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ABSTRACT 

Let L be a finite relational language and H ( E )  denote the class of all countable 
stable L-s t ructures  M for which Th(M)  admits el imination of quantifiers. For 
M E H ( L )  define the rank of M to be the max imum value of CR(p, 2), where p 
is a complete l- type over Q and CR(p,2)  is Shelah 's  complete  rank. If L has 
only unary and binary relation symbols  there is a uniform finite bound for the 
rank of M @ H(L) .  This theorem confirms part of a conjecture of the first 
author.  Intuitively it says that for each L there is a finite bound on the 
complexity of the structures in H(L).  

1. Introduction 

A first-order language will be called binary if all its nonlogical symbols are 

relation symbols which are either unary or binary. All languages considered are 

relational and finite. 

For any finite relational language L let H(L) denote the class of all countable 

stable L-structures M which are homogeneous  for L in the sense of Fraiss6, i.e., 

any isomorphism between finite substructures of M extends to an au tomorphism 

of M. In this context to say that M is homogeneous  is the same as saying that 

Th(M)  admits elimination of quantifiers. 

There is a notion of rank which is useful in this context. Let M be a structure 

and A C_ M be a nonempty subset of the universe. By rM (A)  we mean the 

greatest n < ~o if any for which there exist sets B,  C_ M ( r / E  <"2) increasing in r/ 

and elements an E A  (rl E n2) such that for distinct rl,~ E " 2  and cr C'q,  
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: tp(a,  IBm) = tp(a~ lB , ) i f f  t r # ,  n ~. B y ,  n ~ we mean the greatest common 

initial segment of r/, ~. If n = 0, then <°2 = O and °2 = {h} where )t denotes the 

empty sequence. By convention rM(A)= - 1  if A = Q. The rank r(M) of the 

structure is defined to be rM(M). If M E H(L) for some finite relational 

language L, then r(M) exists. This notion is related to the complete rank of 

Shelah [8, p. 55]. 

The aim of this paper is to prove that, if L is a finite binary language, then 

there exists r < to such that r(M) < r for all M E H(L). In other words, there is 

a uniform bound for the rank of a homogeneous L-structure. This result is 

Theorem 6.1. According to [7] the uniform bound on rank implies that H(L) is 

the union of a finite number of families such that within each family the 

isomorphism type of a structure is fixed by its dimensions. 

The notion of dimension used is as follows. Let ,p = (~p0, ~pl) be a pair of 

quantifier-free L-formulas containing at most the variables x0, x~, x2, x3. Call ,p a 

prenice pair for M @ H(L) if q~0, ~)1 define equivalence relations Eo, EL on the 

same subset D C M 2 definable without parameters such that 

(i) E,  ~ Eo, 

(ii) M2/Eo is transitive, i.e. if Co, C, are Eo-classes there exists a ~ aut(M) 

such that a (Co)= C,, 

(iii) {C/E, :C E M2/Eo} is a family of mutually indiscernible sets, i.e. any 

• r E perm(U{C/E, : C E M21Eo}) such that 7r(C/E,) = C/E1 for each E0-class C 

is induced by some a E aut(M). 

If ~ is a prenice pair for M, then we say the q~-dimension of M is k where k is 

the common cardinality of the sets C/E~ (C E M2/Eo), and we write dM (~)  = k. 

Otherwise dM (~)  is not defined. Observe that once L is fixed there is a finite set 

A of quantifier-free L-formulas containing at most x0, xl, x2, x3 such that every 

quantifier-free L-formula containing at most Xo, xl, x2, x3 is logically equivalent 

to a member of A. Thus given the finite relational language L the number of 

possible pairs q~ is essentially finite. 

One of the corollaries of our main result is that, if L is a finite binary language, 

there exists rn < to  such that, if M~ EH(L)  (i < m), then there exist distinct 

i, / < m such that either Mi = Mj or dM,# d~j. For further information we refer 

the reader to [7]. 

In [7] it was conjectured that for any finite relational language L there is a 

uniform bound on r(M) for M EH(L).  This paper settles the conjecture 

positively for the case of binary languages. More recently Cherlin and the first 

author have proved the conjecture in general, see [1]. That argument relies on 

the classification of finite simple groups. 
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The reason why binary languages are comparatively easy to handle is that, if L 

is binary, M E H ( L ) ,  A C M, and /~0,...,/~.-1E M, then tp(/~o,...,/~,_ll A)  is 

determined by tp( t ;o l  A) . . . .  , tp(/~,_l I A),  and tp(/~o,..., b, ~). In particular, if A 
is finite and B is the solution set in M of a complete 1-type over A, then 

B E H(L) when B is regarded as an L-structure. Such easy consequences of 

binariness will be used repeatedly in §4 and §5 without special mention. 

The rest of the paper is organized as follows. In §2 are explained most of the 

notation and terminology used in later sections. In §3 are stated some results 

about H(L) for L any finite relational language and a "normalization" lemma 

(3.9) which is Lemma 3 of [5] in a new guise. In §4 we start gathering some 

information about the behaviour of the rank function rM(A) (defined in the 

Introduction) for the case in which M ~ H ( L )  and L is binary. One of the 

important points here (4.5) is that for fixed L, if M E H(L), A C_ M is finite, and 

N is the solution set in M of a complete 1-type over A, then rM (N), the rank of 

N as a subset of M, can be bounded in terms of r(N), the rank of N as a 

structure in its own right. In §5 we first prove Lemma 5.1 which is the crucial link 

in the chain of reasoning which yields the main theorem. This result says that, if 

L is binary and M E H(L) is sufficiently large :and transitive (i.e. there is only 

one 1-type over 0) ,  then either M is trivial (meaning that M itself is an 

indiscernible set), or M has a nontrivial 0-definable equivalence relation, or 

there exist B, N C_ M such that I B I -- 2, N is the solution of a complete 1-type 

over B, N is large, and Th(N) has fewer 2-types than Th(M). This opens the way 

for us to prove the main theorem for transitive structures by induction on the 

number of 2-types. The other lemma in §5 is rather technical and its net effect, in 

the context of 5.1, is to leave us in the same position as if we had proved 5.1 with 

]B ] = 1 rather than [B [ = 2. In §6 various lemmas from §4 and §5 are used to 
deduce the main theorem. 

The key step (5.1) in the proof of the main theorem is due to the second 

author. The other ideas in the paper come from the first author many of them 

stemming naturally from [7]. 

2. Notation and terminology 

Relational structures will usually be denoted by M, N possibly with subscripts 

and superscripts. We shall not distinguish notationally between a structure and 

its universe. We use I MI to denote the cardinality of M. Subsets of the universe 

of a structure M will normally be denoted by A, B, C , . . .  possibly with subscripts 

and superscripts. However, sometimes A,B,  C , . . .  will denote not only the 
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subsets of M but also the corresponding substructures. A substructure M C_ N is 

called full if, for every 0-definable relation R on N, the restriction of R to M is 

0-definable on M. For a binary relation R, rid(R) denotes {a :3x((a, x )~  R or 

(x,a)~ R)}. 
An extension by definitions of M is a structure obtained as follows. Let k < to 

and E be a O-definable equivalence relation with fld(E)C_ M k. Let  M* be the 

structure with universe MO (Mk/E), let the relation symbols of M have the 

same interpretation in M* as in M, and let M* have a new (k + 1)-ary relation 

symbol R whose interpretation is 

{(a0 . . . . .  ak-,, b) :  a , , , . . . ,  ak-1E M, b = ( ao , . . . ,  ak-,)/E}. 

This process of adjoining new elements can be repeated a finite number  of times. 

If [ M I >  1, any structure obtained in a finite number  of steps will be a full 

0-definable substructure of one obtained in one step and M may be held fixed. 

Thus where it is convenient we can always suppose that an extension by 

definitions is a one-step one. 

Throughout  the paper  M* denotes an extension by definitions of M which is 

sufficiently comprehensive to contain all the imaginary elements of M (see [8, 

III ,  §6]) that we need in the particular context. If a ~ M*, let [a]  denote  the 

least k < to such that there exists a formula q~(x, )7) in the language of M* and a 

k-tuple /~ ~ M such that ~o(x,/~) has a as a unique solution. 

By M k we denote the structure with universe M k whose given relations are all 

those relations on M k which are 0-definable in M. Note that M can be identified 

with the diagonal of M k if we wish. If E is a 0-definable equivalence relation 

with r id (E)C  M k, by M~/E we mean a structure whose universe is the set of 

E-classes and whose 0-definable relations are all those induced by relations on 

M k 0-definable in M. 

If M is a structure and A _C M*, then by (M, A) we denote the structure 

ob ta ined  from M by adjoining for each a E A, where we suppose a ~ M k/E 
say, a new k-ary relation symbol whose solution is the E-class a. Note that 

aut(M, A ), the automorphism group of (M, A ), is the pointwise stabilizer of A in 

aut(M).  

If M ~ H(L), by a basic subset of M k we mean one defined by an atomic 

formula or negated atomic formula of L possibly containing some parameters  

from M. 

All types considered are complete.  By tp(/~o . . . . .  /~o_~ ] A )  we mean the 

complete type over A of the tuple /~o'"/~n-~. Sometimes we write 

tp~(/~0 . . . . .  /~,-~ I A) to indicate that we mean the type with respect to the 
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structure N. If k < to and A C_ M*, let sk (M, A ) denote the set of all complete 

k-types of M over A and let Sk (M, A ) denote the set of solution sets in M k of 

types in sk (M, A ). Members of sk (M, A ) will be denoted by p, q possibly ~vith 

subscripts or superscripts. Members of Sk(M,A)  will be denoted by P, Q 

possibly with subscripts or superscripts. 

Let pe rm(A)  denote the set or the group of all permutations of A. If 

a @ perm(A),  then by fix(c~) we mean {a E A : ~ (a)  = a}. By aut(M) we denote 

the automorphism group of M. If c~ E aut(M) we regard a as being automati- 

cally extended to M* in the obvious way. The structure M is called transitive if 

for all a, b E M there exists a E aut(M) such that a ( a ) =  b. If M is countable 

and No-categorical, then M is transitive if and only if I sl(M,Q)t = 1. 
By ~ ( M )  we denote the set of all 0-definable equivalence relations E such 

that fld(E) C M. Let  ~ ( M )  denote the set of all C such that C is an E-class for 

some E in ~(M).  For C E ~ ( M )  define dp(C, M)  to be the greatest n < to such 

that there exists (Co , . . . ,  C,) with Co = M, C, = C, C~ E CO(M) (i =< n), and 

Ci+l~Ci (i < n). 

We will need one of the principal concepts of [7], namely that of a nice family 

of indiscernible sets. Let  E0, E1 E ~ ( M  2) be such that 

(i) fld(E0) = fld(E1) and E , ~  E0, 

(ii) M2/Eo is transitive, 

(iii) ~ - - { C / E ,  :C E M2/Eo} is a family of mutually indiscernible sets, i.e. 

each I E ~ is indiscernible in M* over ( [ , . ) , ~ ) - / .  

The family ~ is called a prenice family of indiscernible sets. When M E H(L)  
this is exactly the same kind of family which is associated with a prenice pair of 

formulas by the definition in the Introduction, By the dimension of ~ denoted 

d ( ~ )  we mean the common cardinality of the members of ,~. Since the members 

of ~ are subsets of M* rather than M we say that ,~ is a prenice family attached 
toM. 

Let I _C M* be an indiscernible set and A _C M*. By cl l (A) we mean the least 

subset B C_ I if any such that 21B I < I I[ and I - B is indiscernible over A U B. 

We call cl1(A) the 1-closure of A. 

For a prenice family ~, the ,~-closure of A denoted cl~(A) is [,.J{cl~(A) : I E 

~} provided cl~(A) is defined for each 1 E ,~. 

Let ,~ be a prenice family attached to M. We say that ,~ is a nice family 
attached to M if the following additional conditions are satisfied: 

(iv) cl~({a}) exists for all a E M and [cl~({a})M I[ < [I[/8 for all I E ~-, 

(v) if J _ C I E ~  and A = { a E M : c l ~ ( { a } ) Y l J = Q } ,  then J is strongly 

indiscernible over A U ( (U  ~ ) - J ) .  
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For future reference we mention two results about nice families. The first is 

11.1 of [7]. 

LEMMA 2.1. I f  ~ is a prenice family attached to M E H ( L  ) and d ( ~ )  is large 

compared with L and r(M), then ~ is nice. 

LEMMA 2.2. Let M ~ H ( L  ), a E M, A C M, and ~ be a nice family attached 

to M. Then 

(i) ]cl~({a})[ <ls2(M,O)l ,  

(ii) if IA I <-- d( )/21s2(M,O)l, then cf f (A)  exists, 

(iii) if cl~(A) exists, then cl~(A) = U{cl~({x}):x @ A}, 
(iv) if J C I @ ~ and J (-1 cff (A) = Q, then J is strongly indiscernible over 

A U cf f (A)  U ((U o~)-  I). 

PROOV. (i) As a, b run through M, Icl*(a)Acl '~(b)l  takes every number 

--< l c V ( a ) l  as a value. 

(ii) Suppose IAI<= d(0%)/2t s2(M,O)l. Let B denote U(clL~({x}): x C A}. For 

1 E if, I - B is strongly indiscernible over A U B U ((U 0 % ) -  I) by (v) of the 

definition of nice family. Therefore cl*(A) exists and is C_ B. Note that 

II n B } <  d(~) /2  by (i). 
(iii) Let B be defined as above. By the argument for (ii), c f f ( A ) C  B. On the 

other hand, from the definition of cl ' (A),  cl ' (A)Dcl ' ({x}) for each x E A. 

Hence cff (A) = B. 
(iv) This follows from the previous part and (v) of the definition of nice family. 
If 0% is a nice family, by a complete set of representatives for 5 z we mean a set 

B c U 0 %  such that I B n I ] = l  for each I C f f .  

3. Background information 

In this section we recall some results from [7] and one from [5] which will be 

useful in the sequel. 
Let M be a structure. By a quotient structure of M we mean a structure N such 

that for some Eo, E~ E ~(M)  

(i) fld(E0) = rid(El) and El ~ E0, 
(ii) N = C/E1 for some Eo-class C, 

(iii) the 0-definable relations of N are just those induced by the 0-definable 

relations of M. 
We are not specifying any particular language for the quotient structure. 

Notice that aut(N) is the group of permutations of N induced by aut(M). 

Obviously M transitive implies that C and N are transitive. 
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A nice family ,~ attached to M is called perfect if for all a, b E M and L J E ,~, 

Icl'({a})] = IclJ({b})[. The set of perfect (nice) families attached to M is denoted 

F p (M). If M is stable and N0-categorical, or superstable, then any perfect family 

attached to M is finite. 

The structure M is called perfect if there exists a perfect family ~- attached to 

M such that for all a, b E M, cl~({a}) = cl~({b}) iff a -- b. Notice that a perfect 

structure is necessarily transitive. For any perfect structure encountered below 

we will suppose that a particular perfect family ~ has been chosen; then for 

cl~({a}) we will write crd(a).  We think of "c rd (a ) "  as abbreviating "set of 

coordinates of a ". There are two parameters  associated with a perfect structure 

M: by width(M) we mean I~1 ,  and by index(M) we mean [I  71 crd(a)[ for I E ,~ 

and a @ M. 

For the rest of this section we fix a finite relational language L. We first recall, 

without giving proofs, some results from [7]. The first two concern rank and are 

4.5 and 5.2 of [7] respectively. The third is 7.3 of [7]. 

LEMMA 3.1. If M ~ H ( L )  and k < ¢o, then r(M k ) can be bounded in terms of 

k and r(M). 

By saying that " there  is a language L '  for M such tha t . . . "  we mean that there 

is an L'-s t ructure M '  with the same universe as M which has the same 

0-definable relations such that . . . .  In this situation we may use M to denote M'.  

LEMMA 3.2. Let M E H ( L ) ,  d E M*, and M' denote (M, d). 

(i) r(M') can be bounded in terms of [d] and r(M). 

(ii) There is a finite relational language L ' for M'  such that M'  @ H(L ' )  and L '  

is bounded in terms of [d] and r(M). 

REMARK. Strictly speaking the results of this section should be formulated in 

terms of a variable language L because we will need to apply 3.2(ii). However ,  

we prefer to suppress the dependence on L of the various bounds whose 

existence is asserted because this makes the statements of lemmas a little less 

cumbersome.  

LEIvIMA 3.3. There is a function F : toz--~ to such that, if M ~ H ( L ) ,  k < to, 

E ~ ~(Mk) ,  I C M ~ / E  is O-definable and F(r(M),  k)-indiscernible, and I I I> 

F(r(M),  k ), then there exists D C_ M and P E Sk (D ) such that [ D [ <-_ F(r(M),  k), 

and the following conditions hold: 

(i) 21P/EI>=III, 
(ii) for each basic C C M k either P ~ a ~ 0 and C r~ P A a = Q [or at least 

half the a ~ L or C ~_ P N a # Q for at least half the a E L 
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(iii) if n < w and c, . . . . . .  ca ~ P fall in distinct E-classes, then tp(co . . . . .  c, ] D)  

depends only on n. 

COROLLARY 3.4. There exists H : w3--> oJ such that if M E H(L  ), A C M is 

.finite, I C M* is indiscernible and O-definable and [II >= H(r(M),  [I], 1A ]), then 

cl ' (A) exists. In this case I cl1(A)[ can be bounded in terms of l A  ]. 

One of the main results of [7] was 9.4: 

TRICHOTOMY THEOREM 3.5. There exists F : to--> to such that, if M E H ( L )  

and N is a transitive quotient structure of M, then one of the following three 

possibilities holds : 

(i) ]NI=<F(r(M)),  

(ii) there is a nontrivial member of $ (N) ,  

(iii) N is a perfect structure. 

REMARK 3.6. When N is a perfect structure in the conclusion of 3.5, then 

width(N), index(N) < ]s~_(N, ;~)] =< ] s_,(M, Q)[. 

The first inequality follows from the fact that Icrd(a) A crd(b)] takes all values 

_<- width(N)-index(N) as a, b run through N, 

The next result did not appear in [7] so we give a proof. 

LEMMA 3.7. There exists F : to -~ to such that for every G • to'---> to there exists 

H"  to2__~ to such that, if N ~ H(L) ,  i < to, and IN] > H (r( N),  i), then there exist 

A C_ N, P C SI(N, A ). and E @ ~(N, A ) such that 

(i) I A l <  F(r(N)) ,  

(ii) fld(E) = P and ]P/E I> G(i, IC]) for each C E P / E ,  

(iii) if n < to and co . . . . .  c, ~ P fall in distinct E-classes then tp(c0 . . . . .  c, I A)  

depends only on n, and in particular ! C! is independent of C E P / E. 

PROOF. Suppose that N E H ( L )  and that I NI is very large compared with 

r(N)  and i. Without loss we can suppose that N is transitive. Let ( C ) : j  < m) be 

a maximal sequence such that for each j <  m, C; is an E;-class for some 

E~ ~ ~'(N), and Q'~ ~ C~ for each j < m - 1. Clearly m is bounded in terms of 

L, so we can choose j < m - 1 such that I C;] is very large compared with I C/1 ] , 

r(N),  and i. By 3.5, C~/Efi~ is a perfect structure which we denote by D. Let Eo, 

E1 be as in the definition of perfect structure, Co be an Eo-class, and I denote 

Co/E~. Let ao, a~ ~ C~ be chosen such that, if bo = ao/E/+~ and bl = al/Ej~,  then 

Icrd(b0)-crd(b0] = 1 & crd(bo)-crd(b0_C I. 
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Now I is an imaginary element of N and is an indiscernible set. Since I C~I is 
large compared with I G ' l  ], r(N),  and i, so is l I I, because the width and index of 
D are bounded by 3.6. By 3.4, cl~({ao, al}) exists and is bounded in terms of L. 
There exists Po E S~(N,{ao, al}) such that Po _C C; and for all b E Po/E/1 

crd(bo) (3 crd(bl) C crd(b) & crd(b) f'l I ~  cl~({a0, al}). 

If a @ Po, then a/E[+l has a unique coordinate in I -  cl/({ao, al}) and for every 

c El- -c l ' ( {ao,  al}) there exists a CPo such that c Ecrd(a/Ej'~). Let E2 = 
E/+~ N (Po) 2. Then for all a, a '  E P0 

aE2a' ==-- crd(a/E/~)  = crd(a'/E/÷l). 

Both Po and E2 are {ao, m}-definable. There is an {ao, al}-definable bijection 
between Po/E2 and I - cl'({ao, al}). 

Applying 3.3 to the structure (N, {ao, al}), the set P0, the equivalence relation 

E2, and I = Po/E2, we obtain A C_ N, P @ SI (N,A) ,  and E = E2 f-/p2 such that 

{ao, a,} C_ A, I A J is bounded in terms of r(N), P C_ Po, 21e/E I -> I eo/  l, and (iii) 

holds. 

Since L is fixed, J D ] can be bounded in terms of I I I, hence in terms of I Po/E2 ], 

and hence in terms of [P/E[.  If C is an E-class, then I CI_<-IC;+,I. Thus by 
choosing j such that ] C;I is sufficiently large compared with I C/11 and i we shall 

ensure that l P / E ] >  G(i, I f  I). (As noted above we also need IC}I/I C/, l large 
compared with r(N)  in order to apply 3.3.) This is sufficient to prove the lemma. 

The next lemma follows from 5.2 and 11.1 of [7]. 

LEMMA 3.8. There exists F : to --~ to such that, if N E H(L) ,  E E ~(N) ,  C is 

an E-class, ~ @ F p (C), and d ( ~ )  >~ F(r(N)) ,  then ~ is a nice family attached to 

(N, { C}). 

The final result of this section is a variant of Lemma 3 of [5]. Since the idea of 
the previous proof is adequate we give no proof here. 

LEMMA 3.9. Let R (x, y) be a binary relation symbol and n < o9. There is a 

first-order formula q~, (x ) whose only nonlogical symbols are R and = such that, 

if r e = n -  , then 

VyoVya(::lxoR(xo, yo) ^ 3XlR(Xl, y~)----~ 3<"x(R(x, yo) ^ ---1 R(x,  yl))) 

implies 

V y ( 3 x R ( x ,  y) -~  3<'~x(R(x, y) ^ --1 q~, (x)) A 3<reX (~o, (X) A - '1R(x, y))). 
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REMARK 1. We think of R as defining the family 

= {{a E M : M ~ R ( a , b ) } :  b EM~3xR(x ,b ) }  

of subsets of whatever structure M we are concerned with. If the difference of 

any two members of ~ has cardinality < n, then ~, (M) satisfies I X -  q~. (M)I < 

m and I q~- (M) - X I < m for all X E ~.  The significance of the lemma lies in the 

absence of parameters from ~, (x). 

REMARK 2. Clearly the lemma is equally valid when we replace y by )7 and 

R(x, y) by any formula O(x, ~). 

4. Rank in binary structures 

Here  we establish some properties of rank in binary structures. Except for 4.1 

we do not know whether the results of this section hold when the language L has 

arity > 2. 

We fix a finite binary language L for the whole section. Where number- 

theoretic functions F, G are mentioned below, they have L as a hidden 

parameter.  
The upshot of the section (4.8) is that there exists F :  603""9'(.0 with the 

property: if ro, m < to and r ( M ) <  ro for all transitive M E H(L) such that 

[s2(M, 0 ) [ <  m, then for any transitive M E H(L) with I s2(M, Q ) [ =  m and any 

a E M we have 

r(M) < F(ro, m, min{r(P) : P E SI(M, {a})}). 

From this and the two lemmas of §5 the main theorem (6.1) for transitive 

structures follows easily. The main theorem is reduced to the case of transitive 

structures by 4.1 and 4.5. 

We first observe that the definition of rank can be given a slightly simpler form 

since we are assuming the language is binary. If M E It(L) and A C_ M, then 

rM(A)>= n + 1 if and only if there exist a E M  and distinct Bo, BI E SI(M,{a}) 
such that rM (A O B,) -> n for i < 2. Together  with rM (0)  = - 1 and rM (A)  => 0 

for all A ~ 0 ,  this is enough to fix rM (A). 

LEMMA 4.1. If M E l t ( L )  and Ao, A~C_M, then 

ru (Ao U A~) _-< rM (A0) + rM (A~) + 1. 

PROOF. We proceed by induction on rM(Ao). If A0 = O or A1 = O the result 

is true by inspection. Let  a E M and Bo, B~ be distinct members of S,(M, {a}). 
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There exists j < 2  such that rM(AoN Bj )<  rM(Ao) and so by the induction 
hypothesis we have 

rM((Ao U A,)(q Bj) <- rM(Ao A Bj)+ rM(A, M B,)+ 1 ~_ rM (A,,) + rM(A~). 

Since a E M is arbitrary, we have the desired conclusion. 

If M0, M~ E H(L) and k < ~o, we say that sk (M,,, Q) and sk (t'V/~, Q) have a type 
in common if there exist po E sk (M., (~) and p~ E sk (Mr, ~ )  such that po and pl 

contain the same quantifier-free formulas. 

Let Mo, M~ @ H(L ), Mo be transitive, and s2(Mo, O) and s~_(M~,O) have at 

most the trivial 2-type in common. There exist M E  H(L), unique up to 

isomorphism, E E ~(M),  and a bijection [:M/E---~ Mo such that for any 

E-inequivalent a, b, tpM(a,b) and tpMo(f(a/E),f(b/E)) contain the same 

quantifier-free formulas and such that each E-class is isomorphic to Mj. By 

M0[M~] we denote any L-structure isomorphic to M. If s2(M,,, Q) and s2(Ml, 0)  
have a non-trivial type in common, we can still form a wreath product Mo[M,]. 
However, if we define it as an L-structure, then the copies of M~ will not 

necessarily be the classes of a 0-definable equivalence relation, nor is there any 

reason to suppose that M0[M~] E H(L) in this case. 

LEMMA 4.2. If Mo, M~ E H(L) have no nontrivial 2-type in common, then 
r(Mo[Ml]) <= r(Mo) + r(M1). 

PROOF. Let M be the particular copy of Mo[M1] referred to above. Let C be 

an E-class. For any X C  C, rM(X)= re(X), because for any a,b @ C and 

B C_ M, tp(a I B) = tp(b [B) iff tp(a I B M C ) =  tp(b [B O C). For A C Mo let 

A[M~] denote U f - J ( A ) .  If BC_M is finite and PES, (M,B) ,  then either 

P =A[M~] for some A ES~(Mo, f (B/E))  or PES~(C,B M C) for some C E  

B/E. By induction on r~(A) we can see that, if A C Mo and A [MI] E S~(M, B) 
for some finite B C M, then rM (A [M~]) =< r~,(A ) + r(M~). Taking A = Mo we are 
done. 

LEMMA 4.3. Let M ~ H(L) ,  A C M be finite, and M' = (M, A). 
(i) If B CM, then rM,(B)<-rM(B). 
(ii) If B C P E SI(M,A ), then rM,(B) = rM(B). 

PROOF. (i) If P E S,(M', D) for some finite D _C M, then P E S,(M, A U D). 
This is enough. 

(ii) Suppose B C P E S1(M, A ). If Q E S1(M, D) for some finite D C M, then 

Q (3 P E S1(M', D). This is enough. 
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In the next lemma we shall use the notation cL](B) with a special meaning 

which we now explain. A structure M ~ H(L)  is given as are a finite set A _C M, 

N ~ S,(A),  E ~ ~(N) ,  and E-class C, ~ E FP(C), and a finite set B C M. By 

cl~(B) we mean the least D C U 5 ~ if any with the following properties: 

(i) for each I E ~, 21D n 11 <1I [ ,  

(ii) if ~- ~ pe rm(U ~) ,  7r(1) = I for each I ~ ~, and D C fix(It), then there 

exists a E aut(M) such that a induces ~" and A U B U {C} U D C fix(a). 

LEMMA 4.4. There exist F : w'----~ ~o and G : w --~ ~o such that, if M E H(L ), 

N ~ S~(A) for some .finite A C M, C E %~(N), B C_ M is .finite, ~ E F~(C), and 

d(SZ)~ F( IBI , r (N)) ,  then clM(B) exists and [clX'~(B)[ _-< G([ B I). 

Paoov. Since ,~ C FP(C), k = [~[  is bounded by ls2(C,O)l by 3.6 and hence 

is bounded in terms of L. Supposing that d ( ~ )  is very large compared with I BI 

and r (N)  we shall prove that clM(B) exists. 

Let E,, E, E ~ ( C  2) determine ,~ and let D = fld(E,) = fld(E,). Let (Di : i < k) 

be an enumeration of D/Eo, and I, denote D,/E~. By 3.8, since d(5  z) is large 

compared with r(N), 4 z = {L : i < k} is a nice family attached to (N, {C}). Below 

cl~( ) is to be understood as c l ' (  ) relative to the structure (N,{C}). 

From 3.1, r (N ~) is small compared with d(gZ). From 3.2, the rank and 

language of (N, {C}) as a homogeneous structure can be bounded in terms of L 

and r(N). Therefore,  by 2.2, c l f (X)  exists for any XC_N with [X[ small 

compared with d ( ~ ) ;  moreover,  when IX[ is small, so is Icl~(X)l. 

Call (X, P) a good pair if the following conditions are satisfied: 

(i) XC_N, IXl<=k.r(N~),  

(ii) P = ( P , : i < k ) ,  P, ES~(N,X) ( i<k),  
(iii) for a E L, P, n a / Q itt a ~ cl~(X). 

Define m ( X , P )  = Z{r~--(P, N a,)" i < k}, where a, C I, - cl~.(X) (i < k). (Since 

P~ E S2(N, X )  and a ~  cl~(X), rN~(P~ N a,) does not depend on the choice of ai.) 

Fix a good pair (X, P)  with 

( # )  m ( X , P ) <  k . r (N'- ) -JX[ 

so as to minimize m(X,P) .  We claim: 

(iv) if d E N, Q _c N-" is a {d}-definable basic subset in the sense of N, i < k, 

and a E I , - c l ~ ( X U { d } ) ,  then either O D P N a  or Q N P N a  = Q .  

By inspection P can be chosen so that {O, P) is a good pair satisfying ( # ) .  

Thus (X, P)  can be chosen as stipulated. Towards a contradiction suppose (iv) 

fails through d ~ N, Q C N 2, and i < k. 

From the definition of cl~, for ] < k, every a E l j  - cl~(X U {d}) realizes the 
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same type over X U{d,C} and hence over {X,d}.  Also, c l~(XU{d})  is 

X U {d}-definable in (N,{C}). Since {C} is {x}-definable uniformly for x E U 3,  

if P ~ S~_(N,X U {d}) and P N a / ~  for some a C Ij - c l ~ ( X  U {d}), then, for 

all a E I  I, P N a / Q  ift aff_cl2~(XU{d}). For each j < k ,  j / i ,  choose 

P'j ~ S~(X U {d}) such that P'j _C Pj and P'j n a / O for a C Ij - cl£.(X U {d}). 

Clearly, r~( P', n a, ) <= r,~-( Pj Na, )  (j < k, j / i ). 

By assumption, for a E I , - c l ~ ( X U { d } ) ,  there exist distinct P ' , P " C  

S~(N, X U {d}) both C_ P such that P '  N a and P" n a are both non-empty. One 

of rN'-(P' N a), r~(P" N a) is less than r.~:(P, N a ). 

Choosing P', appropriately, we obtain a good pair (X U {d},P') such that 

m ( ? ( U { d } , P ' ) < m ( X , P ) .  This contradicts the choice of (X,P},  and so (iv) 

holds. 

From the discussion it is clear that c l~(X)= U{l, - ( P , / E ~ ) : i  < k}. Thus the 

sets (D, N P, )/E~ (i < k)  are strongly mutually indiscernible over X U cl~(X) U 

{C}. It is also clear that Jcl~(X)J is small compared with d(5~). 

CLA!M 1. Let i, j < k, a C D, (] P, and b ~ D, n P, such that a ~l~ 1 b. Then 

tp(a, b) depends only on (i,j). 

PROOF OF CLAIM 1. Towards a contradiction suppose there exists b' E Dj N Pj 

such that a t~, b' and tp(a, b') / tp(a, b). Since (D, N P,)/E, and (DI N Pj)/E~ are 

mutually indiscernible, switching i and j if necessary we choose a, b and b' such 

that b E, b'. Then a splits Pj N (b/E,).  If every a ' E P ,  n (a lE , )  splits Pj N 

(b/E,),  then every a ' E D ,  n P, splits Pj N ( c / E , )  for every c C(Dj O P j ) -  

(a'/E~). This contradicts property (iv) of (X, P}. Thus not every a '  E P, N (a /El)  

splits P~N(b/E~). Hence for every c E(D,  N P , ) - ( b / E , )  some elements of 

P, n (c/E~) split P~ N (b/Et)  and some do not. Now 

0 = {x E (D, n P,) - (b/E,)"  x splits P~ n ( b / E l ) }  

splits P, N (c/E~) for every c E (D, N P, ) - ( b / E l ) .  This contradicts property (iv) 

of (X,P} and so completes the proof of Claim 1. 

To show that cl~(B) exists it suffices to show that cl{~(B') exists for some 

B'_D B. Thus there is no loss of generality if we adjoin elements of N to B in 

order to have B n C / G  so that C and U ff  become A U B-defiinable, and to 

have B 2 N b / Q  for each b E U { I , - ( P ~ / E ~ ) ' i < k }  so that each singleton 

C_ I , -  (P,/E,)  is B-definable (i < k). Note that ]B[ i s  still small compared with 

d(.~). 

CLAIM 2. For each i < k there exists O, ES ~(M,B)  such that 

! ( D, N P, )/ K . - ( D, N P, n O,)//='~] is bounded in terms o [ I B ] .  
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PROOF OF CLAIM 2. Let/7 enumerate B, i < k, and m, =dr. I (D, n P,)/EI]. Let 

Y be any B-definable subset of M -~. Let L (Y) = (D, n P~ N Y)/E~ and 

I'~(Y) = {a E (D~ n P,)/E, : a n P, n Y = 0}. 

Until further notice assume [I;(Y)I>=]L(Y)[. If m, <w,  this is the same as 

[L(Y)]_-  < m~/2. Define J(/7) = U { / , ( Y ) : j  < k}. Since we arranged for C to be 

A U B-definable, J(/7) is A U X U B-def inable  

Since N U A is A -definable and M is to-categorical and to-stable, M is prime 

over N U A. Therefore  every a ~ aut(N) extends to /3 ~ aut(M) with A C 

fix(/3). Let ~r E perm((D, n P~)/E,). There exists a E aut(N) inducing rr such 

that 

X tO {C} U ( (U  ~-) - ((D, n P,)/EO) C fix(a). 

Let/3 E aut(M) extend a with A C fix(u), and J(/3(/7)) denote the image of J(/7) 

under/3. Notice that J ( / 7 ) -  )(/3(6)) = L ( Y ) -  rr(L(Y)). Since we arranged for C 

to be a U B-defnable ,  IJ(/7)-J(/3(/7))l  is a function of tp(/Tn/3(/7)lA u x ) .  

Since t p ( / 7 ] A U X ) = t p ( / 3 ( / 7 ) I A U X  ), IJ(/7)-J(/3(/7))l  is a function of 

tp(/Tn/3(/7)). (This is one of several places where we use the binariness of the 

language.) By varying ~r we see that IJ(/7)-J(/3(/7))  I takes at least ]I,(Y)I 
different values. Hence there are -~IL(Y)I possibilities for tp(/Tn/3(/7)), i.e., 

II, (Y) t  =< I s2~,,f(M, 0) t .  
Similarly, assuming I/:(Y)I--II,(Y)I, we c a n  p r o v e  II:(Y)] _-< I sz l , , l (M,Q) l .  

Recall that Ic I;v(X)I is small compared with d(f f ) ,  as is ]B].  Clearly, ]S2(M, B)] 
being bounded in terms of ]B l, we can find Q E & ( M , B )  such that 
[I, (Q)J ~[S._E,,j(M. 0)!.  The argument above tells us that [I, (O)l ~II',(Q)]. i.e., 

]I',(Q)I<=IL(Q)I. This implies that II',(Q)I<=IS21<(M,Q)I. Since I ' , (Q)=  

(D~ n Pi)/Ei - (D, n P, N Q)/E,, the claim is proved. 

For i < k, let Q~ ~ S2(M, B) satisfy the conclusion of Claim 2 for D~ and P~. 

For each i < k, let [, : (D~ n P,)/E,--+ D~ O P, be a function such that ~ (x)/E, = x 
(x E (D~ n P,)/E1) and f~ (x) ~ Q, (x E L (Q~)). Let K, = rng(/, I L (O)) and R, = 

rng (} ) -K~  ( i < k ) .  Let K', denote U{{x,,,x~}:(xo, x~}EK,} and R'~ denote 

U{{x0, x,} :(xo, x,) E R~}. If a E (D~ R P~)/E,, b E (Djn  Pj)/E,. a ~ b, f(a) = 
(ao, a,), f(b) = (b,,, b~), and ao = ha, then by Claim 1 every pair in (D~ n P,) U 

(Dj R Pi) has the same first member. We can make a similar inference if one of 

ao = b~ and a~ = b~ holds instead of ao = bo. 

Consider ~r E perm(U{K~ : i < k}) such that ~r(K~) = K~ (i < k). From our 

remarks above there exists y E perm(U{K'~ : i < k}) induced by rr which has no 

conflict with the identity map on U{R'~ : i < k}. Let y '  be the union of - / and  the 
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identity map on A U B U X U U{R' , : i  < k}. Since L is a binary language, 

y '  is an elementary map in the context of M E I t ( L ) .  Let 6 E 

perm(A U B U X U U.~ )  be the map induced by 3".' (This is where we use the 
fact that {a} is /3-definable for each a E (U  ,~) -c l~(X) ,  so that ,3 fixes each 

such a. Every other a ~ U ~ has a representative mapped by 7'.) Since 

A U / 3 U X U U o %  is A U l 3 U X - d e f i n a b l e ,  M* is prime over A U B U X U  

U ~. It follows that 6 is induced by some o~ ~au t (M) .  For each i < k, a 

permutes L- ( (D~ N P, N O,)/E 0 arbitrarily and fixes the rest of L, which is 

small compared with d (~) ,  pointwise. Therefore cl~(B) exists. 

It is easy to see that cI~(~3) = ~ ,  because M* is prime over A U {C} U U ,~. 

Now we want to see that [c1~(/3)1 can be bounded in terms of lB [ . The argument 

is like that for Claim 2. By adjoining one element to B, we ensure that C and 

hence U ,~ are B-definable. For any j <[  '~ there a = clM(B)I, exists Eau t (N)  such 

tht a ( C ) =  C and 

Ic1~,(/3) n a (cI~(B))I = j. 

Let/3 E aut(M) extend a such that A C fix(/3). Note that c l~ (B)n  a (cl~(B))= 
cl~(B)Dcl~(/~(B)) is A U BU/3(B)-definable.  Thus j is determined by 

tp(/)n/3 (/~)l A). But tp(/~ I A)  = tp(/3(/~)l A)  and so, since the language is 

binary, tp(/~ ~ 13(/))l A)  is determined by tp(/~ n/3(/~)). Hence 

[ cl~,(B)I _-< I S~MM, Q)I 

which is the required bound. 

The previous lemma is only required to obtain: 

LEMMA 4.5. There exists F : w--* to such that, if M E H ( L  ) and N C S~(A ) 

for some finite A C_ M, then rM(N)<= F(r(N)) .  

PRoov. For a contradiction argument suppose the lemma fails. Let r,, < w be 

least such that for every r <o)  there exist M E l t ( L ) ,  finite A C_M, and 

N E S t ( A )  with r ( N ) = r ,  and rM(N)>r.  We choose a sequence S = 

<(M, ,A , ,N~ ,C , } : i<w}  such that for all i < w  

(i) M , ~ H ( L ) ,  

(ii) A~ C M, is finite, 

(iii) N, E S,(A,), 
(iv) C, E ~(N,), 

(v) r(N,)=r~, and rM,(Ci)>i. 

For any N E H ( L )  and C E  ~'(N) there is an absolute bound on dp(C,N). 

Thus we can choose the sequence $ such that do = dp(C,, N,) does not depend on 
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i and is as large as possiblc. For all sufficiently large i there  exists o ~, ~ FP(C,).  

Otherwise by 3.5 for infinitely many i there would be E, E ~g(C~) with IC,/E, I 
bounded  in terms of r,,. By 4.1 this would allow us to increase do. Thus  we may 

suppose that for all i there exist 3~ ~FP(C,). Let  S '  denote  a sequence 

((M,, A,, N,, C,, ,T,,B,) : i < w) 

such that for all i < w, we have (i)--(v) and also 

(vi) dp(C,.N,)=d,,, 
(vii) :T, CF"(C,), 
(viii) B, C U 3,  is finite, 

(ix) r~({a c C, :cl~,,({a})D B,})> i. 

Since C, E H(L). [cl~.,({a})l is bounded.  Hence  IB, l is also bounded.  Thus we 

can suppose that I B, I = m does not depend  on i and that $ '  is chosen so as to 

maximize m. If ~ [clc;({a})l = [B ,  [ f o r  a (E C,, then there exists E, E ~ ( C , ) s u c h  

that 

{a ~ C, "cl~'({a}) _D B,} 

is an E,-class. Thus if this happened  for infinitely many i we could increase d,,, 

contradict ion.  So we may assume that for all i 

Icl~{;({a})[>lB~[=m (a ~ C,). 

Since ,q' was chosen to maximize m there exists rl < o~ such that for all i < w, if 

b E (U ~, ) -  B,, then 

rM,({a E C', : cl~:({a})_D B, U {b}}) < r,. 

Thus we can choose r~ < ~o such that for all i < o) 

(x) if B', is a complete  set of representat ives  for  ~, and B, C)B',=Q, then 

rM, ({a ~ C, : cl{1({a}) _3 B, & cl~,({a}) n B : / ® ) }  < r,. 

Because we are dealing with structures homogeneous  for a binary language the 

definition of rank given in the Int roduct ion can be simplified. We can stipulate 

that B~ in that definition has cardinality l(r/)  + 1. For  any D C_ M, rM(D) is the 

greatest  n < w if any for which there exist a ( ~ ) ~ M  (-q E ~ " 2 )  and D ( r / ) E  

S~(M,{a(g)'g~rl} ) (~C~"2) such that D(~)D_D(rI'~(j)) ( j < 2 )  and 

D ( r / n ( 0 ) )  ~ D( r /~ (1 ) )  for all r / E  ~"2, and D( r / )  n D / Q  for all r / E  ~"2. As 

previously stated, by convent ion r~(D)= - 1  if D = O .  

Let  D, (~/) ( r /E- ' - '2)  be subsets of M, and a,(r / )  (77 E < ' 2 )  be e lements  of M, 

witnessing that 

Sh:157



Vol. 49, 1984 FINITE BINARY LANGUAGE 171 

rM, ({a C C~ "cl{;({a}) D B,}) = i. 

Towards a contradiction suppose there exists infinite Z C o) such that d ( ~ )  is 

finite and bounded for i E Z. Then, for i E Z, if E~ is the 0-definable equivalence 

relation on C~ defined by cl ~'({x}) = cl :~, ({y}), the quotient C,/E, has bounded 

size. Therefore,  by 4.1, if C; is an E,-class, then rM(C;)--->w as i---~ w. Thus do 

can be increased. From this contradiction we infer that d(~)---> o) as i---~ w. 

Let A, ( j )  denote {a,(r/): r /~< '2} .  Consider a very large value of i. Then 

d(o~,) is also very large. From 4.4, cl~,(A~ (rl)) exists with size bounded in terms 

of r~. Let B', be a complete set of representatives for o~ disjoint from 

B, U cl~,(A, (n)). From (x) there exists ~ C "2 such that 

D, (~/) D {a E C, : cl{:({a}) _~ B, & cl~({a}) O B; ~ Q} = Q~. 

Therefore 

D, (r/) N {a E C," cl{;({a}) _~ B~} C_ {a E C, : cl~,({a}) C_ B, U cl~,(a, (rl))}. 

Recalling that tclc:({a})]> IB~ I, we see that 

r., ({a ~ C, • cl~,({a}) _~ B~ & cl{:({a}) n cl~,(a~ (n)) ~ O}) => i - r,. 

Since i is large, by 4.1 there exists b, E cl~,(A, (r~)) such that 

rM, ({a E C, : cl~;({a}) D B, U {b,}}) >= (i - r~ - j ) / j  

where j is a bound on Icl~,(A~(r,)) I computed from ra. It is clear that S'  could 

have been chosen to make [B~ I = m + 1 for all i .< w. This contradicts the choice 

of m, so the proof is complete. 

LEMMA4.6. I f  M E H ( L ) ,  a E P E S , ( M , Q )  and Q E S 2 ( M ,  fg), then 

rM(B)<=rM(P)+rM(Ba), where B denotes the set { b C M : 3 x ' ( x ' @ P  & 

(x', b} E Q)} and B~ denotes {b E M : (a, b} ~ Q}. 

PROOF. We proceed by induction on r u ( P ) +  rM(Ba). Choose c E M such 

that there are distinct B0, B1 E S ({c }) with B0, B1 C_ B and rM (B~) >-- rM (B)  - 1 for 

i < 2. Choose P~ C Sl({c}) (i < 2) such that for all b @ Bi there exists a E P, such 

that (a, b) E Q. For i < 2 and a E P~, let B,.a denote Ba (-I Bi. Let M'  = (M,{c}). 

Suppose P0 = P1 and let a E P0 = P1. There exists/ '  < 2 such that rM (Bj.,) < 

ru(Bo). By 4.3(ii), rM,(Bi)= ru(Bj),  ru,(Bj.o)= rM(Bj.a), and rM'(Pj) = rM(Pj). By 

the induction hypothesis 

r~(S , )  = r~,(S,) =< r~,(Pj) + r~,(Bj.a) < r ~ ( P ) +  rM(Bo). 
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From this and the earlier inequality for rM(B) 

rM(B)<= r . (Bj)+ 1 <= rM(P)+ rM(B~). 

Suppose P0 ~ P,. There exists j < 2 such that rM (P~) < rM (P). Let a @ Pj. Notice 

that rM,(Pj) = rM(Pj) and rM,(Bj.~)<= rM(Ba). By the induction hypothesis 

rM(Bj)+ rM,(Bj) < rM,(Pj)+ rM,(Bj.a)< rM(P)+ rM(B~). 

As before this yields the desired conclusion. This completes the proof of the 

lemma. 

LEMMA 4.7. Let ro, m < to and r(M)< ro for all transitive M E H(L ) such 
that I s2(M,Q) I < m. There exists r~ < to such that, if M E H(L)  is transitive, 
I s2(M,Q)I = m, and ~(M) contains a nontrivial member, then r (M)< rl. 

PROOF. We shall consider quintuples (M,A,  N, E,j)  such that M E H(L)  is 

transitive, s,_(M,Q) = m, A C_M is finite, N E S t ( A ) ,  E ~ ~(N) is nontrivial, 

and 

j = j ( N , E ) =  I{tp(b,c): b,c E N &  bEc} I. 

Let to × to be ordered lexicographically. By induction on (j, rM (C)), where C is 

an E-class, we will prove that there is a uniform finite bound for rM (N). 

Fix a E C. 

Case 1. For all b, c @ N if a,~b, aEc,  and bEc, then tp(a, b) = tp(a, c). Let 
No be obtained by selecting one element from each E-class. Then No does not 

depend on the choices and No ~ H(L)  since N E H(L)  and L is binary. Let Nt 

be an E-class seen as an L-structure. Clearly N~ E H(L)  also. Thus we have 

N = No[N,] and l&(No,~)l, ls2(N,,O)J < m. Therefore r~(N) can be bounded 

by 4.2 and 4.5. 

Case 2. Otherwise. There exist b,c E N  such that aEb,  aEc,  bEc, and 

tp(a, b ) ~  tp(a, c). Let Nb, Nc be the solution sets of the types tp(b IA to {a}), 

tp(c ] A tO {a}). Let Eb, Ec be the equivalence relations on Nb, Nc induced by E. 

Let Cb be the Eb-class containing b and C~ be the Ecclass containing c. One of 

Cb, C¢ has rank less than rM (C), say r~ (Cb) < r~ (C). Since j(Nb, Eb) <= j, by the 

induction hypothesis rM(Nb) can be bounded. 

If C is an E-class, Is2(C,O)1 < m. Therefore r ( C ) <  m by hypothesis. By 4.5 

we have a bound for rM(C). 
Let 

={tp(a,b)}t.){tp(a,d): d ~ N ,  d ~  a, and dEa}.  
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From above, if q E ~  and B , ( q ) = { d E N ' t p ( a , d ) = q } ,  then rM(B,(q)) 
is bounded. For P C SffN, {a }) and q E 2L let A (P, q) = 

{e E N  : ( 3 d  E P ) ( t p (d , e )  = q)} and 

least subset of &(N,{a}) including 

P E ~ there exists a finite sequence 

S(P)  = U { A ( P , q ) : q  E ~ } .  Let ~ be the 

{a} and stable under S. Clearly, for each 

(P,, . . . . .  Pk )E  ~ such that P~+, E S(P~) and 

one can easily arrange for the P~'s to be distinct. Moreover,  for each i < k, there 

exists q E ~ such that for all e E P~+~ there exists d E P~ with tp(d, e) = q. Now 

k < [ s~_(N, Q) I <= Is2( M, Q) I and so k is bounded since L is fixed. By induction on 

i using 4.6 we can bound r~M,o~(P~) for all i < k. From 4.3, r~(P~) = rtM.a~(P~) and 

so by 4.1 we can compute a bound for rM(U ~ )  in terms of L. 

Let U ~ be denoted Bo and notice that Ba is {a}-definable in N. In fact, Bo 

consists of all d E N such that there exists a finite sequence (ao . . . . .  ak) in N 

such that a0 = a, ak = d, and tp(a~, a,+0 E ~ for each i < k. It follows that if 

d E Ba, then Bd C_ Ba. If Bd ~ Ba, then we can find a strictly decreasing 

oJ-sequence of uniformly definable subsets of N, which contradicts the stability 

of M. Therefore  Bd = B,,  which means that there exists ~ ' E  E(N)  such that 

Bo = U ~ is an E'-class. Let this E'-class be denoted C' .  By choice of ~, 

U 3 ~ D C U Nb. Hence C ~  C'.  Thus j(N, E ' )<j (N,  E). Either C ' =  N and we 

have a bound for rM (N) since we have one for r~ ( U  ~ ) ,  or E '  is nontrivial and 

we have a bound for rM (N) by the induction hypothesis. 

If ~ ( M )  contains a nontrivial member  E, then there is a quintuple 

(M, Q, M, E, j) and the above discussion allows us to find a bound for r(M) in 

terms of L. 

LEMMA 4.8. Let ro, m < w and r ( M ) <  ro for all transitive M ~ H(L)  such 
that I s2(M, Q) I < m. There exists F : o) ~ o) depending only on L and m such that, 
if a E M E H(L), M is transitive, and I sffM, ~J) l = m, then 

r(M) < F(min{r(P ) : P E S~( M, {a } ) -  {{a}}}). 

PROOF. Let a E M  E H ( L ) ,  M be transitive, Is2(M, fg)[= m, and 

P @ Sl(M,{a})-{{a}}. We shall show that either r(M) is bounded outright or 

bounded in terms of rM (P). Since rM (P) can be bounded in terms of r(P) by 4.5, 

this will be enough to prove the lemma. 

Let q E s2(M, Q) be the 2-type such that for b E M, b E P if tp(a, b) = q. Let 

be the least subset of SI(N,{a}) such that { a } E ~  and for all PoE ~ and 

P~ E St(N, { a } ) -  ~ if d E Po and e E P,, then tp(d, e) # q. Arguing as in the 

proof of 4.7 with the role of ~ being played by {q} we can compute a bound for 

r u ( U  ~ )  in terms of rM(P). We also see that U ~ is an E-class for some 
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E E g (M) .  If E is nontrivial, we have a bound for r(M) from 4.7. Otherwise, 

U ~ = M and as already noted we have a bound for r(M) in terms of rM (P). 

This completes the proof. 

5. The key reduction 

Our aim is to show that for a fixed finite relational language L there exists 

r < o) such that r ( M ) <  r for all M E H ( L ) .  From 4.1 and 4.5 it is sufficient to 

consider the case in which M is transitive. For transitive M we proceed by 

induction on ] s : (M,Q)I .  Towards a contradiction let m < o) be the least number  

such that r(M) can be arbitrarily large while Is2(M,Q)I = m. From 4.7 there is a 

finite bound on r(M) for those M with ]s2(M,Q)] = m which admit a nontrivial 

0-definable equivalence relation. 

The next step in the proof is the crucial one. Suppose we have M with 

]se(M,~)[= m and r(M) so large that M admits no nontrivial 0-definable 

equivalence relation, then assuming that }M} is also large enough there are 

B C M  and N ~ S , ( M , B )  with I B [ = 2 ,  IN[ large, and [sz(N,Q)l<m.  

We suppose that L is fixed throughout this section and as in §3 and §4 we do 

not mention explicitly the dependence of various functions and bounds on L. 

LEMMA 5.1. There exists F : o) -+ w such that, if M E H(L  ) is transitive, i < to, 

and IM[> F(i),  then either M is an indiscernible set, or g ( M )  contains a 

nontrivial member, or there exists B C_ M and N ~ &(M, B)  such that IB I = 2, 

IN] > i, and ]s2(N,Q)] < ]s2(M,O)[. 

PROOF. From 7.4 of [2], if M is infinite and o- is an L-sentence true in M, 

there exists finite M'C_ M such that M '  E H ( L )  and M ' D  or. Hence for the proof 

of the lemma we may assume that M is finite. 

Suppose that g ( M )  contains no nontrivial member  and that M is not 

indiscernible. For b0, b~ E M define 

A (b,,, b,) = {a ~ M : tp(a, b,,) = tp(a, b~)}. 

Since M is stable, if tp(c,,, c,) = tp(b,, b,) we cannot have A (b0, b,) ~ A (co, c~). 

t hus  we can fix distinct b~ and b~ such that A (bo, b~) is maximal in {A (co. c 0 : c,,, 

c, E M, c o / c , } .  Let M - A (b,,, bl) be denoted A'(b0, b,). 

CLAIM. If n < o2 and I M] is sufficiently large compared with n, then 

I A'(b,,, b , ) l >  n. 

PROOF. Suppose that I MI  is very large and towards a contradiction that 

A'(bo, bi)l < n. Let p = tp(bo, b,). Since g ( M )  contains no nontrivial member ,  
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for any d . , d i ~ M  there exists a finite sequence (c, . . . . . .  c k ) E M  such that 

d,,= c,~, c~ = d~. and tp(c,, c , ~ ) = p  for each i < k. Since L is fixed, there exists 

K < w such that (co . . . . .  ck) can always be found with k < K. From the definition 

of A'(do, dr) we have 

Hence 

A '(d,,, d~) C_ U{A '(c,, c,+,) : i < k}. 

I A '( d,,, dl)[ ~ k . [ A '(b,,, b~)[ < Kn. 

The bound K will work equally well for any nontrivial p' E s . (M,Q).  For a E M 

define 

A ( a , p ' ) = { c  ~ M : t p (a , c )=  p'}. 

Let ]A (a, p')[,  which depends only on p',  be denoted k (p'). Since every b E M 

can be reached from a in =< K "p '-s teps",  we have 

1 + k (p ' )+  k (p ' ) ' -+ . . .  + k(p ' )  K _->[M[. 

Therefore  k(p ')  is large for every nontrivial p ' ~ s ~ ( M , ~ ) .  Choose distinct 

c,, . . . . .  cK, E A (b,,,p). Since M is nontriviaI there exists p' E s .(M,Q) such that 

p ' / t p ( b , , ,  b,). Fix such p'. For each i ~ Kn, [A(c,,p')] = k(p ' )  is large. For all 

i, j <_ Kn, A (c,, p') - A (q, p') C_ A '(c,, q )  and so [ A (c,. p ')  - A (q, p')[ is small. 

Hence there exists c E ("l{A (q, p') : i <= Kn} and c~ ~ A '(b., c) for all i <= Kn by 

choice of p'. Thus [A'(bo, c)] > Kn. This contradiction completes the proof of 

the Claim. 

Returning to the proof of the theorem, define 

R = {(a,,, a~) E M~: tp(ao I A (bo, b0) = tp(a, I A (bo, b~))}. 

R is clearly an equivalence relation on M. Since M is finite there exists 

a E a u t ( M )  such that a(bo) = b~ and A(bo, b~)C_fix(a). If c EA ' (bo ,  b~), then 

a(c )  / c since tp(bo, c) ~ tp(b~, c). Therefore  [c/R [ > 1 iff c E A'(b0, bl). By the 

maximality of A(bo, b~), if c R  d and c ~  d, then A(c ,  el) = A(bo, b~). 

Let B = {b,,.b,}. If !M I is large enough compared with n, then by the Claim 

there exists N ~ S,( M. B)  such that [ N l > n and N C_ A '( bo, bj). Fix q E s.( M.Q)  

which is nontrivial such that tp(c, d) = q for some c ~ N and d ¢ M such that 

c Rd .  Then for every c E N  there exists a unique d E M  such that c R d  

and tp(c, d ) =  q. (If there were distinct do, dl in the R-class of c such that 

tp(c, do) = tp(c, d,), then c E A (do, d~) contradicting our finding that A (do, dl) = 
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A(b0, bl).) For any c G N let q(c) denote the unique y such that tp(c, y) = q and 

cry .  Let N'={q(x) :x  EN}. Notice that N'ES~(M,B). For any d C N ' ,  let 

gl(d) denote the unique x E N such that tp(x, d) -- q and xRd. Let c vary in N 

and d in N'. If tp(c,d)=q, then tp(c,d IB)=tp(c,q(c) lB)  since L is binary. 

But {q(c)} is B U {c}-definable since R is B-definable. Thus tp(c, d) = q implies 

d = q (c). Notice also that each R-class contains at most one member of N by 

the maximality of A (b0, b~). 

Let c, e E N and c / e .  Then cR~e and there exists d = q(e)E N' such that 

dRe, whence cR~d. The number of possibilities for tp(c,d) is less than 

Js2(M,Q)I- 1 because t p ( c , d )¢  q. But tp(c,d) fixes tp(c,e) since e = O(d). 

Therefore the number of possibilities for tp(c, e) is less than [ s2(M, 0 ) ] -  1. This 

shows that Is:(N,O)l<ls2(M,O)l and completes the proof of the lemma. 

We now continue the discussion begun at the beginning of the section. In 5.1 

we have seen that it is sufficient to examine M ~ H(L)  such that I s2(M, O) 1 = m 

and M has a large subset N defined from a pair of elements of M with r(N) 
bounded. Our next task is to exploit the existence of N. 

Let M E H(L)  be transitive and p E s2(M, 0)  be a nontrivial 2-type. For n < 

define M[p,n] bv induction on n as follows. Let M[p,O]=M. Suppose 

M[p, nIC_M has been found. If M[p,n]=O, let M [ p , n + l ] = O .  If 

M[p, n ] ~ 0 ,  choose a,, E M[p, n ] and define 

M[p,n +1] ={a  EM[p,n]:tpM(a, ,a)=p}.  

Since L is binary tpM (a0 . . . . .  a , )  is fixed by p and n whence the isomorphism 

type of M[p,n] is fixed by p and n. Notice that, if M[p,n]~O,  then 
M[p, n] E H(L ) and is transitive. 

LEMMA 5.2. There exists F : o92---~w such that, if M E H(L) is transitive, 
B C_ M is finite, N E S,(M, B), and I NI >= F(IB I, r(N)), then there exists nontri- 
vial p E sz(M,O) such that r(M[p,F(]B l, r(N))]) =< r(N). 

PROOF. Assume that [NI is very large compared with IB[ and r(N). Let /~ 

enumerate B. We shall find a 2-type p such that r(M[p,j])<=r(N) with j 

bounded in terms of I BI and r(N). 
From 3.7 there exist a E N ,  A = r n g ( a ) ,  P(a,b) ES~(N,A), and 

E(&/~) E ~((N, A)) such that 

(i) IAI= l(~i) is bounded in terms of r(N), 
(ii) fld(E(&/~)) = P(&/~) and IP(& t~)/E(& t~)l is large compared with IB I, 

r(N), and h where h is the cardinality of the E(d,/7)-classes, 
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(iii) if n < w and c,. . . . . .  c,. C P ( & b )  fall in distinct E(ci, 6)-classes then 

tp(c,~ . . . . .  c,) depends only on n. 

The idea of the proof is as follows. We shall show that there exists m bounded 

in terms of tBI and r(N)such that M[p,m] is almost isomorphic to P ( & b )  

viewed as a structure, the only possible difference between the two structures 

being that one may have more equivalence classes than the other. For both 

structures the number of equivalence classes is relatively large. Thus 

r(M[p, m]) = r(P(gt, 6))<= r(N). 
Let O be the set of tuples in M conjugate to d ~ b. Let k = l(~i ~/~) and m be a 

bound on Is~k (M, Q)I computed from I BI and r(N). Then m is small compared 

with IP(a,B)/E(a,6)I. Since L is binary, if d C O, then 

I{tp(d,,, d, ]A u B) :  4 ,  d, are conjugates of d over A tO B}[ =< m. 

Let d ~ (2). 

By P (d )  we denote the image of P(d. t)) under an automorphism of M which 

maps t i n 6  into d. 

CLAIM. If P ( d ) intersects at least rn of the E (d, b )-classes, then there are fewer 
than m E(& b)-classes which are not included in P(d). 

PROOF OF CLAIM. We first note that there are fewer than rn E(&/~)-classes 

disjoint from P(d).  This follows from the observation that, for do, d~ conjugate 

to d over A U B, I(P(d,,)/E(gt, 6 ) ) -  (P(d,)/E(& 6)) I could take any value -< rn 

were there m E(&b)-classes disjoint from P(d) .  Next observe that M is 

prime over A U B U P(& 6) since P(a, E) E S,(M, A U B). From (iii), if 1r E 

perm(P(~i, 6)) and ~ [ C C aut(C) for each C E P(& 6)/E(~i, 6), then ~ is an 

elementary map. Thus any such 7r can be extended to o~ E aut(M). Since M is 

transitive, if C is an E(&/~)-class such that P (d )  71 C / O  and C ~  P(d) ,  then 

there exists 7 E aut(C) with P(d) A C~  P(d) C? y(C). Now we see that, if there 

are m E(d,/~)-classes X such that @ / X (3 P(d) ¢ X, then 

!{X E P(~,/~)/E(~,/7) : , \  N P(~I,.)/X (3 P(d,)}l 

can take any value _-< m with d., d~ conjugate to d over A U B. Thus P(d)_D X 
for almost all E((~,/~)-classes X. Hence, if there were _-> tn E(~Z6)-classes 
X ~  P(d), then I (P(d , ) -P(J , ) ) /E(E ,  6)t could take any value ~ m with d,,, d~ 
conjugate to d over A U/3. The latter is impossible since there are =< nl 
possibilities for tp(d., d~ I A U/3). This completes the proof of the claim. 

Recall that [e(&b) /E(& 6)1 is large compared with IB I, r(N), and h, and 
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hence also large compared  with I A I and m. We conclude that,  if do, d~ E Q and 

I P(do) n P(d,)l > (m - 1)h, then I P ( , L ) -  P(d,)l < mh. There fo re  

Eo = {(,~, d , ) :  d,, d~ E Q and [ P ( • )  f3 P(dL)[ > (m - l )h} 

IS an equivalence relat ion on Q. 

For  an applicat ion of 3.9 in ( M * , C o )  let R ( x , y )  mean "x  E M, y @ Q, 

yEo(~ n b, and x @ P ( y ) . "  

Let  Co denote  the Eo-class containing d n/~. By 3.9 there  is a {Co}-definable 

set P[](ti,/~) whose symmetr ic  difference with P(d,  b)  is bounded  in terms of m 

and h. Let  c~ . . . . .  c,, E P(ti , /7) be E(d ,  b)-inequivalent .  From (iii) there  exists 

p E s 2 ( M , O )  such that t p ( c , , q ) = p  for all i , j  such that l=<i, j<=k and i # j .  

Since {Co} is {c, . . . . .  c,, }-definable, so is PG(tI,/)). Let  P'(c, . . . . .  c,,) denote  

{c @ M : (Vi)(1 ~_ i =< m --~ tp(c,, c)  = p)}. 

Thus  P'(c,  . . . . .  c,,) = M [ p , m ]  and P ' E S , ( M , { c ,  . . . . .  c,,}). 

Since P ( d , b ) / E ( d , b )  is large compared  with m and h there  exists c @ 

P ( & / ) ) f 3  pD(&/~) such that c is not E(d, /~)-equivalent  to any of c, . . . . .  c,,. 

Clearly c E P'(ct . . . . .  cm), whence  P'(c, . . . . .  cm) C_ P~(tT,/~) and also 

I P ( d , b ) -  n ' ( c , , . . . , c m ) l  =< mh. Let  

E = { ( x , y ) : x , y  E P ' ( c ,  . . . . .  c,~) & t p ( x , y ) ~  p}. 

Then  E agrees with E(d ,  b)  on 

P(d,/~) - U { c , / E ( & / ~ ) :  1 <= i <= m}  C_ P'(c, . . . . .  c., ). 

Notice that P'(c, . . . . .  c,, ) is a transitive structure and that 

I P'(c~ . . . . .  c . , ) -  P (& [~)l is small compared  with I P(a .  b)/E(4, /~)1.  Hence  for 

each c E P'(c, . . . . .  c,,), f{d : c E d} t i s  small compared  with I P(a ,  b ) / E ( &  b) l. It 

follows that there  is an E(&/~)-class CC_P'(c t  . . . . .  c,,) such that no 

d C P'(c~ . . . . .  c , , ) - C  is E- re la ted  to c E C. The re fo re  E is an equivalence 

relat ion on P'(c~ . . . . .  c,,) and the E-classes are all isomorphic to E(a. / ) ) -classes ,  

where  E-classes and E ( &  /))-classes are being viewed as structures in their own 

right. (Of course,  most  of the E-classes are E(&/~)-classes.)  Fur ther ,  since any 

two E(d,/~)-classes are p- re la ted  and since almost every  E-class is an E ( &  5)- 

class and P'(c, . . . . .  c,,) is transitive, we see that any two E-classes are p-re la ted,  

i.e., Jf c, d E P'(c, . . . . .  c,,) are not E- re la ted ,  then tp(c, d)  = p. 

Let  us compare  the structures P'(cl . . . . .  c,,) and P(&/~).  These  are both 

transitive structures in H ( L ) ,  and the same L- fo rmula  defines E on 

P'(c~ . . . . .  cm) as defines E(&/~)  on P(&/~).  Moreover ,  each E-class is isomor- 
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phic to each E(ti, 6)-class; and if x, y in one of the structures are not in the same 

equivalence class, then the quantifier-free type of (x, y) depends neither on 

choice of x, y nor on which of the two structures we are looking at. Thus the 

structures differ only in that IP'(cl . . . . .  c,,)/E I and [P(d, b)/E(d, 6)[ may not be 

equal. However,  both of these "dimensions" are large compared with r(N) and 

P(d, b) C_ N. Thus 

r(P'(c~ . . . . .  cm )) = r(P(a, 6))<= r(N). 

Since P'(c~,.. . ,  c,.) = M[p, m] and m is bounded in terms of [B I and r(N), the 

proof is complete. 

6. Conclusion 

We are now ready to prove the main result of the paper. 

THEOREM 6.1. Let L be a finite binary relational language. There exists r < w 
such that r (M)< r for all M @ H(L) .  

PROOF. From L we can compute a bound on Is:(M,O)l for M E H ( L ) .  

Towards a contradiction suppose m is the least number such that 

{r(M) : M ~ H(L) ,  M transitive, and I s2(M, O) 1 = m } 

has no finite bound. Let 

ro = max{r(M) : M ~ H(L) ,  M transitive, and I s2(M, O)1 < m}. 

Consider transitive M ~ H ( L )  with I s2(M, O) 1 = m such that r(M) is very large. 

Clearly ]M] is also large. From 4.7 ~ ( M )  has no nontrivial member. From 5.1 

there exist B C M  and N E S I ( M , B )  such that ] B [ = 2 ,  INI is large, and 

Isz(N,O)] < Is2(M,O)], Clearly r(N)<= to. Without loss of generality we can 

assume that the function F:w2--->~o from 5.2 is increasing in its second 

argument. Let io = F(2, to). By 5.2 there exist nontrivial p @ s2(M, 0 )  such that 

r(M[p,i,])<=ro. If M[p, io]=O, let jo be the greatest number such that 

M[p, jo] ~ 0 .  Otherwise, let Io = io. If jo < io, then I s2(M[p, jo])l < Is2(M,O)l. 

Thus, whatever the value of jg, r(M[p, jo]) < to. From the definition of M[p, n] in 

§5 it is clear that, if M[p, n + 1] # O, then M[p, n + 1] bears exactly the same 

relation to M[p, n] that M[p, 1] bears to M[p,0],  i.e., there exists nontrivial 

p, ~ sffM[p, n] ,O)  such that M[p, n + 1] = (M[p, n])[p, ,  1]. Let F :  ~o --~ to be 

the function from 4.8. Without loss of generality suppose that F is increasing. 

From 4.8 for each n < jo 
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r(M[p, n]) < F(min{r(P):P E S,(M[p, n] , {a , } )  - {{an }}}), 

where an is the element used to define M[p,n + 1]. Since L is binary, for 

a,b,c EM[p,n], 

tPMte.,l(a, b) = tpMtp,.l(a, c) ¢~ tpM (a, b) = tpM (a, c). 

Therefore M[p, n + 1] E S,(M[p, n],{a,})-{{a,}}, and so for each n <j0  

r(M[p, n ] ) <  F(r(M[p, n + 1])). 

Therefore r(M) < FJo(ro) where F jo denotes the jo-th iterate of F. This contradicts 

our assumption that r(M) is very large and shows that there is a finite bound on 

r(M) as M runs through H(L), at least for transitive M. But as already observed 

from 4.1 and 4.5 the bound on r(M) for transitive M yields a finite bound on 

r(M) for all M E H(L). 
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