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ABSTRACT

We deal with the problem of preserving various versions of complete-
ness in (< k)-support iterations of forcing notions, generalizing the case
“S-complete proper is preserved by CS iterations for a stationary co-
stationary S C wi”. We give applications to Uniformization and the
Whitehead problem. In particular, for a strongly inaccessible cardinal
and a stationary set S C k with fat complement we can have uniformiza-
tion for every (45 : § € Sy, As € = sup As, cf(d) = otp(A4s) and a
stationary non-reflecting set S’ C S (see B.8.2).
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Section A.1l: Complete forcing notions We define various variants
of completeness and related games; the most important are the strong S-
completeness and real (So, &1, D)-completeness. We prove that the strong
&-completeness is preserved in (< k)-support iterations (A.1.13)

Section A.2: Examples We look at guessing clubs & = (C5 : 6 € §).
If [a € nacc(Cys) = cf(@) < A] we give a forcing notion (in our context)
which adds a club C of & such that C N nacc(Cjs) is bounded in § for all
& € S. (Later, using a preservation theorem, we will get the consistency
of “no such C guesses clubs”.) Then we deal with uniformization (i.e.,
Prs) and the (closely related) being Whitehead.

Section A.3: The iteration theorem We deal extensively with (stan-
dard) trees of conditions, their projections and inverse limits. The aim
is to build a (P, N)-generic condition forcing Gy N N, and the trees of
conditions are approximations to it. The main result is the preservation
theorem for our case (A.3.7).

Section A.4: The Axiom We formulate a Forcing Axiom relevant for
our case and we state its consistency.

CASE B

Here we deal with « strongly inaccessible, S C & usually a stationary
“thin” set of singular cardinals. There is no point in asking even for
R;-completeness, so the completeness demands are only on sequences of
models.

Section B.5: More on completeness of forcing notions We define
completeness of forcing notions with respect to a suitable family & of
increasing sequences N of models, say, such that U i< Nink ¢ S for
limit § < £g(N). S is the non-reflecting stationary set where “something
is done”. The suitable preservation theorem for (< «)-support iterations
is proved in B.5.6. So this &£ plays a role of Sp of Case A, and the
preservation will play the role of preservation of strong So-completeness.
We end by defining the version of completeness (which later we prove is
preserved; it is parallel to (S, 81, D)-completeness of Case A).

Section B.6: Examples for an inaccessible cardinal « We present
a forcing notion taking care of Prg, at least for cases which are locally
OK, say, S C & is stationary non-reflecting. We show that it satisfies the
right properties (for iterating) for the naturally defined &o,&1. Then we
turn to the related problem of the Whitehead group.

Section B.7: The iteration theorem for inaccessible & We show
that completeness for (£,£1) is preserved in (< &)-support iterations
(this covers the uniformization). Then we prove the «*-cc for the simplest
cases.

Section B.8: The Axiom and its applications We phrase the axiom
and prove its consistency. The main case is for a stationary set S C &
whose complement is fat, but checking that forcing notions fit is clear
for forcing notion related to non-reflecting subsets S’ C S. So S can
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have stationary intersection with S for any regular 0 < . The instance
of S N inaccessible is not in our mind, but it is easier — similar to the
successor case. Next we show the consistency of “GCH + there are almost
free Abelian groups in &, and all of them are Whitehead”. We start with a
sufficiently indestructibly weakly compact cardinal and a stationary non-
reflecting set S C &, for simplicity S C SQO, and then we force the axiom.
Enough weak compactuess remains, so that we have: every stationary set
S’ C k™ § reflects in inaccessibles, hence “G almost free in k" implies
“I'(G) C Smod D", but the axiom makes all of them Whitehead.

0. Introduction

In the present paper we deal with the following question from the Theory of
Forcing:

Problem we address 0.1: Iterate with (< x)-support forcing notions not collaps-
ing cardinals < s preserving this property, generalizing “S-complete proper is
preserved by CS iterations for a stationary co-stationary S C wy”.

We concentrate on the ZFC case (i.e., we prefer to avoid the use of large
cardinals, or deal with cardinals which may exists in L) and we demand that no
bounded subsets of x are added.

We use as our test problems instances of uniformization (see 0.2 below) and
Whitehead groups (see 0.3 below), but the need for 0.1 comes from various ques-
tions of Set Theory. The case of CS iteration and x = N; has received special
attention (so we generalize no new real case by S-completeness, see [14, Ch. V)
and is a very well understood case, but still with consequences in CS iterations
of S-complete forcing notions. This will be our starting point.

One of the questions which caused us to look again in this direction was:

is it consistent with ZFC + GCH that for some regular x there is an
almost free Abelian group of cardinality «, but every such Abelian
group is a Whitehead one?

By Gobel and Shelah [3], we have strong counterexamples for k = R,,: an almost
free Abelian group G on  with HOM(G, Z) = {0}. Here, the idea is that we have
an axiom for G with T'(G) C S (to ensure being Whitehead) and some reflection
principle gives

I'(G) ™ S is stationary = G is not almost free in &
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(see B.8). This stream of investigations has a long history already, one of our
starting points was [12] (see earlier references there too), and later Mekler and
Shelah [8], [7].

Definition 0.2: Let x > X be cardinals.
1. We let SF % {5 < 5 : cf(5) = cf(\)}.
2. A (K, A)-ladder system is a sequence A = (As : § € S) such that the set

dom(A) = S is a stationary subset of S§ and
(Vo € S)(As C 6 =sup(ds) & otp(A4s) = cf(N)).

When we say that A is a (k, A)-ladder system on S, then we mean that
dom(A) = S.
3. Let A be a (s, A)-ladder system. We say that A has the h*-Uniformization
Property (and then we may say that it has h*-UP) if h*: K — & and
for every sequence h = (hs : § € S), S = dom(A), such that

(V5 € S)(h5 As — k& (\/a € Ag)(h(;(a) < h*(a)))
there is a function h: K — K with
(Vé € S)(sup{c € As : hs(a) # h(a)} < d).

If h* is constantly u, then we may write p-UP; if p = A, then we
may omit it.

4. For a stationary set S C S%, let Prg , be the following statement:

Prs, = each (x,))-ladder system A on S has the p-Uniformization
Property.
We may replace ¢ by h*; if 4 = A we may omit it.

There are several works on the UP; for example, the author proved that it
is consistent with GCH that there is a (A*, A)-ladder system on S §+ with the
Uniformization Property (Steinhorn and King [18], presented in more general
cases [12]), but necessarily not every such system has it (see [14, AP, §3]). In
the present paper we are interested in a stronger statement: we want to have the
UP for all ladder systems on S (i.e., Prg).

We work mostly without large cardinals. First we concentrate on the case
when x = A%, ) a regular cardinal, and then we deal with the related problem
for inaccessible k. The following five cases should be treated somewhat separately.

Case A: k=A%, A=A} S C 8% and the set S§\ S is stationary;
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Case B: & is (strongly) inaccessible (e.g., the first one), S is a “thin” set of
singulars;

Case C: A is singular, S C S?ftx) is a non-reflecting stationary set;

Case D: &k is strongly inaccessible, the set
{6 < k:6 €S and § is not strongly inaccessible}

is not stationary;

Case E: §=85§, k=X, A=
We may also consider

CasEF: k=r<8 0T < =20,

Case G: §=55, k=2 A=A and we make 2* > .
In the present paper we will deal with the first two (i.e., A and B) cases. The
other cases will be considered in subsequent papers, see below.

Note that {g excludes the Uniformization Property for systems on S, in fact
is a strong negation of it. Consequently, we have some immediate limitations
and restrictions. Because of a theorem of Jensen, in case B we have to consider
S C & which is not too large (e.g., not reflecting). In the context of case C, one
should remember that by Gregory [4] when A is regular, and by [11] generally: if
A<* = X or X is strong limit singular, 2* = At and S C {6 < A% : cf(8) # cf(\)}
is stationary, then $g holds true.

By [12, §3], if X is a strong limit singular cardinal, 2* = AT, ) and § C
{6 < AT : cf(8) = cf(A)} reflects on a stationary set, then {g holds; more results
in this direction can be found in Dzamonja and Shelah [1].

In the cases A, E, G we are assuming that A<* = A\, We will start with the
first (i.e., A) case which seems to be easier. The forcing notions which we use will
be quite complete, mainly “outside” S (see A.1.1, A.1.7, A.1.16 below). Having
this amount of completeness we will be able to put weaker requirements on the
forcing notion for S.

Finally, note that we cannot expect here a full parallel of properness for A = R,
as even for A*-cc the parallel of F'S iteration preserves ccc fails.

We deal here with cases A and B; some others will appear in Part II, [17],
[16]. For iterating (< A)-complete forcing notions possibly adding subsets to A,
& = AT, see [16]; if X is strongly inaccessible, see more in [19]; both are in case
G. In [17] we show a weaker x¥-cc (parallel to pic, eec in [17, Ch. VII, VIII])
suffices. We also show that for a strong limit singular A cardinal and a stationary
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set S C Sé\ft/\)’ Prs (the uniformization for S) fails, but it may hold for many
S-ladder systems (so we have consequences for the Whitehead groups), all this
in case C; see more in [20].

This paper is based on my lectures in Madison, Wisconsin, in February and
March 1996, and was written up by Andrzej Rostanowski to whom I am greatly
indebted.

0.1. BACKGROUND: ABELIAN GROUPS. We try to be self-contained, but for
further references see Eklof and Mekler [2].

Definition 0.3:

1. An Abelian group G is a Whitehead group if for every homomorphism
h: H 2% G from an Abelian group H onto G such that Ker(h) & Z there
is a lifting g (i.e., a homomorphism ¢ : G — H such that ho g = idg).

2. Let h: H — G be as above, GGy be a subgroup of G. A homomorphism
g: Gy — H is a lifting for G (and h) if ho g; = idg,.

3. We say that an Abelian group G is a direct sum of its subgroups (G; : i € J)
(and then we write G = @, ; Gi) if

(@) G = (U;cy Gi) (where for a set A C G, (A)g is the subgroup of G
generated by A; (A)g = {D ;e aeve: k <w, a¢ € Z, x¢ € A}), and
(b) GiN{Uix; Gide = {0c} for every i € J.
Remark 0.4: Concerning the definition of a Whitehead group, note that if A :
H®8Gisa homomorphism such Ker(h) = Z and H = Z % Hy, then h [ H; is
a homomorphism from H; into G with kernel {0} (and so it is one-to-one, and
“onto”). Thus h[H; is an isomorphism and g def (hTH1)™! is a required lifting.
Also, conversely, if g : G — H is a homomorphism such that ko g = idg,
then H = Z & g[G].
The reader familiar with the Abelian group theory should notice that a group
G is Whitehead if and only if Ext(G, Z) = {0}.
ProprosITION 0.5:

1.IFh- HEZS G isa homomorphism, G, & Go C G and g, is a lifting for G
(for ¢ = 1,2), then there is a unique lifting g for G1 & G2 (called (g1, g2))
extending both gy and go; clearly g(x1 + x2) = g1(x1) + 92(x2) whenever
1 € Gl, xre € G.

2. Similarly for @;¢ ; G, g a lifting for G;.

3. Ifh: H2®S G, Ker(h) 2 Z and G, C G is isomorphic to Z (or just is free),
then there is a lifting for G.
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Definition 0.6: Let X be an uncountable cardinal, and let GG be an Abelian group.
(a) G is free if and only if G = P, ; G; where each G; is isomorphic to Z.
(b) G is A-free if its every subgroup of size < A is free.

(¢) G is strongly A-free if for every G’ C G of size < X there is G” such that
(¢) G’ CG" CGand |G"] < A,
(B) G" is free,
(v) G/G" is A-free.
(d) G is almost free in A if it is strongly A-free of cardinality A but it is not
free.

Remark 0.7: Note that the strongly in 0.6(d) does not have much influence. In
particular, for s inaccessible, “strongly x-free” is equivalent to “-free”.

ProrosITION 0.8: Assume G/G" is A-free. Then for every K C G,
there is a free Abelian group L C G such that K CG" & L C G.

K| <A

Definition 0.9: Assume that & is a regular cardinal. Suppose that G is an almost
frec in s Abelian group (so by 0.6(d) it is of size ). Let G = (G; : i < k) be a
filtration of G, i.e., (G; : i < &) is an increasing continuous sequence of subgroups
of G, each of size less than s with union G. We define

Y(G) = {i < x:G/G, is not x-free},

and we let T[G] = v(G)/D,, for any filtration G, where D, is the club filter on x
(see [2]); it is well defined.

PRrOPOSITION 0.10: Suppose that GG, x and (G; : i < K) are as above.
1. G is free if and only if v(G) is not stationary.
2. v[G] cannot reflect in inaccessibles.

The problem which was the raison d'etre of the paper is the following question
of Gobel; this is answered in B.8.5.

Gébel's question 0.11:  Is it consistent with GCH that for some regular cardinal
x we have:

(a) every almost free in £ Abelian group is Whitehead, and

(b) there are almost free in x Abelian groups ?

Remark 0.12:  The point in 0.11(b) is that without it we have a too easy solution:
any weakly compact cardinal will do the job. This demand is supposed to be
a complement of Goébel Shelah 3] which proves that, say for ¥ = X, there are
(under GCH) almost free in # groups H with HOM(H, Z) = {0}.
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Now, starting with k strongly inaccessible, S C « stationary non-reflecting,
and é € § = cf(§) = Ny for simplicity, after a forcing extension, as in B.8.2 (with
Ex = £y]S)), by B.6.10:

(a)’ every almost free in x Abelian group G with I'[G] C S/D,, is Whitehead,
(b)’ there are almost free in x Abelian groups H with I'[H] C S/D, (we can
get this even for lower x's).
It can be argued that this answers the question if we understand it as whether
from an almost free in k Abelian group we can build a non-Whitehead one, so
the further restriction of the invariant to be C S does not influence the answer.

However, we can do better. Starting with a weakly compact cardinal x we can
manage that in addition to (a)’, (b)’ we have (see by B.8.5):

(b)* (i) every stationary subset of £~ S reflects in inaccessibles,

(ii) for every almost free in x Abelian group H, I'[H| C S/D.
(In fact, for an uncountable inaccessible &, (i) implies (ii).) So we get a consis-
tency proof for the original problem. This will be done here.

We may ask, can we do it for small cardinals? Successor of singular? Successor
of regular? For many cardinals simultaneously? We may get consistency and
ZFC+GCH information, but the consistency strength is never small. That is, we
need a regular cardinal x and a stationary set S C k such that we have enough
uniformization on S. Now, for a Whitehead group G: if G = (G; : i < ) is
a filtration of G, S = ¥(G), A\; = |Gi41/G;| for i € S, for simplicity A; = A,
then we need a version of Prg ) (see Definition 0.2(4)). We would like to have a
suitable reflection (see Magidor and Shelah [6]); for a stationary S’ C £~ S this
will imply 0#. See more in [17].

0.2 BACKGROUND: FORCING. Let us review some basic facts concerning
iterated forcing and establish our notation. First remember that in forcing
considerations we keep the convention that
a stronger condition (i.e., carrying more information) is the larger one.
For more background than presented here we refer the reader to either [14] or
Jech [5, Ch. 4].

Definition 0.13: Let & be a cardinal number. We say that Q is a (< &)-support
iteration of length v (of forcing notions Q, ) if Q= (Pa,Qp:a <y, B<7)and
for every a < v, 8 < ¥
(a) P, is a forcing notion,
(b) Qg is a Pg-name for a forcing notion with the minimal element Og,
[for simplicity we will assume that Qg is a partial order on an ordinal or
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Jjust a set of old elements (from V, not P3); remember that each partial
order is isomorphic to one of this formy],

(c) a condition f in P, is a partial function such that dom(f) C a, || dom(f)||
< k and

(V€ € dom(f))(f(€) is a Pe-name and Irp, f(£) € Q¢)

[we will keep a convention that if f € Py, £ € a ~ dom(f) then f(£) = Og,;
moreover, we will assume that each f(£) is a canonical name for an ordinal,
ie., f(€) = {{gi»vi) : 1 < ¢*} where {g; : ¢ < i*} C P is a maximal antichain
of P¢ and for every ¢ < i*: 4; is an ordinal and ¢; IFp,“f(€) = "],

(d) the order of P, is given hy

fr <p, fo ifand only if (V€ € a)(f2i€ IFp, f1(E) <g. f2(£)).

Note that the above definition is actually an inductive one (see below too).

Remark 0.14: The forcing notions which we will consider will satisfy no new
sequences of ordinals of length < & are added, or maybe at least any new set of
ordinals of cardinality < s is included in an old one. Therefore, there will be no
need to consider the revised support iterations.

Let us recall that:

FacT 0.15:  Suppose Q = (P,, Qs :a <7, <) isa (< k)-support iteration,
B < a<~. Then

(a) p € P, implies p[j € Py,

(b) P3 C P,

(c) <ps=<p, IPs,

(d) if p € Po, pIB <p, q € P3 then the conditions p, ¢ are compatible in P,; in

fact g U p[[3, @) is the least upper bound of p, ¢ in P,,
consequently
(e) Pz < P, (i.e., complete suborder).

Facr 0.16:
1. IfQ = (P,, Qs <y, B <) isa (< k)-support iteration of length v, Q,
is a P,-name for a forcing notion (on an ordinal), then there is a unique
P41 such that (P,,Qp : o <v+1, 8 < v+1) is a (< K)-support iteration.
2. If (y; : 7 < §) is a strictly increasing continuous sequence of ordinals
with limit ~5, 0 is a limit ordinal, and for each i < § the sequence
(Pa Qs + @ < v, < ) is a (< w)-support iteration, then there is a
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unique P.; such that (P,,Qp : o < 75, B < 75) is a (< k)-support itera-
tion.
Because of Fact 0.16(2), we may write Q = (Pa,Qq : o < ) when considering
iterations (with (< k)-support), as P, is determined by it (for y = 3+1 essentially
P, = P3 * Q). For v/ < v and an iteration Q = (Po, Qo : & < 7) we let

@[’7, = <Pou Qa ra< 7I>'

Fact 0.17: For every function F (even a class) and an ordinal +y there is a
unique (< k)-support iteration Q = (Po,Qq : @ < 7'}, ¥/ < 7 such that Q, =

F(Qla) for every a < ' and
either 7' =+ or F(Q) is not of the right form or both.

For a forcing notion @, the completion of Q to a complete forcing will be
denoted by Q (see [14, Ch. XIV]). Thus Q is a dense suborder of Q and in Q any
increasing sequence of conditions which has an upper bound has a least upper
bound. In this context note that we may define and prove by induction on «*
the following fact.

FacT 0.18: Assume (P, Q) : o < o*) is a (< s)-support iteration. Let Py,
Q. be such that for @ < a*

1. Py = {f € P, : (V€ < a)(f(£) is a Pe-name for an element of Q¢)},

2. Q, is a Py-name for a dense suborder of Q’a

Then for each a < a*, P, is a dense suborder of P,, and (P, Qs : o < a*) is
a (< k)-support iteration.

We finish our overview of basic facts with the following observation, which will
be used several times later (perhaps even without explicit reference).

FAacT 0.19: 1) Let Q be a forcing notion which does not add new (<#)-sequences
of elements of A (i.e., IFg“A<? = A<¥ N V™). Suppose that N is an elementary
submodel of (H(x),€,<%) such that [[N]| = A, Q € N, and N<¢ C N. Let
G C Q be a generic filter over V. Then

VI[G] £ NG € N[G).

2) If © € H(x) and ® € N < (H(x),€), and G C O is generic over V,
then N[G] < (H(x),G)[G]; similarly for (H(x), €, <) and clearly H(x)VIE =
(HO))IG).

Proof: 1) Suppose that & = {x; : i < i*) € N[G]<?, i* < 6. By the definition
of N[G], for each i < i* there is a Q-name 7; € N such that 2; = 7&. Look
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at the sequence (r; : i < i*) € V[G]. By the assumptions on Q we know that
(1: : 4 < i*) € V (remember * < 8, || N|| = ) and therefore, as each 7; is in N
and N<% C N, we have (r; : i <i*) € N. This implies that ¥ € N[G].

2) Also easy. ]

0.3. NotaTioN. We will define several properties of forcing notions using the
structure (H(y), €, <) (where H(x) is the family of sets hereditarily of size less
than \, and <7 is a fixed well ordering of H(x)). In all these definitions any
“large enough” regular cardinal y works.

Definition 0.20:  For most N < (H(x), €, <) with PROPERTY we have. . . will
mean:

there is 2 € H(y) such that
if r € N < (H(x).€,<}) and N has the PROPERTY, then .. ..

Similarly, for most sequences N = (N; : i < «) of elementary submodels of
(H(1), €. <}) with PROPERTY we have. .. will mean:

there is & € H(\) such that

if v € Noy N =(N; :i<a), Ny < (H(x),€,<%) and N has the
PROPERTY, then ....

In these situations we call the element r € H(3\) a witness.

Notation 0.21: We will keep the following rules for our notation:
1. @, 3,7,8,&,¢, 4, .. .. will denote ordinals,
2. Ky A 5, \, . .. will stand for cardinal numbers,
3. a bar above a name indicates that the object is a sequence; usually X will
be (X; :i < lg(X)), where {g{X) denotes the length of X,
4. a tilde indicates that we are dealing with a name for an object in a forcing
extension (like z},
5. 8.5, Sf E FE;, Eij, ... will be used to denote sets of ordinals,
6. S, S, Sllj, £, &, Sij, ... will stand for families of sets of ordinals of size < &,
and finally
.S, S 3j LEVELE j will stand for families of sequences of sets of ordinals of

~1

size < K.

8. The word group will mean here Abelian group. In groups we will use the
additive convention (so, in particular, O will stand for the neutral element
of the group ). G, H, K, L will denote (always Abelian) groups.
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Case A
In this part of the paper we are dealing with Case A (see the introduction), so
naturally we assume the following.

Our Assumptions 1: A, k, u* are uncountable cardinal numbers such that
A=< =2 =<y

We will keep these assumptions for some time (unless stated otherwise) and we
may forget to remind the reader of them.

A.1. Complete forcing notions

In this section we introduce several notions of completeness of forcing notions
and prove basic results about them. We define when a forcing notion Q is:
(8, S)-strategically complete, (< A)-strategically complete, strongly S-complete,
(8o, S1)-complete, basically (80,31)-c0mplete and really (Sg,sl,D)-complete.
The notions which we will use are strong Sp-completeness and real (80,5’1, D)-
completeness, however the other definitions seem to be interesting too. They are,
in some sense, successive approximations to real completeness (which is as weak
as the iteration theorem allows) and they might be of some interest in other
contexts. But a reader not interested in a general theory may concentrate on
definitions A.1.1(3), A.1.5, A.1.7(3) and A.1.16 only.

Definition A.1.1: Let Q be a forcing notion, and let # be an ordinal and S C 6.
1. For a condition r € Q, let G&(Q,r) be the following game of two players,
COM (for complete) and INC (for incomplete):

the game lasts # moves and during a play the players construct a
sequence {(p;,¢;) : ¢ < ) of conditions from Q in such a way that
(Vj <i<0)(r <pj <gq; <p;)and at the stage i < 6 of the game:
if 1 € S, then COM chooses p; and INC chooses ¢;, and

if i ¢ S, then INC chooses p; and COM chooses g;.

The player COM wins a play if and only if during the play, for every i < 8,
there are legal moves for both players.

2. We say that the forcing notion Q is (8, S)-strategically complete if the player
COM has a winning strategy in the game G%(Q, r) for each condition r € Q.
We say that Q is strategically (< 8)-complete if it is (6,0)-strategically
complete.

3. We say that the forcing notion Q is (< 6)-complete if every increasing
sequence {g; : ¢ < 8) C Q of length § < 8 has an upper bound in Q.
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ProprosITION A.1.2: Let Q be a forcing notion. Suppose that 6 is an ordinal
and S C 6.
1. IfQ is (< 8)-complete, then it is (8, S)-strategically complete.
2.If 8 C S and Q is (8,5')-strategically complete, then it is (6,5)-
strategically complete.
3. IfQ is (0, S)-strategically complete, then the forcing with Q does not add
new sequernces of ordinals of length < 6.

Proof: 1) and 3) should be clear.

2) Note that if all members of S are limit ordinals, or at least « € § =
a+1¢ S, then one may easily translate a winning strategy for COM in G%,(Q, )
to the one in G%(Q, 7). In the general case, however, we have to be slightly more
careful. First note that we may assume that 6 is a limit ordinal (if € is not limit
consider the game Qg’L‘”(Q,r)). Now, for a set S C 6 and a condition r € Q we
define a game *G%(Q,r):

the game lasts # moves and during a play the players construct a
sequence (p; : i < #) of conditions from Q such that r < p; < p; for
each i < j < 6 and

if i € S, then p; is chosen by COM,

ifi ¢ S, then p; is determined by INC.
The player COM wins if and only if there are legal moves for each
1< 0.
Note that, clearly, if ' C S C 6 and Player COM has a winning strategy in
*gg, (@Q,r), then it has one in *gg(Q, ).
Foraset S Cflet St ={2a:a€ S}U{2a+1:a €6~ S}. (Plainly S+ C 6
as 6 is limit.)
CLAM A.1.2.1: For each set S C 6 the games G&(Q,r) and *G%, (Q,r) are
equivalent [i.e., COM/INC has a winning strategy in G%(Q,r) if and only if it
has one in *G%, (Q,r)].

Proof of the claim: Look at the definitions of the games and the set S=. 1

CLAIM A.1.2.2: Suppose that Sy, S; C 0 are such that for every non-successor
ordinal 6 < 0 we have
(a) 0 €Sy =0 €5,
(b) (F¥n € w)(d+n € Sp), (I®n € w)(d+n ¢ So), (F%n € W)(d+n € 5),
and (3°n € w)(d+n ¢ 51).
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Then the games *G% (Q,r) and *ggl (Q,r) are equivalent.

Proof of the claim: Should be clear once you realize that finitely many successive
moves by the same player may be interpreted as one move. |

Now we may finish the proof of A.1.2(2). Let S’ C S C 6 (and 8 be limit
ordinal). Let

§* = {8 € §* : § is not a successor} U {6 € (S} : § is a successor}.

Note that (') C S* and the sets S5*, S satisfy the demands (a), (b) of A.1.2.2.
Consequently, by A.1.2.1 and A.1.2.2:

Player COM has a winning strategy in gg, Q,r

Qr)

Player COM has a winning strategy in *Q?S,) (@)
Player COM has a winning strategy in *G4. (Q,r)
@Qr)

Player COM has a winning strategy in *gg Qr

- 4Ly

Player COM has a winning strategy in G&(Q,r).

PROPOSITION A.1.3: Assume & is a regular cardinal and 8 < k. Suppose that
Q = (Pa,Qq : @ < 7) is a (< k)-support iteration of (< §)-complete ((6,5)-
strategically complete, strategically (< 6)-complete, respectively) forcing notions.
Then P, is (< 6)-complete ((8,S)-strategically complete, strategically (< 6)-

complete, respectively).

Proof: Easy: remember that union of less than k sets of size less than & is of
size < k, and use A.1.2(3). |

Note that if we pass from a (< A)-complete forcing notion Q to its completion
Q we may lose (< A)-completeness. However, a large amount of the completeness
is preserved.

PROPOSITION A.1.4: Suppose that Q is a dense suborder of .
1. If Q is (< M)-complete (or just (< A)-strategically complete) then Q' is
(< A)-strategically complete.
2. If Q is (< A)-strategically complete then so is Q.
3. Similarly, in (2) for (A, S)-strategically complete.

Proof: 1) We describe a winning strategy for player COM in the game G5 (Q/, r)
(r € Q'), such that it tells player COM to choose elements of Q only. So
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at stage ¢ < A of the play, COM chooses the <} -first condition ¢; € Q
stronger than p; € @ chosen by INC right before.

This strategy is a winning one, as at a limit stage ¢ < X of the play, the sequence
{g;j : j < i) has an upper bound in Q (remember Q is (< X)-complete). For the
(< A)-strategically complete case, COM simulates a play for Q by choosing for
each choice of INC a stronger condition which belongs to Q.

2), 3) Even easier. n

Definition A.1.5:
1. By Dcp.<x(p*) we will denote the collection of all families S C [p*]<* such
that for every large enough regular cardinal \, for some x € H(y) we have
if r € N < (H(x), &<, IN|l < k, N* € N and NN« is an
ordinal, then N N u* € § (compare with A.1.7).
2. By D%, .,(p*) we will denote the collection of all sets S such that

8§ C {a=(a;:i < a): the sequence a is increasing continuous and

each q; is from [p*]<~}
and for every large enough regular cardinal y, for some » € H(y) we have:

if N = (N, :i < a) is an increasing continuous sequence of models
such that # € Ny and for each i < j < a:

Ni < Nj < (H(\),€.<0), (Ne + € < j) € Ny, [INjI| < &,
NNk € K and

j is non-limit = Nj<>‘ C Ny,

then (N;Np*:i<a)eS.

3. For a family D C P(X) (say & = Uxep X) let D¥ stand for the family of
all S C X such that
(VC € D)(SNC £ ).

[So DT is the collection of all D-positive subsets of X'.]
4. For § € (Den,<r(p*))t we define DL, ., (1*)[S] like DL, ) (1*) above,
except that its members S are subsets of

{a = (a; : i < «) : @ is increasing continuous and for each i < a,

a; € [p*]<" and if ¢ is not limit then «; € S},



Sh:587

44 S. SHELAH Isr. J. Math.
and, naturally, we consider only those sequences N = (N; : i < a) for which
i < o is non-limit = N;Nu*eS.

As A is determined by & in our present case we may forget to mention it.

Remark A.1.6:
1. These are normal filters in a natural sense.
2. Concerning D2, ,(u*), we may not distinguish @o, @1 which are similar
enough (e.g., see A.1.16 below).
3. Remember: our case is GCH, A = cf(A), K = AT and a = A.

Definition A.1.7: Assume S C [p*]S).
1. Let x be a large enough regular cardinal. We say that an elementary
submodel N of (H(x), €, <}) is (A, S)-good if

INjj=A, N<*CN, and Nnpg*€S.

2. We say that a forcing notion Q is strongly S-complete if for most (see 0.20)
(A, 8)-good elementary submodels N of (H(x), €, <}) such that Q € N and
for each Q-generic over N increasing sequence p = (p; : 1 < A) CQNN
there is an upper bound of j in Q.

[Recall that an increasing sequence p = (p; : t < A) C QN N is Q-generic
over N if for every open dense subset Z of Q from N for some i < A, p; € Z.]

3. Let N < (H(x), €, <5) be (A, 8)-good. For a forcing notion Q, aset S C A
and a condition r € QN N we define a game Gy g(@Q,r) like the game
Qg‘“(Q,r) with an additional requirement that during a play all choices
below A have to be done from N, ie., p;,q; € NNQ for all ¢ < A
If S = 0 then we may omit it.

4. Let §: & — P(A). We say that a forcing notion Q is (S, S)-complete if
for most (A, S)-good models N, for every condition r € N N Q the player
COM has a winning strategy in the game Gy 5nvnu+) (@ 7)-

If S(a) = 0 for each a € S then we write S-complete. (In both cases we may

add “strategically”.) If S(a) = S for each a € S, then we write (S, S)-complete.

Remark A.1.8: In the use of most in A.1.7 (and later) we do not mention
explicitly the witness x for it. And, in fact, normally it is not necessary. If
X1, X are large enough, 2<%t < y (so H(x1) € H(x)), §,Q,... € N, then there is
a witness in H(x) and, without loss of generality, x; € N and therefore there is
such a witness in N. Consequently we may forget it.
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Remark A.1.9:
1. The most popular choice of u* is x; then § € (D «a(p*))T if and only
if the set {§ < k : cf(d) = A & & € S} is stationary. So S “becomes” a
stationary subset of &.
2. Also here we have obvious monotonicities and implications.

PROPOSITION A.1.10: Suppose that S € (D «x(p*))T and a forcing notion Q
is S-complete. Then the forcing with Q adds no new A-sequences of ordinals (or,
equivalently, of elements of V) and I+g*S € (D ey cr(p*)) "

Proof: Standard; compare with the proof of A.1.13. 1

ProOPOSITION A.1.11:
1. Let S C [u*]S2. If a forcing notion Q is strongly S-complete and is (< A)-
complete, then it is S-complete.
2. If a forcing notion Q is strongly S-complete and is S-strategically complete,
then Q is (S, S)-complete.

Strong S-completeness is preserved if we pass to the completion of a forcing
notion.

PROPOSITION A.1.12: Suppose that S C [p*]S* and Q is a dense suborder of
Q. Then

1. @ is strongly S-complete if and only if Q is strongly S-complete,

2. similarly for (S, S)-completeness.

Proof: 1) Assume Q' is strongly S-complete and let ' € H(y) be a witness
for the “most” in the definition of this fact. Let x = (z/,Qf). Suppose that
N < (H(1),€,<)) is (A, 8)-good and Qv € N. Then @,2" € N too. Now
suppose that § = (g; : i < A) C QN N is an increasing Q-generic sequence over
N. Since Q is dense in @, 7 is Q-generic over N and thus, as @' is strongly
S-complete, it has an upper bound in @ (and so in Q).

Now suppose Q is strongly S-complete with a witness x € H(x) and let 2/ =
(,Q). Let N be (A, 8)-good and .2’ € N. So Q,x € N. Suppose that
d={g;:1 <X CQ NN is increasing and @ -generic over N. For each i < A
choose a condition p; € QN N and an ordinal (i) < A such that

Gi <@ Pi <@ Gy(s)

(possible by the genericity of §; remember that § is increasing). Look at the
sequence

(pi i <A & (V) < i)(ply) <))
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It is an increasing Q-generic sequence over N, so it has an upper bound in Q.
But this upper bound is good for § in @ as well.
2} Left to the reader. ]

PROPOSITION A.1.13: Suppose that Q = (P,,Q, : a < 7) is a (< )-support
iteration, S € V, S € (D, crn(p))™.
1. If for each oo < %

IFp, “Qq is strongly S-complete”,

then the forcing notion P, is strongly S-complete (and even each quotient
Ps /P, is strongly S-complete for o < 3 < ).
2. Similarly for (S, S§)-completeness.

Proof: 1) The proof can be presented as an inductive one (on 7), so then we
assume that each P, (« < 7) is strongly S-complete. However, the main use of
the inductive hypothesis will be that it helps to prove that no new sequences of
length X are added (hence ) is not collapsed, so in V¥« (for a < ) we may talk
about (A, 8)-good models without worrying about the meaning of the definition
if A is not a cardinal, and N[Gp,] is (A, S)-good).

For each a < vy and p € P, fix a Py-name fg for a function from A to V such
that

if p IFp_“there is a new function from A to V7,
then plp, “fo ¢ V7, and otherwise p IFp_ “f7 is constantly 07.

Let
Iy = {p € P, : either pIFp_“there is no new function from A to V”
orpltp, fo ¢ VI

Clearly Z,, is an open dense subset of P,. Let g, (for o < v) be a P,-name for
a witness to the assumption that IFp, “Q, is strongly S-complete”. Let

= ((Ta:a<7),(Q){(Za, fp) @ <1 & pEPa)).

Suppose that N is (A, S)-good, Py, € N and { is a P,-generic sequence over N.
Note that Q € N. We define a condition r* € P,:
we let dom(r*) = N N+ and we inductively define r*(«) for a € dom(r*) by

if there is a P,-name 7 such that

r*lalFp, “T € Qq is an upper bound to (p;(a) : i < A)”,
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then 7*(a) is the <{-first such a name;
if there is no 7 as above, then 7*{(a) = Og, .

It should be clear that r* € P, (as ||N|| = A < k). What we have to do is to
show that 7* is an upper bound to p in P,. We do this by showing by induction
on a <« that
(On) foreach i < A, p;lo <p_ r*[a.

For o = 0 there is nothing to do.

For « limit this is immediate by the induction hypothesis.

Ifa=p3+1and 8 ¢ N, then we use the induction hypothesis and the fact
that for each i < A, dom(p;) C vy N N (remember p; € P, NN, A C N and
|| dom(py) | < A).

So we are left with the case a = g+ 1, f € N. Suppose that Gg C Pg is
a generic filter over V such that r*[3 € Gz (so necessarily p;[8 € Gy for each
i < A). We will break the rest of the proof into several claims. Each of them has
a very standard proof, but we will sketch the proofs for the reader’s convenience.
Remember that we are in the case 3 € N, so in particular P3,Pgy1,25,Z3 € N
and (p;13:1 < A) C N is a Pg-generic sequence over N.

Cram A.1.13.1: r*[g3 g, “there is no new function from A to V.

Proof of the claim: Since Zz3 € N is an open dense subset of Pz we know
that p;18 € I3 for some i < A. If the condition p;[J3 forces that “there is no new
function from A to V", then we are done (as r*[3 > p;[3). So suppose otherwise.
Then p; 3 IFp,, “fgi 1 ¢ V. But, as 8,p; € N, clearly 3,p;13 € N and we have
fﬁi 13 € N and therefore for each ¢ < A there is j < A such that the condition
p;j [ decides the value of fﬁ 15(¢). Consequently the condition r*[3 decides all

p so r*[3 ke, ﬁi 15 € V., a contradiction. |

values of fpi 15

CramM A.1.13.2: N[Gs]NV =N (so N[Gz]Nnu* € S).

Proof of the claim: Suppose that 7 € N is a Pz-name for an element of V. As
the sequence (p;[3 : 1 < A) is Ps-generic over N, for some ¢ < A, the condition
p;i [ B decides the value of the name 7. Since p;[3 € N the result of the decision
belongs to N (remember the elementarity of N) and hence 794 € N. |

CLamM A.1.13.3:

INIGsHIl = A, N[Gs]<* € N[Gy] and NIGs] < (H(x), €, <3) VoL,
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Consequently, V|G| |= “the model N[Gg] is (), S)-good and gfgﬁ € N[Gg]".

Proof of the claim: Names for elements of N[Gg] are from N, so clearly || N[Gg]||
= A = ||N|. It follows from 0.19 and A.1.13.1 that N[G3]<* C N[Gp]. To check
that N[Gj] is an elementary submodel of (H(x), €, <) (in V[Gp]) we use the
genericity of (p;[5 : 4 < A) and the elementarity of N: each existential formula
of the language of forcing (with parameters from N} is decided by some p;[3. If
the decision is positive, then there is in N a name for a witness for the formula.
So we finish by the Tarski-Vaught criterion (or use 0.19(2)). ]

Cramm A.1.13.4:

V[GslE “(pi(B)C? : i < X is an increasing Qg" -generic sequence over N[Gg]".

Proof of the claim: By the induction hypothesis, the condition r* [/ is stronger
than all p;[3 (and € Gg). Hence (by Definition 0.13), as § is increasing, the
sequence (p;(3)“# : i < )) is increasing (in Qg"). Suppose now that Z € N is a
Ps-name for an open dense subset of Q. Look at the set {p € Pgy1 : p[B IFp,
p(B) € I}. It is an open dense subset of Pgyy from N. But Pgy; < P,, so for
some 7 < A we have

pilB ke, pi(B) € T,

finishing the claim. ]

By A.1.13.3, A.1.13.4 (remember we assume lFp, “Qj is strongly S-complete”)
we conclude that, in V[G3], the sequence (p;(3)%2 :i < A) C Qg" has an upper
bound (in Qg” ). Now, as Gz was an arbitrary generic filter containing r*[3 we
conclude that there is a Pg-name 7 such that

r* 18 IFp, “7 € Qg is an upper bound to (p;(3) : i < A)”.

Now look at the definition of r*(3).
2) Left to the reader. [ |

Definition A.1.14: Let (of course, & = A*, and) Sy € (Dew.<r (1)) and S; €
(’Dém x(#*)[So])*. Suppose that Q is a forcing notion and y is a large enough
regular cardinal.

1. We say that a sequence N = (N; : i < ) is (A, &, Sl,Q)-consz'demble if

N is an increasing continuous sequence of elementary submodels
of (H(x).€,<}) such that A U {}x,Q} C No, the sequence
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(N; O p* 2 i< A isin Sy and for each i < A

[Nill <~ and  (Nj:j<i)€ Ny and
iis non-limit = (N;)<* C N,

2. For a (A, k, 81, Q)-considerable sequence N = (N; : i < A) and a condition
7€ NoNQ, let G5(Q,7) be the following game of two players, COM and
INC:

the game lasts A moves and during a play the players construct a
sequence {(p;,@) : 7 < A) such that each p; is a condition from Q
and §; = (gi¢ : £ < A) is an increasing A-sequence of conditions from
Q (we may identify it with its least upper bound in the completion

Q) and at the stage i < A of the game:
the player COM chooses a condition p; € N_14;41 N Q such that

r<pi,  (Vj<i)VE < Mgye < pi)s

and the player INC answers by choosing a <g-increasing -generic
over N_14i41 sequence §; = {gie : &€ < A) € N_14i41 NQ such that

pi < qip, and G € N_iyito.

The player COM wins the play of G5 (Q,r) if the sequence (p; : i < A)
constructed by him during the play has an upper bound in Q.

3. We say that the forcing notion Q is basically (So, S;)-complete if

() Qis (< A)-complete (see A.1.1(2}), and

(8) Q is strongly Sg-complete (see A.1.7(3)), and

() for most (X, k, S, Q)-considerable sequences N = (N; : i < X), for every
condition r € NyNQ, the player INC DOES NOT have a winning strategy
in the game g;., (Q,r).

Remark A.1.15:

1. Why do we have “strongly Sp-complete” in A.1.14(3)(8) and not “strate-
gically Sp-complete™? To help proving the preservation theorem.

2. Note that if a forcing notion Q is strongly Sg-complete and (< A)-complete,
and N is (A, K, 31, Q)-considerable (and Ny contains the witness for “most”
in the definition of “strongly Sp-complete”), then both players always have
legal moves in the game G% (Q,r). Moreover, if Q is a dense suborder of
@ and QU € Ny and the player COM plays elements of Q only, then both
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players have legal moves in the game G (Q/, 7).

[Why? Arriving at a stage ¢ of the game, the player COM has to choose a
condition p; € N_14;41 NQ stronger than all g; ¢ (for j <, £ < A). If i is
a limit ordinal, COM looks at the sequence (p; : j < ¢) constructed by him
so far. Since (Nj41)<* C N;31 we have that (p; : j < i) € Ny and, as Q
is (< A)-complete, this sequence has an upper bound in N;1; (remember
that Ny is an elementary submodel of (H(x), €, <%})). This upper bound
is good for g ¢ (j < ¢, &€ < A) too. If i = ig + 1, then the player COM
looks at the sequence §;, € N_j4i,+2 only. It is Q-generic over N_ji 41,
Q is strongly Sp-complete and N_j4i,+1 is (A, Sp)-good. Therefore, there
is an upper bound to g;,, and by elementarity there is one in N_q4; 2.
Now, the player INC may always use the fact that Q is (< A)-complete to
build above p; an increasing sequence ¢; C QN N_j4;4; which is generic
over N_jiy1. Since N_j, ;41 € N_q14;192, by elementarity there are such
sequences in N_j4;40.

Concerning the “moreover” part, note that the only difference is when COM
is supposed to choose an upper hound to §;,. But then it proceeds like in
A.1.12, reducing the task to finding an upper bound to a sequence (generic
over N_q44,+1) of elements of Q.]

Unfortunately, the amount of completeness demanded in A.1.14 is too large

to capture the examples we have in mind (see the next section). Therefore we
slightly weaken the demand A.1.14(3)(v) (or rather, we change the appropriate
game a little). In Definition A.1.16 below we formulate the variant of complete-
ness which seems to be the right one for our case.

Definition A.1.16: Let Sy € (Dep.cr(p*))t and §; € (D2 (") [So))*. Let
D be a function such that dom(D) = 8, and, for every a € S,

D{a) = D; is a filter on A.

Let Q be a forcing notion.

1. We say that an increasing continuous sequence N = (N; : i < A) of elemen-

tary submodels of (H(x), €, <;) is (A, &, S, D, Q)-suitable if:
AU{NKQ} C No, INg|l < &, {N; : j <4) € Niyy and there are @ € S
and X € D; such that, for each i € X,

(Niy1)* C Nipy & Nipi Np* = aign

(compare with A.1.14(1)); we can add N; N p* = a; if D; is normal.
A pair (@, X) witnessing the last demand on N will be called a suitable base
for N.
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2. For a (/\,N,Sl,D,Q)-suitable sequence N = (N; : 1 < X), a suitable base
(a,X) for N and a condition r € Ny, let Qg’D‘Xy_(Q, r) be the following
game of two players, COM and INC:

The game lasts A moves and during a play the players construct
a sequence {(p;,(;, ;) 2@ < A) such that ¢; € X, p; € Q and ¢ =
(gg 1€ < A) CQ in the following manner.

At the stage ¢ < A of the game:

player COM chooses (; € X above all (; chosen so far and then it
picks a condition p; € N¢, 41 NQ such that

r<p, (Y <i)(VE€ < Mgje < pi)s

after this player INC answers choosing a <g-increasing (-generic
over N¢, 41 sequence ¢; = (g;.¢ : § < A) € N 41 NQ such that

pi < G0, and §; € Ngyo.

The player COM wins the play of G5 o (Q,r) if {¢; 1 < A} € Dg
and the sequence (p; : i < A) constructed by him during the play
has an upper bound in Q.

We sometimes, abusing our notation, let INC choose just the Iub in
Q of G.
3. We say that the forcing notion Q is really (80,31, D)-complete if
(o) Q is (< A)-complete (see A.1.1(3)), and
(8) Q is strongly Sp-complete (see A.1.7(3)), and
(v) for most (A, &, SI,D,@)-suitable sequences N = (N; : i <)), for
every suitable basis (@, X) for N and all conditions r € Ny N Q,
the player INC DOES NOT have a winning strategy in the game
Gr poxal@r):

Remark A.1.17: If a forcing notion Q is strongly Sp-complete and (< A)-
complete, and N is (A, x, 81, D, Q)-suitable (witnessed by (@, X)) then both play-

ers always have legal moves in the game g};’[ p.x.5 @ 7). Moreover, if Q is dense

inQY, Q € Ny and COM plays elements of Q only, then both players have legal

moves in g%D,X‘a(Q’, r)

[Why? Like in A.1.15.]

Remark A.1.18: We may equivalently describe the game QE b x5 @7) in the

following manner. Let Q be the completion of Q.
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The play lasts A moves during which the players construct a sequence
(pivgi ¢ < A) such that p; € Njt1 N (QU {*}) (where x ¢ Q is a
fixed element of Ny), ¢; € Njyo N Q

At the stage i < A of the game, COM chooses p; in such a way that

pi#x = i€ X & (Vi<i)g <gm)

and INC answers choosing ¢; such that
if p; = *, then g; is the least upper bound of (g; : j <) in @,

if p; # *, then ¢; € N;1o ﬂ@ is the least upper bound of a generic
filter over N;{; containing p;.

The player COM wins if {i < A: p; # *} € D; and the sequence (p; : p; # *)
has an upper bound.

There is no real difference between A.1.16(2) and the description given above.
Here, instead of “jumping” player COM puts * (which has the meaning of I am
waiting) and it uses the existence of the least upper bounds to replace a generic
sequence by its least upper bound.

PROPOSITION A.1.19: Suppose that
So € Danca(w)t and Sy € (DL o (W)[So])*

and D is a filter on \ for @ € S;. Assume that Q is a dense suborder of Y, N
is (\, k, 81, D, Q)-suitable (witnessed by (@, X)), @ € Ny. Then for each r € Q:

the player COM has a winning strategy in gf\?, p.x.a @) (the player

INC does not have a winning strategy in gf\?, b x.a(@ 1), respec-

tively) if and only if

it has a winning strategy in g;’_] p x5 @,7) (the player INC does
not have a winning strategy in 9;77 b x5 @,7), resp.).

Proof:  Suppose that COM has a winning strategy in ng\ZJ,D,X,a(Q’ r). We
}7, p x5 @,7) which tells him to play
elements of Q only. The strategy is very simple. At each stage i < A, COM

replaces the sequence §; C @ by a sequence ¢ C Q which has the same upper

describe a winning strategy for him in G

bounds in Q as ¢;, is increasing and generic over N¢, ;. To do this he applies
the procedure from the proof of A.1.12 (in N¢, 49, of course). Then it may use
his strategy from Q;g, DX d(Q,T). The converse implication is easy too: if the

© (@, r) tells him to play (;, p; then he puts

winning strategy of COM in G5 , .
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¢; and any element p; of Q N N¢,41 stronger than p;. Note that this might be
interpreted as playing p; followed by a sequence p} ~g;. The other case (INC has
no winning strategy) is similar. |

PROPOSITION A.1.20: Suppose
So € (Dercr(p)™ and S € (©><\n.</\(:u‘*)[80])+

(and as usual in this section, kK = A\¥). Let Dy be the club filter of A for each
@ € Sy. Then any really (So, Sy, D)-complete forcing notion preserves stationarity
of 8, 31 in the respective filters.

A.2. Examples

Before we continue with the general theory, let us present a simple example with
the properties we are investigating. It is related to guessing clubs; remember that
there are ZFC theorems saying that many times we can guess clubs (see [13, Ch.
II, sections 1,2}, [3]).

Hypothesis A.2.1: Assume A<* = X and A* = . Suppose that Sg = Sy C S§
is a stationary set such that S def S§ N Sg is stationary too (but the definitions
below are meaningful also when S = (). Let

S = {El = {a; : 1 < A) : a is increasing continuous and for each ¢ < A,

a; € & and if i is not limit then a; € So}.

[Check that Sy € (D, <r(r))t and S € DY, ,[So]] ]
Note that (provably in ZFC, see [13, Ch. 111, §2]) there is a sequence C =
(Cs : d € S) satisfying for each § € S:

C;s is a club of § of order type A, and if @ € nace(Cjs), then cf(a) = A

such that x ¢ id?(C), i.e., for every club E of & for stationary many § € S,
d = sup(E Nnace(Cy)), even {a < ¢ : min(Cs “(a + 1)) € E} is a stationary
subset of 4. We can use this to show that some natural preservation of not
adding bounded subsets of x (or just not collapsing cardinals) necessarily fails,
just considering the forcing notion killing the property of such C. [Why? As in
the result such C exists, but by iterating we could have dealt with all possible
C’s.] We will show that we cannot demand

a €nacc(Cs) = cf(a) <A,
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that is, in some forcing extension preserving GCH there is no such C. So, for C
as earlier but with the above demand, we want to add generically a club E of At
such that

(V6 € S)(F Nnacc(Cs) is bounded in §).

We will want our forcing to be quite complete. To get the consistency of no
guessing clubs we need to iterate, which ¢s our main theme.

Definition A.2.2: Let C = (C5: § € S) be a sequence such that for every & € S:

Cs is a club of 6 of order type A, and
if & € nace(Cs), then cf(a) < A (or at least a ¢ Sp).

We define a forcing notion Qé to add a desired club E C A*:

a condition in Qé is a closed subset e of At such that a. def sup(e) < At and
(V6 € SN (ae + 1))(e Nnace(Cs) is bounded in §),

the order <q, of Qf is defined by

eg S@lé e; ifand only if eg is an initial segment of e;.

It should be clear that (Qé;, SQ!C') is a partial order. We claim that it is quite
complete.

ProrosiTION A.2.3:
1. Qf is (< A)-complete.
2. Q}j is strongly Sp-complete.

Proof: 1) Should be clear.
2) Suppose that N < (H(x), €, <}) is (A, Sp)-good (see A.1.7) and Q5 € N.
Further suppose that € = {e; : 1 < A) C Qé N N is an increasing Q}j-generic

sequence over N. Let ¢ & Uicx € U {sup(U;cy )}

CramM A.2.3.1: e € QL.

Proof of the claim: First note that as each e; is the end extension of all e; for

J < 1, the set e is closed. Clearly a. o sup(e) < A* (as each a, is below AY).
So what we have to check is that

(V6 € SN (ae + 1))(e Nnace(Cs) is bounded in §).

Suppose that § € SN (e, +1). If § < a, then for some ¢ < A we have § < a,
and eNd = e; N6 and therefore eNnacc(Cy) is bounded in 4. So a problem could
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occur only if § = a, = sup; .y @, but we claim that it is impossible. Why?
Let 8* = NN AT, so 8* € S (as N is (A, 8p)-good) and therefore §* # & (as
So NS =0). For each 3 < §* the set

def

I3 = {qe Qs g B #0}

is open dense in Qé. (note that if ¢ € Qé—,, g™ B =0then g < qu{ay, B+1} € Qé)
Clearly I3 € N. Consequently, by the genericity of é, e; € Zg for some ¢ < A and
thus a., > 3. Hence sup; ) @, > 6*. On the other hand, as each ¢; isin N we
have a., < 8* (for each ¢ < A) and hence §* = sup, ., a., = §, a contradiction.
|

CLAaIM A.2.3.2: Foreachi < A, ¢; <e.

Proof of the claim: Should be clear. |

Now, by A.2.3.1+A.2.3.2, we are done. [ ]

PROPOSITION A.2.4: For each @ € 81, let Dy be the club filter of A (or any
normal filter on A). Then the forcing notion Q}; is really (Sp, S, D)-complete.

Proof: By A.2.3 we have to check demand A.1.16(37) only. So suppose that
N = (N :i< A) is (A,r;,sl,D,QIC—,)—suitable and (a, X) is a suitable basis
for N (and we may assume that X is a closed unbounded subset of A\}. Let
r € Np. We are going to describe a winning strategy for player COM in the
game G%D’X’&(Q}:,r). There are two cases to consider here: Ny Nk € S and
Nyn& ¢ S. The winning strategy for COM in QE’D‘Xﬁ(Qé—., r) is slightly more
complicated in the first case, so let us describe it only then. So we assume
NaNkeSs.

Arriving at the stage i < A of the game, COM chooses (; according to the
following rules:

ifi =0, then it takes (; = min X,

ifi =19+ 1, then it takes

G=min{jeX:¢,+1<j & (Ng,+1NKNjNK)NCnyae # 0},

if ¢ is limit, then it lets ¢; = sup;; ;-
Note that as Cn, . is unbounded in Ny Nk and X is a club of A, the above
definition is correct; i.e., the respective (; exists, belongs to X and is necessarily
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above all (; chosen so far. Next, COM plays p; defined as follows. The first p; is
just 7. If i > 0, then COM takes the first ordinal 7; such that

sup(N¢, 41 N COnyan) < % < N1 Nk

and it puts
pi=J gV Ny, ¢+ NEPU ()

J<i
E<A

Note that cf(N,+1N&) = A and Cn, n, has order type A, so Cn,ns NN 410K is
bounded in N¢, 41 N & and the ; above is well defined. Moreover, by arguments
similar to that of A.2.3, one easily checks that

Uaeet

j<i

£<A
and then easily p; € Qé—. and it is SQé-stronger than all g;¢ (for j <, & < A).
Consequently, the procedure described above produces a legal strategy for COM
in g; D.x a(Q}f’ r). But why is this a winning strategy for COM? Suppose that
(i, iy Gs) + @ < A) 1is the result of a play in which COM follows our strategy.
First note that the sequence ((; : i < A) is increasing continuous, so it is a club
of A and thus {¢; : i < A} € Dz. Now, let e = [J,., pi U{NxNx}. We claim that
ee€ Q}:—,. First note that it is a closed subset of A* with supe def a. = NyN&k. So
suppose now that § € SN (ae +1). If § < e, then necessarily 6 < «,, for some
i < X and therefore eMnacc(Cs) = p;Nnacc(Cy) is bounded in ¢. The only danger
may come from § = N, N k. Thus assume that 3 € e and we ask, where does 3
come from? If it is from poLJU§ <> 9o,¢ then we cannot say anything about it (this
is the part of e that we do not control). But in all other instances we may show
that 8 ¢ nacc(Cn,ne). Why? If § € U§<A @i,¢ > p; for some 0 < i < A, then by
the choice of v; and p; and the demand that §; C N¢, 41 we have that 3 ¢ Cn, -
Similarly if 8 = «;. So the only possibility left is that 8 = NU ¢ 41 N K If 4

j<i
is not limit then Cf(NUj<iCj+1 Nk) = Aso B ¢ nacc(Cn, ). If i is limit, then
by the choice of the (;’s we have NU ¢+1NKE acc(Cn,n«) and we are clearly
i<z

done.

Note that if Ny Nk ¢ S then the winning strategy for COM is much simpler:
choose successive elements of X' as the (;’s and play natural bounds to sequences
constructed so far. |
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Remark A.2.5:

1. Note that one cannot prove that the forcing notion Q% is basically (Sg, S )-
complete. The place in which a try to repeat the proof of A.2.4 fails is the
limit case of N; Nx. If we do not allow COM to make “jumps” (the choices
of ¢;) then it cannot overcome difficulties coming from the case exemplified
by

Cnyaw = {No.iNK i < AL

2. The instance S = Sj\\+ is not covered here, it is different, but we will deal
with it elsewhere.

The following forcing notion is used to get Prg (see 0.2).

Definition A.2.6: Let C = (C5: 6 € S) be with Cs a club of § of order type A
and let h = (hs : 6 € S) be a sequence such that hs: Cs — X for § € S. Further,
let D = (Ds:6 € S) be such that each Dj is a filter on Cj.
1. We define a forcing notion Q%J—l:
a condition in Qg‘*.ﬁ is a function f: oy — A such that ay < At and

(Vo e Sn(ap+1))({B € Cs: hs(B) = f(3)} is a co-bounded subset. of Cj),

the order S@% S of Q%ﬁ is the inclusion {extension).
2. The forcing notion Q?-:I% is defined similarly, except that we demand that
a condition f satisfies

(V6 € S (ay + 1)){B € Cs : hs(8) = f(B)} € Dy).

PROPOSITION A.2.7: Let Dy be the club filter of A for @ € S;. Then the forcing
notion Q% ; is really (So. S1. D)-complete.

Proof: This is parallel to A.2.4. It should be clear that Qﬁ— 5 18 (< A)-complete.
The proof that it is strongly Sp-complete goes like that of A.2.3(2), so what we
need is the following claim.

CrLamM A.2.7.1: For each 3 < A% the set

def

{fe Q%",B : 8 € dom(f)}

is open dense in Q% A

Proof of the claim: Let f € Q?q ;- We have to show that for each § < A* there
is a condition f' € Q% 5 such that f < f" and § < ay. Assume that for some
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8 < AT there is no suitable f’ > f, and let & be the first such ordinal (necessarily
d is limit). Choose an increasing continuous sequence (¢ : ¢ < cf(d)) cofinal in §
and such that 3y = oy and G € d N S for 0 < ¢ < cf(8). For each ¢ < cf(§) pick
a condition f¢ > f such that ey, = B¢ and let f* = fUU, e (5) fer1118cs Bet)-
If § ¢ S, then easily f* € Qg—,ﬁ is a condition stronger than f. Otherwise we take
f': 6 — A defined by

ey ) hel§) ifE€Cs™ay,
F§) = {fi(f) otherwige. !

Plainly, f' € Q% » and it is stronger than f. Thus in both cases we may construct
a condition f’ stronger than f and such that ¢ = a/, a contradiction. 1

With A.2.7.1 in hand we may repeat the proof of A.2.3(2) with no substantial
changes.

The proof that Q%',E is really (80,5'1, D)-complete is similar to that of A.2.4.
So let N, (@, X) and r be as there and suppose that Ny Nk € S. The winning
strategy for COM tells it to choose (; as in the proof of A.2.4 and play p; defined
as follows. The first pg is v. If ¢ > 0, then COM lets

pi = U d5.¢

j<i
E<x

(which clearly is a condition in Q% 5) and chooses p; € Q% 5 M N¢,41 such that

Pi <piv  Cnyaw N N4 € dom(p;)  and
(VB € CNAﬁH f NCi+1)(ap’i < 6 = p@'(ﬂ) = hNAﬂn(ﬁ))-

Clearly this is a winning strategy for COM. 1

Remark A.2.8:
1. In fact, the proof of A.2.7 shows that the forcing notion Q%J—l is basically
(So, S1)-complete. The same applies to A.2.10.
2. In A.2.6, A.2.7 we may consider h such that for some h*: x — &, for each
¢ € S we have
(Vo € Cs)(hs(a) < h*(a)),

which does not put forward any significant changes.

3. Why do we need h* above at all? If we allow, e.g., hs to be constantly 4,
then clearly there is no function f with domain & and such that
(Vo € S)(0 > sup{a € Cs : f(a) # hs(a)}) (by the Fodor lemma). We may
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still ask if we could just demand hs: Cs —> §7 Even this necessarily fails,
as we may let hs(a) = min(Cs ~(a + 1)). Then, if f is as above, the set
E = {6 < x: 4 is a limit ordinal and (Va < 8)(f(a) < )} is a club of &.
Hence for some § € S we have

M < §=sup(ENé) =otp(ENSE)

and we get an easy contradiction.

Another example of forcing notions which we have in mind when developing
the general theory is related to the following problem. Let i be a A-free Abelian
group of cardinality . We want to make it a Whitehead group.

Definition A.2.9: Suppose that
(a) K is a strongly s-free Abelian group of cardinality «, (K 4 :a < k) is a
filtration of /'y (i.e., it is an increasing continuous sequence of subgroups
of Iy such that iy = J, ., A1, and each Ky 4 is of size < &),

I'={a < k:N1/Ki4 is not A-free},

(b) K3 is an Abelian group extending Z, h: R 22 R, is a homomorphism

with kernel Z.
We define a forcing notion Q;, ,:
a condition in @\'2,/1 is a homomorphism g: K7 o, — K2 such that o € s ~\T
and hog =idx, a-

the order <g»  of Q3. » is the inclusion (i.e., extension).
. :

PROPOSITION A.2.10: Let D; be the club filter of A for @ € &;. Assume K,
K14, Ko and T are as in assumptions of A.2.9 and I' C S. Then the forcing
notion Qj;, ,, is really (S, Sy, D)-complete.

Proof: Similar to the proofs of A.2.4 and A.2.7. ]

A.3. The iteration theorem

In this section we will prove the preservation theorem needed for Case A. Let us
start with some explanations which (hopefully) will help the reader to understand
what and why we do to get our result.

We would like to prove that if Q = (P, Q; 14 < ) is a (< K)-support iteration
of suitably complete forcing notions, (Sg, Si. D) are as in A.1.16, then:



Sh:587

60 S. SHELAH Isr. J. Math.

if N = (N; :4 < A) is an increasing continuous sequence of elemen-
tary submodels of (H(x), €, <}), [[Nil| = A, A+1 C N, (N;)<* C N;
for non-limit i, and for some @ € 31 and X € D

Vie X)(N;Np*=a; & NigiNp* =aiqr)

and p € P, N Ny,
then there is a condition ¢ € P, stronger than p and (N,,P,)-
generic.

For each Q; we may get respective g, but the problem is with the iteration.
We can start with increasing successively p to p; € Ny (i < A) and we can keep
meeting dense sets due to (< A)-completeness. But the main question is: why
is there a limit? For each o € v N N, we have to make sure that the sequence
{pi() i < A) has an upper bound in Q,, but for this we need information which

is a P,-name which does not belong to N, e.g., if Q; is we need to know

CNrwhwny- But for each i, the size of the information needg(;él is < A

As the life in our context is harder than for proper forcing iterations, we have
to go back to pre-proper tools and methods and we will use trees of names (see
[10]). A tree of conditions is essentially a non-deterministic condition; in the
limit we will show that some choice of a branch through the tree does the job.
[Note that one of the difficulties one meets here is that we cannot diagonalize

over objects of type A x w when A > Ny ]

Definition A.3.1:
1. A tree (T, <) is normal if for each to,t; € T, if {s€e T :s<tp}={se€T:
$ < t1} has no last element, then to = ¢;.
2. For an ordinal v, Tr(y) stands for the family of all triples

T =(T7, <T,rkT)

such that (T7, <7) is a normal tree and rk” : T7T — y+1isan increasing
function.
We will keep the convention that 7% = (77, <, rky). Sometimes we may write
t€ T insteadt € T7 (ort € T).

The main case and examples we have in mind are triples (T, <, rk) such that
for some w C v (where v is the length of our iteration), T is a family of partial
functions such that:

(Vt € T)(dom(¢) is an initial segment of w and (Va € w)(tla € T));
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the order is the inclusion and the function rk is given by
rk(t) = min{a € wU {7} : dom(t) = a Nw}

(see A.3.3). Here we can let Ny Ny = {a¢ : £ < A}. Defining p; we are thinking
of why (p;(ag) : j < A) will have an upper bound. Now A x X has a diagonal.

Note: starting to take care of ag only after some time is a reasonable strategy,
so in stage i < A we care about {ag : £ < i} only.

But what does it mean to do it? We have to guess the relevant information
which is a P, -name and is not present.

What do we do? We cover all possibilities. So the tree 7 will consist of objects
t which are guesses on what is ( information for a. up to ¢*" stage: ¢ < (). Of
course we should not inflate, e.g., (pf 1t € Te) € Ny

It is very nice to have an open option so that in stage A we can choose the
most convenient branch. But we need to go into all dense sets and then we have
to pay an extra price for having an extra luggage. We need to put all the p;’s
into a dense set (which is trivial for a single condition). What will help us in this
task is the strong Sp-completeness. Without this big brother to pay our bills, our
scheme would have to fail: we do have some ZFC theorems which put restrictions
on the possible iteration theorems.

Definition A.3.2: Let Q = (P;,Q; : i < ¥) be a (< &)-support iteration.
1. We define

FTH(Q) € {5=(p -t € TT) T € Tr(7), (V¢ € T7)(ps € Priry) and
(Vs,t e TT))(s <t = ps=pilrk(s))}

and

FTr..(Q) o p={(p:te TT> T € Tr(y), (Vte TT)(pt € Prir))and

(Vs,t € TT))(s <t = ps > pilrk(s))}.

We may write (p; : t € T). Abusing notation, we mean p € FTr,(Q) (and
p € FTr(Q)) determines 7 and we call it 77 (or we may forget and write
dom(p}).

Adding primes to FTr, FTr, means that we allow p:(3) to be (a Pz-name

/

for) an element of the completion ng of Qp. Then p; is an element of P, ) —

the (< k)-support iteration of the completions @,3 (see 0.18).
2. If T € Tr(y), p, G € FTr!, . (Q), dom(p) = dom(§) = T7 then we let

p<q ifandonlyif (vteT7)(p, <q).
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3. Let 71,72 € Tr(y). We say that a surjection f: T M is a projection if
for each s,t € Ty
() s<at = f(s) <1 f(t), and
(B) tka(t) <tk (f(1))-
4. Let p%,p' € FIY,.(Q), dom(p®) = T (¢ < 2) and f: Ty —+ Ty be a
projection. Then we will write p° <; 5* whenever for all t € T}
(@) Py Irka(t) < Pl
(B) if i < 1ky(t), then

pi, and

pliire, Py (D) # pi()) = (30 € Q)(Pf(, (i) <q, 7 <q, PI())-

The projections play the key role in the iteration lemma. Therefore, to make
the presentation clearer we will restrict ourselves to the case we actually need.

You may think of v as the length of the iteration, and let {3 : £ < A} list
NNy, w= {5 :£ < a}. Weare trying to build a generic condition for (P,, N)
by approximating it by a sequence of trees of conditions. In the present tree we
are at stage . Now, for t € T, (i) is a guess on the information needed to
construct a generic for (N[Gp,], Q;[Gp,]), more exactly the q-initial segment of
it.

Definition A.3.3: Let v be an ordinal.
1. Suppose that w C v and « is an ordinal. We say that T € Tr(v) is a
standard (w, )7 -tree if
(@) (VteTT)(K" (t) € wU {1}),
(B) ift € TT, tk7 (t) =€, then ¢ is a sequence (t; : i € w N <), where each ¢; is
a sequence of length ¢,
() <7 is the extension (inclusion) relation.
[In (B) above we may demand that each t; is a function with domain [i, @),
i < a, but we can use the default value % below ¢, hence making such ¢;
into sequences of length . Note that T7 determines 7 in this case; () is
the root of T.]
2. Suppose that wg C w1 C v, ag < ag and T = (T, <,1k) is a standard
(wy, c1)?-tree. We define the projection pI‘OJEZl Z;;( ) of T onto (wy, ap)
as (T*, <*,1k") such that:
T* = {{tilag : i € woNrk(t)) 1t = (¢; : 1 € wy Nrk(t)) € T},
<* s the extension relation,
rk* ((t;Tap : i € wo Nrk(t))) = min(wo U {7} N rk(t)) for t € T.
[Note that pr0J<w"a1)(T) is a standard (wp, ag)?-tree.]

(wa,0)
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3.

,-\,-\
o 2
= =

~_
o 2

If wg C wy C v, ag < oy, 7'1 = (T1,<1,1ky) is a standard (wy, ay)?-tree
and To = (To, <o,1ke) = proj (wi,a1)

(wo,a0)

(T1), then the mapping

T3 {tiew Nrk(t)) — {tilao :i € woNrki(t)) € Ty

(uh«al))

(wo,00)”"

[Note that prOJTO is a projection from 7; onto 7p.]

is denoted by prOJ ! (or proj

We say that T = (T, : @ < a*) is a legal sequence of standard v-trees if for
some W = (W, : & < a*) we have

W 1s an increasing continuous sequence of subsets of 7,

for each o < a*, T, is a standard (wg, a)7-tree,

if @ < B < a*, then T, = proﬁi" i))(T)

. For a legal sequence T = (T, : a < a*) of standard y-trees, a* a limit

ordinal, we define the inverse limit lir_n(T) of T as a triple
(Thm(T) <l<;r—n k{:n T))
such that
(a) Tllm T) consists of all sequences ¢ such that
(i) dom(t) is an initial segment of w f Uacax Wa (not necessarily

proper),
(i) if ¢ € dom(t), then ¢; is a sequence of length o*,
(iii) for each o < o*, (t;[v 14 € w, Ndom(t)) € T,

—
(b) <im(T) is the extension relation,
&~ o —
(c) tk'"™7)(t) = min(w U {7} ~ dom(¢)) for ¢ € THm(T),
(—_

[Note that it may happen that TW™(T) = {(}}, however not if T is
continuous; see below.

. A legal sequence of standard y-trees T = (T, : a < a*) is continuous if

—
To =1m(73 : B < ) for each limit @ < a*.

PROPOSITION A.3.4: Suppese that og, oy, an,”y are ordinals such that ap <
a; < ag. Let wao C wy, Cwy, Crn. IfTy is a standard (wy, ay)?-tree, then

To = proj,

(w101

wo.a >(T1) is a standard {wg, ag)7-tree. Assume that for ¢ < 3, T; are

standard (we, ae)7-trees such that

To = projiut ®\(T1) and T; = proj(%*)(Ty).

(wa,a2)

Then Ty = Droj e e )(’75) and proyr = prOJT0 Opl‘OJT
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Moreover, if * = (p! : t € Ty) € FTY'(Q) (for ¢ < 3) are such that p° SprofT! P
To

=1 =2 =0 =2
and p Spmj;—f p*, then p Spmj% P

PROPOSITION A.3.5: Let v,a* be ordinals, a* limit, and let T = (T, : a < a*)
be a continuous legal sequence of standard vy-trees.

—
1. The inverse limit lim(T) is a standard (| J, ¢ o+ Wa,*)?-tree and each T, is

(_
a projection of km(7T) onto (wg, ) and the respective projections commute.
(Here, w,, C v is such that T, is a standard (w,, a)"-tree.)

— - -
[So we do not cheat: im(T) is really the inverse limit of T]

—
2. If A<* = X, a* < X and ||T,|| < A for each o < a*, then ||[TH™(T)|| < A,
3. Ifa* <M\ r=XHQ= (P, Q¢ : £ < ) is a (< &)-support iteration of
(< X)-complete forcing notions and p* = (p$ : t € T,) € FTY'(Q) (for each
« < o*) are such that |T,| < A for a < o* and
. * =03 e
/_']<C¥<Oé = prmj;gpa
s —n* * (’“ — 7 £ i
then there is p* = (pf :t € lim(7T)) € FTY' (Q) such that
(Va<a’)(p*<  P*)
projl.,i.:(T)
Proof: 1) Should be clear: just read the definitions.
2) It follows from the following inequalities:

—
T D) < JT ITall < A< = A

ala*

— = .
3) For each t € lim(7) we define a condition pf € P, as follows. Let t* =
A — _
projg-:](ﬂ (t) (for a < a*). We know that the sequence (p% [ tk"™ (¢} : o < o*)
\mpe .
is increasing (remember rk"™(7)(¢) < rk,(ta) for each o < o*) and p¢” is sup-

posed to be an upper bound to it (and p} € P - ). We define p®” quite
rk“m(?)(t)
straightforwardly. We let

—
dom(p{ ) = U{dom(p‘t’a) Nek™ (@) a < o}

and next we inductively define p¢ (i) for i € dom(p$” ). Assume we have defined
p&" 4 such that

(Va < o*)(pia li <p p¢ 1)
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Then (remembering our convention that if ¢ ¢ dom(p) then p(i) = Og,)
P2 i - * the sequence (pf (i) : a < a*) C @i is gQi-increasing and
a<B<a" &pR() AL = (30€ Q)R (i) <q 1<, Pls(9)
and Q; is (< A)-complete and a* < A”.
Hence we find a Pi-name p” (i) (and we take the <} first such a name) such that

Pl IF “pd (3) € QZ is the least upper bound of (pfa (i) : @ < @*) in @i”.

Now one easily checks that p¢” € P’ o Consequently, the condition p¢~ is
l‘l\“m )(t)

as required. But why does (p2” : t € e n(7)) € FTr'(Q)? We still have to argue

that

(Vs,t € ﬁ&(’r))(s <t = p¥ =p?*frk§'_“(f';)(s)).
For this, note that if s < ¢ are in 1;1(7_') and s,,t, are their projections
to To then s, <, to and ps = pf [rk (sa) and rkl;(ﬂ(s) < rkq{sq). Thus
clearly dom(p®’) = dom(p¢’) N rk“m 7’)( ). Next, by induction on 7 €

dom(pg”) N rkﬁ‘(ﬁ(s) we show that p2” (i) = p@"(i). Assume we have proved
that p® i = p2 i and look at the way we defined the respective values at i. We
looked there at the sequences (p¢ (1) : & < a*), (p§ (i) : @ < a*) and we have
chosen the <}-first names for the least upper bounds to them. But i < rkq(sq)
for all @ < a*, so the two sequences are equal and the choice was the same. ]

PROPOSITION A.3.6: Assume that Sy C [p*]<* and Q = (PoQo :ax <) is a
(< k)-support iteration of (< A)-complete strongly Sp-complete forcing notions,
and x, (for o < 7y) are Py-names such that

lbp, “zq witnesses the most in A.1.7(2) for Q"

Further, suppose that
(@) N < (H(x), € <3) is (A, So)-good (see A.1.7), (zo: a < ,00,Q,... €N,

(B) 0 €wg Cwy € NN [y ag < A is an ordinal, a; = ag + 1,
(v) To = (To, <o.tko) € N is a standard (wo, g)?-tree, ||Tpl| < A,
(6) 5= (pe:t € To) € FI'(Q) (N,

(e) Ty = (Th, <1,tky) is such that

T1 consists of all sequences t = (t; : i € dom(t)) such that dom(t) is an
initial segment of wy, and
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e each t; is a sequence of length o,

o ! & {tilap =4 € dom(t) Nwp) € Ty,

e if i € dom(t) ™ wp, @ < ag then t;{a) = *,

o for some j(t) € dom(t) U {v},
ti(ag) is * for every i € dom(t) ™ j(t), and for each i € dom(t) N j(t)
ti{cp) € N is a P;-name for an element of Qi

o rki(t) = min(w; U {7} N Dom(t)) and <; is the extension relation.
Then

(a) Th is a standard (wy, ay)”-tree, | Ti|| = A,
(b) Ty is the projection of Ty onto (wg, ag),
(c) thereis = (g :t € T\) € FTY'(Q) such that
(i) P Sproj:,r,(‘) q,
(ii) if t € Ty ~{()} and (Vi € dom(t))(ti(co) # *), then the condition
q € P;kl(t) is an upper bound in P’rkl(t) of a Py, (1)-generic sequence
over N, and for every 3 € dom(q;) = NNrk,(t), ¢:(3) is (a name for)
the least upper bound in @5 of the family of all r(j3) for r from the
generic set (over N ) generated by ¢,

(iii) ift € Th, t' = proj . (t) € Ty, i € dom(t) and t;(cg) # *, then

qt(l) [+ “pt’(i) < qt(i)” and
qelilbp, "pu (i) <g, ti(@o) = ti(ao) <g, 9:(7)",

(iv) gy =pg and ift € Ty ~{(}} and j(t) < v, then

@ = Qeprjey U pe 17 (t), 1ki(2)), wheret' = proj%(t) eTp.
Proof: Clauses (a) and (b) should be clear.
(c) Let (t; : ¢ < A) list with A-repetitions all elements ¢ of T1 ~{()} such that
(Vi € dom(t))(ti(ao) # *). For a € wy U {7} let (Z¢ : ( < ) enumerate all open
dense subsets of P, from N. By induction on ¢ < A choose r¢ such that
e e € Prk1(t¢;) NN,
o ift/ = proj%(tc), then py [rkq (t) SP:—kl(tc) r¢ and, for i € dom(t,),

reliIFp, “pyr(7) S@i (te)ilao) = (t¢)i(ao) S@i re(d)”,

o€ ngl(tg) for all £ < ¢,
o ifte Ty, E<( < té, t <y t( (e.g., t= tg <1 tc), then T{[I‘kl(t) Sprk]“)
T¢ r I'kl (t)
Since we have assumed that all Q,’'s are (names for) (< A)-complete forcing
notions, there are no difficulties in carrying out the above construction. [First,
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working in N, choose rf € Py, (s,) N N satisfying the second and the fourth
demand. How? Declare

dom(rg) = [wy U U{dom(rg) €< ¢Yudom(p  .n, )] Nrki(tc)

projy) (i¢)

and by induction on i define r/(i) using the (< A)-completeness of Q; and taking
care of the respective demands (similar to the choice of ¢; done in detail below).
Next use the (< A)-completeness (see A.1.3) to enter all ngl(td for £ < (. Note
that the sequence (ng‘(tc) : £ < ¢)isin N, so we may choose the respective
r¢ > riin N

Now we may define § = (¢; : t € T\) € FIY(Q). If t € Ty is such that
J(t) < rky(t), then g, is defined from g;};(+) and p by demand (c)(iv). So we
have to define ¢; for these t € Ty such that (Vi € dom(#))(f;{(cg) # *) {(and ¢t # ()
only. So let t € Ty ~{()} be of this type. Let

dom(g;) = | J{dom(r¢): ¢ < A& t <y e} Nrky(t) C N

and by induction on i € dom(g;) we define ¢;(i) (a PP;-name for a member of @L)
So suppose that i € dom(g;) and we have defined ¢, i € P} in such a way that

(%) VC<A(E<ite = reli <prgili).

Note that this demand implies that ¢ [i € P} is an upper bound of a generic
sequence in P; over N (remember the choice of the r:’s, and that i € N and
there are unboundedly many ¢ < A such that ¢ = t, and all open dense subsets
of P; from N appear in the list (IZ : ¢ < A)) and therefore

qeli Ibpr “the model N[Gp/] is (A, Sp)-good”

(remember 0.19). Look at the sequence (r¢(i) : t <yt & i € dom(r¢) Nrky(t)).
By the last two demands of the choice of the r¢’'s we have

qilitkp, “(re(i) o t <y te & i €dom(re) Nrky(t)) is an increasing
Q;i-generic sequence over N[Gp,]".

Consequently, we may use the fact that Q; is (a name for) a strongly Sp-complete
forcing notion and r; € N, and we take g;(z) to be the < -first name for the least
upper bound of this sequence in ;. So we can prove by induction on rk;(t) that
(%) holds.

This completes the definition of §. Checking that it is as required is straight-
forward. ]
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THEOREM A.3.7: Assume A<* = )\, k = AT = 2% < pu*. Suppose that Sy €
D r(p)t, 81 € (Qén,<)\([},*)[3()])+ and D is a function such that dom(D) =
5‘1 and for every @ € 31

D(a) = Dj is a normal filter on .

Further, suppose that Q = (P;,Q; : i < 7) is a (< k)-support iteration such that
for each i < v

Ik, “Q; is really (So, S, D)-complete with witness x;
for the most in A.1.16(3)(v)".

Then:
(a) the forcing notion P., is (< A)-complete and strongly Sg-complete,
(b) if a sequence N = (N; : i < A) is (\, &, 3’1,D,]P7)-su1'table (see A.1.16(1))
and p € P, NNy, and Q, (z;:7 <), (SO,Sl,D) € Ny,
then there is an (N, P,)-generic condition q € P, stronger than p,
(c) the forcing notion P., is really (So, S, D)-complete.

Proof: (a) It is a consequence of A.1.3 and A.1.13.
(b) Plainly, we may assume v > A. Let (X, @) be a suitable basis for N, soa € Sy,
X € D; and

(Vi € X)((Nig1)* € Niga & Nigy 0" = ai41).

We may assume that all members of X are limit ordinals. Let wy = Ny N~ (so
lwall = A). Choose an increasing continuous sequence (w, : @ < A) such that
Ua<r Wa = wy and for each o < A

|lwa| <A, wg CTNeN7y, 0€w,, and if o islimit then wy = wot1,

and w, € N, for non-limit & (so then (ws : 8 < a) € Nyq1 for o € x).

Now, by induction on o < A we define a legal continuous sequence of standard
y-trees (To : o < A) for {(wq : @ < A) and a sequence (P : o < A) such that
P = (pf 1t eTs) e FIV(Q) and 7 Sproj7e ¥ for cach B < a < A and
TarB" € Nos1. ’

At stage o = 0 of the construction:

To consists of all sequences t = (¢; : ¢ € dom(¢)) such that dom(¢) is an initial

segment of wy (not necessarily proper) and, for each i € dom(t), ¢; is a sequence
of length 0 (i.e., (}),
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rko(t) = min(wo U {7} > dom(¢)) and <¢ is the extension relation;

for each t € Ty we let p! = p[rko(t) and finally 5° = (p? : ¢ € Tp) € FIY'(Q).

[Note that To = (To, <o,rko) € Ny is a standard (wg, 0)"-tree, 70 € FTY' (Q)NNy.]
At stage a = g + 1 of the construction:

We have defined a standard (wq,, ap)?-tree To, € Nog41 and
PP = (pf® 1t € Tay) € FT(@) N Nag11-

Now we consider two cases.

If ap € X (50 Nggy1 18 (A, Sp)-good), then we apply the procedure of A.3.6
inside Nygt+2 60 Togs %0, (Wag+1, @0 + 1) and Nag41 (in place of Ty, p, (wi, 1)
and N there) and we get a standard (wgag+41,00 + 1)7-tree Ty, € Nogy2 and
pootl = (pfotl € T, 11) € FTY(Q) N Nug 42 satisfying the demands A.3.6(¢)
and A.3.6(a)-(c).

If ag ¢ X, then we define 7,,41 as above but we cannot put any new gener-

1c1ty requirements on p*°tl so we just let p“"+1

proj “°+’( )-

[Note that in both cases Too+1 € Ngg42 is a standard (wag41, 0 + 1)7-tree,
projection of Tag41 ONto (Wag,aq) 18 Tag. P°F! € FTI(Q) N Nog42 and
pao < Tag+1 ija0+l~]

= pi°f tkao+1(t) where t' =

At limit stage o of the construction:
(_
We let 7, = Im({Tg : B < a)) € Nyy1 and we choose p* = (pf : t € T,) €
FTr'(Q) N No+1 applying A.3.5 in Nyy1.
[Note that the corresponding inductive assumptions hold true.]
<__

After the construction is carried out we may let Ty = lim((7, : @ < A}). Then

Ty is a standard (wy, A)7-tree, but we no longer have ||T)|| < A.

Now, by induction on a € wy U {7} we choose conditions g, and P,-names
X, Y, and t4 such that

(a) “_Pa “I.Q € T,\ & I'k)\(fa) = a”,
b) lkp_ “ts = ta 8" for 3 < a,
(c

(
} o € Py, dom(ga) = wy Na,
(d) if B < a then g3 = ¢ |5,
)

() qalbp,*p! - [o€Ge,” foreachi <A
Proj = (ta)
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(f) for each 8 < a, B € w),

go Fp, “Xp = {i < X: (tg41)3(i) # *} € D; and the sequence
((ta+1)p(0), 07, (B)): 1<)

PFOJ%+1 (tg+1)
is a result of a play of the game

VJ 0
g<Ni[G!PB]ZZ'S)‘)-D»YB\('io*'l)ﬁ(QB’pprojgo (.t3+1)(/3))’

[as described in A.1.18 where ig < A is the first such that 3 € w;,]
won by player COM”,
(g) the condition ¢, forces (in P, ) that

“the sequence (N;[Gp,] 1 < A) is (A, K, Sl,D,QQ)—suitable and Y, € D;
is such that Y, C X and for every i € Y, we have

(Nis1[Gp, )< € Nij1[Gp,] and  Nip1[Gp,]NV = Nipy

and i € X¢ for all £ € aNw; (hence Ny\[Gp, ]N'V = Ny)"

Case 1: a=0.

We do not have much choice here: we let go = 0, to = () € 7, and Yo = X. Note
that clauses (a)—(e) and (g) are trivially satisfied (for (g), remember that (@, X)
is a suitable basis for N) and clause (f) is not relevant.

Case 2: a=j3+1.
Arriving at this stage we have defined g3,#3,Y 3 and X for £ < 3, and we want
to choose gg41,¢p+1, Y g4+1 and Xp.

Suppose that Gg C P is a generic filter over V such that g3 € Gs. Then (by
clause (g) at stage ) we have

V[G] |=“the sequence (N;[Gg 17 < A) is (A&, SI,D,Qg" )-suitable
and (@, Ygﬁ ) is a suitable base for it
and (Vi€ Y®)(VE € Bnwi)(i € X7

Let i = min{j < A: g € w;}. We know that the player INC does not have any
winning strategy in the game

g® (Qgﬁw (pio GB)(/B))Gﬁ).

. -G . _ T
(Ni[Gp):i<2). DY 52 N(io+1).a projz (tg

Now, using the interpretation of the game presented in A.1.18, we describe a
strategy for player INC in this game.
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The strategy is: during a play COM constructs a sequence 5§ =
(s(i) : ¢ < A) of elements of an U {*}, those are his moves; let

< pr -]T(tf)' )"(5h) € T

(more pedantzcally Dom(r;) = w; Na = Dom(prOJ >(ts ‘3) u {3},
r; €15, pI‘OJ (fB Y Cory, mi(B) =51 z) and at the stage i< A of the
game INC answers with (pit} ([3))

i

We have to argue that the strategy described above is a legal one, i.e., that
it always tells INC to play legal moves (assuming that COM plays according to
the rules of the game). For this, we show by induction on ¢ < A that really
/g € Ty and that if 5(6) # *, then (pir!(3))”* € NiyalGsl N @5 is the least
upper bound of a Q/g -generic filter over N;41[Gg] (to which s(i) belongs) and
if s(i) = *, then (pit!) % is the least upper bound of conditions played by INC
so far.

First note that s(i) = % for all ¢ <o and therefore r; 4, € Tj 41 (just look at
the successor stage of the construction of the 7,’s; remember that dom(t('ﬁ ) =
wy N B, so adding *'s at level 3 is allowed by A.3.6(¢)). Note that plotl (8) =

; Tig+1

P° ., (B) (remember A.3.6(c)(iv)).
projz (t5”)

If ¢ < A is a limit ordinal above ig, and we already know that r; € T} for each

F

J < i, then r; € T, = Bm((7; : j <)) as clearly
. . . Ty oy
Jjo<ji<i = prOJTjO(”l) =T,

Note that, by the limit stage of the construction of the T,’s and A.3.5(3) (actually
by the construction there), the condition pﬁl (3) is the least upper bound of

; PN €
(pl (B):j <i)in @/3 .

Suppose now that we have r; € T}, ig < i < A and the player COM plays s(i).
If s(i) = , then easily r;11 € T;41 as adding stars at “top levels” does not make
any problems (compare the case of ig). Moreover, as there, we have then

piL@=p = (8) = pr., (B).
it PFOj7{+1(Ti+1) T
If s(i) # *, then s(i) € N,+1[G/3]0QB ? is a condition stronger than all conditions
played by INC so far, and thus it is stronger than p’. (3). Moreover, in this case
we necessarily have i € Y Gy , 80 1 is limit and therefore w; = w;41. Hence
(V€ e wip1 NP € X?B). By clause (f) for gz we conclude that (V€ € w1 N
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ﬁ)((tg" Je(i) # x). Therefore, if we look at the way T;y; was constructed, we see
that there is no collision in adding s(¢) at the top (i.e., it is allowed by A.3.6(¢)).
Thus ;41 € Ti41 and by A.3.6(c)(ii) we know that pi¥! (8) € Ni12[Gs]l N @gﬁ

Ti41
is the least upper bound of a an -generic sequence over N;11[Gg] to which s(7)
belongs (the last is due to A.3.6(c)(iii)).
Thus we have proved that the strategy presented above is a legal strategy for
INC. It cannot be the winning one, so there is a play § = (s(¢) : i < A) (we give
the moves of COM only) in which COM wins. Let t, = ;gﬁ ~(8); pedantically,

Dom(t,) = Dom ;GB U {8}, t5% C to, to(3) = 5. We have actually proved that
B B

P
to € T = Iim({7; : ¢ < A)). It should be clear that rk)(f,) = & and ;g" =t ]8.
Further, let q,(3) € an be any upper bound of 3 in an (ie., of {54 : 80 # *};
there is one as COM wins) and X3 be the set {i < A : s(i) # %} € D;. Note that

then ¢, () is stronger than all p;r (B) {as these are answers of the player

Ty,
oJr, (ta)
INC; see above). Lastly, if we let Y, = Xg then we have
4.(8) ”"QGﬁ “the sequence (N; [GB][GQc,j] 14 < A) is suitable and (@, Yy)
Q ]

is a suitable base for it and (Vi € Y, )(VE € aNwy)(i € ‘Xgﬂ )

(compare the arguments in the proof of A.1.13). This is everything we need: as
G was any generic filter containing gz, we may take names o, Xg, Y, for the
objects defined above and the name for ¢,(8) and conclude that gz g, (3) forces
that they are as required.

CASE 3: a is a limit ordinal.

Arriving at this stage we have defined ¢g,13.Y s and X for § € a N wy and
we are going to define g4, to and Y,. The first two objects to be defined are
determined by clauses (a)-(d). The only possible problem that may appear here
is that we want ¢, to be (a name for) an element of Ty and thus of V. But by
A.3.7(a) and A.1.10 + A.1.11 we know that the forcing with P, adds no new
sequences of length < k of elements of V (remember x = A*). Therefore the
sequence (tg : B € waNa) is a Py-name for a sequence from V and its limit ¢, is
forced to be in 7,. Now we immediately get that q,, to satisfy demands (a)—(f)

(for (e) note that dom(pi)r ) € wy and

T
0Jr; (ta)
(R) for each 3 € aNw) and i < A we have dom(p’

C wy, and
PTOJ:?@B))_ A

. 'T)\ —_an?
I'rk;(proj (ts)) = Prroi ™ (t5)

)

.. T
PrO.iI-? (}a) and rl\l (pro.]'T; (.tﬂ)) 2 ﬂ,

p
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hence we may use the clause (e) from stages 8 < «). Finally we let

Yo % {i < X:idis limit and (V€ € w;Na)(i € X¢) and a € w;}.
We have to check that the demand (g) is satisfied. Suppose that G, C P, is
a generic filter over V containing q,. The sequence (X?" :fewyNa)is a
sequence of length < & of elements of V, and the forcing with P, adds no new
such sequences. Consequently

<x§ cEewyNa)eV.
If for j < A we let Z; = ec,,na X¢© we will have
(Zj:j<AN eV, and (Vj<A)(Z;€ Ds)
(as the filter D; is A-complete) and therefore {(by the normality of Dj)

Yo D A Zj={i<X:iislimit and (Vj < i)(i € Z;)} € Ds.
J<A
Next note that (@ Y§=) is a suitable basis for the sequence (N;[G,] : i < \).
Why? Suppose that i € YG« and let t = proj;—:ﬁr1 (tS+). By the choice of the w;'s
we know that w; 1 = w; (remember ¢ is limit). Since & € w; we have rk; 1, (¢) = a
and since @ € (Ngey,na X?“ we haye te(i) # * for each £ € w; N = wip Na. So
look now at the way we defined p'*!: we were at the case when pi™! was given
by A.3.6(c)(ii). In particular, the condition pi*t! € ]P’;km(t) N N;12 generates a
Pek,,. (¢y-generic filter over N;y,. We know already that ga.to satisfy (e) (or use

just (®)) and therefore pi*! € G,. This is enough to conclude that

Ni[Gal < (H(N),€,<0)y - (Niga[Gal)* € Nigt[Ga),  Niga[Go]NV = Nyyy

(like in A.1.13) and therefore to finish the construction.

To finish the proof of this case of the theorem note that our demands on the
conditions g, imply that each of them is (Ny,P,)-generic, so in particular ¢, is
as required.

(¢) The proof is similar to that of case (b) (and is not seriously used). ]

THEOREM A.3.8: Assume A<* = X\, k = At = 2% < u*. Suppose that Sy €
(Dancr (W), S1 € (O, (1)[So]) . Let Q= (P Qi : i < 1) be a (< x)-
support iteration such that for each i <

Ibp, “Q; is basically (So, S))-complete”.



Sh:587

74 S. SHELAH Isr. J. Math.

Then the forcing notion P, is basically (So, S;)-complete.

Proof: Similar to the proof of A.3.7 (but easier) and not used in our examples,
so we do not give details. N

A.4. The Axiom

Definition A.4.1: Suppose that A<* = X\, k = At = 2* < p* and 0 is a regular
cardinal. Let Sy € Depcr(p))t, & € (D2, ()[So])* and let D be a
function from S; such that each Dj; is a normal filter on A. Let Axg(So, S1, D),
the forcing axiom for (80,31) and 6, be the following sentence:

If Q is a really (So, Sy, D)-complete forcing notion of size < x and
(Z; : i < i* < 0) is a sequence of dense subsets of Q,
then there exist a directed set H C Q such that

(Vi < *)(HNT; #0).

THEOREM A.4.2: Assume that A,k = p*,8 and (SO,S‘I,D) are as in A.4.1 and
K<f=cf(@) <pu=p"

(e.g.,

(®) Sp € S, Sy = S)~\ S, are stationary subsets of £, So = So, S =
{@ : @ is an increasing continuous sequence of ordinals, ag € Sp, a;1 € So,
ay €5 })

Then there is a forcing notion P of cardinality p such that
(o) P satisfies the x*-cc,
(8) ke So € (©<,C,<,\(,u*))t & S ¢ (D% < (1)[So])*", and even more:
(B*) if S C Sy is such that 8§ € (D%, ., (1)[So])T,
then Ibp S € (D2, o (1*)[So))*,
(v) IFp Ax§ (&0, &1, D),
(8) if (®), then all stationary subsets of k are preserved.

Proof: Tt is parallel to B.8.2 which is later done elaborately. ]

Case B
While Case D (see the introduction; & inaccessible, S has stationary many
inaccessible members) may be treated similarly to Case A, we need to refine
our machinery to deal with Case B. Our prototype here is x is the first strongly
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1naccessible cardinal, however the tools developed in this part will be applicable
to cases A, C, D too (and other strong inaccessibles in Case B, of course).

Our Assumptions 2: & is a strongly inaccessible cardinal and p* > & is a regular
cardinal.

These assumptions will be kept in the present part (unless otherwise stated)
and we may forget to remind the reader of them.

There are two main difficulties which one meets when dealing with the present
case. The first problem, a more general one, is that (< pu)-completeness is not
reasonable even for p = 8;. Why? As we would like to force the Uniformization
Property for (S5 : & € S), where S C {§ < & : cf(§) = No} is stationary not
reflecting. The second problem is related to closure properties of models we
consider. In Case A, when x = AT, the demand N<* C N was reasonable. If
is Mahlo, || N|| = NNk is an inaccessible cardinal < &, then the demand N<N"% C
N is reasonable too; this is Case D. However, if  is the first inaccessible this does
not work. (Note that these models are parallel of countable N < (H(x), €, <)
of the case x = N;.) To handle these problems we will use exclusively sequences
N = (N; : i < a) of models and all action will take place at limit stages only.
For example, we will have completeness for N = (N; : i < w) by looking at N,
BUT the equivalence class N/ =~ will be important too, where for two sequences
N, N’ of length w we write N ~ N’ if

(Vn € w)(@m € w)(N, CN/) and (Vn € w)(Im € w)(N, C Np,).

B.5. More on completeness of forcing notions

In this section we introduce more notions of completeness of forcing notions. In
some sense we will generalize and develop the notions introduced in section A.1.

Definition B.5.1:

1. Let N = (N; : i < a) be a sequence of models and @ = {a; : i < a) be a
sequence of elements of [*]<*. We say that N obeys @ with an errorn € w
if

(Vi <a)(a; ©N;Np™ C aggn)-
When we say N obeys G we mean with some error n € w.
2. By €. (u*) we will denote the collection of all sets £ such that

£ C {Ez = {a;: ¢ < &) : the sequence @ is increasing continuous,

a<k and (Vi <a)(a; € [p*]<" & a; Nk € r)},
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and for every regular large enough cardinal y, for every x € H(x) and a
regular cardinal @ < & there are N and & such that
(a) N = (N;:i<8)is an increasing continuous sequence of elementary
submodels of (H(x), €, <}) such that r € No and

(Vi <O)(NI(i+1) € Niyr & | Ni]| < 5),

3.Ifaeé, Nisan increasing continuous sequence of elementary submodels
of (H(x), €,<}) such that (Vi+1 < £g(N))(N1(i+1) € Nipy & ||Ni]| < %)
and N obeys @ (with error n, respectively), then we say that (N,a) is an
é -complementary pair (an (5’ ,n)-complementary pair, respectively).

4. We say that a family £ € €..(p*) is closed if for every sequence @ =
(a; 1<) € £ and ordinals 3, v such that 8+ v < o we have

<aﬁ+1'2§7>€é

(or, in other words, £ is closed under both initial and end segments).

Remark B.5.2:

1. Definition B.5.1 is from [12, §1].

2. The exact value of the error n in B.5.1(2) is not important at all; we may
consider here several other variants as well.

3. Note that N;,||N;|| € Niy+1. Sometimes we may add to B.5.1(1) a re-
quirement that 20Vl C a,,,, (saying then that N strongly obeys a). Note
that this naturally occurs for strongly inaccessible &, as we demand that
a€é = a;Nk€E k. So then 20Nl ¢ Gitn, DUt ai4n N K € Kk so we have
2N C ay .

In this situation, if x; < x are large enough, x; € Ny and for non-limit i,
N/ is the closure of N; N H(x) under Skolem functions and sequences of length
< ||Ni|l, and for limit ¢, N = N; N H(x1), then the sequence (N} : 1 < «) will
have closure properties and will obey @ (as N; € N;y1, H(x1) € Niy1 imply
N/ € Ni41 and so N/ C Niip).

4. The presence of “regular § < «” in B.5.1(2) is not accidental; it will be of

special interest when & is a successor of a singular strong limit cardinal, as
then 0 = cf(f) < k = put implies § < p.

Definition B.5.3: Let & € €. (p*) and let Q be a forcing notion.
1. Let N = (N, : i < §) be an increasing continuous sequence of elementary
submodels of (#(x),€,<}), Q € No and p = (p; : i < §) be an increasing
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sequence of conditions from QN N;, n € w. We say that p is (N, Q)" -generic
if for each 1 < &

pl(i+ 1) € Niyq and pjyp € ﬂ{Z € N; : T is an open dense subset of Q}.

When we say that 5 is (N, Q)*-generic we mean that it is (N, Q)"-generic
for some n € w. We may say then that p is (IV,Q)*-generic with an error
.
2. We say that Q is complete for € if for large enough x, for some z € H(x)
the following condition is satisfied:
(@5 i ) o
(a) (N,a) is an &-complementary pair (see B.5.1(3)), a € £, N =
(N; 11 £9), Q€ Ny, and
(b) p is an increasing (N, Q)*-generic sequence,
then p has an upper bound in Q.
3. We say that a forcing notion Q is strongly complete for Eifit is complete
for £ and does not add sequences of ordinals of length < &.

Remark B.5.4:
1. The x in definition B.5.3(2) is the way to say “for most”; compare with
0.20.
2. In the present applications, we will have p* = « and a stationary set S C &
such that

se def ¢ . . .
&5 = {@ @ an increasing sequence of ordinals from £\ S

of length < k with the last element from S }

will be in €., (u*). The forcing notions will be complete for ég, so the
iteration will add no new sequences of length < x (see B.5.6 below). On
S the behavior will be more interesting, as there we shall be doing the
uniformization. Thus the pair (£5, S) corresponds to the pair (So, 1) from
the previous part (on Case A). See more fully later.
For example, if Cs C § = sup(Cs), otp(Cs) = cf(8), (vd € S)(cf(d) < §) and
hs : Cs — 2 then

Q= {g:forsomea <k, g:a — 2 and
(V6 € (a4 1) N S)(Vy € Cs large enough)(g(7) = hs(7))}

is such a forcing (but we need that S is not reflecting or (Cy : § € S) is somewhat
free, so that for each o < & there are g € Q with dom(g) = «).
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3. If we want to have S reflecting on a stationary set though still “thin”, then
things are somewhat more complicated, but manageable, see later.

PROPOSITION B.5.5: Suppose that £ e Cow(p*) is closed and Q is a forcing
notion.

1. Assume (@, N) is an (€, n,)-complementary pair, a € £, N = (N; : i < 8),
Q€ Ng. If p C QN Ny is (N, Q)" -generic (see B.5.3(1)) and q € Q is an
upper bound of p in Q, then

qlrg “((Ni[Gol : i < 6),a) is an (€,ny + ny + 1)-complementary pair”.
2. If Q is strongly complete for £, then ko EeConlp®).

Proof: 1) Since p is (N, Q)™ -generic, for each i < § and every Q-name 7 € N;
for an element of V, the condition p;,,, decides the value of 7 and the decision
belongs to Niin,+1 (remember p;yn, € Nitn,+1). Now, by standard arguments
(like in the proofs of A.1.13.2 and A.1.13.3) we conclude that for each ¢ <

Pitna+1 F@*Ni[Gol NV C Niyn,41 and Ni[Ggl < (H(x), €,<3)VI9] and
(N;[Gel:j < i) € Nita[Gol™

Since @itnp+1 € Nitna+1 C Gigngt14n, for i < §) we get
q kg “({N:[Go] : i < 8),a) is an (€, n1 4 ng + 1)-complementary pair”.

2) Suppose that p kg z € H(y) and let § < & be a regular cardinal. Since
& € €..(u*) we can find an (€, ny)-complementary pair (N, a) such that ¢g(N) =
fg(a) = 6+ 1 and (p, g, Q,é) € Np. Now, by induction on 7 < #, we define an
(N,Q)!-generic sequence p = (p; : i < 0):

pi € N;31NQ is the <;*(-ﬁrst element ¢ of Q such that

(i)i p < qgand (Vj <2)(p; < q),
(ii); g€ {Z € N, : T C Q is open dense}.

To show that this definition is correct we have to prove that, for each i < 0,
there is a condition ¢ € Q satisfying (i);+(ii); and p[i € N;11. Note that once
we know this, we are sure that the <}-first condition with these properties is in
N;41 and therefore p[(i + 1) € N4y too.

There are no problems for i = 0, so suppose that i = ig+1 and we have already
defined plig € Nip+1, and p;, € Njy+1, and hence pl(ip + 1) € Nygy1 < Nigyo.
The forcing notion Q does not add new sequences of ordinals of length < &k and
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| Nig+1]| < & Therefore, we find a condition ¢ € Q stronger than p;, and such
that ¢ decides all Q-names for ordinals from N; 4 (ie., g€ (I € N;:ZTCQ
is open dense}).

Suppose now that we have arrived at a limit stage ¢ and we have defined pl[i.
Since {N; : j < i) € Ny we know that p[i € Nyyy (as all the parameters needed
for the definition of pli are in N;;; and we have no freedom left). Note that
al(i+1) € € (as € is closed), (@(i + 1), N1(i +1)) is an (£, n1)-complementary
pair and the sequence pi is (N [(i+ 1), Q)!-generic. Since Q is strongly complete
for £, we conclude that there is an upper bound to pi in Q, hence a < -first one.
Now it should be clear that such an upper bound p; satisfies (1);4(i1); (remember
that N is increasing continuous).

Now look at the sequence p = (p; : i < #). Immediately by its definition we
see that § is (N[(8 + 1),Q)!-generic. Since Q is strongly complete for £ we can
find an upper bound g € Q of 5. Now, by the first part of the proposition, we
conclude that

g kg “((Ni[Gg] : 4 < 8),a) is an (€,n, + 2)-complementary pair”,

which finishes the proof. ]

THEOREM B.5.6: Suppose that £ € € (i*) is closed and (P, Qi :i < v) is a
(< K)-support iteration such that, for each i < v,

lkp, “the forcing notion Q; is strongly complete for £

Then P, is strongly complete for £

Proof:  'We prove the theorem by induction on .

Caseg l: v=0.

There is nothing to do in this case.

Case 2: y=/+1.
By the induction hypothesis we know that Pz is strongly complete for £ and
therefore, by B.5.5, IFp, £ e (pur).

Clearly the composition of two forcing notions not adding new sequences of
length < & of ordinals does not add such sequences. Thus what, we have to prove
is that Pgy; = Pg * Q is complete for £ (ie., B.5.3(2)).

Let y € H(x) be the witness for “Pg is complete for £ and let g be a Ps-
name for the witness for “Qg is complete for £". We are going to show that the
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composition Psy1 = P x Qg satisfies the condition (®)‘(§y e f Fat) of B.5.3(2). So
i [E 21} +1
suppose that

(a) (N,a) is an &-complementary pair (with an error, say, n), vz, & JPay1 €
No, €g(N) = bg(a) = 6 + 1,
(b) p= (p; : 4 < &) is an increasing (N, Pgy1)"-generic sequence.
It should be clear that the sequence (p;[3:4 < ) is (N, P3)"2-generic. There-
fore, as Pz is complete for £ and y € No, we can find a condition ¢* € P3 stronger
than all p; |8 (for 7 < §). By B.5.5(1) we know that

q" kpy “((Ni[Gp,) 1 i < 8),a) is an (€,n1 + ng + 1)-complementary pair”.
Moreover
q" IFp, “(pi(B): S <§) is an increasing
((Ni[Gp,] 1 i < 8),Qp)"*-generic sequence”.

[Why? Like in A.1.13.4, if Z € N; is a Pg-name for an open dense subset of Qg
then the set

{p€Psy1:plBlke, p(B) €I} € N;

is open dense in Pgyy; now use the choice of ¢*.] Consequently, we can find a
Pg-name 7 for an element of Qg such that

q* ”_]Pﬂ “(Vi < 5)(1)1(/3) SQﬁ ..T)”‘
Let ¢ = ¢* U {(8,7)}. Clearly ¢ € Pz is an upper bound of j.

CASE 3:  + is a limit ordinal.
Let g3 (for B < ) be a Pg-name for the witness for Ibp, “Qg is complete for &
Let z = ({z5: 8 <), (Pp, Qs : B< 7))

CrLAalM B.5.6.1: Suppose that (N,a) is an é—comp]ementazy pair, (g(N) =
tg(@) = 6+ 1, § is a limit ordinal and * € Ny. Further, assume that
(p; : 1 < é) C P, is an increasing sequence of conditions from P, such that

(a) (Vi<o)(pl(i+1) € Niy1), and

(b) for every 3 € YN Nj there are n < w and ig < ¢ such that

(Vi € [ig, &)} (pitn|B € ﬂ{I € N; : T is an open dense subset of Pg}).

Then the sequence p has an upper bound in P, .
[Note: we do not put any requirements on meeting dense subsets of P, !]

Proof of the claim: We define a condition ¢ € P,. First we declare that
dom(g) = Ns N~ and next we choose ¢(3) by induction on 8 € N5 N+~ in such
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a way that (Vi < 0)(p;[8 <p, q[3). So suppose that we have defined ¢[3 € P3,
B €N Ns. Let n € w and ip < & be given by the assumption (b) of the claim
for B+ 1. We may additionally demand that 3 € N;,. (Note that n, i =
min({i : 4o < 4, 4 € N;}) are good for 3 too; remember Pg <o Pg4;.) Since € is
closed we know that (N [[ig, 4], al[i¢,d]) is an é-complementary pair and the se-
quence {p;1j3 : ip < i < &) is (N[[io, 8], Ps)"-generic. Consequently, by B.5.5(1),
we get

q[8 IFp, “(N[GPB] M0, 8], @llig, d]) is an &-complementary pair”.
Moreover, like in the previous case, the condition ¢fs forces (in P3) that
“(pi(B) :io < i < 68) is an increasing (N[Gp,][[io. 6], Q3)"-generic sequence”.

Thus, as r5 € N;, and Qp is a name for a forcing notion which is complete for £
with the witness z, we find a Pg-name ¢(3) such that

q[B ke, (Vi <6)(pi(B) <g, a(P))".

Now we finish the proof of the claim noting that if F € v N Ny is limit and for
each a € p N Ns, gfa is an upper bound to (p;a : ¢ < §), then ¢S is an upper
bound of (p;]5:i < 8) (remember dom(p;) C Ns for each i < §). 1

CrAm B.5.6.2: Suppose that M < (H(x),€,<}), |M|| <&,z € M andp € P,.
Then there is a condition q € P, stronger than p and such that

(VBe Mn~y)(¢lB € ﬂ{I € M : T is an open dense subset of Pg}).

Proof of the claim: Let 6 = cf(otp(M N~)) and let {y; : i < @) be an increasing
continuous sequence such that yo = 0, v = sup(M N~) and v; € M Ny (for non-
limit i < §). As £ € Cope(p*), we find N=(N;:i <@ anda=(a;:i<0) €&
such that (y; : i < 8),x,p € Ny and (N,a) is an (‘f—complementary pair and
M C Ny. The last demand may seem to be too strong, but we use the fact that
£ is closed, a; Nk € k by B.5.1(2), and

MeN <N"<(H(), &, <)) & sup(N'Nk) CN" = MCN.

(Alternatively, first we take an £-complementary pair (N*,@*) such that fg(N) =
tg(@) = ||M||*+1and (y; : ¢ < 0),x,p, M € N}. Next look at the model N1
—- it contains all ordinals below ||M|], M and ||M||. Hence M C Nivys1- Take
N = N*{IM[| + 1, M| + 6] and a = a*[[|M|| + L, || M]| + 6].)

Next, by induction on i < 6, we define a sequence (p; : i < 6) C P,
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pi € P, is the <{-first element ¢ of P, such that

()i plv <p,, qlvi and (Vj <i)(p; 17 <e., qalv),
(ii); gl € N{Z € N; : T C P, is open dense},
(iii); ¢ffv7) =Pl 7)-

We have to show that this definition is correct and for this we prove by induec-
tion on ¢ < 6 that there is a condition ¢ € P, satisfying (i),—(iii); and p[i € N,y;.
By the way p;’s are defined we will have that then p[(i + 1) € Ny for i < 6.

If i is not limit (and we have p; for j < i) then there is no problem in finding
the respective condition ¢ once one realizes that, by the inductive hypothesis of
the theorem, the forcing notion P,, does not add new sequences of length < &
of ordinals and ||N;|| < &. So we just pick up a condition in P, stronger than
the (respective restriction of the) previous condition (if there is any) and which
decides all names for ordinals from N;. This takes care of (i); and (ii);. Next,
we extend our condition to a condition in P, as the requirement (iil); demands.
Arriving at a limit stage ¢ we use Claim B.5.6.1. So we have defined p[i and by
the way it was defined we know that pli € N4 (as all parameters are there).
Since £ is closed we know that (N (i +1),@}(i+ 1)) is an £-complementary pair.
Now apply B.5.6.1 to v;, P.,, pli, N[(i+1) and @[(i + 1) in place of v, P, p, N,
and @ there. Note that the assumptions are satisfied: for (b) use the fact that ¢
is limit, so if # < ; then for some j < i we have 3 < v; and now this j works as
io there with n = 1. Consequently, the sequence pii has an upper bound in P.,,.
Now, similarly as in the non-limit case, we can find a condition ¢ € P, (stronger
than this upper bound) satisfying (i);—(iii);.

Now look at the condition pp € P,. If 3 € M N~ and ¢ < # is such that
B < 9:, then p;lvy; decides all P, -names from N; for ordinals. But M C N,
pilvi <p,, poly: and Py < P,,. Hence po[3 € ({{Z € M : I C Pg is open dense}.
As pg is stronger than p, this finishes the proof of the claim. |

Cram B.5.6.3: P, is complete for £.

Proof of the claim: We are going to show that P satisfies the condition (@)‘f_E é)
of B.5.3(2). So suppose that (N, a) is an £-complementary pair, N = (N; : i < 8),
2,€ € Ny and p = (p; : i < &) is an increasing (IV,P,)™ -generic sequence. For
1< let

7 ¥ {qeP, : (¥f € Nin7)(qlB € [ (T € N : T C Py is open dense in P})}.
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Note that Claim B.5.6.2 says that each Z; is an open dense subset of P,. Clearly
T is in N4y, as it is defined from N;. Hence, for each i < 6, pj414n, € 7. Now
look at the assumptions of Claim B.5.6.1: both (a) and (b) there are satisfied
{for the second, note that if 3 € Ns N~ then we may take iy < ¢ large enough
so that g € N;, and let n = n{ + 1). Thus we may conclude that p has an upper
bound in P,. 1

CrLamm B.5.6.4: Forcing with P, does not add new sequences of length < & of
ordinals.

Proof of the claim: First note that for a forcing notion P, “not adding new
sequences of length 6 of ordinals” is equivalent to “not adding new sequences of
length 6 of elements of V”. Next note that, for a forcing notion PP, if 8 is the first
ordinal such that for some P-name 7 and a condition p € P we have

plhp“r:0—V and 7¢V",

then cf(6) = 6. [Why? Clearly such a # has to be limit; if cf(d) < 8,
then take an increasing cofinal in 8 sequence (¢; : 7 < of(8)) and look at
(r1¢; = 1 < cf(#)). Each 7]¢; is forced to be in V, so the sequence of them
isin V too — a contradiction.] Consequently, it is enough to prove that for ev-
ery regular cardinal § < &, forcing with P, does not add new sequences of length
6 of elements of V. So suppose that, for ¢ < 8, 7; is a Py-name for an element of
V,and p € P,. Take an £-complementary pair (V,a) such that N = (N; 11 <8)
and x,p, (7; 1 1 < 0) € Ny (exists as € € C(1*)). Now, by induction on i < 6,
define a sequence (p; : ¢ < 6) CPy:

pi € P, is the <{first clement g of P, such that
(1): p <p, q and (Vj < i)(p; <p, @),
(ii); if 7€ Ny then g[8 € ({Z € N, : Z C Pp is open dense},

(iii); g decides the value of 7; (when i < 8).

Checking that this definition is correct is straightforward (compare with the
proof of B.5.6.2). At successor stages i < # we use B.5.6.2 to show that there is
a condition ¢’ € P, satisfying (i);+(ii); and, next, we extend it to a condition ¢
deciding the value of 7,. At limit stages i < 8 we know, by the definition of pli,
that for each j <4, plj € Nji1. Moreover, we may apply B.5.6.1 to N[(i + 1),
al(i+ 1) and pli to conclude that pli has an upper bound ¢’ € P,. Now take
g > ¢ which decides the value of 7, (if 7 < ) - - it satisfies the demands (1);-(iii);.
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Finally, look at the condition pg € P: it forces values to all 7; (for i < 8) and
s0 pg Ik, (1: : i < 6) € V, finishing the proof of the claim and thus that of the
theorem. ]

Definition B.5.7:
1. Let €, (p*) be the family of all subsets of

{(‘1 = {a;: i < ) : the sequence @ is increasing continuous,
a <k and (Vi < a)(a; € [p*]<° & a; Nk € k)}.

2. Let M = (M; : i < a) be an increasing continuous sequence of elementary
submodels of (H(x), €, <), &0,€1 € €2, (u*). We say that M is ruled by
(&, &1) if

(a) M[(i+1) € My, ||M;]| < & and 20M:ll 41 C M4 for all i < a,
by (M;Np*:i<a) €&,
(c) for each i < a (and we allow ¢ = —1) there is an £o-complementary
pair (N?,a') such that
(@) Lg(N?) = fg(a’) = & + 1, cf(8;) > 217l and, for simplicity, &;
is additively indecomposable,
(B) MI(i+1) € N§, N = My, and
(n) INEP + 1 C N
The sequence (N* : i < a) given by the clause (c) above will be called an &-
approzimation to M.

3. ng,i(p*) is the family of all pairs (5'0,5'1) such that &g, & € e_.(1*), Eo is
closed and for every large enough regular cardinal x, for every z € H(x)
there is a sequence M ruled by (£,&,) and such that € My and every
end segment of M is ruled by (£o,&1) (follows if £, is closed under end
segments).

Remark B.5.8:
1. Condition B.5.7(2)(c) is the replacement for

[Nigtl=A and  (Nig1)<* € Nigy

in Case A. Here, there are no natural closed candidates for M;., as in
that case. So we use a relative candidate.
2. In B.5.7(2)(c)(7) we may put stronger demands (if required in applications).

For example, one may consider a demand that ||[NZ|[»"UIM:lD 4.1 ¢ NE, ||

for some function h* : K — k.
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3. Note that if (£,&,) € 032,;(/1*) then necessarily & € €<, (1*).
[Why? If 8 = cf(6) < &, x = (0, y) then fg(N?) > 6.]

4. Note that in examples there is no need to assume that &; is closed under
end segments as “complete for (£, &)” (see B.5.9) is preserved, as this just
restricts the choice of the “bad guy” INC of iy (and so p) to those in the
end segment.

Definition B.5.9: Let (&,£,) € ¢, (#*) and let Q be a forcing notion.
1. For a sequence M = (M; : i < §) ruled by (&, &) with an £y-approximation
(N®:i < ) and a condition r € Q we define a game Q:‘q‘mi:id) (Q,r)
between two players COM and INC.

The play lasts § moves during which the players construct a sequence
(i0, Py i+ @i  t0—1 < 7 < §)) such that iy < ¢ is non-limit, p € M;,N
Q pi € Miy1NQ, § = (gie : £ < 6;) € Q (where §; + 1 = lg(N?)).
The player INC first decides what is ig < é and then it chooses
a condition p € Q N M;, stronger than r. Next, at the stage i €
[io — 1,8) of the game, COM chooses p; € QM M, such that

p<gpi and (V) <i)(Ve <d;)(g5,e <@ pi)s

and INC answers choosing an increasing sequence ¢; = {q; . : € < §;)
such that p; <g ¢; 0 and §; is (N*[[a, &;], Q)*-generic for some o < 6.

The player COM wins if it has always legal moves and the sequence (p; : i < 6)
has an upper bound.
2. We say that the forcing notion Q is complete for (£, &) if
(a) Q is strongly complete for £, and
(b) for a large enough regular y, for some x € H(y), for every sequence
M ruled by (&,&) with an &-approximation (N* : i < 5) and such
that € My and for any condition r € QN M, the player INC DOES
NOT have a winning strategy in the game g/??,(l\'/i:Ké)(Q’ ).

PRroOPOSITION B.5.10: Assume
(a) (£0.61) € €2, (u*), o
(b) Q is a forcing notion complete for (£y,£E1).
Then ”—Q “ (go,gl) S an(u*) ",

Proof: Straightforward (and not used in this paper). |
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B.6. Examples for an inaccessible cardinal s

Let us look at a variant of the examples presented in section A.2 relevant for our
present case. (Remember B.5.8(4).)

Hypothesis B.6.1: Assume that & is a strongly inaccessible cardinal, S C k is a
stationary set and C = (Cs : § € S) is such that for each 6 € S:

Cs is a club of ¢ such that otp(Cs) < &, moreover for simplicity
otp(Cs) < min(Cs), nacc(Cs) C kS and
if a € nacc(Cj), then cf(a) > 2max(aN%) and SN is not stationary,
if o € acc(Cs)N S, then C, = CsNa.
[Note that if S does not reflect, then we can ask that the assumption of the

second demand never occurs, hence the second demand holds trivially].
Further, we assume that C' guesses clubs, i.e.,

if E C & is a club,
then the set {§ € S : Cs C E} is stationary.
Moreover, we demand that for every club F C k, the set kS contains arbi-

trarily long (but < k) increasing continuous sequences from E.

Definition B.6.2: Let ,S,C be as in Hypothesis B.6.1 and let p* = &.
1. Define

5'05 = {c‘r = {q; : 1 < 7) :@ is an increasing continuous sequence
of ordinals from £~ S, 7 < &}
éf € = { B': B is an end segment (not necessarily proper) of 37(6),
for some & € S and f is the increasing enumeration of C,s}.

2. Suppose that A = (As:6 € S), h = (hs : § € S) and cf(d) = 0 < & are
such that for each 6 € S:

As C 0, ||Asl| £ 0+cf(8), hs:As — 6, andsup(4s) =346

(so cf(§) < 6; we may omit the last demand as only A[S’, for &' =
{6 € §: 6 = sup Az}, affects the forcing). We define a forcing notion

S0 .
AR’
a condition in Q‘fi’eﬁ is a function g: 8 — 8 (for some § < k) such that

(V6 e SN(B+1))({¢ € As : hs(£) # g(€)} is bounded in §),



Sh:587

Vol. 136, 2003 (< k)-SUPPORT ITERATIONS 87

the order <gs® of Q‘Z—'GE is the inclusion (extension).
Fi .

3. For A, h and 8 as above and a < & we let
Ak def s,
0= 1g € QA,OE :a € dom(g)}.

Remark B.6.3:  One of the difficulties in handhng the forcing notion Q 7 7, 18 that

the sets II;“ 768 do not have to be dense in Q LR Of course, if this happens then
the generic object is not what we expect it to be. However, if the set S is not
reflecting and § € S = SNace(Cs) = O, then each ZA h0 is dense in Q i % and
even weaker conditions are enough for this. One of them is the followmg
(x) (A5 : 0 € S) is n-free, i.e., for every a < & there is a function g such that
dom(g) = SNa and g(d) < § and the sets (45~ g(d) : § € SNa) are
pairwise disjoint.
We can of course weaken it further demanding that (45 : 6 € SN a) has
uniformization. (So if we force inductively on all x’s this may be reasonable, or
we may ask uniformization just for our hs’s.)

PROPOSITION B.6.4: (€5, f’ls Ve a®, (ur).

Proof: Immediately from its definition we get that f:'OS is closed. Suppose now
that v\ is a sufficiently large regular cardinal and x € #H(y). First construct an
increasing continuous sequence W = (W; : j < &) of elementary submodels of
(H(x), €, <}) such that r € Wy and for each j < &

Wil <&, and W;nk=[W;|, and WI[(j+1)€ Wj4i.

Note that then, for each j < &, we have 2IWill 41 C Wit1. Clearly, the set
E={W;Nk:j<kislimit} is a club of x and so acc(E) is a club of x as well.
Thus, by our assumptions on C' (see B.6.1), we find § € S such that Cs C acc(E)
(then, of course, § € acc(E) too). Let M = (M, : i < otp(Cs)) be the increasing
enumeration of

{Wj:j<K&WjﬂNEC5U{(S}}.

Fix i < otp(Cs). Let j' < j < & be such that Wy = M; and W; = M,,, and
let o« = M1 Nk =W;Nk. Then a € nacc(Cs) Nace(E) and, by B.6.1, a ¢ S
and the set S does not, reflect at . Consequently, we find a club C? of « disjoint
from SNa. Let N' = (N!:¢ < ;) be the increasing enumeration of

{(We:j' <€<j&WenrkeC u{a}l
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(Note that the set above is non-empty as a € nacc(E); passing to a cofinal
subsequence we may demand that J; is additively indecomposable.) We claim
that the sequence M is ruled by (£5,£2°¢) and (N : i < otp(Cs)) is an &5-
approximation to M. For this we have to check the demands of B.5.7(2). By the
choice of the W;’s we have that the clause (a) there is satisfied. As (M; Nk :
i < otp(Cs)) enumerates Cs U {6} we get the demand (b) there. For the clause
(c), fix i < otp(C;) and look at the way we defined N* = (N! : ¢ < §;). For
each ¢ < &, Nink € C*U{a} C k~S. Hence (N',(NiNk:e <4§;))is an
5}39 -complementary pair. Moreover,

of(8:) = cf(a) > 2meX(@NCs) = QMik _ lIMi|

(by B.6.1) and §; is additively indecomposable. This verifies (c)(a). The clauses
(c)(B) and (c)(7) should be clear by the choice of the W;’s and that of N*. [

PROPOSITION B.6.5: Suppose that A, h, 8 are as in B.6.2(2) and for each o < &
the set TA R0 (see B.6.2(3)) is dense in Q (e.g., S does not reflect). Then the

forcing notion Q3% 17 is complete for (&5 ,Sf C).

Proof: We break the proof into three steps checking the requirements of B.5.9(2).
CLamM B.6.5.1: Q o s complete for 50

Proof of the claim: Suppose that (N, Zz) is an £5-complementary pair, N =

(N;:i <8 and p=(p;:i1<8)C Q-- is an increasing (N, QS "_generic

sequence. Let p def U,<spi- Note that p is a function from dom(p) =

Ui <s dom(p;) to 6. Moreover, as the sets ZAR® are dense in Q A 9 (and IR0 ¢
N; if @ € N; N &), we have N; Nk C dom(piyn) € Nignt1- Hence

dom(p) = UNiﬁHZNgﬂfiG K.
i<d
Note that NsNx ¢ S (by the definition of £5). Suppose that « € S ﬁ(dom( )+1),
so a € dom(p). Then for some i < § we have o € dom(p;) and, as p; € QA 5o the

set {£ € Ay : ha(€) # p(€) = pi(€)} is bounded in a. This shows that p €
and clearly it is an upper bound of p. |

CLAM B.6.5.2: Forcing with Q does not add new sequences of length < k
of ordinals.

Proof of the claim: Suppose that ( < x and 7 is a Q%gﬁ—name for a function

from ¢ to ordinals, p € Q‘}eﬁ. Take an increasing continuous sequence W =
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(Wj : j < k) of elementary submodels of (H(\), €, <}) such that Qi—‘%, p, 7 € Wy,
¢+ 1C Wy and for each j < &

|\W;|l < &, and W;nek=|W;|l, and WI(+1) € W41

Look at the club E = {W; N« : j < x}. By the last assumption of B.6.1 we find
an increasing continuous sequence (j¢ : § < ¢) such that {W; Nk :§ < (NS = 0.
Now we build inductively an increasing sequence (p¢ : £ < ¢) of conditions from
Q such that p < @%® Po and for each £ < (:

1 pe € y‘]§+1*

2. p¢ forces a value to 7(£), and

3. Wi, Nk C dom(pg).

There are no problems with carrying out the construction. At a non-limit

stage £, we may easily choose a condition pe in W, stronger than the condition

€1
chosen before (if any) stronger than pq if £ = 0 and such that W;, Nk C dom(pg)

(remember that IW m ew is a dense subset of QZ-‘%) and p¢ decides the

Jen
value of 7(£). Arr1v1ng at a limit stage £ < ( we tal\e the union of conditions

chosen so far and we note that it is a condition in Q Ccoas
dom(Upi) = U dom(p;) = U Wj,Nk=W;.Nk ¢S
i<€ i<g i<§
Now proceed as in the successor case. Finally, look at the condition p, — it
decides the value of 7 {and is stronger than p). |

CLAIM B.6.5.3: Assume that M = (M, : i < §) is an increasing continuous
sequence of elementary submodels of (H(x), €, <) ruled by (fs,fs‘c) with an
é:g-approvimatiou (N :i < 6) and such that S, 50 ,51 C VARG, QS— € M.

Let r € Q N Mgy. Then the player COM has a winning strategy in the game
9M AN z<5)(Q4 h’”)'

Proof of the claim: First, we are going to describe a strategy for player COM
in the game QM (N l<5)(Q4 5+ 7). and then we will show that it is a winning one.

Since (M; : i < 6) € Sfc and, for each a € S, otp(Cy) < « (see B.6.1) we
know that 6 = otp(Ca,nx) < Ms Nk € S. Recall otp(Cs) < min(Cjs). Let

2| N Apn: i<8 & MinkeS).

Note that | Z]] < -0 < || My, || as |As| < 04 cf(a) for every o € S. By induction
on i < 8% choose an increasing continuous sequence (Z; : 1 < %) of subsets of x
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such that Zp = Z and Z;41 = Z, U J{Aa : @ € S & a = sup(Z; Na)}. Clearly
|Z;| <&-8-|i| for each 7 < 671 and if @ = sup(a N Zg+) then Ay C Zp+. So as
|As| < 8 we have

aeS&a=sup(Zp+ Na) = A, C Zg+.

Now, in his first move, player INC chooses non-limit ¢y < § and p € Qf\",ﬁ N M;,
stronger than r. We have assumed that each I? .0 (for & < k) is dense in Q‘}?ﬁ, S0
we have a condition pt € Qi—’z—l stronger than p and such that MsNk € dom(p™t).
In the next steps, the strategy for COM will have the property that for each
1> 19 — 1 it says COM to play a condition p; € Q‘Z—’i—l such that

(@) Zg+ N Miyr C dom(p;) and p;[Zg+ = p*[(Zg+ N My1).

So, first the player COM chooses a condition p;,—1 € M;, ﬂ@i—’oﬁ stronger than
p and such that

Zg+ N M, C dom(pio) and P, [(Zg+ N Mio) = p+ M Zg+ N Mio)'
Why is it possible? We know that
| Zg+ N Miol < 6t < MoNk < ||M1‘0“ < cf(5io_1)

(where 8;,_1+1 = €g(N%~1)) and therefore Zg+ NM;, € Nio~! for some ¢ < J;,.
Taking possibly larger ¢ we may have dom(p) C Nio~1 too. Let p’ € Nz‘j;ll ﬂ@i—’%
be such that p < p’ and N~ Nk C dom(p'). Let

pi, = (P’ [(dom(p’) N Zg+)) U (p* 1 Zg+ N NI~y

Note that p;,: dom(p;,) — 6 is a well defined function such that p;, € N;";ll
(for the last remember B.5.7(2)(c)(7y): we are sure that Zg« N Ni~1 ¢ Né‘_"_‘ll and
P Zpr N No~1) € NioTY as [N~ 1[50 41 C N¥71). Finally, to check that
Di, is a condition in fogﬁ suppose that v € SN (dom(p;o—1) +1). If A, C Zp+
then p;, [A, = pt[A, a;ld the requirement of B.6.2(2) is satisfied. If A, is not
contained in Zp+ then necessarily Zg+ Ny is bounded in v and we use the fact
that pi,—11(Ay > Zg+) = P'[(Ay N Zp+ ), p' € Qi—’oﬁ-

At a stage i € [ig, 8} of the game the player COM applies a similar procedure,
but first it looks at the union pf = i< U. <5, Gie of all conditions played by his
opponent so far. If 7 is not limit then, directly from B.6.5.1, we know that p is
a condition in Qi—’% (stronger than r). But what if ¢ is limit? In this case the
demands ([J); for j < ¢ help. The only possible trouble could come from Ans;ne
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when M; Nk € S. But then the set Zg+ contains Aas,n,. and, by (D)j for j < 1,
i1 An,nw = T [An, . This implies that the set

{f € -41\1,0/-; . h/\hﬂﬁ(f) 7é p:(f)}

is bounded in M; N k. Hence easily pf € Qi",eﬁ' Next, player COM extends the
condition p} to p; € N! I ﬂ@‘}% (for some ¢ < §;) such that the demand ([3); is
satisfied, applying a procedure similar to the one described for getting p;,.

Why is the strategy described above a winning strategy? Suppose that
(p; : ip—1 < i < &) is a sequence constructed by COM during a play in
which it uses this strategy. As it is an increasing sequence of conditions and
U;<s dom(p;) = Ms N &, the only thing we should check is that the set

{€ € Aptyom : hagson (€) # (| p0)(€)}
i<d
is bounded in MsN k. But by the choice of Z C Zy+, and by keeping the demand
(B0); (for ¢ < &) we know that

{6 € AMaﬁN : hﬂ[sﬂﬁ(g) # (Upz)(f)} - {£ € AMgI’M : hAL;r‘m(E) 7é p+(£)}*
i<é
so the choice of pt works.
This finishes the proof of the claim and that of the proposition. i

Now, let us turn to the applications for Abelian groups (i.e., the forcing notions
needed for 0.11). We continue to use Hypothesis B.6.1.

Definition B.6.6: Assume that G is a strongly x-free Abelian group and h: H ont

G is a homomorphism onto G with kernel A of cardinality < x. We define a
forcing notion Pp, g ¢
a condition in P, g ¢ is a function ¢ such that
(a) dom{q) is a subgroup of G of size < &,
(b) G/dom(q) is k-free,
(¢) ¢ is a lifting for dom(q) and h: H — G;
the order <p, , ., of P, gy is the inclusion (extension).

Hypothesis B.6.7: Let G = (G, : i < x) be a filtration of G, T'[G] C S (modulo

the club filter on ). So, without loss of generality, y[G] C S and [G] is a
set of limit ordinals. Let h~![G;] = H;. Not a great loss if we assume that
deS=CsNS =0 (soS does not reflect in itself).
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PRrROPOSITION B.6.8: For each o < k the set
def . .
P nc = {g € P : (3i < k)(dom(q) = Gipy & i > a}

is dense in Py, y -

Proof: Let g € Py g and let i < & be such that dom(g) C G; and i > o. Then
G/ dom{q) is k-free and so G;,1/ dom(q) is free. Now consider the mapping = >
x + dom(q): Gi41 — G,41/ dom(q). So by 0.8 we get that G;;1 = dom(q) + L
for some free L (L = G4,/ dom(q)). Consequently, there is a lifting f of L and
now (f,q) extends ¢ and it is in P, p . ]

PRrOPOSITION B.6.9: The forcing notion Py g ¢ is strongly complete for f(;s .

Proof: The two parts, not adding bounded subsets of £ and completeness for
f:’(? , are similar to those for uniformization, so we do just the second.

Assume now that x is a regular large enough cardinal, N; < (H(x), €, <3),
N =(N;:i<8), Nii +1) € Niy1, NiNk € & is limit, N obeys @ € &
and p = {p; : i < &) is generic for N with error n, let +; be minimal such that
dom(p;) 2 G,+1 & N; Nk <, & j+n > i if possible, zero otherwise (no big
loss if we assume that always the first possibility occurs). In particular, p; € N;4q
and as +y; is computable from G, p;, N|(i + 1) we know that v; € Ni,.

Let 3; = sup(V; N k) (so the sequence {B; : i < §) is increasing continuous).
Note that

Ditn € ﬂ{I € Nig1: I C P, 4 is open dense}

and Ny, 3; € N;yy. Moreover, the set

Is, = {q € Py : dom(q) D G41}

is open dense in Py pr.G. S0 pitn € Iy, € Nity and vi1n > f;. Now, dom(J; .4 p:)
= GU¢<5(W+1) and U;5(7 +1) = Ujes Bi = Ns N w. Since Ns Nk ¢ S and
S D T'[G] we conclude N5 Nk ¢ T'[G], and thus Gn;nk+1/GNsnx 18 free. So we
can complete to a condition. i

ProposITION B.6.10: The forcing notion Py, g ¢ is complete for (505, c‘:'f)

Proof: Suppose that M = (M; : i < &) is ruled by (£5,€5). So M;Nx = a; and
My = U<<cf(a,~+1) Né and (N b%) is an £§-complementary pair, b € £ (also
for i = —1).

We are dealing with the case § € My. Recall:
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CraM B.6.10.1: Fori < &, there is G} such that G; C Gt C Gi, |G| <
|Gill + Ro and Gi41/G} is free. (Of course, if i ¢ S is non-limit then G /G; is
free.)

Proof of the claim: Since G4 is free we may fix a basis (x; . : ¢ < g;41) of it.
Choose A; C ;11 such that ||4;|| < ||Gi]) and G; C {({z;. : € € A;})¢ (and call
the last group G:r). Then G;41/G} is freely generated by

{-Ti,s + Gj_ €D Az}

The claim is proved. 1

Let HY = h~![G}] and wlog (G, G} i < k) € Mp.

Thus if ¢ < j then G;/G is free. All action will be in G}, /G, for limit 7 < 6.
Necessarily a; is a singular cardinal of small cofinality (< § < ag). [Remember
a; = M; Nk and sup(M; N k) is a limit cardinal. Why? If not, then there is a
cardinal A such that A < sup(M; N k) < A%, so there is v € M; N k such that
A <7y <sup(M; Nk) < AT, Hence AT = ||v]|t € M;, a contradiction.]

We may have “a difficulty” in defining p[GQ;, so we should “think™ about it
earlier. This will mnean defining p[G.,,,,, j < i. The player COM can give only
a condition in M;4,, and we will arrange that our “prepayments” are of “size”
a; (so bounded in M;,; and thus included in some Ng, ¢ < cf(aj41); they will
even belong to it).

Let r € Py gc N Mo, [Remember: G,/ dom(r) is free, so there is a lifting.]
Let INC choose non-limit iy < § and p € M;, NPy g above p, and ¢ =
(io,c : € < bi5—1) generic for some end segment of N, 1.

We choose by induction on i € [ig — 1, 6] models B; < (H(x), €, <7) such that

o p.G,M,(N": 1< ¥§),(H;:i<6),...€e B,
e the sequence (B; : i < §) is increasing (but not continuous),
|Bil| = a; + | Dom(p)|, |B|| +1 C B; and (B; : j < i) € B;,
o BiNM; e My ifi<j.
(But see for additional requirements later.)

The rest of the moves are indexed by i € [ip — 1,4) and in the i*" move COM
chooses p; € M; and INC plays ¢ = (qz : ¢ < §;) as in the definition of the game.

Now COM will choose on a side also f; € Py, gy for i € [ip — 1,6) such that
additionally:

{(#)1 fi € Pp .y is a function with domain B; N G;Ls, increasing with 1,
(*)2 a; C dom(f;),
(¥)3 filai11 = fil(aiy1 N B;) belongs to Py, g, and is below p;.
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Note that

(@) BjNM;11NGY, is a subset of Gar,,ny of cardinality || M| < cf(8;), hence
it belongs to Mj ;.

For i = ig — 1 let f;,_1 € Pp_ng be above p and have domain By, N G7,,
and let pi,—1 = fol(Bi,—1 N GF, N M;,). Clearly [Mi0]2”Mi°—l” C M,,, and
1B, 1]l = a; and p;,—; is a function extending p, its domain belongs to M,
and it is a subgroup of G(‘{s. Consequently, p;,—1 a lifting and is in M;,. By
manipulating bases (or see [9]) we have

e Dom(p) € Dom(f;) C G,

as)?
o Gf /Dom(f;) = G}, /(GF, N Bi,-1) is free as G, is free and G, € Biy—1,
e Dom(f;)/ Dom(p;) is free as it is equal to GF, N Bi,_1/(GE N Biy—1 0 M)

and G} N M;, € G, and they belong to Bi,—1, and GZ,/(G, N M;,) is

free as M;, Nk ¢ S, so k-free.
For i = j+1 > ip we have f;, p; and ¢} = (qjg 10 < 9;). Let ¢ = Uc<6,~ gc. So as
dom(q}) = aj+1 = a; ¢ S (by the choice of &), clearly q; € Ph,,g- We have to
find p; € Py g, N M;41 above q;» and f;j[M;1 (and then choose f;). Clearly the
domains of g, f;j[M;41 are pure subgroups, Dom(g}) = GN M; = Guyne = G,
and p;, fj[M; agree on their intersection (which is Bj N M;41). Hence there is
a common extension p}, a homomorphism from G,, + (B; 0 M;4,) to H, which
clearly is a lifting. Does p; € P, q.¢? For this it suffices to show that the group
G}/ dom(p;) is free. But G}, /G7 | is free, hence (GF,/Gayy)/BiN(GE /Gajin)

§ aj+1

is free (see [9], Axiom VII). Therefore G}, /(B; NG, + G, ) is free. Also
(BiNG} + Gayy )/ (BiNGayy, +Gayyy)

is free (see {9], Axiom VI). Together, G;f& /(BiNGa,,, +Gq,,,) is free as required.

We are left with the case of limit i. Let ¢f = U{q} : % —1 < j < i}. Then
q! is a lifting for G,,. Now clearly f] = {f; : %o —1 < j < i} is a lifting for
Gt NUj«i B, also GY,/ dom(f;) is free (see [9], as above) and Gt € Bi,_1,
IGE |l = 1Ga.ll € Uj<; Bj- Hence G, C U;.; B; and therefore G} C dom(f})
and we can proceed to define p; as above.

Having finished the play, again |J{f; : 10— 1 < j < 0} € Py m.c (as in the limit
case) is an upper bound as required. |

Remark B.6.11: In this section, we can replace &1 by any éf defined below (or
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any subset which is rich enough):

& = {& = (a;: i < 0): & is an increasing continuous sequence
of ordinals from &, a,41 € 5, cf(g;41) > a; and

S Majy1 not stationary}.

B.7. The iteration theorem for inaccessible

In this section we prove the preservation theorem needed for our present case.
Like in Case A, we will use trees of conditions. So, our way to prove the iteration
theorem will be parallel to that of Case A.

PROPOSITION B.7.1: Assume that £ € €. (u*) is closed and

Q=(Ps.Qu:a<7)

is a (< k)-support iteration of forcing notions which are strongly complete for g
Let T = (T, <,rk) be a standard (w, ag)7-tree (see A.3.3}, [T]| < &, w C v, ap
an ordinal, and let p= (p; : t € T) € FTt'(Q). Suppose that T is an open dense
subset of P.,. Then there is § = (q; : t € T) € FTY'(Q) such that p < § and for
eachteT

1. gt € {qItk(t) : ¢ € I}, and

2. for each o € dom(q;), either ¢;(a) = pi(a) or IFp, gi(a) € Q, (not just in

the completion Qa).

Proof: Let {¢; : { < i(x)) be an enumeration of T such that
Vi, j <i(*))(t: <t; = i<j).

We are proving the proposition by induction on i(x).

CASE 1: i(x) = 1.
In this case T = {()} and we have to choose ¢y only, but this is easy, as the set
{aftk({)) : ¢ € I} is open dense in Pyy((y)-

CaseE 2: () =ig+1>1.
Let T* = {t; : i < i} and let T* = TIT*. Then T* is a standard (w, ap)?-
tree to which we may apply the inductive hypothesis. Consequently, we find
{gf : t € T*) € FTY'(Q) such that for each t € T*:

L p <q; € {qlrk(t): g €T}, and

2. for each o € dom(g;), either ¢f(a) = pi(a) or IFp, ¢f (a) € Qa-
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Let ¢° = U{q} : s < t;;} (note that s < t;, = s & T*; and also 51 < s3 <
ti, implies g} = q,Irk'(s1), hence easily ¢° € Pli(t,,))- Clearly q° and py,
are compatible (actually ¢° is stronger than the suitable restriction of pt;,) and
therefore we may find a condition ¢;;, € ]P‘rk(tio) (note: no primes now) such that
qt;, € {gl1k(t;,) : ¢ € I} and ¢y, stronger than both q° and pt,,- Next, for each
teT™ let

g & Gry, [T(E N Ei) U g7 [rk(t Nty ), ) > af > pe-

One easily checks that § = {g; : t € T) is as required.

CASE 3: i(*) is a limit ordinal.

Let 6 = cf(i(x)) and let (i : ¢ < 6) be an increasing continuous sequence, ig = 0,
ig = i(x). For a < v, let 4 be a Py-name for a witness that Q, is (forced to
be) strongly complete for £ and let & = (24 : @ < 7). Take an &-complementary
pair (NV,a) of length 6 such that (ic : { < 6),p, Q.&,2,T € Ny and ||T]| € No
(exists as £ € €. (u*) is closed: first take a complementary pair of length || T+
and then restrict it to the interval [||T|| + 1, ||T|| + 6)).

By induction on ¢ < @ we define a sequence (¢ : ¢ < ):

g¢ = {gf : t € T) is the <%-first sequence 7 = (r, : t € T) € FIY'(Q)
such that

(i)¢ for every t € T: p; < 7y and (V€ < C)(qiE <r) and, if a €
dom(ry), pi(a) # ri(a), then ri(a) is a name for an element of Q,
(not the completion),

(ii)e if i¢ <4 <i(*)and sup{rk(t;) : j <i¢c & t; < t;} < <1k(t;),
then 7y, (o) = py, (@),
(iii) if § < i¢, then

T, € ﬂ {J € N¢: J € Prgqy,) is open dense}.

To show that this definition is correct we have to prove that arriving at a stage
¢ < 0 of the construction we may find 7 satisfying (i)¢-(iii)¢. Note that once we
know that we may define @ for £ < ¢, we are sure that (¢ : £ < ¢) € Ny

(remember N[(¢ +1) € Ncy1). Similarly, arriving at a limit stage ¢ < § we are
sure that (¢° : £ < () € Nejr.

STAGE: (=0.
Look at ¥ = p: as ig = 0, the clause (iii)g is empty and (i)o, (ii)o are trivially
satisfied.
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StaGE: (=¢+1.
Let T* = {t;: i <ic}, p* = (¢} : t € T*). We may apply the inductive hypothesis
to T*, p* and

a4 ﬂ {J € Nc: J CP, is open dense}

(remember i < i(x) and P, does not add new < s-sequences of ordinals, see
B.5.6, so I* is open dense). Consequently, we find 5 = (s, : t € T*) € FTY'(Q)
such that for each t € T*:

. qf < s; € {qItk(t) : ¢ € I*}, and

e for cach o € dom(s,), either g () = s;(a) or IFp, s:(a) € Q.-
For t € T~T* let oy = sup{rk(¢;) : i < i & t; < t}. Note that, for t € T ~T*,
U{st, 14 <ic & t; < t} is a condition in P, stronger than g; le. So let

'rt:U{sti i< &t <t}Uqf[[at,7):U{stl ci < &ty <t} Upef[a, )

for t € T~T* and ry = sy for t € T*. It should be clear that 7 = (r, : t € T) €
FTr'(Q) satisfies the demands (i) (iii)c.

STAGE: ( is a limit ordinal.

As we noted before, we know that (§° : ¢ < &) € Ngy, for each § < (. Hence,
as T C Ny (remember ||T|| C Ny and T € Np), we have (gf : ¢ < &) € Ngyq for
each t € T and £ < (. Fix ¢ < i¢ and let £ < { be such that i < i¢. Look at the
sequence (g;, : £ < ¢ < (). By the choice of ¢° (see demands (i), and (iii).) we
have that it is an increasing (N[¢, (), P,k(t;))*-generic sequence (note no primes;
if we are not in Qq, then the value is fixed). By B.5.6 the forcing notion Py, is
complete for £ (and Ng contains the witness), so {q;, : { < ¢ < ¢} has an upper
bound in Pyy,). Moreover, (by the proof) for each o < rk(t;), if ¢ € P, is an
upper bound of (g;, [a : ¢ < (), then

qlFp, “the sequence (¢j (a): ¢ < ¢) has an upper bound in Q..

Now, for t € T we may let dom(r¢) = |J, ., dom(g;) and define inductively r¢(c)
for a € dom({r;) by

if (Ve < {){¢i () = pi(a)), then ri(a) = p(@), and otherwise
r¢(a) is the <} -first Py-name for an element of Q, such that

relaclbp, (Ve <()(g;(a) <g, ri(a)).

It is routine to check that 7 = (ry : ¢ € T) € FTY'(Q) and it satisfies (i)¢—(iii)c.
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Thus our definition is correct and we may look at the sequence ¢°. Since
I € Ny, it should be clear that it is as required. This finishes the inductive proof
of the proposition. |

Our next proposition corresponds to A.3.6. However, note that the meaning
of x’s is slightly different now. The difference comes from another type of the
game involved and it will be more clear in the proof of Theorem B.7.3 below. So
the 7; are supposed to code possible choices of the player COM in the ith move
in a play (see B.7.3) when N = N,.

PROPOSITION B.7.2: Assume that £ € €..(u*) is closed and

Q=(Pa,Qo:a <)
is a (< &)-support iteration and x = (x4 : @ < v) is such that
tp, “ Qq is strongly complete for £ with witness zo"

(for a < «y). Further suppose that
(o) (N,a) is an £-complementary pair, N = (N; : i < 8), and z,£,Q e N,
(3) T = (T, <,rk) € Ny is a standard (w, ag)?-tree, w C v N Ny, |lw]| < cf(4),
ag is an ordinal, a1 = ag+ 1, 0 € w,
Yy = (p :t€T)eFIY(Q) N No, w € Ny, (of course ag € Np),
) (|1 IH0THC Ny for each i < 6,
) for i < 4, T, = (Ti,<4.1k;) is such that T; consists of all sequences t =
(tc : ¢ € dom(t)) such that dom(t) is an initial segment of w, and
e each t¢ is a sequence of length ay,
e {tclag: ¢ € dom(t)) €T,
e for each ¢ € dom(t), either t;(ag) = * or tc(cw) € N; is a Pc-name for an
element of Q; and
iftc(a) # * for some o < ayg, then t¢(aqg) # *,
(€) for T;, t as above, 1k;(t) = min(w U {7} > dom(t)) and <; is the extension
relation.
Then
(a) each T; is a standard (w, ;) -tree, ||T;|| < ||T||- || N||"!, and ifi < & then
T; € Niq1,
(b) T is the projection of each T; onto (w, ag), and T; increases with 1,
(c) thereis § = (q; : t € T5) € FTY'(Q) such that
(i) P Spm~7's q,

T

(-
(6

<
<
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(ii) if t € Ts~{()} then the condition ¢. € P, .,  is an upper bound
of an (N {[ig, 8], Py, (1)) *-generic sequence (where ig < 0 is such that
€ T, ). and, for every 3 € dom(q) = NsNrks(t), q:(3) is a name
for the least upper bound in Qﬂ of an (N[Gﬂ][[5,5),@13)*—generi(’
sequence (for some £ < 6),
[Note that, by B.5.5, the first part of the demand on ¢ implies
that if iy < € then q|3 forces that (N[G3]I[€. 8], all€,6]) is an S-
complementary pair.]
(iii) ift € Ty, t' = proj 7 (t) € T, ¢ € dom(t) and t¢(ag) # *. then
@ 1¢ ke, "pe(C) <o

-6

telao) = teloo) <g_a(0)"
(v} ¢ =py-

Proof: Clauses (a) and (b) should be clear.
(¢) One could try to use directly B.7.1 for (\{Z € N5 : Z C P, open dense} and
suitably “extend” p (see, e.g., the successor case below). However, this would
not guarantee the demand (ii}). This clause is the reason for the assmmption that
lw]] < cf(6).
By induction on i < 4 we define a sequence (7' : i < 8):
g = {ql : t € Ty) is the <} first sequence 7 = (ry 1t € T;) € FTY' (Q)
such that
()i B <oy 7 and (V) < )9 € T)a! <o,
(if); ift =(¢:¢Cedom(t)) € T; and ' = projz—f(f) € T, then
o (Va € dom(r))(pir() = rfa) or g, ri(a) € Qq),

7 ) ,

and
o r; € (T € N; : T C Py, ) is open dense}, and

o for every ¢ € dom(t) such that t¢(aq) # *,
Tt [C ”_]Pg' “pf' (C) S‘Q( t( (a()) = fg((lo) S@g rt(c)”a

(111), Ty =Py

We have to verify that this definition is correct, i.e., that for each ¢ < 4 there is
an 7 satisfying (i);-(iii);. So suppose that we arrive at a non-limit stage i < 4 and
we have defined (¢ : j < ). Note that necessarily (¢ : j < i) € N; (remember i
is non-limit). Let i = j+1 and, if j = —1, let ¢, = Ppro;

7o) for t € Ty and let
T
T_, ={()}. Fort € T; we definc s; € Py, (4) as follows.
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e If t € T}, then s, = qg.

o If t € T; ~Tj and ¢* € w is the first such that ¢[({* + 1) ¢ Tj, then we let
dom(s;) = dom(qfrc,) U dom(py) U dom(t), where ¢/ = proj:’r—‘(t). Next we
define s;(¢) by induction on ¢ € dom(s,):
if ¢ € dom(s;) N C*, then 5,(¢) = qfrc*(C),
if ¢ € dom(t) (" and t¢(ao) # *, then s;(() is the <}-first P;-name for
an element of Q¢ such that

s¢efC e, “per(C) < s¢(¢)  and  pu(() < te(ao) = teao) < s:(C)”

and otherwise it is py (¢).
It should be clear that 5 = (s; : t € T}) € FTY'(Q). Now we apply B.7.1 to T;, 5
and

Al ﬂ {Z € N;: I CP, open dense}

and we find 7 = (ry : t € T}) € FTr'(Q) such that 5 < # and, for each t € T;
re € {ql1k;(t) : ¢ € "} and (Vo € dom(ry))(s¢(a) = 7¢() or IFp, ri(a) € Qq).

One easily checks that this 7 satisfies demands (i);-(iii);.
Now suppose that we have successfully defined ¢/ for j < i, ¢ < 4 limit ordinal.
Fix t € Uj<i Tj, say t € T, jo < i. We know that T;, C Nj 41 (remember the

assumption () and the assertion (a)) and that for each j < 4, (§° : € < j) € Nj41.
Consequently,
(Vi € [0, 1)) ({gf : Jo < € < j) € Njy1).

By the demand (i) we have that {gf : jo < & < 4) is an (N[jo, ], Pri, (1))*-
generic sequence. As Py, () is complete for é (see B.5.6) and Ny contains all
witnesses we conclude that the sequence (gf : jo < & < i) has an upper bound in
Prkjo(t)‘ Moreover, if a < rkj,(t), and ¢ € P, is an upper bound of the sequence
(g5l jo < e < i), then

qFp, “(¢;(a) : jo < € < i) has an upper bound in Q,”

(see the proof of B.5.6). Now we let dom(s;) = [J{dom(g;) : jo < & < i} and we
define inductively

st(a) is the <(-first Po-name for an element of Qq such that

selalbp, (Ve € [jo,))(g; (o) <g. st(a)).-
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This defines 3° :_(st it €U, Tj). Clearly U, T; is a standard (w,aq)-
tree and 5§ € FTr'(Q). Now suppose that t € T} “Ujo; Ty and let ¢* be the
first such that ¢[¢* ¢ Uj <i Tj (so necessarily dom(t) N ¢* is cofinal in ¢* and

cf(otp(dom(t) N ¢*)) = cf(4)). Then U{s¢c : ¢ < (*} € Pe+. Now define
st={J{suc: ¢ < CYUppI[CT ),

where t' = projzr'i(t). Note that § = (s; : t € T;) € FIY'(Q) and, if t € T;,
« € dom(s;), then either si(a) = py(a) or IFp, si(a) € Qq. Now we proceed like
in the successor case: we apply B.7.1 to 8, T; and

7+ 4! ﬂ {Z € N;: T C P, open dense},
and as a result we get ¥ = (r; : t € T;) € FTr'(Q) such that for each ¢ € T}:

se <7 €{qlrki(t): ¢€I*} and
(Va € dom(ry))(s¢(a) = ri(a) or IFp, ri(a) € Qy).

Now one easily checks that 7 satisfies the requirements (i);-(iii);.

Thus our definition is the legal one and we have the sequence (' : i < 4).
We define ¢ = ¢° similarly to 5 from the limit stages i < 6, but we replace “the
<{-first upper bound in Q," by “the least upper bound in Qa”. So suppose
t € Ts. Since |lw]| < cf(d) we know that t € Tj, for some jo < §. We declare
dom(g;) = [J{dom(gf) : jo < & < §} and inductively define ¢;(a) for o € dom(qg,):

gi(a) is the <}-first Po-name such that

gl lbp, “qi (@) is the least upper bound of the sequence
(gi{a) 1 jo <e <) in Qa”.

Like in the limit case of the construction, the respective upper bounds exist, so
q = (g : t € T5) is well defined. Checking that it has the required properties is
straightforward. ]

THEOREM B.7.3: Suppose that (£y,€) € (’,':N(p.*) (s0 & € €p(p*)) and Q =
(Pa,Qq : < 7) is a (< k)-support iteration such that, for each o < &,

Ik, “Qq is complete for (&0, 61)".

Then
(a) IFp, (50751) € Qfg,e(u*), moreover
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(b) P, is complete for (50,51).

Proof: We need only part (a) of the conclusion, so we concentrate on it. Let
x be a large enough regular cardinal,  be a name for an element of H(x) and
p € P,. Let x4 be a Po-name for the witness that Q, is (forced to be) complete
for (£o,£1), and let & = (24 : a < v). Since (£o,&1) € €2, (1*) we find M =
(M; : i < &) which is ruled by (50,31) with an Ep-approximation
(Ni:-1<i< ) and such that p, Q.z, 7, Eo. &1 € My (see B.5.7). Let

Nt = (N!:e<6)

and let @ € & be such that (N?,a?) is an £y-complementary pair. Let

w; = {0} U | J(vn M)
i<i
(for i < 4). By the demands of B.5.7 we know that |Jw;|| < cf(é;).

By induction on i < & we define standard (w;,i)7-trees T; € M;;; and p' =
(pi : t € T;) € FTY'(Q) N My4; such that ||T3]| < ||M;|"will < ||M;y4]|, and if
K 5 - -(wi,'i+1) - i i
j<i<OdthenT; = prOJ(wj‘j+1)(7;) and p’ gpmjg .

Caseg 1: i=0.
Let T} consist of all sequences (t; : { € dom(t)) such that dom(t) is an initial
segment of wo and ¢, = () for ( € dom(t). Thus T§ is a standard (wp,0)7-
tree, | T3]l = ljwol|. For t € Tg let pi® = plrkj(t). Clearly the sequence p*° =
(%t € T is in FTY(Q) N Ny'. Apply B.7.2 to &,Q, N1, 75, wo and
70 (note that [|NZ2[|lwol < |NZL |V for e < dg). As a result we get a
(wg, 1)7-tree Ty (the one called T, there) and p° = (p? : t € Tp) € FTY'(Q) N M,
(the one called g there) satisfying clauses B.7.2(¢), B.7.2(c)(i)-(iv) and such that
IToll < ||N5;1]|”“’°” = ||[Mp]|l™ol = ||Mo|| (remember cf(§) > 21Moll), So, in
particular, if t € Ty, ¢ € dom(t) then ¢.(0) € My is either x or a P¢c-name for an
element of Q.

Moreover, we additionally require that (7p,p°) is the <} -first with all these
properties, so 7o, p° € Mj.
CASE 2: t=1g+1.
We proceed similarly to the previous case. Suppose we have defined 7;, and p%
such that 7;,, 9" € Miyi1, |Tio |l < [IMiy+1]l- Let T;* be a standard (w;, o) -tree
such that

T} consists of all sequences (t; : ( € dom(t)) such that dom(t) is an
initial segment of w; and
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(te: ¢ € dom(t) Nw;,) € Ty, and (V¢ € dom(t) > w;, ) (V5 < do)(tc(j) = ).

Thus Ty, = proji,.s (T*) and |T7]| < ||Mifl. Let p* = pj? [tk (t) for ¢ €
Tr = proj%0 (¢). Now apply B.7.2 to &, Q, Nio, T.*, w; and p** (check
that the assumptions are satisfied). So we get a standard (w;,ig + 1)7-tree T;
and a sequence p' satisfying B.7.2(¢), B.7.2(c)(i)-(iv), and we take the <} -first
pair (7;,p') with these properties. In particular, we will have |Ti|| < ||M;,] -
||N;?||“Mi°” = [[Mio41]l. and ', T; € M4y,

CASE 3: i is a limit ordinal.
Suppose we have defined T;, P for j < i and we know that

(T;.P) 1 < i) € Miya

(this is the consequence of taking “the <(-first such that...”). Let 7;* =

— .
Im((7; : j < i)). Now, for t € T we would like to define p;* as the limit

1

of P ;. . However, our problem is that we do not know if the limit exists.
projy (t)

Therefore, we restrict ourselves to these ¢ for which the respective sequence has
an upper bound. To be more precise, for t € 7,* we apply the following procedure.
() Let t9 = proj%*(t) for j < i. Try to define inductively a condition p}’ €
Pris (1) such that dom(p}!) = U{dom(p{,)ﬂrk;‘(t) : j < i}. Suppose we have
successfully defined pf*lo, a € dom(p}?), in such a way that p}‘la > p/; la

for all j < i. We know that

pritalkp, “the sequence (]7{1 (@) 1 j <) is <g -increasing”.
So now, if there is a P,-name 7 for an element of @a such that
pitlalre, (Vi <i)(pl,(a) <g 7),

then we let pii(a) be the P,-name of the lub of (pzj(a) 1j<idyin @a and
we continue. If there is no such 7, then we decide that t ¢ 7? and we stop

the procedure.
Now, let T;* consist of those ¢ € T} for which the above procedure resulted in
a successful definition of p}* € ]P’rk;(,). It might be not clear at the moment if T,i+
contains anything more than (), but we will see that this is the case. Note that

ITHI < 0T < TIN50 < TT N0 < 2040 < g,
j<i j<i
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Moreaver, for ¢ > 2 we have || N|[lwll+ITE < [ N3|[IN: ] € NP and T,F, 5% €
M;yy. Let 7; = T;*, p* = p™* (this time there is no need to take the <}-first pair
as the process leaves no freedom).

After the construction is carried out we continue in a similar manner as in
A.3.7 (but note a slightly different meaning of the ’s here).

So we let T5 = ﬁ—l;x((ﬁ 14 < 4)). It is a standard (ws,d)7-tree. By induction
on o € ws U {v} we choose ¢, € P, and a P,-name t, such that

(a) IFp “ta € Ts & tks(te) = ", and let ¢ = min{i < 6 : a € M;} <4,

(b) lkp_“ts =ta 18" for 8 < a,

(¢) dom(gs) =ws Ny
(@) £ 3 < o then g3 = 15
(e) p is well defined and p’ [ < g for each i < 4,

PTOJ-,— (ta)
)

proj ? (ta)
(f) for each 8 < «

qo e “(Vi < 8){{tg+1)pli) =% & i< zg) and the sequence

G () ((tsen)sli) @) i <i<d)

prOJTﬁ(jg+1) PTOJT (ta+1)
i
i

is a result of a play of the game G:Z[GB] (Ni[GB]:K&)(@ﬂ’ 0g,),
won by player COM”,

(g) the condition ¢, forces (in P,) that
“the sequence M[Gpq)![ia, 8] is ruled by (£o,€1) and (N¥[Gp,] : i§ < i < §)
is its £y-approximation”.
(Remember: &, is closed under end segments.) This is done in a completely
parallel manner to the last part of the proof of A.3.7.
Finally, look at the condition ¢, and the clause (g) above. |

PROPOSITION B.7.4: Suppose that u* = k and £ € €..(u*) is closed. Let
Q= (Pa, Qo : o <) be a (< k)-support iteration such that, for each o <1,

IFp, “Qo is strongly complete for & and 1Qall < k™.
Then P., satisfies k*-cc (even more: it satisfies the x*-Knaster condition).

Proof: For a < 7y choose P,-names z, and h, such that

Ibp, “zo witnesses that Qg is complete for £ and

ha : Qo — & is one-to-one”.
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Since £ € € .(u*), for each p € P, we find an E-complementary pair (N?, @)
such that NP = (NP : 4 < w) and p,@,&, (za : a < 7), (ha : @ < 7) € NP. Next
choose an increasing sequence @” = {¢q¥ : i < w) of conditions from P, such that
for each i < w:

(@) p<gp, @PNi+1) € Ny,

(B) ¢ € N{Z € N; : I C P, open dense}.

[Why is this possible? Remember B.5.6 and particularly B.5.6.4.] So the
condition ¢? is generic over NV; in the weak sense of clause (3), and therefore it
decides the values of ha(gf(a)) for each j < i, a € dom(q}) (remember: if j < i
then qf € N; and thus dom(q;’) C N;). Let E?J?‘“ < k be such that for each 1 > j

(remember ¢P is increasing)
@ lalbp, halg](a)) = 2%

Suppose now that (p : ( < k) CP,. For ¢ < s let Ac =, ,, dom(qfc) (so
Ac € [v]<"). Applying the A-system lemma (remember & is strongly inaccessible)
we find X C r*, |X| = &% such that {A; : ( € X'} forms a A-system and for
each (,£ € X
o JlAc) = llAcll,
e ifae AcﬂA& then
min{i <w:a€ dom(qfc)} =min{i <w:a€ dom(ql’-’g)},
and call it i,, and for each i < w
otp(a N dom(qu)) =otp(an dom(qfs)) and 7% = Efg’a
(the last for ¢ > i,).

We are going to show that for each £, ¢ € X the conditions p°, p* are compatible.
To this end we define a common upper bound r of pS, pt. First we declare that

dom(r) = Ac U A
and then we inductively define () for a € dom(r):
if o € A¢ then r(() is a P,-name such that
rlalkp, “r(e) is the upper bound of (qu(a) 1< w)
with the minimal value of h,(r(a))"
and otherwise (i.e., if a € A¢ ™ A¢) it is a P,-name such that
rla lFp, “r(e) is the upper bound of (qfe(a) 11 < w)

with the minimal value of h,(r(a))”.
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By induction on a € dom(r) U {7} we show that
¢ ¢
@ la<p,rla and ¢ la<p, rla forall i <w.

Note that, by B.5.5, this implies that the respective upper bounds exist and thus
r(a) is well defined then. There is nothing to do at non-successor stages, so
suppose that we have arrived at a stage a = 3 + 1.

If 3 € A¢ then, by the definition of r(8), we have

riB Ik, (Vi < w)(g? (8) < r(8)).

Similarly if 8 € A~ A¢ and we consider ¢ ¢ (8). Trivially, no problems can
happen if 8 € A; \ A¢ and we consider ¢7 : (B) or if 3 € A¢ ~ A¢ and we consider
¢ ¢ (8). So the only case we may worry about is that 3 € A; N A and we want
to show that r(f) is (forced to be) stronger than all ¢¥ s(/3). But note: by the
inductive hypothesis we know that r[8 is an upper bound to both {g” ¢ I8 :i < w)
and (qf’C [B:1 < w) and therefore

riBire, “ halal () =7 & ho(a} (B) =<5,
whenever %, j < w are such that 3 € dom(qu), B8 e dom(q;-’g). But now, by the
choice of X we have:
Be dom(qf’f) & Be dom(qfc), and 5fc’g = sfs’ﬁ.
Since hg is (forced to be) a one-to-one function, we conclude that

riB ke, (Vi < w)(g (8) = ¢ (8)),

so taking care of the (’s side we took care of the £’s side as well. This finishes
the proof of the proposition. |

For a stronger proposition, see [17].

B.8. The Axiom and its applications
Definition B.8.1: Suppose that (£o,&1) € ¢2,.(¢*) and 8 is a regular cardinal.
Let Ax5(€o,&1), the forcing aziom for (£5,&,) and 0, be the following sentence:

If Q is a complete for (éo, 51) forcing notion of size < k and
(Z; : i < i* < 0) is a sequence of dense subsets of Q,

then there exists a directed set H C Q such that

(Vi < i*)(HNT; #0).
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THEOREM B.8.2: Assume that u* = &, (£o,&1) € €2, (u*) and
K< f=cf(@) <pu=pu"

Then there Is a strongly complete for & forcing notion P of cardinality p such
that
() P satisfies the x*-cc,
(B) IFp (c‘fo,él) € an(u*) and even more:
(Bt if £ C Eo,Ep C &, are such that (£5,EF) € €% (u*) then IFp (£.,£7) €
2, (u).
(7) ke Axg(Eo, &)

Proof:  The forcing notion P will be the limit of a (< &)-support iteration
(Po, Qq : o < 0*) (for some o* < pt) such that
(a) for each a < a*

IFp, “Qq is a partial order on x complete for (c‘:'o, (‘:'1)”.

By B.7.4 we will be sure that P = P,. satisfies k*-cc. Applying B.7.3 we
will see that IFp_. (5’0,51) € 62,{(/1*) (also P+ is complete for (5’0,51)). The
iteration (Pq.Qq : @ < a*) will be built by a bookkeeping argument, but we do
not determine in advance its length o*.

Before we start the construction, note that if Q is a x*-cc forcing notion
of size < p, then there are at most p Q-names for partial orders on & (up to
isomorphism). Why? Remember p* = u and each Q-name for a poset on s is
described by a s-sequence of maximal antichains of Q. By a similar argument we
will know that each P, has a dense subset of size < u (for a < o*). Consequently
there are, up to an isomorphism, at most g P,~-names for partial orders on .

Let £ consist of all (< x)-support iterations Q = (Pa, Qo : o < ag) of length
< pt satisfying the demand (a) above (with ag in place of a*). Elements of &
are naturally ordered by

Q° <4z Q' ifandonlyif Q°=Q'g(Q").

Note that every <g-increasing sequence of length < pt has the least upper bound

in (R, <g). By what we said before, we know that if (P,,Qq : o < ap) € &,

then P,, contains a dense subset of size < p, satisfies ~T-cc and forces that

(€0, &1) € €2, (u*). Moreover,

(®g) f Q° = (P%,Q5 : a < ag) € R and Q is a P), -name for a forcing notion on
K, then
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(@1) either there is no Q' = (P1, QL : o < ay) € & such that Q° <z Q' and
th’Ll “Q is complete for ((é:(),él)”

(d2) orthereis Q' = (P, QL : @ < ay) € R such that Q <z Q and

”_]P:n “there is a directed set H C Q which meets all

0
dense subsets of Q from VFeo".

[Why? Suppose that (;) fails and it is exemplified by Q'. Take Q' * Q]
Consequently, as £ is closed under increasing < p*-sequences, we have
(®%) for every Q € £ there is Q° = (P, Q5 : a < ag) € & such that Q <q Q°

and for every Lim(Q)-name Q for a forcing notion on « one of the following
conditions occurs:

(®1) there is no Q' = (P, QL : a < a1) € & such that Q° <q Q' and
”‘]}»(IXI “Q is complete for (5‘0,5'1)”,

(EB;F ) ”_]pgo “ there is a directed set H C Q which meets all dense subsets of Q
from VLim@»,

[Why? Remember that there are at most y Lim(Q)-names for partial orders
on k and (&, <g) is pt-directed.]

Using these remarks we may build our iteration in the following way. We
choose a <g-increasing continuous sequence (@ : ¢ < 8%) C £ such that

(b) for every ¢ < 6, Q¢*! is given by (®}) for Q.
Now it is a routine to check that P = Pﬁ: , is as required. |

In B.8.3 below remember about our main case: S* C & is stationary co-
stationary and &y consists of all increasing continuous sequences @ = {(a; : i < )
such that a; € K~ S* (for ¢ < a). In this case the forcing notion R is the stan-
dard way to make the set S* non-stationary (by adding a club of «; a condition
gives an initial segment of the club). Since forcing with R preserves stationarity
of subsets of x ~ 5*, the conclusion of B.8.3 below gives us

(*) in VEmQ every stationary set § C k~ S* reflects in some inaccessible.

PROPOSITION B.8.3: Suppose that (£o,€1) € €2, (1*) (s0&p € Cp(p®)), u* = &

(for simplicity) and Q = {(Po,Qq : a < 7) is a (< k)-support iteration such that,
for each a < K,

IFp, “Qq is complete for (0,€1) and 1Qall < .7
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Further, assume that:

(a) & is reasonably closed: it is closed under subsequences, under = and, if @ =
(a; : i < 8) € & and b' = (b, : a < o) € & are such that b}y = a;,
by, = aigy (for i < 6), then the concatenation of all b* (for i < &) belongs
to & fe.g.. £ is derived from S C & like in B.6.2],

(d) R = (£, <),

(¢) in VR and even in VR*Cohens o is 5 weakly compact cardinal (or just:
stationary subsets of k reflect in inaccessibles).

Then, in VF*R & is weakly compact (or just: stationary subsets of k reflect

in inaccessibles).

Proof: First note that the forcing with R does not add new sequences of length
< k of ordinals. [Why? Suppose that g is an R-name for a function from # to
V, 6 < & is a regular cardinal and r € R. Take an £o-complementary pair (N,a)
such that N = (N; : i < ) and r,z € Ny and the error is, say, n. Now build
inductively an increasing sequence {(r; : i < §) C R such that for every i < 6:
e rg = r, the condition r;4, decides the value of x(7),
o ifi=v+k+1,yis anon-successor, k¥ < w then r; € N (ar42)(n41) and
if r; = (ag 1€ < ay) then afh = Qg (2k4 1) (n+1)s
o if i < @ is limit then (r; : j < i) € N;37 and r; is the least upper bound of
(rj:j <ty (sor; € Niy).
The construction is straightforward. If we have defined r; € N, iak42)(nt1)s
then we first take the <{-first condition r; = (ag : £ < a*) stronger than r; and
deciding the value of x(#) (so r} € Nyj(2x42)(nt1)). We know that

g C ypabt2)nttien € Nyr2bt2)tnt)42n+1-

Let 741 = 77 (@4 (2k42)(nt1)4n)- Clearly rip1 € Noyakta)(n41)- By the choice
of “the < -first” conditions we are sure that, arriving at a limit stage ¢ < 8, we
have (r; : j < i) € Ni;. Now use the assumption (a) on & to argue that the
sequence (r; : i < 0) has a least upper bound rp — clearly this condition decides
the name z.]

Without loss of generality we may assume that, for each o < 7,

IFp, “Qq is a partial order on r".

For a forcing notion Q, let Q stand for the completion of Q@ with respect to
increasing < k-sequences (i.e., it is like Q but we consider only increasing se-
quences of length < #). Note that Q is dense in Q and if ||Q|| < &, then ||Q| < &
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( is strongly inaccessible!). Now, let (P,,,Q/, : & < ) be the iteration of the
respective < s-completions of the Q,’s. Thus each P, is a dense subset of PP,
(see 0.18). We may assume that each @a is a P,-name for a partial order on
k+ & (for & < ). Now, for o < 7, let

P, = {p € P, :there is a sequence (5” : 8 € dom(p)) such that for some J < &,
each p = (pg : ¢ < &) is a d-sequence of ordinals < k and
p(B) is (the Py-name of) the minimal (as an ordinal)

least upper bound of ° by <g, }.

Clearly by the assumption (c), if P is adding ¥ Cohen, then in VE*F the car-
dinal k is weakly compact (or just every stationary subset of x reflects in some
inaccessible), but R« P = P xR, so Claims B.8.3.1-B.8.3.3 finish the proof.

Cramv B.8.3.1: For each o < v, P is a dense subset of P .

Proof of the claim: Let p € P,. By B.5.6 we know that P, is strongly complete
for &y. Let (N,a) be an go—complementary pair such that N = (N; : i < w) and
p,Q, P’a,éo, ... € Ng. Take an increasing sequence {g; : i < w) C P, such that
¢; € Ni41 is generic over N; and such that p <p: go. Now let ¢ € P!, be defined
by dom(q) = N, N« and:

q[B1Fp,“q(3) is the minimal (as an ordinal) least upper bound in @ 5
of the sequence (g;(3) : i < w)”.

By B.5.6.3 (actually by its proof) we know that the above definition is correct.
Now it is routine to check that g € P/ is as required, finishing the proof of the
claim. |

One could ask, what is the point of introducing P)/? The main difference
between P/ and P is that in the first, ¢(3) is a least upper bound of an increasing
sequence of conditions from Q,, but we know the name for the sequence only. In
P, we have the representation of q(a) as the least upper bound of a sequence of
ordinals from V! This is of use if we look at the iteration in different universes. If
we look at Q (defined as an iteration in V) in VR, then it does not have to be an
iteration anymore: let o < 7. Forcing with R may add new maximal antichains
in P,, thus creating new names for elements of Q.. However

CLAIM B.8.3.2: For each a < v, in VK, (Po:Qp @ < 7,8 < 7) is a (< K)-
support iteration.

Proof of the claim: Easy induction on a. ]
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Cramv B.8.3.3: For each o < 7,

IFp_ur ‘Qa is isomorphic to Cohen,”.

Proof of the claim: Working in V=, choose an increasing continuous sequence
N = (N; : i < k) of elementary submodels of (H(x), €, <}) such that Q4 € No
and for each i < &:

NMNi+1)€ Niy1, N;nkew, and [N < .

Now, passing to VP«*R we can find an increasing continuous sequence j =

(j¢ : ¢ < k) C & such that

(Ve < R)((Nj, Nk : ¢ <€) € &)
[Why? Forcing with R adds an increasing continuous sequence 3 = (A : { < &)
such that 3 [(¢+1) € &, for each ¢ < k. Now let j be the increasing enumeration
of {j <K:N;Nk=j& (3¢ < K)(j = Buc)}; remember that & is closed under
subsequences.}
Now, for p € @a let

j(P):SUP{j<HZj=Oorj€{jg:C<f<;} and
pE ﬂ{Ie Nj : I C Qg is open dense in VFe}}

and k(p) = min{j < £ : p € N;}. Now we finish noting that
1. if p = (p. : € < §) is increasing in @a and such that (Ve < §)(k(pe) <
J(p=+1)), then the sequence p has an upper bound in Q ;
2. for every j < k, the set {p € Qa : j(p) > j} is open dense in Qa.
This finishes the proof of the claim and the proposition. |

Alternatively, first prove that wlog v < xt and then show that P’ becomes
k-Cohen in VE, |

CONCLUSION B.8.4:  Assume that

(a) Vo = & is weakly compact and GCH holds (for simplicity),

(b) V1 is a generic extension of V making “x weakly compact” indestructible
by Coheny (e.g. iterate with Easton support adding a x’-Cohen subset to s for
every inaccessible £’ < k), see [5],

(¢) Vo = V® where Ry adds a stationary non-reflecting subset S* of by
initial segments fully, ® is a non-empty set of regular cardinals < x and R =
{S a bounded subset of k, § € S = cf(d) € ® and SN is not stationary in & for
every & < sup(S)} ordered by being initial segment, S* = | Gg.
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(d) Further, in Vy, let & = c‘:'o[S*], £ = él[S*] be as in B.6.2 (or similar
enough), both in V.

(e) Suppose that Q is a (< x)-support iteration of forcing notions on &, say of
length v*, complete for (&0, &1).

Let V3 = V2L m(@ and let R be the forcing notion killing stationarity of S* in
V3, but also in V; see B.8.3, so equivalently R is {e : e a closed bounded subset
of x disjoint to S*} ordered by being initial segment.

Then
(a) VR = VIF"*R = V{ohen L 4 is weakly compact indestructible by Cohen”,
and in V¥. Consequently,
(8) in VE = (VRYIm@) ¢ is weakly compact in V.

CoNcLusioN B.8.5:
1. Let k be a weakly compact cardinal, x* = y. Then for some forcing notion
P we have, in V; = VP (which is a model of ZFC):

(a) there are almost free Abelian groups in x and & is a strongly inacces-
sible cardinal,

(b) all almost free Abelian groups in & are Whitehead.

2. If V |= GCH then VF = GCH.
3. We can add:

(c) the forcing does not collapse any cardinals nor changes cofinalities,
and it makes 2% =y, x = ||P|[,

(d) for some stationary subset S* of x which is non-reflecting and has
stationary intersection with S§ (= {6 < x : cf(d) = &}) for every
regular 8 < &, we have

{a) every stationary subset of x ~ S* reflects in some inaccessible,
(B) if p < K, 8 < p, S C S*\pu is stationary and A = (As5:6 € S)
satisfies As C & = sup(4s) and otp(As) = cf(d) = 8 for 6 € S,
then A has unireformization for colouring with < p colours,
(v) letting o, €1 be defined from S* as above (i.e., in B.6.2), we
have Axj 4 (5’0, 5'1),
(8) if K < 6 = cf(f) < x then we can add Ax§ (€0, &1) (so above
6 =kt).
If k is x-Cohen indestructible weakly compact cardinal {(or every
stationary set reflects) then we may add:
(e) the forcing adds no bounded subsets to x.

Proof: 1) Let Vg = V and let V|, V3, Ry be defined as in B.8.4, just for
simplicity Ry adds a non-reflecting stationary subset of {§ < & : cf(d) = N},
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ie., ® = {Rg}. Working in V define Q = (P, Qo : o < @*), a* <\ to be as
in the proof of the consistency of Ax5(£o,£;) in B.8.1. The desired universe is
Vi =Vie,

Clearly, as every step of the construction is a forcing extension, we have V3 =
VP for some forcing notion P. The forcing notion Ry € V adds a non-reflecting
stationary subset S to x. As P, preserves (£5,E7) € €®, (u*) (by B.7.3), the
set S is stationary also in V3. Since (V8§ € S)(cf(5) = Ng) we may use S to build
an almost free Abelian group in x, so clause (a) holds. Let us prove the demand
(b). )

Suppose that G is an almost free Abelian group in « with a filtration G =
(G; : i < k). Thus the set ¥(G) = {i < & : G/G; is not s-free} is stationary.
Now we consider two cases.

CAsE 1:  The set v(G) ™ S is stationary.
By B.8.4 we know that after forcing with R (defined as there) the cardinal « is still
weakly compact (or just all its stationary subsets reflect in inaccessibles). But

this forcing preserves the stationarity of y(G) >~ S (and generally any stationary
subset of x disjoint from S, as S does not reflect). Consequently, in V3, the set

[ = {«' :x' is strongly inaccessible and

(v(G)~ S) N« is a stationary subset of x'}

is stationary in x. Hence for some &’ € I we have (Vi < x')(||Gi|| < ') and
therefore the filtration (G, : i < k') of G,/ shows that G,/ is not free, contradict-
ing “G is almost free in x”.

CASE 2:  The set y(G) ~ S is not stationary.

By renaming, wlog 7(G) C S. We shall prove that G is Whitehead. So let H
be an Abelian group extending Z and let h: H ¢ G be a homomorphism such
that Ker(h) = Z. By B.6.10 the forcing notion P = P, g ¢ is well defined, and
it is complete for (5'()9 ,c‘:'f ) and has cardinality « {and for each o < & the set
I, = {p € P: G, C p} is dense in P). Since V3 k= Axg(fo,fl), there is a
directed set G C PP such that GNZ, # 0 for each & < k. Thus f = |J§ is a lifting
as required (and G is Whitehead).

2) Implicit in the proof above. |
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