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Introduction 

The original Problem 54 proposed by Fuchs [4] asks to determine the structure 
of Ext (A, Z) for an arbitrary abelian group A. Recall that, for any A, 

Ext (A, Z) = Ext (A/tA, Z ) O E x t  (tA, Z), 

where tA denotes the torsion subgroup of A. Thus Fuchs' problem breaks up 
into two distinct cases, torsion and torsion-free groups. In case A = T, a torsion 
group, we have 

Ext (T, Z) ~ Horn (T, N/Z). 

Therefore it is compact  and reduced, so its structure is known explicitly [11]. 
It remains to study the case of a torsion-free group A. Since Ext(A, Z) is then 

divisible it can be written uniquely as 

Ext (A, Z) ~ @ Q  x @ (@7/(p| 
P 

and hence is characterized by a collection of cardinal numbers.We denote them by 
vo(A ) and vp(A), where vo(A ) is the (torsion-free) rank and vp(A) the p-rank of 
Ext(A, Z), respectively. For  countable A the possible values of vo(A ) and vp(A) 
have been determined by C. Jensen 1-12]. 

In this paper we consider the case where A is torsion-free and uncountable, 
assuming G6del's Axiom of Constructibility V= L. We essentially work with the 
same tools as have been used successfully by the third-named author in order to 
solve Whitehead's Problem in L (I-14], 1-15]). Before stating our main results we 
recall the following definitions: For  an infinite cardinal K, an abelian group is 
said to be x-generated if it has a set of generators of cardinality < x. An abelian 
group is called x-free if every x-generated subgroup is free. As usual IB[ denotes 
the cardinality of B. The results are the following: 
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40 H.L. Hiller et al. 

Theorem 1 (V=L).  Let A be a torsion-free abelian group of uncountable cardi- 
nality tc such that, for every K-generated subgroup B of A, A/B is not free. Then 
we have vo(A ) = 2 ~. 

Corollary 1 (V=L). Let A be torsion-free but not free. Suppose that B is a 
subgroup of A such that A/B is free. I f  B is of minimal cardinality with respect to 
this property, then vo(A ) = 2 IBI. 

Corollary 2 (V=L). Let A be torsion-free but not free. Then 

(a) vo(A ) is of the form 2 u for some infinite cardinal #. 
(b) vp(A)<vo(A ) for every prime p. 

Corollary 3 (V=L). Let A be ~c-free but not free for some infinite cardinal ~. Then 
vo(A ) is of the form 2u for some I1>tr 

Corollary 4 (V---L). Let A be any abelian group such that Ext (A, 7s is divisible. 
Then either A is free, hence Ext(A, 2g)=0, or vo(A ) is of the form 2 ~ for some 
infinite #. 

Corollary 1 provides us with an explicit description of the function v o which 
is surprisingly simple. Statement (a) of Corollary 2 contains Th6or6me 1 of [8]. 
Corollary 3 extends the result of [9], whereas Corollary 4 generalizes Theorem 2 
of [7] considerably. We remark that by [14, Theorem 3.5] neither Theorem 1 
nor any of the corollaries can be proved on the basis of ZFC (Zermelo-Fraenkel 
set theory with the Axiom of Choice) alone. 

We recall some terminology of set theory. As usual an ordinal is identified 
with the set of its predecessors, and cardinals are understood to be initial 
ordinals. The cofinality cf(~) of an infinite cardinal tc is the smallest cardinal 
such that there is a strictly increasing function f :  ~--+ ~ such that sup {f(v)lver 
= ~r A cardinal ~ is called regular if cf(~)-= to, otherwise K is singular. 

The first part of the paper is devoted to the proof of Theorem 1. Thereby we 
use the description of Ext(A, 7/.) in terms of factor sets (see 1.1). In Section 1.2 we 
establish the regular case. We prove in fact a slightly more general result on 
extending factor sets (Proposition 1). The proof of this proposition is based on 
R. Jensen's combinatorial principle ~ .  To prove Theorem 1 for ~ singular we 
use Proposition 1 again as well as a modified version (Theorem 2) of the third- 
named author's theorem stating that every ~-free abelian group of cardinality 
is free [15]. This is done in Section 1.3 

In the first section of Part II we determine the possible values of vp(A) in case 
A is a torsion-free group such that Horn(A, 2~) is zero (Proposition 2). A nice 
consequence of this is the following: (V= L). Let A be any abelian group such that 
Hom(A, 2Z) is zero. Then Ext(A, 2~) admits a compact topology (Theorem 3(a)). 
In II.2 we consider topological applications (assuming V - L ) .  We conclude that, 
given a topological space X such that, for some n>= 2, H"(X, Z) is non-zero and 
divisible, then the rank of H"(X, 2~) is of the form 2" for some infinite # 
(Theorem 4). Finally, we characterize those abelian groups to which there exist 
co-Moore spaces (Proposition 3, Theorem 5). 
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The Structure of Ext(A, 7l) and V = L  41 

I. The Torsion-Free Rank of Ext(A, ~) 

1.1 Given two abelian groups A and G, the group Ext(A, G) can be defined in 
various ways. In our context its description in terms of factor sets is the most 
appropriate. 

Recall that a factor set on A to G is a function f : A x A ~ G  satisfying 
certain identities (see e.g. [5], pp. 209-211). In particular, to each function 
g: A--+G with g(0)=0 there is a factor set fig, given by 

6 g(a, b ) = g ( a ) - g ( a  + b) + g(b). 

A factor set of this form is called a transformation set. By termwise addition the 
set Fact(A, G) of all factor sets on A to G becomes an abelian group, and the 
transformation sets form a subgroup Trans (A, G). Then Ext (A, G) can be defined 
as 

Ext (A, G) = Fact (A, G)/Trans (A, G). 

Moreover, a homomorphism q~:A---,B induces a homomorphism ~o*: 
Fact (B, G) ---, Fact (A, G), given by 

(q~* f ) (a ,  b)= f(cpa, ~ob). 

Clearly, * -  * (Pl--~021T .... W,G) factors through Trans(A, G). Hence qo induces a ho- 
momorphism (p*: Ex t (B ,G)~Ex t (A ,G) .  Finally recall (cf. e.g. [5], Theo- 
rem 51.3) that every short exact sequence O ~ B  ~ ' -+A~- ,C~O of abelian 
groups induces an exact sequence 

0 ~ H o m ( C ,  G ) ~ H o m ( A ,  G ) ~ H o m ( B ,  G ) ~  Ext (C, G ) ~  

~*, Ext (A, G) ----~ Ext (B, G) --+ 0. 

The following lemmata are crucial for the proof of the regular case of 
Theorem 1. 

Lemma 1. Let B be a subgroup of an abelian group A. Then each element 
f eFac t (B ,  G) can be extended to an element f l s F a c t ( &  G). 

Proof. We consider the following commutative diagram with exact rows 

(E) 

0--* Trans (A, G) ~ Fact (A, G) ~ Ext (A, G) -~ 0 

0 ~ Trans (B, G) --, Fact (B, G) ~ Ext (B, G) ---, 0, 

where ihe vertical maps are induced by z: B~---~A. We have to show that z~ is 
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42 H.L. Hiller et al. 

surjective. But this is  easily seen from the diagram, using the fact that t* and z* 
are surjective. 

Lemma 2. Let B be a pure subgroup of a torsion-free abelian group A such that 
Ext(A/B, G)4:0. Let f eFac t (B ,  G) such that n f = f g  for some n > 0  and some 
function g: B ~ G. Then there exists f ~ F a c t  (A, G) extending f such that there is 
no function ~,: A---*G which both extends g and satisfies n f  =6~. 

Pro@ In the first part we prove the following special case: 
(,) Given n>0 ,  there exists fzeFact (A,  G) extending 0eFact(B,  G) such that 
there is no function gl: A--,G which both satisfies gi[~=0 and nf~ =bg~. 

For  this purpose we consider the exact sequence 

Horn(A, G ) - ~  Horn(B, G) o), Ext(A/B, G) ~*, Ext(A, G) '*, Ext(B, G) ~ 0  

which is induced by O--,B ~ ' ~ A ~ ~ A/B~O, ~ denoting the projection map. 
We distinguish two cases according to whether the image I of zc* is trivial or 
not. First assume that I is non-trivial. Since A/B is torsion-free, Ext (A/B, G) is 
divisible; hence I is likewise divisible. Thus we can pick ~/eI such that nt /+0.  As 
t/~kerl*, we see from diagram (E) that we can choose a representative 
f i~Fact(A,  G) of t/ which is in the kernel of ~*: Fact(A, G) ---, Fact (B, G). So f i  
extends the zero factor set on B. On the other hand, by the choice of ~/, n f l  is not 
a transformation set. Hence f l  is as required. 

In the second case, we assume that I is trivial. Then co is surjective and so, as 
Ext(A/B, G) is non-zero and divisible, we can choose ~oeHom(B, G) such that 
n o  is not in the image of ~*. Now define h" A ~ G  by 

h(a)={~(a) if a~B, 
if ar 

and let f l  =3heFac t (A,  G). We claim that f~ satisfies condition (*). Clearly f l  
extends the zero factor set on B. Suppose that there is a function gl" A--*G such 
that gl[B=0 and nft=(Sg ~. But then the map 0 = n h - g l :  A--,G is a homomor-  
phism and satisfies, for all beB, 

O(b) =nh(b ) -  gz (b)=ng(b).  

Thus n (p is in the image of l*, contradicting the choice of qo. This completes the 
proof of (*). 

Now we consider the general case. So let feFac t (B,  G) such that n f =  3g for 
some g : B ~ G .  By Lemma 1, f can be extended to some faeFact(A,  G). Suppose 
that there is a g2:A--* G both extending g and satisfying n f2---392 (otherwise let 
f = f z ) ,  In this case let f = f l  +f2, where f l  satisfies condition (*). Now assume 
that g:A--, G extends g. Then g - g 2  extends the zero function on B. Thus by the 
choice of f l  we have 

+ n A + n L = n f .  
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The Structure of Ext(A,Z) and V=L 43 

Hence f satisfies the assertion, and the lemma is proved. 

1.2 This section is devoted to the proof of the following proposition which 
implies the regular case of Theorem 1. Moreover it will be used again in the 
proof of the singular case. 

Proposition 1 (V--L). Let ~c be a regular uncountable cardinal. Suppose that A is a 
torsion-free abelian group of cardinality ~c such that, for every ~c-generated 
subgroup C, A/C is not free. Let B be any ~c-generated pure subgroup of A. Then 
each f~Fact(B,  2g) can be extended to f~Fac t (A, ;g ) ,  ~ 2  ~, such that 

(.) for every pair a+fl, f ~ - f ~  represents an element of infinite order of 
Ext(A,N). 

First we recall some terminology. Given any infinite cardinals ~c and a, a 
function f : c r ~ c  is called normal if it is strictly increasing and satisfies f(2)  
=sup{f(c~)le<Z} for every limit ordinal 2~a. A subset S of tc is called 
stationary in ~c if S meets the range of every normal function f :  cf(~c)--* ~c. An 
ascending chain of sets (or abelian groups) 

Ao ~_Al g . . . ~ A ~ _ . . . ,  a~c, 

indexed by a cardinal •, is called a smooth chain if, for every limit ordinal Z~tc, 
A~= U A~. 

The following lemma is easily derived from the combinatorial property ~ of 
L which was discovered by R. Jensen [-13, Lemma 6.5]. 

Lemma 3 (V=L). Let a<__~c be cardinals, tc regular uncountable. Let X be a set of 
cardinality ~c which is ~he union of a smooth chain of sets {X~ I w  ~c} of cardinality 
< ~c, and let Y be any set of cardinality < ~c. I f  S is a stationary subset of ~c, then 
there is a sequence {(n~,~,g~)[v~S}, n~co, c~v~cr , g ~ : X ~  Y for every v~S, such 
that for any triple (n, ~, g), neco, c~e, g: X ~  Y,, there exists v~S such that n=n~, 
~ = ~  and gIx =g~. 

Proof of Proposition 1. As V= L implies the General Continuum Hypothesis, it 
suffices to show that each f~Fact (B,  TZ) can be extended to f:~Fact(A,2g), 
c~c  +, such that condition (*) is satisfied. So suppose that there is an 
f0~Fact(B,2g) which can be extended only to cr<~c many f~Fact (A,2g)  which 
satisfy (,). We can assume that the set E = { f ~ [ a e a }  is maximal with respect to 
(,). 

Let A be represented as the union of a smooth chain of ~c-generated pure 
subgroups {A~]v~c} such that Ao=B. It is easily seen that we can assume {A~} 
to satisfy the following condition: For  all v~c, if AJA~ is not free for some p > v, 
then A~+I/A ~ is not free. We claim that 

S= {v~clA~+ l/A ~ is not free} 

is a stationary subset of ~c. Suppose that there is a normal function f :  ~c ~ tc such 
that Sc~f(~) - -~ .  Then the definition B~:=Af(~) yields a smooth chain of ~c- 
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generated subgroups {B~lve~c } with union A such that B~+~/B~ is free for all 
ve~. Therefore, by [3, Theorem2.6] A/B o must be free, contradicting the 
hypothesis. Hence S is stationary in ~:. 

Now by Lemma 3 there is a sequence {(%, ~ ,  g01 v e S}, n~eco, c~, e o-, g~ :A~ --+ ;g 
for every yeS, such that for any triple (n,~,g), neoo, eel ,  g:A--,~, there exists 
yes such that n=n~, e = %  and glAv=g,. This enables us to define inductively a 
sequence of factor sets {f*:A~xA~--*2glve~:} such that (i), (ii) and (iii) are 
satisfied: 

r162 . 

(i) fo - f 0 ,  

(ii) f~ IA~• for all y < v ;  

(iii) for all ~eo-, f * - f =  represents an element of infinite order of Ext(A,~) 
(f* denoting the union of {f*}). 

Suppose that f *  has been defined for every # < v. If v is a limit ordinal, let 
f~*= U f* '  If v is a successor ordinal, say v = y +  1, we distinguish two cases. 

First assume that yeS, n~>0, and the condition 

(**) n~,(f*-f~,,)=ag,, 

~- Since yeS, the result of [15] holds, where fU r denotes the restriction f IA,• 
implies that Ext(Au+ 1/A,,TZ) is non-zero. Therefore, by Lemma 2, we can extend 
f * - f ~ , ,  to an feFact(Au+l,7Z ) such that there is no function ~:A,+,--+~ both 
extending g, and satisfying nf=6~,. Now let f*+i=f+f,+leFact(Au+t,g.), so 
s extends f* .  In the second case, if yr or if y e s  but nu=0 or (**) does not 
hold, let f~+l be any factor set on Au+ , to 7Z which extends f* .  By Lemma 1 
such an f*+l always exists. 

Finally let f*eFact(A,2g) be the union of the sequence {f* [ve~c}. We claim 
that condition (iii) is satisfied. So suppose that, for some ~eo-, f * - f =  represents 
an element of Ext(A,Z) of finite order, say n(>0);  i.e., there is a function 
g: A -+ 2Z such that 

n(f* - f ~ ) = 6 g .  

Now there is a yeS such that n=nu, e = %  and gla, =gu; hence (**) holds for 
this y. But in this case f*+, has been defined such that there is no function 
~:A,+~--+TZ both extending g, and satisfying 

n(f*+,--f;+ 1) = 6~. 

This is a contradiction, hence the claim is proved. 
It follows that the elements of E * = E ~ { f * }  extend fo and satisfy (.), 

contradicting the maximality of E. This completes the proof of Proposition 1. 

1.3 For the proof of Theorem 1 in case ~c is singular we need the following 

Theorem 2. Let ~c and 2 be infinite cardinals, ~c singular and A < to. Suppose that A 
is an abelian group of cardinality tc such that every ~c-generated subgroup B of A 
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contains a 2+-generated subgroup C such that B/ C is free. Then A contains a 2 +- 
generated subgroup C such that A/C is free. 

Proof. This follows from the third-named author's compactness theorem [15] 
with F = F 1 u F2, where 

F 1 ={(B,0) r B is a subgroup of A containing a 2+-generated subgroup C 
such that B/C is free} 

Fz={(B, C) J O:~C~_B, B and C are subgroups of A such that B/C is free}. 

The language of the model has power 2, so every M includes each ~ < 2 + 1. The 
axioms are checked as in the case of free abelian groups (see [15], pp. 337-338). 

Note that Theorem 2 is proved on the basis of ZFC. 

Proof of Theorem 1. First observe that 2 ~ is an upper bound for the rank of 
Ext(A,2~). In case x is regular, the fact that 2 ~ is also a lower bound is an easy 
consequence of Proposition 1. Indeed, for B = 0  this proposition just says that 
there is a family of factor sets {F:A  x A - - * Z ] ~ 2  ~} such that, for every pair 
~4~, f ~ - f ~  represents an element of infinite order of Ext(A,2g). We conclude 
that the cardinality of the quotient group of Ext(A,~) modulo torsion is >2~; 
hence we have rank(Ext(A, Z)) > 2 ~. 

Now suppose that ~c is singular. In this case, let A be represented as the 
union of any ascending chain of K-generated subgroups {A~lc~ecf(x)}. We define 
by induction on eecf(x) a chain of pure subgroups {B~le~cf(x)} of A such that, 
for all c~cf(x), 

(i) B~ contains A,; 
(ii) JB~I is a regular cardinal >[ U Bal; 

/?<c~ 

(iii) if C is a [B~[-generated subgroup of B~, then BJC is not free. 

Suppose that Ba has been defined for all/~ < c~. Let B' be the pure closure of 
aU__ Bp +A~. Applying Theorem 2 to the group A/B' and the cardinal 2 = IB'I, we 

find a K-generated subgroup B~ of A containing B' such that for every 2 +- 
generated subgroup C with B' c C c B~, BJC is not free. We can assume that B~ 
is of minimal cardinality and pure in A. Clearly we have IB~[>2>[pU_Ba[,,~ and 

[B~I must be regular by Theorem 2. Hence (i) and (ii) are satisfied. We claim that 
condition (iii) holds too. So suppose that there is a ]B~l-generated subgroup C of 
B~ such that BJC is free. Then (B'+ C)/C is contained in a [B~l-generated direct 
summand of BJC, say D/C. So D contains B', and BJD is free. It follows by the 
definition of B~ that for every 2+-generated subgroup C with B'~_ C~D, D/C is 
not free. But this contradicts the minimality of [B~[; hence B~ is as required. 

Let B ~ denote the union of {B~ Iv < c~}, c~cf(x). Now we assign, by induction 
on ~ecf(x), to each sequence q of ordinals of length c~ with t/(v)E2 IB~I, v<c~, a 
factor set f " ~ F a c t  B ~ ( ~, Z), such that 

(iv) if ( is an initial segment of ~/, then f "  extends f~; 
(v) if ~4=t/ are of the same length c~, then f e - f "  represents an element of 

infinite order of Ext(B~ 
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Suppose that the fr have been defined for all sequences { of length < c~. If c~ 
is a limit ordinal, then every sequence t / o f  length e determines a unique factor 
set f "  on B ~ In case ~ is a successor ordinal, say ~ = v + l ,  we proceed as 
follows: By definition, B ~ (=B~) satisfies the hypothesis of Proposition 1 and B ~ 
is a [B~ pure subgroup of B ~ Therefore, given fr176 we can 
find f"eFact(B~ for each sequence t / o f  length c~ satisfying t/(#)={(#) for all 
# < v  and ~(v)~2 wvl, such that the following holds: For all such q's, f "  extends 
fr and for every pair t/+ {, f " - f r  represents an element of infinite order of 
Ext(B~ 

In the limit we obtain ~ 2 w~t = 2 ~ factor sets on A to ~ which represent 
v~cf(r) 

pairwise different elements of Ext(A,2~) modulo torsion. Hence, also in the 
singular case, the rank of Ext(A,Z) is >2  ~. This completes the proof of 
Theorem 1. 

Remark. We can prove Theorem i assuming the following axiom of set theory 
(which is much weaker than V= L). 

(Hyp) Every stationary subset S of any regular uncountable cardinal ~c satisfies 
~(S). 

Hereby ~ ( S )  denotes the assertion that for any F: ~ 2 ~ 2  there is a g~2 ~ such 

that for any f ~ 2  ~, the set {~S[F(fl~)-=g(~)} is stationary in K (cf. [2]). 

(Hyp) is consistent with any function N~--* 2 ~ which is strictly increasing. 

Proof of Corollary 1. For B uncountable Theorem 1 applies, whereas the case B 
countable is settled by Th6orhme 2.7 of [12]. 

Note that Corollaries 2 and 3 are immediate consequences of Corollary 1. 
For  the proof of Corollary 4 one uses in addition that Ext(A,~) divisible implies 
A torsion-free. 

II. The p-rank of Ext(A, ~) and Topological Applications 

II.1 Recall that for a torsion-free abelian group A, vo(A ) Ivy(A)] denotes the 
torsion-free rank [the p-rank] of Ext(A,;g). Our Corollary 2 says that, if A is not 
free, then 

(a) vo(A ) is of the form 2" for some infinite #. 
(b) vp(A)<vo(A) for every prime p. 

It remains to determine the possible values of vv(A ). For A countable torsion- 
free but not free, C. Jensen proved [12, Th~or6me 2.7] that vv(A ) is finite or 2 s~ 
This led us to expect that for any torsion-free non-flee group A condition (c) 
holds: 

(c) vv(A ) is finite or of the form 2 ~p,/~p infinite. 

We remark that by a result of Hulanicki [10] the triple of conditions (a), (b), (c) 
characterizes exactly the divisible abelian groups which admit a compact 
topology. 
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However, the third-named author has constructed an (uncountable) torsion- 
free group such that (c) is not satisfied [16]. But we can prove that (c) holds in 
the following special case. Note that hereby we do not need the hypothesis 
V=L. 

Proposition2. If  A is a torsion-free abelian group such that Hom(A,Z) is zero, 
then for every prime p, vv(A) is finite or of the form 2 ~p, #p infinite. 

By the way, as such a group A has no free quotients, we have v0(A)= 2 IAI by 
Corollary 1. 

Proof. We consider the exact sequence 

~* p* 

Hom(A,~)~Ex t (A /pA,  Z) , Ext(A,2g) , Ext(A,Z)~O 

P 
which is induced by the exact sequence O~ A---~ A ~ A/pA ~0 ,  p denoting 
multiplication by p. By hypothesis Horn(A, Z) is zero, hence e* is injective. Since 
p* coincides with the multiplication by p, it follows that Vp(A) is the dimension 
of the 2~/p-vector space Ext(A/pA,2g). But Ext(A/pA,2g) is a direct product of 
copies of 2g/p, hence vp(A) is as required. 

Consequently, if A is a torsion-free abelian group such that Hom(A,Z)=0,  
then Ext(A,2g) admits a compact topology. More generally we have 

Theorem3 (a) (V=L). I f  A is any abelian group such that Hom(A, 7Z)=0, then 
Ext(A,N) admits a compact topology. 

(b) Conversely, if G is an arbitrary compact abelian group, then there exists an 
abelian group A such that Horn(A, ~) = 0 and Ext(A, 2g) ~ G. 

Proof. (a) Recall that Ext(A,Z) is of the form 

Ext (A, 2g) ~ Ext (A/tA, Z)@ Ext (tA, Z). 

We already noticed that Ext(tA,2g) admits a compact topology (see Introduc- 
tion). So it remains to show that Ext(A/tA,~) can carry a compact topology. But 
this follows from the remark before Theorem3, since Hom(A/tA,2g) 
~- Horn (A, 2g) = 0. 

(b) Let G be an arbitrary compact abelian group, and denote its character 
group by G. Then it is well-known that 

G ~ d ~ Hom(G/t G, lR/2g)OHom(t G, lR/2g). 

Now Hom(G/tG, lR/2g) is divisible and compact, hence of the form 

Hom(d/ t  G, IR/2g) ---@ Q x @ (@ 2g (p~)), 
ro p rp 

where by the main result of [10] the following conditions hold: 

(i) r 0 is of the form 2" for some infinite #. 
(ii) rp is finite or of the form 2"p, gp infinite. 

(iii) rp < r o for every p. 
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Then we define 

B =@(I)  x @ (@ ~'(v)), 
u p #p  

where #p=rp if rp is finite; 2~(v ) denotes the localization of 2g with respect to p. 
We claim that Ext(B,Z) is isomorphic to Hom(G/tG, IR/Z). First we have 

Ext (B, Z) -~ [ I  Ext ((I), 7I.) x 1-[ ([I  Ext (Z(p), Z)). 
/1 p /~p 

It is easily seen that Ext(ll),~g)~l- [ Q and Ext(Z(v),Z)_-_z(p~)| ~. Using (i), 
No N0 

(ii) and (iii), we thus obtain 

Ext(B,Z)_-----I-I Q x 1-[ [1-[(Z(P~176 Q)] 
# p ~p  No 

~ @ ~  • |174 
ro p r v 

hence the claim is proved. Now let A = B G t G ;  then we have 

Horn(A, Z) -~ Horn (B, 2g) |  G, 7Z) 

I-I Horn (~, 7Z) �9 1-[ (l~ Horn (Z(v), ~)) 

= O~ 

and 

Ext (A, 2g) ~ Ext (B, Z)(~Ext (t d, Z) 

Horn (G/t G, IR/Z) |  (t G, IR/~) 

~_G. 

This completes the proof of Theorem 3. 

II.2 We now turn to algebraic-topological applications. The following genera- 
lizes the main result of 1-6] considerably. 

Theorem4 (V=L). Let X be a topological space. If, for some integer n> 2, the 
singular cohomology group H'(X,~,)  is non-zero and divisible, then its rank is of 
the form 2 ~ for some infinite cardinal #. 

Proof. By the Universal Coefficient Formula we have 

H" (X, 7Z) ~ Horn (H, (X), Z) | Ext (H, _ 1 (X), 2g). 

Since the Horn group is reduced, it must vanish. We are thus reduced to 
showing that the rank of Ext(H,_ I(X),Z) is of the form 2 u, # infinite. But this 
we know from Corollary 4. 

Next we determine those abelian groups to which there exist co-Moore 
spaces. A topological space X is said to be co-Moore of type (G, n) (n > 1, G an 
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abelian group) if 

/~I(X,Z)~{0G if i=n  
- otherwise. 

(This does not completely correspond to the usual definition of Moore space 
since we make no assumption about the fundamental groups. Compare [1, 
p. 313.) 

Proposition 3 (V=L). There exists a co-Moore space of type (G, 1) if and only if 
G is a direct product of copies of 7I.. 

Proof. Suppose that X is a co-Moore space of type (G, 1). Then 

G ---/-)a (X, ~) ~ Hom(H1 (X), ~) 

and 

0 = H 2 (X, 7l.) - Horn (H 2 (X), 2g) �9 Ext (H 1 (X), 7/.). 

Hence Ext(HI(X),~)=0 and Hom(HI(X) ,Z)~-G.  It follows that HI(X ) is free, 
and thus G = Hom(H~ (X), ~) ~ 1-[ Z. 

Conversely, suppose that G-~I-[z. It is well-known that any countable 
I 

sequence of abelian groups can be realized as the (positive) singular homology 
groups of an appropriately constructed space X. Choose X such that 

t @ ~  if i=1 /~(X)= 
0 otherwise. 

Then, indeed, X is co-Moore of type (G, 1). 

Theorem 5 (V=L). There exists a co-Moore space of type (G, n), n> 2, if and only 
if G is of the form G = COD, where C is compact and D isomorphic to a direct 
product of  copies of ~,. 

Proof. Suppose that X is co-Moore of type (G, n). Then by repeated application 
of the Universal Coefficient Theorem we deduce that G ~Hom(A,:g)| 
for groups A, B with Hom(B,Z)=0=Ext(A,~) .  Therefore Ext(B,Z) is compact 
by Theorem 3, and Horn(A,)7) is isomorphic to a direct product of copies of ~. 
Hence G is as required. 

Conversely, let G = C |  where C is compact and D~I - [ z .  Then by 
i 

Theorem 3 there is a group A such that Hom(A,~)=0 and Ext(A,~)~ C. Now 
choose X such that 

(~ ~ if i=n  

H~(X)= if i = n -  1 

otherwise. 
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Then we have 

[Hom(@2g,2g)| TZ)~C| if i=n 

/li(X' 2~) ~ /Hom(A,  2~) = 0 if i=n- i  
otherwise. 

Hence X is co-Moore of type (G, n). This completes our proof. 

Remark. The "if" part of the above theorem does not require any assumption on 
set theory. Moreover, by the same method we can prove that, given any 
sequence of abelian groups {G.ln>2} such that Gn=C.| C. compact and 
D.~l~2g,  there exists a topological space X such that Hn(X,2g)~G. for every 
n_>2. 
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