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INDESTRUCTIBILITY 
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Abstract. After small forcing, any <K-closed forcing will destroy the supercompactness and even the 

strong compactness of ti. 

In a delightful argument, Laver [3] proved that any supercompact cardinal K 
can be made indestructible by <K-directed closed forcing. This indestructibility, 
however, is evidently not itself indestructible, for it is always ruined by small forc­
ing: in [1] the first author recently proved that small forcing makes any cardinal 
superdestructible; that is, any further <K-closed forcing which adds a subset to K 
will destroy the measurability, even the weak compactness, of K. What is more, this 
property holds higher up: after small forcing, any further <«-closed forcing which 
adds a subset to A will destroy the A-supercompactness of K, provided A is not too 
large (his proof needed that A < N„+<5> where the small forcing is ^-distributive). 
In this paper, we happily remove this limitation on A, and show that after small 
forcing, the supercompactness of K is destroyed by any <«-closed forcing. Indeed, 
we will show that even the strong compactness of K is destroyed. By doing so 
we answer the questions asked at the conclusion of [1], and obtain the following 
attractive complement to Laver indestructibility: 

MAIN THEOREM. After small forcing, any <K-closed forcing will destroy the super-
compactness and even the strong compactness ofn. 

We will provide two arguments. The first, similar to but generalizing the Superde-
struction Theorem of [1], will show that supercompactness is destroyed; the second, 
by a different technique, will show fully that strong compactness is destroyed. Both 
arguments will rely fundamentally on the Key Lemma, below, which was proved 
in [1]. Define that a set or sequence is fresh over V when it is not in V but every 
initial segment of it is in V. 

KEY LEMMA. Assume that |P| = yS, that Ihp Q is <f1-closed, and that cof (A) > /?. 
Then P * Q adds no fresh subsets ofk, and no fresh ^.-sequences. 
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While in [1] it is proved only that no fresh sets are added, the following simple 
argument shows from this that no fresh sequences can be added: given a sequence 
in 5X, code it in the natural way with a binary sequence of length Sk, by using k many 
blocks of lengths, each with one 1. The binary sequence corresponds to a subset of 
the ordinal Sk, which, since cof(<5i) = cof(l), cannot be fresh. Thus, the original 
1-sequence cannot be fresh. 

Let us give now the first argument. We will use the notion of a 0-club to extend 
the inductive proof of the Superdestruction Theorem [1] to all values of A. 

THEOREM. After small forcing, any <n-closed forcing which adds a subset to k will 
destroy the k-supercompactness of K. 

PROOF. Suppose that |P| < K and lhP Q is <«-closed. Suppose that g * G C P* Q 
is F-generic, and that Q — Qg adds a new subset A C k, with k minimal, so that 
A G F[g][G] but A $ V[g]. By the closure of Q, we know that cof(k) > K. 
Suppose, towards a contradiction, that K is A-supercompact in ^[g][G]. Let PKk 
denote (PKk)v^G\ which is also (PKk)v^. 

LEMMA. Every normal fine measure on PKk in V[g][G] concentrates on (PKk)v. 

PROOF. Let us begin with some definitions. Fix a regular cardinal 9 such that 
|P| < 9 < K. A set C C PKk is unbounded if and only if for every a e PKk there is 
z e C such that a C r. A set D C PKk is 6-directed if and only if whenever BCD 
and \B\ < 9 then there is some x G D such that a C r for every a £ B. The set C is 
9-closed if and only if every 9-directed D C C with \D\ < K has \J D £ C. Finally, 
C is a 9-club if and only if C is both ^-closed and unbounded. 

CLAIM. A normal fine measure on PKk contains every 9-club. 

PROOF. Work in any model V. Suppose that C is a #-club in PKk and that fi is 
a normal fine measure on PKk. Let j : V —> M be the ultrapower by ju. It is well 
known that j"k is a seed for fi in the sense that X € fi if and only if j"k e j{X) 
for X C PKk. By elementarity j{C) is a 0-club in M and j"C C j{C). (We know 
j"C £ M because M is closed under k<K sequences in V.) Also, it is easy to check 
that j"C is ^-directed. Thus, by the definition of 0-club, we know \J{j"C) e j(C). 
But 

\J(rc)=\jj(a)= \j(r<r) = rk. 
<r€C aeC 

Thus, j"k e j(C) and so C e ju- H 

Now let C = (PKk)v. We will show that C is a 6>-club in F[g][G]. First, let 
us show that C is unbounded. If a £ PKk in F[g][G], then actually a e V[g], 
and so a = ag for some P-name d £ V. We may assume that [|«r| < k\ = 1 and 
consequently a C { « | [« g j ] / 0 } e C; s o a i s covered as desired. To show 
that C is ^-closed, suppose in ^[g][G] that D C C has size less than K and is 
^-directed. We have to show that (J D £ C. It suffices to show that (J D e V since 
C = PKk n V. Since Q is <«-closed, we know that £> G F[g], and thus D = Dg 

for some name D £ V. In V let Dp = {o~ £ C \ p \\- a £ D } . It follows that 
D = U»eg ^ V There must be some p£g such that Dp is C-cofinal in D; for if 
not, then for each p e g we may choose ap e D such that Z)̂  contains no supersets 
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of ap. Since D is ^-directed and \g\ < 8 there is some a e D such that ap C a for 
all p £ g. But a must be forced into D by some condition p £ g, so a £ D^ for 
some p £ g, contradicting the choice of ap. So we may fix some p £ g such that 
£/> is C-cofinal in D. But in this case [JDP = \JD and since / ) , € Kwe conclude 
(J£> € V. Thus C is a 0-club in F[g][G], and the lemma is proved. -\ 

Let us now continue with the theorem. Since K is A-supercompact in F[g][t7] 
there must be an embedding j : V\g\[G] —> M[g][j (G)] which is the ultrapower by 
a normal fine measure n on PKX. 

LEMMA. P{X)M = P(X)V. 

PROOF. (2). By the previous lemma we know that {PKX)V £ JU and so y"A G 
j{{PKX)v) = (PKX)M'. Since M is transitive, it follows that j"X £ M. And 
obtaining this fact was the only reason for proving the previous lemma. Now if 
B C. X and B £ V then j(B) £ M, and since B is constructive from j(B) and j"X 
it follows that fi £ M as well. 

(C). Now we prove the converse. By induction we will show that P{S)M C F 
for all <5 < A. Suppose that B C S and B € M and every initial segment of B is 
in K. By the Key Lemma it follows that B e V unless cof (<5) < K. SO suppose 
cof (S) < K. By the closure of Q we know in this case that B e V[g] and so B = Bg 

for some name B E V. We may view B as a function from <S to the set of antichains 
of P. Since B may be coded with a subset of S, we know B e M b y the previous 
direction of this lemma. Thus, both B and B are in M and g is M-generic. Since 
B = Bg in M[g] there is in M a condition p £ g such that p \\- B = B. That is, 
p decides every antichain of B in a way that makes it agree with B. Use p to decide 
B'mV and conclude that B £ V. This completes the induction. H 

Now we are nearly done. Consider again the new set ̂ 4 C A such that ^ e ^[g][G] 
but A $. V[g]. Since j is a A-supercompact embedding, we know A £ M[g][j{G)]. 
Since the j(G) forcing is <y'(«)-closed, we know A £ M[g]. Therefore A = Ag for 
some name A e M. Viewing A as a function from A to the set of antichains in P, 
we can code A with a subset of A, and so by the last lemma we know A £ V. Thus, 
A = Ag £ V[g], contradicting the choice of A. -\ 

COROLLARY. By first adding in the usual way a generic subset to fi and then to X, 
where cof (A) > jS, one destroys all supercompact cardinals between /? and X. 

In fact, one does not even need to add them in the usual way. This is because the 
proof of the theorem does not really use the full <«-closure of Q. Rather, if P has 
size fi, then we only need that Q is </?-closed and adds no new elements of PKX. 
Thus, we have actually proved the following theorem. 

THEOREM. After any forcing of size fi < K, any further < ft-closed forcing which 
adds a subset to X but no elements to PKX will destroy the X-supercompactness of K. 

This improvement is striking when ft is small, having the consequence that after 
adding a Cohen real, any countably-closed forcing which adds a subset to some 
minimal A destroys all supercompact cardinals up to A. 

Let us now give the second argument, which will improve the previous results 
with a different technique and establish fully that strong compactness is destroyed. 
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THEOREM. After small forcing, any <K-closedforcing which adds a X-sequence will 
destroy the X-strong compactness ofn. 

PROOF. Define that a cardinal K is X-measurable if and only if there is a K-complete 
(non K+-complete) uniform measure on X. Necessarily K < cof (X). This notion is 
studied in [2]. 

LEMMA. Assume that |P| < K < X, that Q adds a new X-sequence over Vv, X 
minimal, and that K is X-measurable in Vv*®. Then P*Qmust add afresh X-sequence 
over V. 

PROOF. This lemma is the heart of the proof. Assume the hypotheses of the 
lemma. So, for suitable names, lhP„,Q s is a A-sequence of ordinals not in Vr, and 
// is a K-complete uniform measure on X. Without loss of generality, we may assume 
that Ihp Q is a complete boolean algebra on an ordinal. Suppose now that g * G is 
F-generic for P * Q. Let Q = Qg, and * = sgt,G. 

In V[g], let T = { u £ ORD<i | |[w C i ]p ^ 0 }. Thus, under inclusion, T is a 
tree with X many levels, and Q adds the A-branch s. For u £ T, let bu = |[w C i ] Q . 
Thus, bu is an ordinal. Let I — { (£{u), bu) | u £ T }, where £{u) denotes the length 
of u, and define (a,bu) < {a', bu*) when a' < a and bu < Q bu>. Since u D v if and 
only if (£(u), bu) < (£{v), bv) it follows that (T, D) = (/, <) , and consequently / is 
also a tree, under the relation <, with X many levels. Furthermore, the ath level 
of / consists of pairs of the form (a, /?). For p € P let us define that a <pb when 
p lh a < b. Thus, < = [jpeg <p. 

In F[g][G] let by = (y, bs^y). Thus, by € / , and if y < £ then b^ < by and so there 
is some r £ g such that b^ < r by. Since there are fewer than K many such r, for 
each y there must be an r which works for //-almost every f. But then again, since 
there are relatively few r, it must be that there is some r* e g which has this property 
for //-almost every y. So, fix r* £ g such that for //-almost every y, for //-almost 
every £, we have b^ <r» by. Fix also a condition (/>o, qo) £ g * G forcing r* to have 
this property. Let t = (by | y < X & for /z-a.e. £, ^ < r . by). Thus, / is a partial 
function from X to pairs of ordinals, and dom(/) £ //. In particular, dom{t) is 
unbounded in X. 

We will argue that t is fresh over V. First, notice that t £ V[g] since in V[g] 
knowing t we could read off the branch s. Thus, t £ V. 

Nevertheless, we will argue that every initial segment of / is in V. Suppose S < X, 
and let ts = t\3. By the minimality of X it follows that t# £ V[g], and so there is a 
P-name ig and a condition (p\,q\) £ g*G, stronger than (po, qo), forcing this name 
to work. Assume towards a contradiction that t& g V, and that this is forced by p\. 
Then, for each r £ P below/?i we may choose yr < S such that r does not decide t(yr) 
(or whether yr is in the domain oft). But, nevertheless, for each r either for //-almost 
every £, b^ <r» blt or else for //-almost every f, b^ ^ r . 6A (but not both). In the 
first case it follows that t{yr) — byr, and in the second it follows that yr fi dom(?)-
Since there are relatively few r, by intersecting these sets of £ we can find a single £ 
which acts, with respect to the yr, exactly the way //-almost every £ acts. Fix such a 
£. Thus, for each r we have either b^ < r . blr, and consequently t{yr) = b7r, or else 
yr g dom(?) (but not both). Notice that £ and b^ are just some particular ordinals. 
Fix some condition (/?*, q*) below (p\,q\) forcing £ and b^ to have the property we 
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mention in the sentence before last. Now we will argue that this is a contradiction. 
Let y = yp-. There are two cases. First, it might happen that b^ < r . (y, fi) for 
some ordinal fi. Such a situation can be observed in V. In this case, (p*,q*) forces 
fi = b„\y and therefore, by the assumption on £, it also forces t(y) = {y,fi). Since 
is is a P-name, it follows that p* lh i$(y) = (y, fi), contrary to the choice ofy = yp*. 
Alternatively, in the second case, it may happen that b^ j\r* (y,fi) for every fi. In 
this case, by the assumption on £, it must be that (p*, q*) forces that y £ dom(?)-
Again, since is is a P-name, it follows that p* lh y £ dom(4), contrary again to the 
choice of y = yp*. Thus, in either case we reach a contradiction, and so we have 
proven that P * Q must add a fresh A-sequence. H 

LEMMA. If K < cof (A) and K is X-strongly compact, then K is X-measurable. 

PROOF. Let j : V —> M be the ultrapower map witnessing that K is A-strongly 
compact. By our assumption on cof (A), it follows that sup j"X < j{X). Let 
a = (sup./"A) + K, and let fi be the measure germinated by the seed a. That is, 
X e fi if and only if a e j(X). Since a < j{X) it follows that /u is a measure on X. 
Since j(fi) < a for all fi < X it follows that ju is uniform. Since cp{j) — K it follows 
that /i is K-complete. For y < K, let By = { fi \ y < cof {fi) < K } . Since cof (a) = K 
in M, it follows that a e j(5, ; ) and consequently By £ p. for every y < K. Since 
Ply -Sy = 0, it follows that // is not «+-complete, as desired. H 

REMARK. Ketonen [2] has proved that if K is A-measurable for every regular X 
above «, then K is strongly compact. This cannot, however, be true level-by-level, 
since if K < X are both measurable, with measures fi and v, then /u x v is a K-complete, 
non-«+-complete, uniform measure on K X X. Thus, in this situation, K will be A-
measurable, even when it may not be even «+-strongly compact. But the previous 
lemma establishes that the direction we need does indeed hold level-by-level. 

Let us now finish the proof of the theorem. Suppose that F[g][G] is a forcing 
extension by P * Q, where |P| < K and Q is </c-closed. Let X be least such that 
Q adds a new A-sequence not in V[g]. Necessarily, K < X and X is regular. By the 
Key Lemma ^[g][G] has no A-sequences which are fresh over V. Thus, by the first 
lemma n is not /l-measurable in F[g][G]. Therefore, by the second lemma, « is not 
A-strongly compact in F[g][G]. H 

So the proof actually establishes that after small forcing of size fi < K, any 
</?-closed forcing which adds a new A-sequence for some minimal X, with X > K, 
will destroy the A-measurability of «. This subtlety about adding a A-sequence 
as opposed to a subset of A has the following intriguing consequence, which is 
connected with the possibilities of changing the cofinalities of very large cardi­
nals. 

COROLLARY. Suppose that K is X-measurable. Then after forcing with P of size fi < 
K, any <(i-closed Q which adds a X-sequence, but no shorter sequences, must neces­
sarily add subsets to X. 

PROOF. Such forcing will destroy the A-measurability of K. Hence, it must add 
subsets to A. H 
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