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Abstract

We study combinatorial principles known as stick and club. Several variants of these principles
and cardinal invariants connected to them are also considered. We introduce a new kind of side-
by-side product of partial orderings which we call pseudo-product. Using such products, we
give several generic extensions where some of these principles hold together with —CH and
Martin’s axiom for countable p.o.-sets. An iterative version of the pseudo-product is used under
an inaccessible cardinal to show the consistency of the club principle for every stationary subset
of limits of w, together with —CH and Martin’s axiom for countable p.o.-sets.
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1. Beating with sticks and clubs

In this paper, we study combinatorial principles known as ‘stick’ and “club’, and their
diverse variants which are all weakenings of ©. Hence some of the consequences of
¢ still hold under these principles. On the other hand, they are weak enough to be
consistent with the negation of the continuum hypothesis or even with a weak version
of Martin’s axiom in addition. See e.g. [2, 4, 10] for applications of these principles.
We shall begin with introducing the principles and some cardinal numbers connected
to them.

(T) (read “stick”) is the following principle introduced by Broverman et al. [2]:

( T Y. There exists a sequence (Xy)y <., of countable subsets of w such that for any
y €[ N there exists a <w such that x, C y.
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Of course the sequence (xy)y<o, above is a bluff. What is essential here is that there
exists an X C[w, ] of cardinality ¥; such that for any y € [w]™ there is an x € X
with x C y. The formulation above is chosen here merely to make the connection to
the principle (éb) introduced later, more apparent.

Note that (1) follows from CH.

The principle (T) suggests the following cardinal number:

? =min{|X|: X C [0, Yy efo TN IxeX xC yh.

We have 8; < <2® and (%) holds if and only if ¥ =X,. We also consider the
following variants of :

T, =min{x: k>R, there is an X C[«]™
such that |[X|=x and Yy € [x]™ 3x€ X xC y};

T” =min{x:x >R, there is an X C [x]™

such that [X|=x and Vy € [x]* Ixe X xC y};

T, =min{|X|:x C[A]
such that Vy € [A]™ 3xeX xC y}.

We have R}, <1< 1 <2% and A< %, <A%. (1) holds if and only if T=1'=
TN =N;. Let us call X as in the definition of { (Tl, T” and Ti respectively) a ¥ -set
(Tl-set, T//-set and Tl—set respectively).

Lemma 1./1.

@ T<t. , §
() If T <Ry, then Y = 1. In particular, we have then 1" < Y.
() If A< then %<1,

@ T<h<t’

Proof. (a): Let X C [lrc]NO be a T -set of cardinality T Then Xo=XN[w P is a
? -set of cardinality < T

(b): By (a), it 1s enough to show T,< T We show inductively that, for every
uncountable k< T,

() there exists an X, C [k]* such that |X,|< Y and
vy e[k Ixe X, (xC y).
For k =N, this is clear.

Assume that we have shown (x); for all A <x. If x is a successor then by induction
hypothesis, we can find X, C [¢]™ for all o <k such that |X,|< ¥ and Vy e [«]® Ix e
XxCy. Let Xy=J,_, X« Then X, has the desired property: |X,|< ¥ is clear. If
y €[], there is some a<x such that y € [«]®'. Hence there is an x € X, C X such
that x C y.
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Suppose now that x is a limit. By assumption, we have cof(x)=w. Let (K, ) uew
be an increasing sequence of cardinals below « such that x = | ), k.. For each n,
let X, C[xk,]™ be as in (x),, and let X, = U,cw Xx,- Then X, is as desired: clearly
X <%, If e[k there is an n€ w such that yNk, is uncountable. Hence there
exists an x € X,, C X, such that xC yNk, C y.

In particular we have shown that (*)e holds and hence Tlg T

(c): Similarly to (a).

(d): By (a) and (c), we have ! = TNl < T$< TT’ = T/. -

The question, whether $ < T/ is consistent, turned out to be a very delicate one:
the problem is connected with some natural weakenings of GCH whose status (i.e.
whether they are theorems in ZFC) is still open. One of them implies that ¥ = T/
(this is essentially stated in [14, 1.2, [.2A] in the light of [(3, 6.1 [D]}; for more
see [15]) while the negation of the other implies that the inequality is consistent. In
this paper, we shall treat the latter consistency proof (Proposition 3.4). In contrast,
the consistency of the inequality T”<T can be shown without any such additional
set-theoretic assumptions (Proposition 3.5).

The principle (&) (‘club’), a strengthening of (T), was first formulated in
Ostaszewski [10]. Let Lim(w )= {y <), :7 is a limit}. For a stationary E C Lim(w) ).

&(E): There exists a sequence (x.,),cr of countable subsets of w, such that for
every y€E, x, is a cofinal subset of y with otp(x.)=w and for cvery
ve[w ™ there is y€E such that x, C y.

Let us call (x.).cg as above a &(E)-sequence. For £ = Lim(w,) we shall simply write
(&) in place of &(Lim(w:)). Clearly (?) follows from (d). Unlike (1), (&) does
not follow from CH since (&) + CH is known to be equivalent to < (K. Devlin,
see [10]). This equivalence holds also in the version argumented with a stationary
EC Lim(w)).

Fact 1.2. For any stationary E C Lim(w)), &(E) + CH is equivalent to < (E).
Proof. The proof in [10] argumented with £ works. =

Shelah [11] proved the consistency of -CH + (&) in a model obtained from a model
of GCH by making the size of @(w;) to be N3 by countable conditions and then
collapsing N, to be countable. Soon after that, in an unpublished note, J. Baumgartner
gave a model of ~CH + & where collapsing of cardinals is not involved: his model
was obtained from a model of V =L by adding many Sacks reals by side by side
product. I. Juhasz then proved in an unpublished note that “—~CH + MA(countable)
+ (&) is consistent. Here MA(countable) stands for Martin’s axiom restricted to
countable partial orderings. Later Komjath [7] cited a remark by Baumgartner that
Shelah’s model mentioned above also satisfies “CH -+ MA(countable) + (&). In
Section 3, we shall give yet another model of ~CH + MA(countable) + (&) in
which collapsing of cardinals is not involved (Theorem 3.8). In Section 5, we construct
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a model of -CH + MA(countable) + “&(E) for every stationary £ C Lim(w;)” starting
from a model of ZFC with an inaccessible cardinal (Theorem 5.6).

These results are rather optimal in the sense that a slight strengthening of
MA(countable) implies the negation of (&). Let MA(Cohen) denote Martin’s axiom
restricted to the partial orderings of the form Fn(x,2) for some k where, as in [8],
Fn(x,2) is the p.o.-set for adding x Cohen reals, i.e. the set of functions from some
finite subset of x to 2 ordered by reverse inclusion.

Fact 1.3. MA for the partial ordering Fn(w.,2) implies T: T'=2N°. Further, if
MA(Cohen) holds, then we have also " =2%.

Proof. Both equations can be proved similarly. For the first equation, it is enough to
show § =2% by Lemma 1.1. Suppose that X C [w,]™ is of cardinality less than 2%.
We show that X is not a ?-set. Let P =Fn(w,,2). Then for each x € X the set

D, ={q €Fn(w,2): Jou € dom(g)Nx g(x) =0}
is dense in P. For each a<w,
E,={q€Fn(w,2):3f>a(f €dom(q) Aq(b)=1)}

is also a dense subset of P. Let ={D, :x € X} U{E,:a<w} and G be a Z-generic
filter over P. Then the uncountable set

Y ={a<w;:g(x)=1 for some g€ G}

contains no x €.X as a subset. [1

We shall see in Proposition 3.5 that MA for the partial ordering Fn(w;,2) is not
enough for the last assertion in Fact 1.3.

&(E) is equivalent to the following seemingly much stronger statement. Let
E C Lim(w,) be a stationary set.

&i(E):. There exists a sequence (x,),cg of countable subsets of wy such that for
every y€E, x, is a cofinal subset of y with otp(x,)=w and for every
X e[, {a €E:x, CX} is stationary.

Fact 1.4. For any stationary E C Lim(w;), #(E) and &'(E) are equivalent.

Proof. Like Fact 1.2, an easy modification of the corresponding proof in [10] will
work. Nevertheless, we give here a proof for convenience of the reader.

Clearly it is enough to show &(E)=>&'(E). Suppose that (x,),cz is a &(E)-
sequence. We claim that (x,),cr is then also a &'(E)-sequence. Otherwise there would
be a ¥ €[] and a club C C Lim(w; ) such that x, ¢ Y for every y € CNE. By thin-
ning out C if necessary, we may assume that ¥ N« is cofinal in o for each « € C. For
o€ C, denoting by ot the next element to « in C, let y, C[o,a™)NY be a cofinal
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subset in ot with o1p(y,)=w. Now let ¥’ = {J,.c ¥« Then Y’ €[w]™ and Y/ C Y.
We show that {y € E:x, C Y’} =0 which is a contradiction: if ye ENC then x, £ Y’
follows from Y’ C Y. If y € E\C then there is o € C such that a <y <a*. By the choice
of y,, Y N7y is not cofinal in y. Hence again x, & Y'. [J

Now, let us consider the following variants of the (d)-principle:

(v ):  There exists a sequence (X,),crim(w) 0f countable subsets of w, such that
Jor every y € Lim(w1), x, is cofinal subset of y, otp(x,)=w and for every
y €[, there is y<w; such that x,\y is finite.

(dy2):  There exists a sequence (Xy)yeLimw,) 0f countable subsets of w, such that
Jor every y € Lim(w,), x, is cofinal subset of y, otp(x,) = and for every
ye o™

{a<wy:x, Ny is finite} U{o<w) x4\ y is finite}

is stationary in .

Clearly, (&) implies (&, ). Similarly to Fact 1.4, we can prove the equivalence of
(dhy) with (&) which is obtained from (&) by replacing “there is an a<wm;...”
with “there are stationary may «<w;...”. Hence (doy ) implies (db,2). It is also easy
to see that (&, ) implies (T): if (x,)yecLimw,) 1S @ sequence as in the definition of
(dw), then {x,\u:y€ Lim(ew), u€w]<%} is a ? -set of cardinality R,. Dzamonja
and Shelah [3] gave a model of -CH + (&) + —(é). By the remark above this
model also shows the consistency of non-equivalence of ( T) and (&) under =CH. In
this paper we prove that (d,,:) is strictly weaker than (., ) by showing the consistency
of =(T) + (&2) (Corollary 3.12). The partial ordering used in Corollary 3.12 does
not force MA(countable) hence the following problem remains open:

Problem 1.5. Is MA(countable) + = (1) + (&) consistent?

2. Pseudo product of partial orderings

In this section, we introduce a new kind of side-by-side product of p.o.’s which will
be used in the next section to prove various consistency results. Let X be any set and
(P,)icx be a family of partial orderings. For p € [];,.y P the support of p is defined
by supp(py={i€ X : p(i)# lp}. For a cardinal «, let H;ieXPi be the set

{pé 112 1supp(p)l <K}
i€x
with the partial ordering

p<qg < p(i)<q(i) for all i€ X and

{ieX: p@i) ; q(i); 1p} is finite.
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For x =Ny this is just a finite support product. We are mainly interested in the case
where k =R,. In this case we shall drop the subscript ®; and write simply [’ 2.
Further, if P,=P for some partial ordering P for every x € X, we shall write Hz <P
(or even []} P when k=X,) to denote this partial ordering. 7

For p, g€ H:’ie y Pi the relation p<g can be represented as a combination of the
two other distinct relations which we shall call horizontal and vertical, and denote by
<j and <, respectively:

p<uq <« supp(p)2supp(g) and p | supp(q) < ¢;
p<,q & supp{ pY= supp(q)}, p{i)<q(i) for all i€ X and
{ieX: p@) ; q(i) ; lp} is finite.
For pe [[i,ex P and Y CX let p[Y denote the element of [1x ;cx P defined by

plY(i)=1p for every i€ X\Y and p[Y(i)= p(i) fori€Y.
The following is immediate from definition:

Lemma 2.1. For p, g€ H;,ie x B, the following are equivalent:
(@) p<g;

(b) There is an r € [[ ,cx P such that p<,r<,q;

(c) There is an s € [[ oy B such that p<,s<xq.

Proof. (b)=>(a) and (c)=(a) are clear. For (a) = (b), let » = p[supp q; for (a)=(c),
s=q [supp(q)V p I (X\supp(q)). O

Lemma 2.2. (1) If P, has the property K for all i€ X then P =[]y P; preserves Ry.
(2) Suppose that 2<x. If P, has the strong A-cc (i.e. for every C € [P there is
pairwise compatible D € [C}"), then P= H; iex P preserves J.

Proof. This proof is a prototype of the arguments we are going to apply repeatedly.
(1) and (2) can be proved similarly. For (1), assume that there would be p€ P and a
P-name f such that

(*) php<fi(w) —wand fis 1-17.

Then, let (py)x<w, and (gx)e<w, be sequences of elements of P such that
(a) po<p and (py)r<w, 15 a descending sequence with respect to <y;
(b) g4 <, px and g, decides f(a) for all a<wy;

(€) px[Sx=qq T[Sy for every a<w; where

Sy = supp(qa)\ supp(p) U | J supp(qp)

B<u

For a<w; let a’a:Uﬁqupp(q;;). Then (d,)z<w, iS a continuously increasing se-
quence in [X]<9. Let uy={f € supp(q): q.(B)# pu(B)} for a<cw,. By (b), u, is
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finite and by (¢) we have u, Cd,. Hence by Fodor’s lemma, there exists an uncount-
able (actually even stationary) ¥ C w; such that u, =u* for all x €Y, for some fixed
u* € [X]<%. Since [Lic.- P has the property K, there exists an uncountable Y’ C Y
such that {g, lu*:a €Y'} is pairwise compatible. It follows that g,, € ¥’ are pair-
wise compatible. For each x €Y’ there exists an n, € @ such that g,lFp “m:f.(a)”
by (b). By (*), n,, € Y’ must be pairwise distinct. But this is impossible as Y’ is
uncountable.

For (2), essentially the same proof works with sequences of elements of P of
length 4, using the A-system lemma argument in place of Fodor’s lemma. T

Lemma 2.3. [f |P| <2< for all i € X, then [ .y P, has the (2°%)"-cc

KJEX

Proof. By the usual A-system lemma argument. [

Corollary 2.4. (a) Under CH, if P satisfies the property K and |P,| <N, for every
i€ X, then P= Hi*expi preserves Ny and has the Wp-cc. In particular P preserves
every cardinals.

(b) Suppose rkal 2<% =k If B satisfies the strong A-cc for every N) <A<k and
|P| <w then H P, preserves every cardinalities <x and has the k" -cc. In parti-
cular, H

KJIEX

wicx i preserves every cardinals.

Proof. By Lemmas 2.2, 2.3, [

Lemma 2.5. For any ¥ CX and x € X\Y, we have

H*Pl-g H*Pf x P x H* P.

KiIieX KIEY K IEX\(Y U{x})

Proof. The mapping from []¢ .o B to [17,cy £ x B <[]} ex\ruzp 7t defined by

p—=(plY, p(x), p I (X\(Y U {x})))

is an isomorphism. [J

In the following we mainly use the partial orderings of the form Fn(4,2) for some 4
as P in HK .ex B- Note that Fn(4,2) has the property K and strong x-cc in the sense
above for every regular k.

For a pseudo product of the form I—[I*e v Fn(x;,2), Lemma 2.2 can be still improved:

Theorem 2.6 (T. Miyamoto). For any set X, and sequence (K;)icx, the partial
ordering P =T]'c, Fn(x;,2) satisfies the Axiom A.

Proof. The sequence of partial orderings (<,)neo defined by: p<oq< p<q and
P<,q9< p<;q for every n>0 witnesses the Axiom A of P. We omit here the details
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of the proof since this assertion is never used in the following. The idea of the proof
needed here is to be found in the proof of Lemmas 2.7 and 5.2. O

Lemma 2.7. Suppose that |P| <« for every i€ X and PsH:*,ieX FB. Then
(1) If % is a P-name with \kp“x € V™, then for any p € P there is g € P such that
g<y p and

(§Y for any r<q, if r decides x then r{supp(q) already decides .

(2) Let G be P-generic. If u€V[G) is a subset of V of cardinality <x™, then
there is a ground model set X' CX of cardinality < (in the sense of V') such that
u€ VG N (TTer iexr PV

Proof. (1): Let @:x — x X k; a— (@1(2), ©2()) be a surjection such that ¢(a)<a
for every a<x. Let (py)u<r> (Py)a<k a0d (Fyp)a<x p<x bE sequences of elements of
P defined inductively by

(a) po=P; (Pa)x<x 15 @ descending sequence with respect to <;

(b) for a limit y <k, p, is such that supp(p,)=J, , supp( p«) and, for i € supp(py),
Pi) = pu(i) for some o<y such that i € supp( p,);

(c) (ra,g)p<x is an enumeration of {r € P:r<, p,};

(d) let r =ryp(a), pata) and

ph=r1 supp(r)U py I (X\ supp(r)).

If there is s<;, pl, such that s decides X, then let

Par1 = Pu | supp(py) Us [ (X\ supp( py)).

Otherwise let pyy1 = p,.

Letge H:,tEX P, be defined by supp(q) =, ., supp(p,) and, for i € supp(q), q(i) =
p.fi) for some a<x such that i € supp(£,). We show that this g i1s as desired: suppose
that r < g decides x. Then there is some a <x such that

r[supp(q) = p;, | supp(p}) U q [ (X\ supp(py)).

By (d), it follows that »[supp(q) <r[supp(pa.+1) decides x.

{2): Let & be a P-name for u and let %,, ® <k be P-names such that ¥ “x, € V" for
every o<k and Itp “u= {Xy: 2 <x}”. By (1), for each p € P, we can build a sequence
(Po)a<w Of elements of P decreasing with respect to <, such that p;<, p and

(1), for any r< p,, if r decides x,, then r[supp(p,) already decides x,.

Let g € P be defined by supp(q) =\, _, supp( p,) and, for i € supp(q), ¢(i) = p,(i) for
some o < x such that i € supp(p,). Then g satisfies:

(11) for any r<gq, if r decides x, for some a<x, then r[supp(q) already
decides x,.
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The argument above shows that ¢’s with the property (11) are dense in P. Hence, by
genericity, there is such g€ G. Clearly, G N [] P; contains every information
needed to construct u. [J

*
K, i€ supp(q)

3. Consistency results

Proposition 3.1. (CH) For any infinite cardinal A, let P=[];Fn(w,2). Then
bpt =47

Proof.
Claim 3.1.1. Ip* % > 2"

Proof. If 1 =X, this is clear. So assume that A=N,. For £ <4, let fg be the P-name
of the generic function from w; to 2 added by the (-th copy of Fn(w;,2) in P. Let
G be a P-generic filter over V. In V[G] let X C[w]™ be such that |X| < 4. Then by
N;-cc of P there exists £ < A such that X € V[G'] for G' = GHH:\{:} Fn(w,,2). Since
(f)[G] is Fn(w;,2)-generic over V[G'] by Lemma 2.5, we have x Z ((f:)[G])~'{0}
for every x€X. O '

Claim 3.1.2. o« T <A™,

Proof. For uc[4]<%, let #, be a P-name such that
Iy 2 = ([eon ) 1 eeud»

where fC is as in the proof of the previous claim. Let 2 be a P-name such that
tp = | J{Pu:ue 21}

For each u[A]<M, ( ff[G])geu corresponds to a generic filter over [’ Fn(w,2) ~
Fn(w1,2). Hence, by CH, we have Ibp“|%,| =R, It follows that Ip“|2| = A”. Thus
it is enough to show that Hp“ZPis a ¥-set”.

Let p€P and A be a P-name such that pltp “de [wl]N‘ ”. We show that there is
an r< p such that rlp “Ixe P xCA”

Now we proceed as in the proof of Lemma 2.2. Let ( py)a<w»> (9 )a<w, De sequences
of elements of P and (&, )y<w, be a strictly increasing sequence of ordinals <; such
that

(a) po< p and (py)a<w, 18 a descending sequence with respect to <y;

(b) g4 <y py and qalha“éaEA"’ for all x<wy;

(¢) psSy=q« Sy for every a <cw; where

Sy = SMPP(‘h)\\ supp(p)U \J supplay) |-

B<u



Sh:544

66 S. Fuchino et al. | Annals of Pure and Applied Logic 90 (1997) 57-77

For a <y let uy = {B € supp(qs): 9.(B) # p(B)}. As in the proof of Lemma 2.2, there
exists u* € [A] <™ such that S ={a € w| 1y, =u*} is stationary. Now (g, [#)yes is an
infinite sequence of elements of P, =[] . Fn(w:,2). Since B~ satisfies the ccc, there
exists an ¢€ S and {<w; such that g, [u*lFp,. “{EcSN{:pelu*e G} is infinite”.
Let r =q. U p; | (supp(po)\ supp(pe)). Let b be a P-name such that

rlha“b:{éESﬂC:qé [u*E{p[u*:pEG}}”.

Let x be a P-name such that rirp“x={¢,:a €b}”. Then rltp“|%| =Ry”. Since b can
be computed in V[{( fé[G])gem] we have ribp“x € 2,7 It is also clear by definition
of % that rlp“%C4”. O

This completes the proof of Proposition 3.1. O

Proposition 3.1 shows that ? can be practically every thing. In particular, we obtain:

Corollary 3.2. The assertion ‘cof(?)=w’ is consistent with ZFC.
Actually, Fn(4,2) forces almost the same situation:

Lemma 3.3. Suppose that A is a cardinal such that p*° <) for every u<Aa. Then, for
P=Fn(4,2), we have Irp* ¥ =4".

Proof. Ip“ T >A” can be proved similarly to Claim 3.1.1. For p“ Y <47, let G be
a P-generic filter and let G, =G N Fn(a,2) for a<d. In ¥[G], let X =J{V[G,] N
[w 1% :a<Ai}. Then [X|=4 (here we need SCH in general). We show that X is a
? -set. For this, it is enough to show the following:

Claim 3.3.1. In V[G), if y C[w]™, then there is «* <) and infinite y' € V[Gy-] such
that y' C y.

Proof. In V, let y be a P-name of y which is nice in the sense of [8]. For a <4,
let y,=y N {B:B<w} x Fn(a,2). Then Ip“y=J,_, "~ Hence Fp“Ju<l
is infinite”. It follows that there is some «* <A such that y’' = y,.[G] is infinite. Since
V.~ is an Fn(a*,2)-name, 3,.[G] € V[G,+]. Thus these ¢* and )’ are as desired. O

This completes the proof of Lemma 3.3. [l

Propeosition 3.4. (CH) Suppose that

(*)i,u  There is a sequence (4;);<, of elements of (A% such that |4; NA;| <Ny
Jor every i, j<u, i#£j
holds for some u>A>2%. Then there exists a partial ordering P such that
(a) P preserves Ry and has the Ny-cc;
(b) Ik =21" and
() rp Vi zp.
In particular, if (x);, is consistent with ZFC for some p>1>2%, then so is ? < T/.
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Remark. By [12, Section 6], (*x), and (), for some A<y are equivalent, where

(xx), there are finite a; C Reg\R; for i <w; such that, for any 4 € [w]™,
max pcf (U,c, a:) = .

For more see [15].

Proof. Let P be as in Proposition 3.1. We claim that P is as desired: (a) follows from
Corollary 2.4 and (b) from Proposition 3.1. For (d), if X C[A]™ is a Tz—set then for
each i<y there is an x; € X such that x; C 4;. Since 4;, i<u are almost disjoint x;,
i <yt must be pairwise distinct.

The last assertion follows from Lemma 1.1 (d). O

Now we show the consistency of the inequality TN < T:

Proposition 3.5. Assume 2% =,. Then for any cardinal }. =R, there exists a partial
ordering P such that

(a) P satisfies the Ns-cc;

(b) P preserves N, and Ny;

(¢) if AR =4 in addition, then Irp “MA(Fn(w,2))™;

(d) hp= =17 and

() p " =1,

Proof. Without loss of generality let 2 be regular and let P:H;q, ; Fn(wy,2). Then
(a) and (b) follow from Corollary 2.4. For (c), note that Ikp 2% » = under AN = /.
Hence, by Lemma 2.7 and Lemma 2.5, we see easily that IFp “MA(Fn(w;,2))”. An ar-
gument similar to the proof of Proposition 3.1 shows that IFp * T: A”. For (e), we prove
first the following:

Claim 3.5.1. Let X = [X,]%. Then we have p“X is a T//—set”. In particular |Fp* T”
g NZ ”.

Proof. Suppose that, for some p € P and a P-name y we have pltp“y € [wy]™. Let
f be a P name such that plp “f:w2 — y and f 18 1-17. Let (pa)y<ew, and (Godu< s
be sequences of elements of P such that

{(f) po< p and (P2)e<aw, 18 a descending sequence with respect to <y;

(2) g« <, py and g, decides f(2) for all a<ws;

(h) po ISy =g, Sy for every o <w, where

Sy = supp(qa)\ supp(p) U | ) supplay) |

f<uo

For a <3, let &, € w; be such that g,lrp “f (o) = & Let uy = {f € supp(qs): q(f) #
pa(B)} for o< w,. Just like in the proof of Lemma 2.4, we can find u* € [A] <% such
that § = {o <w, :uy =u*} is stationary in ws. Since [Fn(w,,2)| =Ny, there exists T C S
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of cardinality N, such that ¢, [u*, « € T are all the same. Let o, # € w be w elements
of T and let g=J,c,, 9a,- Then g< p and gltp“{&, :n€w} Cy”. O

Now by (d), we have IFp“ T”>N1”. Hence, by the claim above, it follows that
1"
ke« =R O

Modifying the proofs of Propositions 3.1 and 3.5 slightly, we can also blow up the
continuum while setting T strictly between X, and 2%. For example:

Proposition 3.6. Assume CH and 2% =¥,. Then for any cardinals A, p such that
N, <A<p and p™ = p, there exists a partial ordering P such that

(a) P satisfies the ¥s-cc;

(b) P preserves N, and Xy;

(c) Ikp “MA(countable)”;

(d) hpe b =27

() hp "' =%,” and

(f) kp 2R =y,

Proof. For i<p let
{Fn(w1,2) if i<A,

Fn(w,2) otherwise.

Then P= H;z, i<y Bt 18 as desired. (e) can be proved by almost the same proof as that
of Claim 3.5.1. (a), (b), (¢) can be shown just as in Proposition 3.5. Since P adds
(at least) u many Cohen reals over ¥ and |P|= gy, (f) follows from (a). (d) is proved
similarly to Claims 3.1.1 and 3.1.2. For Ikp “ ¥ <A” we need the following modification
of Claim 3.1.2: let # be defined as in the proof of Claim 3.1.2. As there, we can show
easily that Ip“|2?|=1". To show that Ip“2 is a T-set”, let p€P and 4 be a P-
name such that pltp “4 € [0, 1% ”. Now let (Pa)u<w> (a)a<w > (Exdacw,, w* € [u] <50
and S be just as in the proof of Claim 3.1.2. Let v* =u*\1. Since F» = [],c,. £} is
countable, we may assume without loss of generality that g, [v*, €S are all the
same. Now we can proceed just like in the proof of Claim 3.1.2 with «* replaced by
w\v*. O

The following Lemmas 3.7 and 3.9 show that, in spite of typographical similar-
ity, [1; Fn(wy,2) and []; Fn(w,2) are quite different forcing notions: while the first
one destroys (&) or even (T) by Lemma 3.1, the second one not only preserves
a ()-sequence in the ground model but also creates such a sequence generically.

Lemma 3.7. Let §=(x,),ce be a #(E)-sequence for a stationary E C Lim(w,). Let
P =1, Fn(w,2) for arbitrary k. Then we have Itp “S is a &(E)-sequence”.

Proof. Let pc P and 4 be a P-name such that plkp “4 € [w;]™' ™. We show that there
is ¢ < p and y € E such that glbp “x, CA”. Letf be a P-name such that plp “f: w; — A
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and f is 1-1". Let ( pu)a<w, and (g4 )u<w, be sequence of elements of P satisfying the
conditions (a)—(c) in the proof of Lemma 2.2. Also, let u,, x <, be as in the proof
of Lemma 2.2. As there, we can find an uncountable ¥ C w; and #* € [k]<™ such that
u, =u* for all € Y. Since [[,. Fn(w,2) is countable we may assume that g, [ 4™ are
all the same for x € Y. Now for each a € Y let 8, be such that g,lp “f'(oc):}’fjg ” and
let Z={B,:x€Y}. Since q,, x €Y are pairwise compatible, f,, ® €Y are pairwise
distinct and so Z is uncountable. Note that Z is a ground model set. Hence there
exists y € E such that x, CZ. Let ¢=|J,cy, 9+ Then g< p. Since sup{f,:a<y} >y
and Ip“{B,:a<y} is an initial segment of Z”, we have gltp“ZNyC A”. Hence
qhtp“x, CA4”. O

Theorem 3.8. “—~CH + MA(countable) + there exists a constructible &-sequence” is
consistent.

Proof. We can obtain a model of the statement by starting from a model of V=L
and force with P= [[} Fn(w,2) for a regular x. By Corollary 2.4, every cardinal of ¥/
is preserved in V[G]. Since P adds k many Cohen reals over ¥ while |P|=x and P
has the R;-cc, we have V[G] = “2% =«”. By Lemma 2.5, V[G] &= “MA(countable)™.
By Lemma 3.7, the O -sequence in V remains a d-sequence in V[G]. [

In fact, we do not need a d-sequence in the ground model to get (&) in the generic
extension by [[ Fn(w,2):

Lemma 3.9. Let x be uncountable and P= ] Fn(w,2). Then for any stationary
E C Lim(wy) we have Irp“&(E) holds™.

Proof. For yc E let
Sty +a)—y

be a bijection and let
S, ={xCy:x is a cofinal subset of y, otp(x)=w}.

For each x € S, let p, € P be defined by
p={(y+n{0,)}):ncw, i€2, i=1s f(y+n)ex}

For distinct x, x' €S,, py and py are incompatible. Hence, for each y € E, we can find
a P-name x, such that

ikp “%, is a cofinal subset of y and ofp(x,)=w”
and

pxlbp “x, =x" for each x €S,.
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We show that Ibp “(%,),ce is a &(E)-sequence”. For this, it is enough to show that,
for any p &P and a P-name 4, if pltp “4 &€ [@,]' ”, then there is ¢ < p and y € E such
that gl “ X, CA”. Let f be such that

php“f:w —A and f is 1-1".

Now let { pa)a<aw> (Gude<wrs (Maducw > ¥ and u* be as in the proof of Lemma 2.2. For
each a €Y let f, be such that g,Ibp “f(a) = f,” and let Z={B,:a € Y}. Let

C=<v€ Lim(w)): U (supp(go)Nw1)Cy and ZNy is unbounded in y
xEY Ny

Then C is closed unbounded in w; and hence there exists a y* € CNE. Let ¢’ =, pn,-
q«. Then we have ¢’ <g and ¢'lbp “Z N y* CA™ Now letx € Sy« be such that x C Z Ny™.
Finally, let g =¢' Ug,. Then we have g< p and ghtp“ %, =xCZNy*C4A”. O

Note that E’s in Lemmas 3.7 and 3.9 are ground model sets. To force &(E) for
every stationary £ C Lim(w,) which may be also added generically, we need a sort of
iteration described in the next section.

Toward the consistency of —(d,) + (dy:), we consider first the following lemma
which should be a well-known fact. Nevertheless, we include here a proof:

Lemma 3.10. Assume that there is a sequence (Cp)p<y of elements of [N such
that {CpNC,{ <Ry for all f<y<x. Then there exists a partial ordering P with the
property K such that in V¥ there is a sequence (Bg)g<« of elements of [ such
that By C Cy and |Bg N\ B,| <Ny for all f<y<k.

Proof. Let
P={(D, f):De[x]<™, f:D—Fn(m,2), f(5)E€Fn(Cs,2) for all € D}.
For (D, f), (D', fH€P, let

(D, YD, f) & DCD, f(8)C f(6) for all 6€ D and
O TN OGN {1}, €D are pairwise

disjoint.

By the usual A-system lemma argument, we can show that P has the property X.
Since Cp, ff<k are pairwise disjoint modulo countable, the set

Dps={(D,f)eP:feD, dcdom(f(f)) and
I >0 (n € dom(f(B)A f(BY)=1)}
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is dense in P for every f <k and é <w;. Hence if G is a V-generic filter over P, then
Bg={a<w : f(f)a)=1 for some (D, f)e G}

is cofinal in w; and hence uncountable. Also by the definition of < on P, we have
|Bg N B,| <, for every f<y<k. [

Note that if there is a sequence (By)p<, as in Lemma 3.10 then by the argument in
the proof of Proposition 3.4, we have ¥ >«

Lemma 3.11. There is a partial ordering Q with the property K such that g (&)

Proof. Let (Q,, Ry )<, be the finite support iteration of partial orderings with the

property K such that for each y € Lim(w, ), there is a (J, name U7 such that Q. forces:
U, is an ultrafiter over y, y\f € U, for all <7, R, is a p.o.-set with the prop-
erty K and there is an R,-name %, such that

IF5. %, is a cofinal subset of y of ordertype @ and
|%,\a| <Rg for all xe U.”.

For example, we can take the Mathias forcing for the ultrafilter U), as Ry. For successor
a<awp let kg, “R,={1}".

Let Q=0 . AS (O, Ra)a<w, is a finite support iteration of property K p.o.s, O
satisfies also the property K (see e.g. [9]). Now let G be a V-generic filter over Q.
In V[G], if X €[w]¥ then the set {ax<w;: X Na€V[G,]} contains a club subset
C of Lim(w,). Let So={a€ C: X Na€ U,[G]} and S, = {a € C:a\X € U,[G]}. Since
U,[G] is an ultrafilter over « in ¥[G,] for every a € C, we have C =S, US;. We have
[%,[GI\X|<Ng for €Sy and |X,[G]NX| <Ny for 2 €S). Thus (£,[GDucrimie) 18
a (,2)-sequence in V[G].

Actually this proof shows that (%,[G])crimw,) 1S even a (dby2)-sequence in the
stronger sense that it satisfies the assertion of the definition of (é2) with “is stationary”
replaced by “contains a club”. [

Corollary 3.12. There is a partial ordering R with property K such that bz % =N,
but (dy,2) holds™. In particular —( )+ () is consistent with ZFC. Further if CH
holds then for any cardinal x, there exists a cardinals preserving proper partial
ordering R, such that kg “ ® >k but () holds”.

Proof. Let R =P, « P, where P, is as P in Lemma 3.10 for k=X, and P, as 0 in
Lemma 3.11 in VA,

For the second assertion, we let R, =Fn(k,2,w) * Py * P,. Note that under CH,
Fn(k,2,w;) is cardinals preserving and forces that 2% = x. Hence there is a sequence
(Cg)p<x as in Lemma 3.10 in the generic extension. Thus in V™290 P can
be taken as in Lemma 3.10 for our x. Finally, in VF200%P jet Py be as in
Lemma 3.11. [J
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4, CS*-iteration

In this section, we introduce an iterative construction of p.o.s which is closely related
to the pseudo product we introduced in Section 2. We adopt here the conventions of
[5] on forcing. In particular, a p.o. (or forcing notion) P is a pre-ordering with a great-
est element 1p. In the following, we just try to develop a minimal theory needed for
Theorem 5.6. More general treatment of the iterations like the one described below
should be found in [16].

We call a sequence of the form (7, Qa Jace @ CS*-iteration if the following condi-
tions hold for every a<e:

(*0) P, is a p.o. and, if a<e, then Q, is a P, name such that Ip, Qa is a p.o. with
a greatest element 1, .

(*1) P,={p:p is a function such that dom(p) € [x]<™;
plBEPg for any f<o and,
if B&dom(p) then plrestr fltp, “ p(B) € 04"}

(*2) For p, g€ P, p<p,q if and only if
(i) for any B<a, p|flp,“ p(B)<q(B)”;
(i) diff (p,q)={B €dom(p)Ndom(q): p[ Blfs, “ p(B)=4q(B)”} is finite.

We first show that such a sequence (F,, Q.m)a,s‘9 is really an iteration in the usual
sense. In the following we assume always that (P, O, )u<. is a2 CS*-iteration as defined
above.

Lemma 4.1. Suppose that a<f<e Then

(0) if p€ Py, then plac Py

(1) P, C Pg;

(2) for p, q€ Py, we have p<p,q< p<p, q;
(3) for p, g€ Ps, if p<p,q then pla<p qla

Proof. (1) can be proved by induction on B. Other assertions are clear from the defi-
nition of CS*-iteration. J

Lemma 4.2. Suppose that a<f<e¢ and p, g€ P,. Then plpq< plpg.

Proof. Suppose that p and g are compatible in P,, say r<p, p, g for some r€P,.
Then r € Py by Lemma 4.1(1) and r<p, p, ¢ by Lemma 4.1(2). Hence p and g are
compatible in Pg.

Conversely, suppose that p and g are compatible in Py, say s <p, p, g for some s € Pp.
Then we have sla€ P, by Lemma 4.1(0), s{a<p, pla=p and s|a<p gla=qg.
Hence p and g are compatible in P,. [J
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Suppose that o <f<¢, p € Pg. By Lemma 4.1(0), we have pfa€P,. Forr<p, pla,
let

p~r=pl(dom(p)\x)Ur.

For p, geP, p<} q& p<pqand pldom(q)=¢q; p<} g p<p g and dom(p)=
dom(q) (4 and v stand for ‘horizontal’ and ‘vertical’, respectively).

Lemma 4.3. (1) Let o, B, p, r be as above. Then p~r € Py and por<pr, p.
(2) For p, g€ P, r=q | (dom(g)\dom(p))U p is an element of P, and rg}’iu p.
(GY If pa€P, for new and poy) <} pn for every new, then g=J{p,:ncw} is
an element of P, and q<} p, for every n€ w.

Proof. (1): By induction on f. If f=« then p~r=r<p|a=p. Suppose that we
have shown the inequality for every f' <. Let p and r be as above. If § is a limit
then we obtain easily p~r€Pg and p~r<p,r, p by checking (*1) and (*2) of the
definition of CS*-iteration. In particular, (*2) (ii) holds for the inequality pTr<prp
since diff (p~r, p)=diff (, p @) and diff (p~r,#)=0. If B =7+1 for some y= o, then
ply~repP, ply r<pr, ply by induction hypothesis. If y ¢ dom( p) then it follows
p=plyE€Psand p~r<pr, p. Otherwise (p~r) [ylp “ p(y) <y p(7)”. Hence again
it follows that p~rcPg and p~r<p, 7, p.
(2) and (3) are trivial. [

Lemma 4.4. Suppose that a<fi<e, peP, and g€ Py. If p and q are incompatible
in Py then p and q| o are incompatible in P,.

Proof. Suppose that p and q [« are compatible in £,. Then there is » € P, such that
r<p, p, qlo Let s=q¢~r. By Lemma 4.3, we have s<p g, r. Hence p and g are
compatible in Py. [

Lemma 4.5. Suppose that x<p<e and that A is a maximal antichain in P,. Then
A is also a maximal antichain in Py,

Proof. By Lemma 4.1(1), we have 4 C F3. By Lemma 4.2, 4 is an antichain in Fj.
Suppose that 4 were not a maximal antichain in Pg. Then there is some g € Py such
that ¢ is incompatible with each of pe 4. By Lemma 4.4, it follows that g [ % is
incompatible with each of p [a= p, p€A. This is a contradiction to the assumption
that 4 is a maximal antichain in P,. [

5. CS*-iteration of Cohen reals

In the rest, we consider the CS*-iteration (Px,Q'x Jacx for a cardinal x such that
Ip, “Q, =Fn(w,2)”

for every a <k.
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Lemma 5.1. Let p, g€ P, be such that p<q. Then there is r € P, such that r<p
and for any o€ diff (r,q), there is t € Fn(w,2) such that r | altp “r(a)=1".

Proof. We define inductively a decreasing sequence ().« Of ordinals and a de-
creasing sequence (pPnlnce Of elements of P, as follows: Let op= maxdiff(p,q).
Choose p;, € P, so that py< p [ oo and that pj decides p(ag). Let po=p~ pp. If a,
and p, have been chosen, let D, =diff (p,,q)Na,. If D, =0 we are done. Otherwise,
let o511 = max D,. Choose p) ., €P, , such that p, . <p, la. and p) ., decides
Pp(0ni1). Let pu1 = p,~ P, This process terminates after m steps for some m € w,
since otherwise we would obtain an infinite decreasing sequence of ordinals. Clearly
r= py is as desired. O

Lemma 5.2. P, satisfies the axiom A.

Proof. Let <,, n € w be the relations on P, defined by p<,q9< pS;};K q for p, ge P
and every n € w (in [6] an axiom A p.o., for which the <,’s can be taken to be all the
same, is called uniformly axiom A). ( <, ).ce has the fusion property by Lemma 4.3(3).
Hence it is enough to show the following:

Claim 5.2.1. For any p € P, and maximal antichain D C P, there is qgf.ﬁx p such that
{r€D:r is compatible with q} is countable.

Proof. Let @:w — o x w; n— (@1(n), @2(n)) be a surjection such that ¢(n)<n for
all n>0 and, for any %, / € w, there are infinitely many n € w such that @(n) =(k, ).
We construct inductively pg, &, w € P, and a sequence (sg;)ice for k€ w as fol-
lows: let po=p. If p; has been chosen then let (sr;)ic be an enumeration of
Fn(dom( py),Fn(w,2)). If there are t €D and u € P, such that u<t, py, diff (u, pr) =
doms g, k), o(x) a0d u [ diff (1, pr) =Sp,(k), 0oy (0f course we identify here elements ¢ of
Fn{w,2) with corresponding P,-name f), then let # and u; be such ¢ and u and let
Pi+1 = pr Ju [ (dom(uy )\dom( py)). By Lemma 4.3(2), we have p;,; € P. Otherwise
let & =up=1p and ppi1 =ki.

Now, let ¢ =1{J,¢,, px- Then by Lemma 4.3(3), we have g€ P and g<p p. We
show that this ¢ is as desired.

Suppose that 1 €D is compatible with g. Then by Lemma 5.1, there is uCp t, g
such that u [ diff (g,7) has its values in Fn(w,2). Let n € w be such that diff (¢,7) C gn
and k=n be such that s, ), 0,y =u [ diff (q.7). Clearly t €D by construction. We
claim that ¢ =1#;: otherwise ¢ and #, would be incompatible. Hence u; and u should be
incompatible. But this is a contradiction.

It follows that

{r e D:r is compatible with g} C {% : k € w}. O

Lemma 5.2 is proved. [

In particular, P is proper and hence the following covering property holds:



Sh:544

S. Fuchino et al | Annals of Pure and Applied Logic 90 (1997) 57-77 75

Corollary 5.3. Suppose that G is a P.-generic filter over V. Then for any a € V|G]
such that V{G]k=“a is a countable set of ordinals”, there is a b€V such that a Ch
and V E=*b is a countable set of ordinals”.

Lemma 5.4. If « is strongly inaccessible, then P, satisfies the k-cc.

Proof. Suppose that pg€ B, for f<ix. We show that there are compatible conditions
among them. Without loss of generality we may assume that {dom( pg): f<x} is a 4-
system with the root x € [k] <™ Let o = sup{y+1:7€x}. Then ay <k and py [ x € P,
for every fi<k. Since |P,| <k there are f, f’ <k, f# B’ such that pg [ x= pg [x. But
then qg=pg\U pp € P, and q<p pps Ppr- _

Lemma 5.5. Suppose that E C Lim(w,) is stationary. Then IFp “&(E)”.

Proof. For cach y€E let f,:[y,y + @) — 7 be a bijection and let
S, ={xCTy:x is a cofinal subset of 7, otp(x) = w}.

For each x €8, let p, € P, be defined by
pe={(y + n.q;,)n€w}

where ¢ , is the standard P,.,-name for {(0,i)} with i€2 and i=1< f,(y +n)Ex.
For distinct x, x’ € S., p, and p. are incompatible. Hence there is a P.-name x, such
that |Fp “x, is a cofinal subset of y with otp(X,)=w” and p, IFp “x, =x"" for every
xesS,.

We show that IFp “(X;),cr is a (E)-sequence”. Suppose that pc P, and A is
a P.-name such that plrp “4ew N7 We have to show that there is ¢<p p and
y € E such that g Ibp “x, CA”.

Letf be a P.-name such that p IFp “f cw— A is 1-17. Choose P> o> Uy fOr o<
inductively such that

(a) po<p p and (py)z<w, 1S a decreasing sequence with respect to <f},ﬁ;

(b) g, <}, px and g, decides f(x);

(¢) uy =diff (g2, px) Cdom(p) U, dom(gp);

(d) g4 [ uy € Fn(x, Fn(w, 2)).
The condition (d) is possible because of Lemma 5.1. By Fodor’s lemma, there is
Y €[on 1 and r € Fn(k, Fn(w, 2)) such that g, [ u, = r for every a € Y. For cach 2 € ¥,
there is f§, € such that g, IFp “f(2)=f," by (b). Let Z={f,:2€ Y} Let

C= ({vyelim(w): U (sup{g,)N)Cy and ZN7y is unbounded in 7
x€YN7y
Then C is closed unbounded in w;. Since F was stationary, there exists a y* € CME.
Let ¢’ =J,cyn,-9»- Then we have ¢’ IFp “ZNy* CA4”. Now let x €S- be such that
xCZNv* Finally let g=¢ U p,. Then we have ¢ <};)hp and gltp “x,=xCZNy"
CA4”. O
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Let (P, Q“)agx be a CS*-iteration as above. For a<xk let P,C/Ga be a Py-name
such that IFp, “P)Gy={p€P,:placG,} with the ordering p<,,g& P<pq”. As
in [5], we can show that P, =~ P,  P,/G,. Also, by Corollary 5.3, practically the same
proof as in [5] shows that

Fp, “P/G, is ~ to a CS*-iteration of Fn(w,2)”.
Now we are ready to prove the main theorem of this section:

Theorem 5.6. Suppose that ZFC + “there exists an inaccessible cardinal” is consis-
tent. Then ZFC+—-CH + MA(countable)+ “&(E) for every stationary E C Lim{(w, )’
is consistent as well.

Proof. Suppose that x is strongly inaccessible. For P, as above, let G, be a Py-
generic filter over V. We show that V[G,] models the assertions. Let £ C Lim(w,) be
a stationary set in V[G]. Since B, has the x-cc by Lemma 5.4, there is some a<x
such that £ € V[G,] where G, = G, N F,. Hence by the remark before this theorem, we
may assume without loss of generality that £ € V. But then, by Lemma 5.5, we have
VG “E)".

Finally, we show that MA(countable) holds in V[G,]. Let & be a family of dense
subsets of Fn(w,2) in V[G,] of cardinality <xk. Again by the x-cc of P, we can find
an a <k such that 2 € V[G,]. Since we have

szPa*Qa*PK/G.oH—Ia

the generic set over V[G,] added by Qa[Ga] =Fn(w,2) is Z-generic over Fn(w,2) in
ViG] O

At the moment we — or more precisely the first and the third author — do not know
if an inaccessible cardinal is really necessary in Theorem 5.6. As for CS-iteration, k
is collapsed to be of cardinality X, in the model above, since the continuum of each
of the intermediate models is collapsed to X; in the following limit step of cofinality
= m;. Thus the following problem seems to be a rather hard one:

Problem 5.7. Is the combination MA(countable)+ &(E) for every stationary E C
Lim(w,) consistent with 2% >X, ?
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