Clearly, G n ~~,rEsupp~q~F: contains every information 

needed to construct U. 0 

3. Consistency results 

Proposition 3.1. (CH) For any infinite cardinal I, let P = n; Fn(ol,2). Then 

II-p “ 7 = 2”. 

Proof. 

Claim 3.1.1. Ikp “ 7 >A”. 

Proof. If 3, = Ni this is clear. So assume that J.2 N2. For < <A, let & be the P-name 

of the generic function from wt to 2 added by the 5-th copy of Fn(wi,2) in P. Let 

G be a P-generic filter over V. In V[G] let X G [o~]~O be such that 1x1 <A. Then by 

&-cc of P there exists 5 <A such that X E Y[G’] for G’ = G n n;,rcl Fn(ot ,2). Since 

(f<)[G] is Fn(oi,2)-generic over V[G’] by Lemma 2.5, we have xe ((&)[G])-‘(0) 

for every x E X. 0 

Claim 3.12. Ikp “ 7 d A”. 

Proof. For u E [,?I <NO let gU be a P-name such that , 

lbp QU = ([O,]~“)~K@i.E.l~’ 

where ff is as in the proof of the previous claim. Let @ be a P-name such that 

For each u E [AlcNo, (&[G])tEu corresponds to a generic filter over n: Fn(wt,2) zz 

Fn(wt,2). Hence, by CH, we have It-p “I@,,] = Ni”. It follows that ll-,D “ ]@I = A”. Thus 

it is enough to show that ll-p “g is a 7 -set”. 

Let p E P and k be a P-name such that pl,“k E [a~]“~“. We show that there is 

an r<p such that rlb~“Llx~@ x~A”. 

Now we proceed as in the proof of Lemma 2.2. Let (P~)~<~, , (qor)a<o, be sequences 

of elements of P and (ra)l<WI be a strictly increasing sequence of ordinals <oi such 

that 

(a) PO G P and ~~~~~~~~ is a descending sequence with respect to d h; 

(b) 4 a 6, pa and qalkp “5, ok” for all CI <oi; 

(c) pa rS,=q, IS’, for every c1<01 where 

s, = supP(qr ) 
\i 

=pp( PI u u supp(qfr ) 
B<@ ) 
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For c( < 01 let U, = {/? E supp(q,) : q&?) # p&3)}. As in the proof of Lemma 2.2, there 

exists U* E [nlcNo such that S = {X E WI : u, = u*} is stationary. Now (qa 1~)~~s is an 

infinite sequence of elements of PUS = n,* Fn(wl, 2). Since P,* satisfies the ccc, there 

exists an E E S and [ < 01 such that qE 1 u* kpu, “{ 5: E 5’ f~ ( : pc 1 u* E G} is infinite”. 

Let r = qE U pc /(supp(pc)\ supp(p,)). Let & be a P-name such that 

Let i be a P-name such that ~11~ “i = ({, : x f b}“. Then ~11~ “Ii\ = No”. Since & can 

be computed in V[(fr[G])rc,*] we have TI~~“XE@~*“. It is also clear by definition 

of i that rkp “X &A”. 0 

This completes the proof of Proposition 3.1. 0 

Proposition 3.1 shows that 7 can be practically every thing. In particular, we obtain: 

Corollary 3.2. The assertion ‘cof( 7 ) = o’ is consistent with ZFC. 

Actually, Fn(& 2) forces almost the same situation: 

Lemma 3.3. Suppose that 1 is a cardinal such that pNO < 1 for every p =C i. Then, for 
P = Fn(/2,2), we have II-p “ 7 = A”. 

Proof. tbp “ 7 ai” can be proved similarly to Claim 3.1.1. For lkp “ T <A”, let G be 

a P-generic filter and let G, = G n Fn(cc, 2) for LY < i. In V[G], let X = U { Y[G,] n 

[~i]~o : CI <A>. Then [X( = 2 (here we need SCH in general). We show that X is a 

f-set. For this, it is enough to show the following: 

Claim 3.3.1. In V[G], if y C [wI]~~, then there is a* < ;1 and inJnite y’ E V[G,*] such 
that y’ C y. 

Proof. In V, let j be a P-name of y which is nice in the sense of [8]. For a <i, 
” 

let ix=3 n {p:/?<cq} x Fn(cr,2). Then 11~ “9 = l-lx<1 YE”. Hence 11,~ “301 <A j, 

is infinite”. It follows that there is some a* < 2 such that y’ = j%;,_ [G] is infinite. Since 

j,, is an Fn(a*,2)-name, jh.[G] f Y[G,*]. Thus these a* and y’ are as desired. Cl 

This completes the proof of Lemma 3.3. 0 

Proposition 3.4. (CH) Suppose that 

(*)I4 There is a sequence (Ai)i,,, of elements of [iIN’ such that 1~~ n Ai/ <No 
for every i, j<p, i#j 

holds for some p > II b 2N~. Then there exists a partial ordering P such that 
(a) P preserves NI and has the Nz-cc; 
(b) kp “ 7 = 2” and 
(c) lbp “ 7, >/A”. 

In particular, if (*)L,~ is consistent with ZFC for some p > 12 2N~, then so is 7 < 7 ‘. 
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Remark. By [12, Section 61, (**), and (*)I,, for some /1 <p are equivalent, where 

(**), there are finite ai C Reg\Nz for i<ol such that, for any A E [(oI]‘~, 

max pcf( UiEA ai) 3 p. 

For more see [15]. 

Proof. Let P be as in Proposition 3.1. We claim that P is as desired: (a) follows from 

Corollary 2.4 and (b) from Proposition 3.1. For (d), if X C [iIN is a fi-set then for 

each i <p there is an xi EX such that xi CA,. Since A,, i <,u are almost disjoint xi, 

i < ,u must be pairwise distinct. 

The last assertion follows from Lemma 1 .l (d). Cl 

Now we show the consistency of the inequality 7 ” < 7 : 

Proposition 3.5. Assume 2 ‘I = Nl. Then ji)r any cardinal i. 3 kl2 there exists u purtial 

ordering P such that 

(a) P satisfies the N3-CC; 

(b) P preserves HI und N2; 

(c) ij lNu = i in addition, then 11~ “MA(Fn(ot,2))“; 

(d) lkp “ 7 = i” and 

(e) IFS “ 7 ” = ~2 **. 

Proof. Without loss of generality let i. be regular and let P = nk2,;, Fn(wl, 2). Then 

(a) and (b) follow from Corollary 2.4. For (c), note that It-p ri2No” = i. under iUN’l = 1.. 

Hence, by Lemma 2.7 and Lemma 2.5, we see easily that IIp “MA(Fn(ol,2))“. An ar- 

gument similar to the proof of Proposition 3.1 shows that Ifp “ 7 = A”. For (e), we prove 

first the following: 

Claim 3.5.1. Let X = [N2]‘“. Then tile haoe lkp “X is a 7 “-set”. In particulur 11~ “ 7 ” 

< N2 “. 

Proof. Suppose that, for some p E P and a P-name 1; we have plkp “ji E [w~]~J “. Let 

f be a P name such that plbp “f : co2 4 I; and f is l-1 “. Let (P~)~<~,~~ and (qX)XCCr,2 

be sequences of elements of P such that 

if) PO d P and (px)l<crh is a descending sequence with respect to <h; 

(g) qX < I> pr and qa decides f(a) for all ix < 02; 

(h) pa r S, = qa rSil for every r < (02 where 

SC7 = wp(q,) 
\i 

supp( P) u u supp(qg ) 
B<a 1 

For 01< ~2, let 5, E w2 be such that q1 11~ “f(cc) = I$“. Let uU = {p E supp(q,) : qX(fl) # 

pa@)} for IX<O~. Just like in the proof of Lemma 2.4, we can find U* c [AlcNO such 

that S = { c( < w2 : ux = u*} is stationary in ~2. Since IFn(w,, 2)1 = N1, there exists T C S 
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of cardinality N2 such that qa /u*, c( E T are all the same. Let E,, n E w be o elements 

of T and let q = UnEo qa,. Then q<p and ql~p“{~a~:n~o}~j”. 0 

Now by (d), we have lkp “ 7 ” > N1 “. H ence, by the claim above, it follows that 

lkp “ 7 ” = Nz”. 0 

Modifying the proofs of Propositions 3.1 and 3.5 slightly, we can also blow up the 

continuum while setting 7 strictly between Nr and 2No. For example: 

Proposition 3.6. Assume CH and 2Nl = Nz. Then for any cardinals 1, p such that 

N2 <2<,u and p ‘I = p, there exists a partial ordering P such that 

(a) P satisjies the &-cc; 
(b) P preserves N1 and N2; 
(c) lkp “MA(countable)“; 

(d) lip “ 7 = 2”; 

(e) top “ 7 ” = N2” and 
(f) lkp =2No = @“. 

Proof. For i <p let 

pi= 
Ww ,2) 

Fn(w, 2) 

Then P = n&i.,p Fj is as desired. (e) can be proved by almost the same proof as that 

if i<;l, 

otherwise. 

of Claim 3.5.1. (a), (b), (c) can be shown just as in Proposition 3.5. Since P adds 

(at least) p many Cohen reals over V and IPI =p, (f) follows from (a). (d) is proved 

similarly to Claims 3.1.1 and 3.1.2. For 11~ “ 7 < 2” we need the following modification 

of Claim 3.1.2: let @ be defined as in the proof of Claim 3.1.2. As there, we can show 

easily that lIp“I@ =A”. To show that 11~ “9 is a 7 -set”, let p E P and k be a P- 

name such that pkp”k~ [wlN’ “. Now let (P~)~<~,, (qa)c<cw, (&),<,,, u* E [plCNO 
and S be just as in the proof of Claim 3.1.2. Let u* = u*\n. Since P,* = niEv* fi is 

countable, we may assume without loss of generality that qa 1 u*, CI E S are all the 

same. Now we can proceed just like in the proof of Claim 3.1.2 with U* replaced by 

u*\u*. 0 

The following Lemmas 3.7 and 3.9 show that, in spite of typographical similar- 

ity, n; Fn(wr,2) and n; Fn(o,2) are quite different forcing notions: while the first 

one destroys (4) or even ( 7 ) by Lemma 3.1, the second one not only preserves 

a (&)-sequence in the ground model but also creates such a sequence generically. 

Lemma 3.7. Let S=(X,)~~E be a L(E)-sequence for a stationary EC Lim(wl). Let 
P = n: Fn(w, 2) for arbitrary K. Then we have lkp “S is a a(E)-sequence”. 

Proof. Let p E P and k be a P-name such that plkp “k E [co~]~I “. We show that there 

is q < p and y E E such that qltp “x? c k”. Letf be a P-name such that plkp “f: 01 -+k 
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andf is l-l”. Let (P~)~<~, and (qa)aiw, be sequence of elements of P satisfying the 

conditions (a)-(c) in the proof of Lemma 2.2. Also, let u,, a<ol be as in the proof 

of Lemma 2.2. As there, we can find an uncountable Y C WI and u* E [K]‘~~ such that 

u, = u* for all CI E Y. Since IT,* Fn(a, 2) is countable we may assume that qr 1 u* are 

all the same for c( E Y. Now for each DL E Y let fir be such that qX lkp “f(a) = /I& ” and 

let Z = {/II : CI E Y}. Since qa, tl E Y are pairwise compatible, Pa, tl E Y are pairwise 

distinct and so 2 is uncountable. Note that Z is a ground model set. Hence there 

exists “J E E such that xy &Z. Let q = lJIEYn y qX. Then q < p. Since sup{/?, : ct < 7) 2 7 

and I~p“{~X:a<y} is an initial segment of Z”, we have qIkp“Znr ck7’. Hence 

qlt-p “Xy QC’. 0 

Theorem 3.8. “CH + MA(countable) + there exists a constructible &sequence” is 

consistent. 

Proof. We can obtain a model of the statement by starting from a model of V=L 

and force with P = nz Fn(o, 2) for a regular JC. By Corollary 2.4, every cardinal of V 

is preserved in Y[G]. Since P adds K many Cohen reals over V while IPI = K and P 

has the Nz-CC, we have V[G] + c‘2Ho = K”. By Lemma 2.5, V[G] /= “MA(countabk)“. 

By Lemma 3.7, the O-sequence in V remains a &-sequence in V[G]. 0 

In fact, we do not need a &sequence in the ground model to get (4) in the generic 

extension by n: Fn(w, 2): 

Lemma 3.9. Let K be uncountable and P = nz Fn(w,2). Then for any stationary 

E c Lim(wl ) we have kp “a(E) holds”. 

Proof. For y E E let 

be a bijection and let 

S, = {x 5 y :x is a cofinal subset of y, otp(x) = o}. 

For each x f S, let pX E P be defined by 

Px={(y+n,{(O,i)}):nE 0, iE2, i= 1 @ff,(y+n)Ex} 

For distinct x, x’ E S,,, pX and pXl are incompatible. Hence, for each y E E, we can find 

a P-name ir such that 

lkp “ i, is a cofinal subset of y and otp(Xv) = co” 

and 

px lkp “ X:) = x” for each x E S,. 
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We show that 11~ “(xr)yE~ is a a(E)-sequence”. For this, it is enough to show that, 

for any p E P and a P-name k, if pltp “A E [cullNl “, then there is 4 f p and y E E such 

that qlkp “X7 &A”. Let f be such that 

plkp “f : co1 -+k and f is l-l “. 

Now let (P,)~~~,, (qa)ar<w,, (G)w~,, Y and u+ be as in the proof of Lemma 2.2. For 

each CI E Y let /II be such that qa 11~ “f(a) = j&” and let 2 = {pa : CI E Y}. Let 

C = 

i 

y f Lim(ot ) : u (mpp(qa) n wl ) g y and 2 n y is unbounded in y 

i 

. 
XEYrl”j 

Then C is closed unbounded in wt and hence there exists a y” E C n E. Let q’ = UafYny* 

qa. Then we have q’ 6 q and q’lb “Z n y* Sk”. Now let x E S,+ be such that x & Z n y* . 
Finally, let q=q’Uq,. Then we have q<p and ~kP”&=x&Zny*~k”. U 

Note that E’s in Lemmas 3.7 and 3.9 are ground model sets. To force )(E) for 

every stationary E 2 Lim(wl ) which may be also added generically, we need a sort of 

iteration described in the next section. 

Toward the consistency of ~(1~) + (&+,z), we consider first the following lemma 

which should be a well-known fact. Nevertheless, we include here a proof: 

Lemma 3.10. Assume that there is a sequence (C~)B<~ of elements of [ollN’ such 
that \C, n C,( <No for all fi i y <K. Then there exists a partial ordering P with the 
property K such that in VP there is a sequence (Bg)peK of elements of [c~l]~l such 
that BgC_Cg and (BonB,I<No for all /?<y<lc. 

Proof. Let 

P={(D,f):DE[Jc]‘NQ, f:D+Fn(cor,2), f(s)~Fn(Ch,2) for all 6~0). 

For 0, f), to’, .f’> E P, let 

(D’,f’)<(D,f) ++ DCD’, f(cS)c f'(6) for all LED and 

(f’(s))-‘[{l}]\(f(6)>-‘[( l}], 6 ED are pairwise 

disjoint. 

By the usual d-system lemma argument, we can show that P has the property K. 

Since CD, P<K are pairwise disjoint modulo countable, the set 

~B,S = {(D,f) E P :P ED, 6 E dom(f@)) and 

31’6 (VI 6 domU( A of = I)} 
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is dense in P for every p < K and 6 < wI. Hence if G is a V-generic filter over P, then 

Bg= {a<rtit :f(P)(a)= I for some (D,J’)E G} 

is cofinal in WI and hence uncountable. Also by the definition of d on P, we have 

lBfiflB:)l <No for every b<y<~. ä 

Note that if there is a sequence (Blj)bXK as in Lemma 3.10 then by the argument in 

the proof of Proposition 3.4, we have 7 > K. 

Lemma 3.11. There is a partial ordering Q with the property K such thut Ike “(&:)“. 

Proof. Let (Qz,&>MG,, be the finite support iteration of partial orderings with the 

property K such that for each y E Lim(ok ), there is a QY name oY such that Q, forces: 

oY is an ultrafilter over “/, y\/I E 0:; for all /I < 7, I?, is a p.o.-set with the prop- 

erty K and there is an &-name X7 such that 

It8 “.+, is a cofinal subset of y of ordertype CD and 

I_$\al< Na for all x E ii, “. 

For example, we can take the Mathias forcing for the ultrafilter ii, as d,. For successor 

K < (01 let I~Q~ “d, = { l}“. 

Let Q= Qw,. As (Qr,hhw, is a finite support iteration of property I( p.o.s, Q 

satisfies also the property K (see e.g. [9]). Now let G be a V-generic filter over Q. 

In V[G], if X E [otlN1 then the set (X <ot :X n cx E V[G,]) contains a club subset 

CofLin?(o~).Let&={cr~C:Xncc~ii,[G]} andSt={ccEC:a\XEIj,[G]}. Since 

o,[G] is an ultrafilter over x in V[G,] for every c( E C, we have C = So ij SI We have 

I;i-IIG]‘,Xl <No for a E SO and Ix,[G] nXl <No for i( E St. Thus (X1[G])aE~inI(c,,,j is 

a (&)-sequence in Y[G]. 

Actually this proof shows that (X,[G]),E~im(w,) is even a (/+)-sequence in the 

stronger sense that it satisfies the assertion of the definition of (&2) with “is stationary” 

replaced by “contains a club”. 0 

Corollary 3.12. There is a partial ordering R with property K such that 11~ “ 7 >, HZ 

hut (&I) holds”. In particular ~(7 ) + (4,:) zs consistent with ZFC. Further $ CH 

holds then JOY any cardinal K, there exists a cardinals preserving proper partial 

ordering R, such that IIR, “ 7 3 K but (&) holds”. 

Proof. Let R = PI * & where PI is as P in Lemma 3.10 for K = N2 and p: as Q in 

Lemma 3.11 in T/“. 

For the second assertion, we let R, = Fn(rc,2,01) * PI * &. Note that under CH, 

Fn(ti, 2, WI ) is cardinals preserving and forces that 2 ‘I = K. Hence there is a sequence 

(Cfl)B<K as in Lemma 3.10 in the generic extension. Thus in VF”(K,2.01), PI can 

be taken as in Lemma 3.10 for our K. Finally, in VF”(K,2*u11)*P~ let & be as in 

Lemma 3.11. CI 
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4. CS*-iteration 

In this section, we introduce an iterative construction of p.o.s which is closely related 

to the pseudo product we introduced in Section 2. We adopt here the conventions of 

[5] on forcing. In particular, a p.o. (or forcing notion) P is a pre-ordering with a great- 

est element lp. In the following, we just try to develop a minimal theory needed for 

Theorem 5.6. More general treatment of the iterations like the one described below 

should be found in [ 161. 

We call a sequence of the form (P,,&)a6E a CS-iteration if the following condi- 

tions hold for every CL GE: 

(*0) P, is a p.o. and, if CI<E, then 0, is a P, name such that 11~~ “& is a p.o. with 

a greatest element 1~ “. I 

(*l) PE={p:p is a function such that dom( [alGNo; 

p ~/?EPP for any /~<cY and, 

if /I E dom( p) then p] restr b lt-~,~ “ p(p) E & “} 

(*2) For p, q E P,, p <p, q if and only if 

(i) for any B<a, P IPl~p, “p@)GAP)“; 

(ii) dzjf(p,q) = {fl E dam(p) fl dam(q) : p [ /3!fpfl “p(p) = q(p)“} is finite. 

We first show that such a sequence (P,,&),GE is really an iteration in the usual 

sense. In the following we assume always that (P,, &)ccGe is a CS*-iteration as defined 

above. 

Lemma 4.1. Suppose that a <p GE. Then 

(0) $ p E 9, then p 1~1 E P,; 

(1) pu cq; 
(2) for p, q E P,, we have P GP, q @ P GP, 4; 

(3) for p, qcPg, ifp+q then pladp,q ta. 

Proof. (1) can be proved by induction on /3. Other assertions are clear from the defi- 

nition of CS*-iteration. 0 

Lemm 4.2. Suppose that a d B d E and p, q E P,. Then pl,q ti plp,,q. 

Proof. Suppose that p and q are compatible in P,, say r <p, p, q for some r E P,. 
Then r E Pp by Lemma 4.1( 1) and r <p,$ p, q by Lemma 4.1(2). Hence p and q are 
compatible in Pp. 

Conversely, suppose that p and q are compatible in Pg, say s dp, p, q for some s E Pp. 
Then we have srafP, by Lemma 4.1(O), sra<p,pta=p and slabpxq/a=q. 
Hence p and q are compatible in Pm. Cl 

Sh:544



S. Fuchino et al. I Annals of Pure and Applied Logic 90 (1997) 57-77 73 

Suppose that crdpds, p~Pp. By Lemma 4.1(O), we have p ~cLEP,. For T+~ p TX, 
let 

p-r = p r (dom(p)\a) U Y. 

For p, qEP,, p<jt q%pdp, q and ptdom(q)=q; p<i, q%p<p q and dam(p)= 
dam(q) (h and u stand for ‘horizontal’ and ‘vertical’, respectively). 

Lemma 4.3. (1) Let a, fi, p, r be as above. Then p-r E Pp and p-r dp,( r, p. 

(2) For p, q E P,, r = q r (dom(q)\dom( p)) u p is an element of P, and r <j, p. 

(3) !fp,,eP,, for nEo and pn+l<i, pn for every nEu, then q=U{pn:rzEo} is 

an element of PC and q <!, p,, for every n E CO. 

Proof. (1): By induction on fl. If j? = c( then p-r = rd p /M =p. Suppose that we 

have shown the inequality for every 8’ </?. Let p and r be as above. If fi is a limit 

then we obtain easily p-r EP~ and p-r<p,$ r, p by checking (* 1) and (*2) of the 

definition of CS*-iteration. In particular, (“2) (ii) holds for the inequality p-r dr:,, r, p 

since d@(p-r,p)=diSf(r,p Ia) and d@(p^r,r)=0. If j=~+l for some p31x, then 

P r?- r E P:,, p r y-r &? r, p 17 by induction hypothesis. If y $ dam(p) then it follows 

p=p rl;EP,j and p-~&,~r, p. Otherwise (p-r) rylkp “p(y) 6,: p(y)“. Hence again 

it follows that p-r EPI, and p-r<plr r, p. 

(2) and (3) are trivial. 0 

Lemma 4.4. Suppose that u < /I <E, p E P, and q E P,j. If p and q are incomputihle 

in Pp then p and q r ct are incompatible in P,. 

Proof. Suppose that p and q 1 a are compatible in P,. Then there is r E P, such that 

r <p, p, q r x Let s = q-r. By Lemma 4.3, we have s <p,! q, r. Hence p and q are 

compatible in Pb. 0 

Lemma 4.5. Suppose that x </I <E and that A is a maximal antichain in P,. Then 

A is also a maximal antichain in 9. 

Proof. By Lemma 4.1(l), we have A C Pp. By Lemma 4.2, A is an antichain in P/j. 

Suppose that A were not a maximal antichain in Pp. Then there is some q E 4 such 

that q is incompatible with each of p EA. By Lemma 4.4, it follows that q r x is 

incompatible with each of p r a = p, p EA. This is a contradiction to the assumption 

that A is a maximal antichain in P,. Cl 

5. (X*-iteration of Cohen reals 

In the rest, we consider the CS*-iteration (Pz,&),,, for a cardinal K such that 

IF, “& =Fn(w,2)” 

for every c(<K. 
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Lemma 5.1. Let p, q E P, be such that pdq. Then there is r E P, such that r dp 

andfor any x E diSf(r,q), there is t E Fn(w,2) such that r 1 talk, “r(a) = i,‘. 

Proof. We define inductively a decreasing sequence (cI,),<, of ordinals and a de- 

creasing sequence ( pn)nEw of elements of P, as follows: Let a0 = max disf(p, q). 

Choose PI, E P,, so that ph 6 p r ~(0 and that pb decides P(Q). Let po = p ^ ph. If a,, 

and p,, have been chosen, let D, = difs(p,, q) n a,. If D, = 8 we are done. Otherwise, 

let c(,+~ = maxD,. Choose pL+, E P%,+, such that P:+~ d p,, r a,,+~ and P:+~ decides 

P,(G+I ). Let P~+I = pn - P:+~. This process terminates after m steps for some m E o, 

since otherwise we would obtain an infinite decreasing sequence of ordinals. Clearly 

r = pm is as desired. Cl 

Lemma 5.2. P, satisjies the axiom A. 

Proof. Let dn, n E cc) be the relations on P, defined by p < ,, q H p 6 tk q for p, q E P, 

and every n E LC) (in [6] an axiom A p.o., for which the <,‘s can be taken to be all the 

same, is called uniformly axiom A). ( <n)nEo has the fusion property by Lemma 4.3(3). 

Hence it is enough to show the following: 

Claim 5.2.1. For any p E P, and maximal antichain D C P,, there is q ~f,~ p such that 

{r ED : r is compatible with q} is countable. 

Proof. Let @ : w --f Q x o; n H (q*(n), I) be a surjection such that vi(n) <n for 

all n >0 and, for any k, I E w, there are infinitely many n E w such that G(n) = (k, I). 

We COnStIUCt inductively pk, tk, uk E P, and a sequence (Sk,J)[!=o for k E w as fOl- 

lows: let po = p. If Pk has been chosen then let (Sk,J)[Ew be an enumeration of 

Fn(dom(pk), Fn(w, 2)). If there are t ED and u E P, such that u d t, pK, difs(u, pk) = 

doms,,(k),Vpz(k) and u 1 difs(u, pk) =s~,(~),~~(x) (of course we identify here elements t of 

Fn(w,2) with corresponding P,-name ?), then let tk and uk be such t and u and let 

Pk+l = pk U u r (dom(uk)\dom(pk)). By Lemma 4.3(2), we have Pk+l E P. Otherwise 

let tk =uk = lp, and Pkfr =kk. 

Now, let q = UkEo Pk. Then by Lemma 4.3(3), we have q E P, and q <p, p. We 

show that this q is as desired. 

Suppose that t ED is compatible with q. Then by Lemma 5.1, there is u Cp, t, q 

such that u 1 difs(q, r) has its values in Fn(o,2). Let n E o be such that difs(q, r) c qn 

and k 3n be such that sV,(kxVp2(k) = u r dzf(q, r). Clearly tk ED by construction. We 

claim that t = tk: otherwise t and tk would be incompatible. Hence uk and u should be 

incompatible. But this is a contradiction. 

It follows that 

{r ED : r is compatible with q} g {tk : k E w}. 

Lemma 5.2 is proved. 0 

0 

In particular, PK is proper and hence the following covering property holds: 
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Corollary 5.3. Suppose that G is a P,-generic jilter over V. Then for any a E V[G] 

such that V[G] /= “a is a countable set of ordinals”, there is a h E V such that a C h 

and V b “h is a countable set of ordinals”. 

Lemma 5.4. [f K is strongly inaccessible, then P, satisfies the K-CC. 

Proof. Suppose that pp E P, for p < K. We show that there are compatible conditions 

among them. Without loss of generality we may assume that {dom(pb): /I<K} is a A- 

system with the root x E [K] QNo Let NO= sup{~+l:;:~x}. Then XO<K and pi ~xEP,,, 

for every fi < K. Since lP,l <K there are /!I, /!J’ <K, b# b’ such that p/i r x = pp TX. But 

then q = plc U pp~ E P, and q <,D, pp, pb/. ZI 

Lemma 5.5. Suppose that E 2 Lim(wl ) is stationary. Then 11, “h(E)“. 

Proof. For each ;’ E E let ,f, : [y, ;’ + co) + ;I be a bijection and let 

,S’:, = {x C ;’ :x is a cofinal subset OS ;‘, otp(x) = IQ}. 

For each x ES;,, let p* E P, be defined by 

where 42 n is the standard P,+,-name for { (0, i)} with i l 2 and i = 1% f7(y + n) t x. 

For distinct x, x’ ES:,, pX and px) are incompatible. Hence there is a P,-name X? such 

that 11~~ “X7 is a cofinal subset of y with otp($) = (I)” and p* I~F, “_$ =x1’ for every 

x E S... 

Wk show that Ikq “(X,), ‘, ,,tE is a a(E)-sequence”. Suppose that p E P, and A is 

a P,-name such that p 11, “k E [cJI~]‘~ “. We have to show that there is q < p, p and 

7 g E such that q 11, “i;. C k”. 

Let,{ be a P,-name such that p 11~ “7’: o -+k is I-1 “. Choose pr, qa, u, for c[ <(VI 

inductively such that 

(a) PO<P,P and (Pi)),,,, is a decreasing sequence with respect to <: ; h 
(b) qa d Fz pa and qa decides f(cr ); 
(~1 G = 4f(qz, pn) C dam(p) U UBcr dom(qb); 

(4 q, r u, E Fn(K, Ww2)). 

The condition (d) is possible because of Lemma 5.1. By Fodor’s lemma, there 

YE [to,]N’ and r E Fn(K, Fn(w,2)) such that qa r uz = r for every a E Y. For each x E 

there is [jg E (‘11 such that q1 11~ “f(u) = f17” by (b). Let Z = {/IX : r E Y}. Let 

C = (sup(q,) n WI ) C 7 and 2 n 7 is unbounded in ;’ 

is 

Y, 

Then C is closed unbounded in ol. Since E was stationary, there exists a I’* E C n E. 

Let q’ = UnEYni,*qx. Then we have q’ 11, “Z n y* C k”. Now let x ES;,. be such that 

xCZn;:*. Finally let q=q’Up,. Then we have q<g,p and qll-,=k”~,=x~Zn~* 
C k”. il 
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Let (P,, Q, h 4 K be a (X*-iteration as above. For c1 <K let P,l&;, be a Pm-name 

such that lIs “P,l~, = {p E P, : p r CI E ha} with the ordering p d K,a q H p < pr q”. As 

in [5], we can show that PK zP, * Px/eN. Also, by Corollary 5.3, practically the same 

proof as in [5] shows that 

11~ LLPK/G;a is M to a CS*-iteration of Fn(o,2)“. 

Now we are ready to prove the main theorem of this section: 

Theorem 5.6. Suppose that ZFC + “there exists an inaccessible cardinal” is consis- 

tent. Then ZFC + 7 CH + MA(countable) + “g(E) f or every stationary E CLim(ol ),, 

is consistent as well. 

Proof. Suppose that K is strongly inaccessible. For P, as above, let G, be a P,- 

generic filter over V. We show that V[G,] models the assertions. Let E GLim(co,) be 

a stationary set in V[G,]. Since P, has the K-CC by Lemma 5.4, there is some do <K 

such that E E V[G,] where G, = G, n P,. Hence by the remark before this theorem, we 

may assume without loss of generality that E E V. But then, by Lemma 5.5, we have 

UGI b “WI”. 
Finally, we show that MA(countuble) holds in V[G,]. Let 9 be a family of dense 

subsets of Fn(o, 2) in V[G,] of cardinal&y <K. Again by the K-CC of P,, we can find 

an CI < K such that 9 E Y[G,]. Since we have 

the generic set over V[G,] added by Q,[G,] = Fn(o, 2) is B-generic over Fn(o, 2) in 

VGA. 0 

At the moment we - or more precisely the first and the third author - do not know 

if an inaccessible cardinal is really necessary in Theorem 5.6. As for CS-iteration, IC 

is collapsed to be of cardinality N2 in the model above, since the continuum of each 

of the intermediate models is collapsed to Nt in the following limit step of cofinality 

201. Thus the following problem seems to be a rather hard one: 

Problem 5.7. Is the combination MA(countable)+&(E) for every stationary E c 

Lim(wl ) consistent with 2No > N2 ? 
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