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ABSTRACT 

We prove that if a closed planar set S is not a countable union of convex 
subsets, then exactly one of the following holds: 

(a) There is a perfect subset P C Ssuch that for every pair of distinct points 
x, y EP, the convex closure of x, y is not contained in S. 

(b) (a) does not hold and there is a perfect subset P c_C_ S such that for every 
pair of points x, y ~ P the convex closure of {x, y } is contained in S, but for 
every triple of distinct points x, y, z E P the convex closure of {x, y, z } is not 
contained in S. 

We show that an analogous theorem is impossible for dimension greater 
than 2. We give an example of a compact planar set with countable degree of 
visual independence which is not a countable union of convex subsets, and 
give a combinatorial criterion for a closed set in R a not to be a countable 
union of convex sets. We also prove a conjecture ofG. Kalai, namely, that a 
closed planar set with the property that each of its visually independent 
subsets has at most one accumulation point, is a countable union of convex 
sets. We also give examples of sets which possess a (small) finite degree of 
visual independence which are not a countable union of convex subsets. 

O. Introduction 

W e  wish  to  i n v e s t i g a t e  he r e  s eve ra l  d e c o m p o s i t i o n  p r o p e r t i e s  o f  se ts  in  a 

E u c l i d e a n  space .  S wi l l  a l w a y s  d e n o t e  a set  in  R d fo r  s o m e  p o s i t i v e  i n t e g e r  d .  

0.1. DEFINITION. (1) T w o  p o i n t s  a ,  b E S see e a c h  o t h e r  in  S i f f  [ a ,  b ] _c S .  

(2) A s u b s e t  A C_ S is c a l l ed  a seeing subset i f  a n y  t w o  o f  i ts  p o i n t s  see  each  

o t h e r  in  S .  
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314 M. KOJMAN ET AL. Isr. J. Math. 

(3) A subset I _c S is visually independent in S if no two of  its points see each 
other in S. 

We are interested in the ways S is covered by convex subsets, and particu- 
larly in coverings of minimal size. We are also interested in coverings of S by 

seeing subsets. Every covering of S by convex subsets is, of  course, also a 

covering of  S by seeing subsets, but not conversely. Suppose there is a visually 

independent subset I of  S of size F. As no two of the points of  I can be in one 
seeing subset of  S, every covering of S by seeing subsets is of  size greater than 
or equal to F. 

0.2. DEFINITION. (1) 7(S)  is the minimal cardinality of a collection of 
convex subsets of  S which covers S. 

(2) f l(S) is the minimal cardinality of a collection of seeing subsets of  S 
which covers S. 

(3) a(S) is the supremum of cardinalities of  all visually independent subsets 
of  S. 

By what we have noted before, 

0.3. FACT. For every subset S of a Euclidean space, or(S) < f l(S) < 7(S). 

For closed S in the plane with a finite a(S) = m it is known that 7(S) < m 6 
(see [PS]). In this paper we deal with Ss whose a, fl and 7 are infinite, and at 
least one of  them (namely at least ~,) is uncountable. In the first section we 

prove that if fl(S), for a closed set S, is uncountable, then a(S) = fl(S) = R. 
Then in section two we give an example of a compact S _ R 2 with countable 
f l (S)  and with ~,(S)= R. We conclude section two with a theorem that for 

closed planar sets an uncountable 7 is always R, due to the existence of a perfect 

subset with the property that the convex closure of  no three of the subset's 
points is included in the set. This gives a more or less complete picture of  the 

situation for closed planar sets, showing that for such sets a, fl and 7 respect the 

continuum hypothesis. 
In section three we give a criterion for a closed set in R d to have an 

uncountable ~,. Then we give an example that shows that in R 3, 7(S) for a 

closed S may not respect the continuum hypothesis. 

In section four we define more delicate restrictions on visually independent 
subsets and investigate them. Also, we prove a conjecture of G. Kalai, namely 

that a closed planar set, with the property that any of  its visually independent 
sets has at most one accumulation point, is a countable union of convex sets. 
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In section five we give examples of  non-closed sets with a small finite a and 

y = R .  
The definition of o~, fl and ~ is due to M. Perles, and so are Theorems 1.1 and 

1.2 and Examples 2.1, 5.1, 5.2 and 5.3. Theorems 2.2, 3.1, and the indepen- 
dence result in section three were proved by S. Shelah, who also gave Examples 
4.2 and 5.4. Theorem 4.3 was proved by M. Kojman and M. Perles. Shelah's 

original proof of  2.2, which made use of  a partition theorem on trees, was 

simplified by M. Kojman and now uses only elementary methods. 

Prerequisites: The reader should know that the space '°n of  all infinite 

sequences of  0, 1 . . . . .  n - 1 is a complete metric space when equipped with 
the metric d(rl, v)= l/h where h is the first coordinate in which v and r/ 
disagree. No other prerequisites are needed for all sections, except for the 
independence result, which requires a background in forcing. 

§1. Uncountable fl(S) 

1.1. THEOREM. ] fS  is closed, then a ( S ) >  R o s a ( S )  = R. 

1.2. THEOREM. I f  S is closed, and fl(S)> Ro, then there is a perfect, 
non-empty, visually independent subset of S. In particular, a(S)= fl(S)= 

= 

REMARK. Of course the second theorem implies the first, as p(S) is 
always >= a(S). 

PROOF OF 1.2. Let us label as good points those points of  S for which 
there is some neighborhood u such that S N u is a union of  countably many 
seeing subsets. The points which are not good are called bad points. Clearly, 

the good points form an open subset of  S, thus the bad points form a closed 

subset of  S. Denote the latter subset by T. Now S - T can be covered by 
R0 seeing sets - -  because there is a countable base for the topology. So if T 
were countable, we could add to the cover all the sets {t} for t E T (or leave 

it untouched, in case T is empty) to obtain a countable cover of  S by seeing 

sets. This is a contradiction to our assumption that f l ( S ) >  R0. Note now 
the easy 

1.3. FACT. Every t ~ T is a condensation point of  T. 

PROOF OF FACT. Suppose to the contrary that t ~ T, but that there is a 

neighborhood u of  T which contains only countably many members of  T. As 
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we have a countable base for the topology, we can cover the set of  all good 

points in u with a countable cover of  seeing sets; add to this cover the 

countably many seeing sets (x} for x ~ T n u to get a countable cover of  

S n u, and thus a contradiction. 

Now either for every point t E Tand every neighborhood u o f t  there are two 

points to, t~ ~ Tdistinct from each other and from t which do not see each other 

in S, or there is some t* E T and a neighborhood u of  t* such that any two 

distinct points in u n T see each other in S. The second alternative is 
impossible - -  as it implies that T N u is a seeing set - -  which, via an argument 

similar to the one we used in the last fact, leads to a contradiction. So we know 

that near every point t ~ Twe can find two other points of  Twhich do not see 

each other. 
Note that if two points a, b ~ S do not see each other, there must be a point 

c E (R  a - S) n [a, hi. As the complement of S is open, there is an open ball 

B(c, e) which is contained in the complement. This ball is a sight obstacle 

which does not let any point in B(a, e) see any point in B(b, ~). So in this case 

there are two neighborhoods of a and b which do not see each other. 
This observation allows us to begin the following inductive process: choose a 

point t E T. By what we have seen, there are two points near t (call them to and 

tt) which do not see each other and belong to T. By the observation, there are 

two dosed neighborhoods u0, u~ of  to, t~ respectively, which do not see each 

other. Continue as follow: choose tot, too in u0 n T and two closed neighbor- 

hoods u0~, uoo of  them which do not see each other and are contained in uo; do 
the same in ul. Continue like that, making sure that each closed neighborhood 

u~, r/being a sequence of  length n of  zeroes and ones, is of  diameter smaller 
than (½)n. A sequence of  points whose indices correspond to a branch in the 

tree of  all finite sequences of  zeroes and ones forms a Cauchy sequence, and 

therefore converges to a point of  S. All those limit points form a perfect subset 

o f  S which is visually independent. This proves the theorem. 

§2. Uncountable 7(S) 

We have seen that for a dosed set S c_ R a a non-countable fl(S) implies that 

a(S) (and therefore also fl(S) and 7(S)) equals the continuum in cardinality m 

because of  the existence of  a perfect, visually independent subset P _ S. It 

remains to be seen whether the weaker hypothesis of  a non-countable 7(S) 

implies the same. We present now an example of  a compact S c_ R 2 such that 

a(S) --fl(S) = Ro but 7(S) = R. In fact, our set S will have a perfect seeing 
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subset B _ S such that the convex closure of  no three distinct points of  B will 

be included in S. 

2.1. EXAMPLE. Let D be the unit disk. We first construct a set A _ int D 
and a set B c_ bd D. B is constructed in a manner similar to that of  con- 

structing the Cantor set: Let Wl be the set consisting of two closed arcs, 
each of  length ½, one arc centered around ( - l, 0), the other around ( l, 0). 

B -- A ,<~ Bn where Bn is made of  2 n disjoint arcs and Bn+~ is obtained from 
Bn by removing from each arc of Bn an open arc of length (1 - e) times its own 
length which is centered around its middle. 

A = N n < ® A n  where A 0 = i n t D  and An+~ is obtained by removing 2 n 

disjoint open triangles from An. The removal of  triangles is performed to fulfill 
the following demands: 

(a) If (x, y, z) is a triple of  points taken from three distinct arcs of Bn+2, 

then con(x, y, z)~:An+~. 
Co) If  x, y ~Bn, then the segment (x, y)  is contained in An. 
We describe now the induction step, in which we first define Bn +2 and next 

An+l: Ifab is an arc in Bn+~, denote byp  + the point ofBn+~ - ab such that the 
clockwise arc connecting p + with b is of  minimal length and by p_ the point in 

Bn +1 - ab such that the clockwise arc connecting a with p_ is of  minimal 
length. Let a', b' E ab be within e of a, b respectively, e being so small such that 

the intersection point p o f ( p  +, a') with (p_,  b') is on the same side of(a ,  b) as 
the origin. Obviously, there is an e which is small enough to guarantee this (see 

Fig. 1). Now remove an arbitrary open triangle which is contained in the 

p 

Fig. I. 
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interior of  A(p, q, r), where q and r are the intersection of (p_,  b') and of  
(p+,  a') with (a, b), respectively. Note that later removals of triangles will 

be made only in the areas bounded between the arc ab and the chord (a, b) 

(or its analogs), thus assuring that each later triangle is contained in S,. Also, a 
choice of a small e ensures that the present 2" removed triangles are mutually 
disjoint. 

Let x, y, z be in B, +2. If  they are in three distinct arcs ofB,  + 1, they are taken 

care of  by the induction hypothesis; so assume without loss of generality that 
x Eaa', y Ebb', with the same notation as in the figure. Clearly, the triangle 

we have removed intersects con(x, y, z). This takes care of the first demand. 
As for the second, choose an arbitrary pair of points x, y ~ B, + 1. If both are 

taken neither from aa' nor from bb', then (x, y) is separated away from what 

we have removed by the chord (p÷, p_); if both are in ab, then (x, y) is 
separated away from what is removed by the chord (a, b); and if(without loss 
of  generality) x E aa" while y q~ab, the choice of p -  guarantees what is 
required. 

Note that we have removed the triangle in such a manner that for every e 
there are only finitely many triangles which were removed from the open disk 
of  radius 1 - e. 

Now we define our set S:  S = B U (con(B) n A), namely the convex closure 

of  B from which countably many open triangles are removed in the process 
described above. Clearly, S is compact, and its intersection with bd D is B. 
Furthermore 

2.1.1. CLAIM. I f x ,  y ~ B  then [x,y] C_. S. 

PROOF. This follows from demand (b). In the construction, suppose there 
was an n such that this segment was not in A,. x and y are clearly in B, b which 
contradicts demand (b). 

2.1.2. CLAIM. or(S) = f l ( S ) ~ -  R 0. 

PROOF OF CLAIM. By Theorem 1.2 it is enough to prove that a(S) is 

countable. Assume to the contrary that there exists an uncountable visually 

independent subset V ofS .  As in any open disk of radius (I - 1/n) there are 

only finitely many triangular holes, it can contain only finitely many points of  

V; for the removal of k disjoint triangles from a convex set allows at most 3 k 

visually independent points. So there are only countably many members of  V 
in int D. So without loss of generality all of its members are in B. But any two 

points of  B see each other - -  contradiction! 
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Lastly, any three distinct points from B are such that their convex closure is 

not included in S. Assume x, y, z E B  are three distinct points. Then there 

exists an n such that x, y, z belong to three distinct arcs of  B, +1. If  so, then in 

An there is a triangular hole which is included in con(x, y, z). In particular, 
~,(S) -- R (for B, being a perfect set, has cardinality R). 

This example shows that with a closed subset of  the plane one can have a 

countable fl and a non-countable y. A natural question to be asked at this stage 

is whether a non-countable ~,(S) always equals the continuum in cardinality - -  

or whether other values are possible. The question is not trivial - -  for if we 

consider more general sets (rather than only closed sets) 7 can take non- 

countable values other than R. Assume that the non-countable cardinal R~ is 

smaller than R (a situation which is known to be possible, or consistent with 

the axioms of  set theory) and consider any subset of  R a of size R~. This set 

cannot contain any line segment, and therefore not any nontrivial convex 

subset. Its y then equals R~ - -  which is not R. 

The following theorem will show that for a closed S ___ R 2, y(S) respects the 

continuum hypothesis, or in other words, for such an S if y(S) is non- 

countable, then it equals the continuum in cardinality. Amazingly enough, this 

cannot be proved (nor refuted) for R 3, using the usual axioms of  set theory. 

But let us consider the two dimensional case now. In the example we just saw 

we had really more than just y(S) = R: we had a perfect subset of  Ssuch that no 

three distinct points in it can be in one convex subset, but such that every two 

of  its points see each other in S. We will prove that this is the typical case for 
closed S _c R 2 with y(S) > R0 and a(S) = R0. 

2.2. THEOREM. I f  S C_ R E is closed, and ~,(S) > R0, then there is a perfect 
subset P c. S, such that for all triples p, q, r ~ P  o f  distinct points, con(p,  q, r) 

fZS. Furthermore, i f  a(S) = Ro then P can be chosen to be a seeing-subset 
o f  S. 

PROOF OF 2.2. Suppose that S is closed in the plane. Let U be the union of  

all open disks u of  rational radius and rational center coordinates such that 

u A S is a union of  countably many convex sets. Clearly, U N S is open in S 

and is a union of  countably many convex sets. Denote by B the set S - U m 

which will be referred to later as "the set of  bad points". So B is dosed,  and if  

x EB ,  then for every neighborhood u of  x, u A S is not the union ofcountably 
many convex sets. 

Moreover, if  we had a neighborhood u such that u ~ B ~ ~ and such that 

every u' __. u, satisfying u' N B ~ ~ satisfied that in it there were two bad 
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points which do not see each other in S, then we could repeat the proof  of  

Theorem 1.2 and get a perfect, visually independent subset of  S - -  which is 

more than required. We therefore assume that in every neighborhood u we can 

by shrinking it, if necessary, have that all bad points see each other in S. In fact 

we assume from now on, without loss of  generality, that the set B of  bad points 

is a seeing subset of  S. In particular, in no neighborhood u can all bad points be 

contained in a countable number of  lines, for then the bad points would be a 

countable union of  convex subsets of  S. 

The course the proof will take is the following: We define a perfect tree of  

closed subsets of  S ordered by reverse inclusion, such that the diameters 

of  the neighborhoods along a branch tend to zero and such that any 

three points taken from three different subsets are such that their convex 

closure is not contained in S. (A more precise definition will be given below.) If  

such a tree exists, then exists also a perfect subset of  S - -  namely one point for 

each branch in the tree - -  with the property that the convex closure of  no three 

of  them is contained in S. So we assume that no such tree exists. We, 

nonetheless, try to construct one several times, when each time the failure is 

utilized to improve the starting conditions for another try. We eventually 

reach a situation in which we can guarantee success, and thus obtain a 

contradiction. 

2.2.1. NOTATION. <0,2 is the tree of  all finite sequences of  zeroes and ones, 

where a finite sequence ~/is smaller than a finite sequence ( if  ~/is an initial 
segment of  ( .  lg0/) is the length of  ~/. A sequence ~/of length n has domain 

0 . . . . .  n - 1. By ( ) we denote the empty sequence. ~/̂  (0) means the con- 

catenation of  t/with zero, namely the sequence ( such that lg(() = lg0/) + l, 

~/< ( and ((lg(r/)) -- 0. 

2.2.2. THE CONSTRUCTION. We wish now to describe a construction of  a 

perfect tree of  closed neighborhoods T' -- (u, ] ~/~ T) where: 

(1) T _ <°'2 is perfect (i.e. for every r /~ Tthere is an extension ( of  r/such 

that both (^ (0) and (^ (1 )  are in T). 

(2) ~/< ~ ~ u¢ _ u~. 

(3) For every n > 0 all sequences ~/in Toflength n, except one sequence, r/n, 

have only one extension of  length n + 1 in T, while ~/~ has both 

extensions in T. 

(4) u~ n B is not empty. 
(5) lg0/) -- n =* diam(u~) < 1/2 n. 

(6) If  ~/~ ( then u~ nu¢  = ~5. 
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(7) If  rh, 1 < l _-< 3 are three distinct nodes in T, t h e n  x~ ~u, ,  implies 

con(x~, x2, x3) ~ S. 
The construction is carried out by induction as follows: at each stage we have 

a finite list of  disjoint neighborhoods, (u~ Iv E ~ 2) satisfying the property 

(,) If Vl, 11/2, ]/3 are three distinct sequences of length n, Xl E u,,, 1 _-< l < 3, 

then con(xl, x2, x3)~ S. 

Note that (,) implies that no three bad points taken from three distinct 
neighborhoods are collinear, because we assume that all bad points see each 
other. 

From this list, all neighborhoods but one are either untouched or shrunk a 

little, and one is replaced by two disjoint subneighborhoods, retaining the 

property (*). 

A success in the construction yields the theorem, since to each branch in T 
corresponds one point of  8 ,  the collection of these points being a perfect set, 
and the convex closure of no three of them is contained in S; in case of  failure 
we have 

2.2.3. CLAIM. We can find a finite sequence (x~ . . . .  , xn ), n _-> 2, of  points 
from B and a neighborhood u not containing them such that 

(1) u n 8  ÷ ~ .  
(2) u is disjoint to any of the lines determined by a pair of  points xt, Xm for 

l < l < m < n ,  

(3) for every point y ~ u there exists 1 _-< l _-< n - 1 such that con(y, xt, xn) _ S. 

PROOF OF CLAIM. Suppose the construction of T' fails at height h while 
trying to split u~ into two neighborhoods. Fix a bad point xv E u~ n B for every 
neighborhood v ÷ r/which is already defined. Our failure means in particular 
that for any pair of  points x,  y E u~ N B there exists v such that con(x, y, xv) _c 
S, for otherwise we could shrink each u~ around x~ and pick two small enough 

neighborhoods around x and y to meet the requirements (remember that S is 

closed). Label now these x~s as (xl . . . . .  xn-1). Pick xn~u~ n 8 and find a 

y E u f~ B which is not on any of  the lines determined by two xt s. This is 

possible by the assumption that not all bad points in y are contained in a line. 

Pick a small enough neighborhood y E u '  which avoids all these lines. So for 
every bad point y ~ u there exists a 1 ~ l ~ n - 1 such that con(x~, xt, y) _C S. 

2.2.4. CLAIM. We can find an open neighborhood u' such that u' n B ~ 
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and two points x~, x2 outside of u' such that for every y E u ' O B ,  
con(xl, x2, Y) C_ S. 

PROOF. Start with what we have by 2.2.3. Define the following subsets Bl, 

1 _--< l < n -- 1 o fB  n u: Bt is the set of  all y E B  n u such that con(xn, xl, y) C 
S. Now by 2.2.3 we know that these sets cover u n B. By the closedness of S, 
each of them is clearly closed. Define by induction a descending sequence of  

neighborhoods ul for 0 < l _-< n - 1 such that: 

(1) u t A B  ~ Z ,  

(2) ul C_ U l+ 1, 
(3) Ut+ l n Bt = ~ ,  

( 4 )  u = u0. 

In the induction step avoid m if possible m B~ by shrinking the present 

neighborhood. As the Bn s c o v e r  u n B there must be some l < n - 1 such that 

Bt is dense in ut+l n B. But the latter is closed ~ therefore it covers all of  

B nu t_  1. Denote ul- 1 by u'  (shrinking it, if necessary, to avoid (xl, Xm)) and 
denote x~, xt by xl, x: to obtain the claim. 

Draw now the x-axis from xl to x2 with zero being their average. By the 

claim, u'  is in one side of the axis - -  let us call it the positive side. By applying 

some affine transformation we may assume without loss of generality that the 

y-axis passes through u'. 

2.2.5. CLAIM. NO tWO different points bl, b2~u n B are above each other, 

namely X(bl) = x(b2)~ bl = b2. 

PROOF. Suppose bl is exactly above b2. This implies that b2~ 
int A(xl, bl, x2) which is impossible, for this interior is included in S, and 
therefore b2 would have an open neighborhood wholly in S, contrary to its 

badness. 

2.2.6. COROLLARY. Denote by C the projection o f  B O u on the x-axis. 

Then there is some function f whose domain is C and whose graph is B n u. 
Furthermore, f is a continuous function, even satisfying a Lipschitz con- 

dition. 

PROOF. Obvious by Fig. 2; the slope of  f a t  b cannot excede the slopes of 

(x~, b) or (x2, b) (or again a bad point would be inside a open neighborhood 

contained in S). 
We denote by 0 or ~ real numbers in [ - n ,  rt), and call such numbers 

directions. For a pair of  points a, b in the plane we denote by dir(a, b) the 
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XI x2 x 

Fig. 2. 

direction from a to b, if it is in [ - rr, rr), and its minus otherwise. We call a 
neighborhood u relevant if u N B ~ ~ .  We call a direction which is obtained 
by a pair of  bad points a "relevant direction", and we call the relevant direction 
obtained by pairs of points in u "the relevant directions of u". 

We assume now that we cannot construct a tree of neighborhoods as 
described above, and utilize this assumption for more claims. 

2.2.7. LEMMA. For every relevant neighborhood u and e > 0 there is a 

direction 0 and a relevant sub-neighborhood u' c_ u such that for every relevant 
direction ¢ o f  u', ] O - 01 < e. 

PROOF. Suppose this is not the case for a given u and e, and we shall 
eventually construct the tree of  neighborhoods. Without loss of  generality, 
e = 2rt/n for some n, by shrinking e if necessary. We look at the the set of  
intervals 

{[ ie ( i + 1 , ~  O < i < n _ l } .  
- n + ~ - , - n - ~  2 = 
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By our assumption, in any sub-neighborhood there is a counterexample to the 
claim, namely there appear two relevant directions whose difference is greater 
than e; such a pair of directions cannot lie either in the same interval or in two 
adjacent intervals of  our list. (The first and last interval are also considered to 
be adjacent.). As the intervals cover [ - zr, rt), every counterexample deter- 
mines a pair of non-adjacent intervals of the list. There is a finite number  of 
possibilities for such pairs - -  let us order them in a list. Now try, by shrinking 
the neighborhood to a relevant sub-neighborhood, to avoid all counterex- 
amples which determine the first possibility, and so on by induction. This 
process must  end before the last possibility, by the assumption that such pairs 
always exist. Namely, there is a fixed pair of non-adjacent intervals and a 
relevant subneighborhood u" such that in every relevant subneighborhood 
v _  u" there are two relevant directions, one in each interval. To put it 
differently, there is a relevant subneighborhood u" _ u and a fixed pair of  
intervals such that counterexamples that determine this pair appear densely in 

B O u " .  
Call the fixed pair of  intervals It and 12. Without loss of  generality infI2 > 

sup It. We work in u" and construct our tree of neighborhoods. Here is how: 
we add two other induction hypotheses, namely that for every q ~ v all 
directions between points of  u~ and points of uv are in Ii. Let u0 and uz be two 
relevant (disjoint) sub-neighborhoods such that for every pair of  bad points 
xt E ut, x2 ~ u2, dir(xl, x2) E I~: Take two such points whose direction is in int/1, 
noting that not all pairs of  bad points have infI~ as their direction, and shrink 
the neighborhoods around them until this property is obtained. Suppose that 
at some stage of the induction we have to split the neighborhood u~. As usual, 
fax witnesses, namely fix one bad point in every other neighborhood such that 
all these points are in general position. Pick a pair of  bad points whose 
direction is in Iz, and which is nonetheless different from any of the directions 
determined by the witnesses and such that all the points picked are in general 
position. Let z be any witness. So A(z, x~, x2) is a triangle. Note that the 
directions of all the edges in this triangle are in I~ - -  so it has an obtuse angle 
(for without loss of generality e < it/2). In a close enough neighborhood of  the 
vertex of this angle find a pair of points whose direction is in 12. By replacing 
the vertex with one of  them, if necessary, the other will be seen to reside in the 
interior of  A(z, x~, x2). This shows that the triangle is bad, and completes the 
induction step. 

But since we assume that the construction is impossible, we must  accept the 
claim. 
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2.2.8. LEMMA. For every relevant neighborhood u, two bad points b~, b2Eu 
and e > O, there are two disjoint relevant sub-neighborhoods u~, u2, u~ c_ 
B(bl, e), u2 c_ B(b2, e) such that the union of the convex closure of  relevant direc- 
tions of  u~ with the convex closure of  relevant directions of  u2 is disjoint from 

con({dir(xl, x2) I (xl, x2) ~ ul X u2}). 

PROOF. Pick three bad points ct, 0 < l < 4 in B(b~, e) and three bad points 
Ct+a in B(b2, e) with all six points in general position, and moreover such that 
there are no two parallel line segments in the configuration. This is possible, by 
the fact that in no relevant neighborhood are the bad points contained in a 
finite number  of lines. Fix disjoint neighborhoods ut, one around each point, 
which are so small such that if (k, 1 ) # (m,  n ) then 

con({dir(x, y)[ (x, y) ~Uk × ut}) n con((dir(x, y) [ (x, y) GUm × Un}) = ~ .  

So these convex closures are a set of  15 disjoint sub-intervals of[  - rt, 7t). Let g 
be the minimal  distance obtained between two of these intervals. Using 2.2.7 
shrink every neighborhood further, if necessary, to determine in it the possible 
relevant directions up to M2. So for each ut con({dir(x, y) I x,  y ~ ut}) can have 
non-empty intersection with at most  one of  the disjoint intervals 

con((dir(x, y) I x ~ ut, y E um }) 

where 0 < l < 4, 3 < m < T. Since this defines a choice of  at most  six elements 
out of  a set of  nine elements, at least three elements are left unpicked, namely 
there are pairs 0 < 1 < 4, 3 < m < 7 such that the set of  directions obtained 
between ut and um is disjoint to any of the sets con(dir(x, y) [ x, y ~ uj N B), in 
particular f o r j  = l, m.  So this proves the claim. 

If  ul, u2 are two neighborhoods, we call con((dir(x, y) [ (x, y)  ~ u  I X U2} ) 
"the directions between u~ and u2". 

We recall that we have restricted attention to some relevant neighborhood in 
which all bad points are arranged on the graph of some continuous function f ,  
and that in particular every pair of  bad points has a rightmost one and a 
leftmost one. Suppose we pick a pair of  bad points b~, b2 and blow them 
up to two small open neighborhoods u~, u2 such that u2, u2 are disjoint and 
their projections on the x-axis are also disjoint. The last claim assures us 
that  there are two subneighborhoods vt c_. u~, v2 c_ u2 such that the convex 
closure of  the relevant directions of each v~ is disjoint from the convex closure 
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of  the directions between vt and v2. Up to reflection in the x-axis there are 
exactly two possibilities: (A) the relevant directions in both v~ and v2 are greater 
than the directions between Vl and v2; (B) the relevant directions in v~ are 
smaller than the directions between v~ and v2 while those in v2 are greater 
(see Fig. 3). 

vl th vt v2 

(A) (B) 

Fig. 3. 

By an argument we have seen before, we know that there is a relevant 
neighborhood (without loss of  generality, u itself) in which either possibility 
(A) or possibility (B) appears densely. 

2.2.9. LEMMA. I f  possibility (A) appears densely in u then we can carry out 
the construction. 

PROOF. Proceed by induction with the following additional induction 
hypotheses. First, if  ~/ precedes v lexicographically then the projection of  
u~ on the x-axis is disjoint from the projection of  uv on the x-axis and is 
to the left of it; second, if t / ~  v, then the convex closure of  the relevant 
direction of u~ as well as the convex closure of  the relevant direction of uv is 
disjoint from and greater than the convex closure of the directions between u~ 
and uv. 

To start the construction pick any two bad points, and near them small 
enough neighborhoods to get possibility (A). When splitting a neighborhood u~ 
at the induction step, pick in u~ two disjoint neighborhoods Vo, v~ according to 
possibility (A). Fix witnesses in the other neighborhoods. Let z E uv be a 
witness which lies to the right of  v~. Pick bog Vo and shrink vt until it lies 
entirely above all the lines connecting points of Vo with z (it has to be above, 
because by the induction hypotheses the relevant directions between Vo and v~ 
are greater than the directions between Vo and uv). Now pick ct, c2E vt in such a 
way that bo, c~, c2 and z are in general position and such that c2 is the rightmost 
of  the cis. As dir(c~, c2) is greater than both dir(bo, z) and dir(bo, c2), and as ct is 
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on the same side of(bo, z) as c2, cl E int A(bo, c2, z). Therefore its convex closure 
is not contained in S. We call such triangles "bad triangles". Shrink now u~ 

around z, Vo around bo and vl around c2 to get the property (.) for these 
neighborhoods. Proceed to the next witness to perform an analogous pro- 
cedure until all witnesses are handled. This guarantees that property (.) is 

retained. The additional induction hypotheses are trivial. 

So we assume that possibility (A) does not appear densely in u (for otherwise 
we are done). Therefore possibility (B) appears densely. In that case we can 
prove 

2.2.10. LEMMA. Either we can carry out the construction or there is an 

interval C such that C ¢q Dom f is a non-empty set on which f is (up to reflection 
o f  the y-axis) convex. 

PROOF. We add the following induction hypotheses to the construction: if  

r/precedes v lexicographically, then u~ and uv are disjoint from each other, have 

disjoint projections on the y-axis, have disjoint projections on the x-axis and 
the projection of u~ on the x-axis is to the left of  the projection of uv on the 
x-axis. Furthermore, the convex closure of the relevant direction of u, is 

smaller than the convex closure of the directions between u~ and u, while the 
convex closure of the relevant direction of uv is greater than the convex closure 

of  the directions between u, and uv. Also, if .J, is the projection of  u, on the 

x-axis and x ~ [infJ~, sup J~] N Dom f ,  then f (x )  ~ u~. This last additional 
hypothesis is possible by continuity of f .  

Let us only demonstrate the induction step: coming to split u~, we assume 
that f restricted to the projection of  u, is not convex - -  for otherwise we are 

done. So there are three xs, x~ < x2 < x3 in J, such that (x2, f(x2)) is above the 
line segment ((x~, f(xO), (x3, f(x3)). So (x2, f(x2) ) belongs to u,. Now find two 
neighbo1'hoods Vo, vl close enough to x~ and x3 respectively and small enough to 
satisfy both that any line segment passing from Vo to Vl is below (x2, f(x2)) and 
that Vo, v2 satisfy possibility (B). By further shrinking, meet the other induction 
hypotheses. Now let z be any witness, say to the right of  u,, and let bo~Vo, 

b~ ~ v~ be two bad points that form a triangle with z. As 

dir(bo, bl) < dir(bo, (x2, fx2))) < dir(bo, z), 

it must be that (x2, f(x2)) ~A(bo, bl, z). This means that this is a bad triangle. 
In the same manner handle all other witnesses. 

So if we reject the construction, we must suppose that f i s  convex some- 
where. 
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We have reached a stage in which we can carry out  a weaker construction, 

which we describe now. Let <tx be the lexicographic order on sequences. 

Suppose t/l <ix t/2 <z~ ~/3 are three sequences. Then either there exists a natural 

number  h such that ~/lth = t/Erh 4 = t/3~h or there exists an h such that 

r/l t h ~ r/2 t h = r/3 t h. Intuitively, either r/l separates f rom r/2 before r/3 does, or 
rh separates f rom r/2 after r/3 does. This observat ion is valid also for infinite 

sequences o f  zeroes and ones. In the weaker construction we demand  instead 

o f  ( .)  the weaker demand  

@ if  ~/1 </~ ~/2 <t~ ~/3 and ~1 separates f rom t/2 before ~/3 does, then for any 
three points taken one from each u,,, 1 _-< i =< 3 their convex closure is not 

contained in S (Fig. 4). 

U~ 
U~ 

Fig. 4. 
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This is certainly weaker - -  for in the perfect set resulting from the construc- 
tion we know that only "half" of  the triangles are bad. But we can prove 

CLAIM. If f is convex, then we can carry out the construction with the 
condition (*) replaced by (@). 

PROOF. Suppose f i s  convex on Dom f n J where J is some interval. We 
work in J and carry out the construction. 

We define by induction a tree of disjoint intervals J~, )1 ~ T __c <'°2, with u~ 
being any closed neighborhood containing f"(J,).  We note the following 

simple 

2.2.11. FACT. In any open neighborhood of  a bad point x there are three 
points whose convex closure is not contained in S. 

PROOF OF FACT. If the convex closure of  any three bad points in u were in 

S, then con(B n u) would be contained in S, by Carath6odory's theorem. 
So we start with three bad points on the convex graph whose convex closure 

is not contained in S. As often before, we can assume that these points together 

with any finite number of  bad points to be chosen in what follows are in general 
position. We find three disjoint open intervals, one around each x-coordinate 

of  each point, and three open neighborhoods as required. The intervals are 

labeled as J,  J<10) and J<~) from left to right. 
Coming to split a neighborhood u~, we fix witnesses ony in those uv s for 

which v <L~ ~/-- because we have to take care only of  condition (@) instead of  
(.). For the induction step we need some auxiliary definitions. 

Let A(t, q, r) be such that its convex closure is not contained in S, where t, q, 
r are on the graph off ,  and x(t) < x(q) < x(r). We note that for every point z 
on the graph o f f  such that x(z) < x(t), the segment (z, q) divides int A(t, q, r) 
into two open triangles by the convexity off ,  and that since S is closed, at least 
one of  these two open triangles contains points of  7 S, namely is bad. 

Since A(t, q, r) is bad, we can choose a point s E7 S n int A(t, q, r). Ob- 

serve the ray R from q through s. All points z on the graph of f which are 

to the left of  t m except, maybe, one point, in case this ray meets the graph 

m lie either above or below R. Respectively, A(z, t, q) or A(z, q, r) are 

bad (maybe both), having to contain s in their interior. We choose a func- 
tion F defined for each bad triangle as above and satisfying F(t, q, r )<  
x(t)  with the property that for every point z such that x ( z ) < F ( t ,  q, r), 
A(z, t, q) is bad and every point z such that x(z) > F(t, q, r), A(z, q, r) is bad 
(Fig. 5). 
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Fig. 5. 

r 

q 

t 
I 

I 
F(t, q, r) 

In the induction step, trying to split u,, witnesses fixed in all neighborhoods 
which are to the left of u,, observe that one of the following possibilities 
must  occur: (1) there exists a bad triangle A(t, q, r), t, q, r ~ u ,  A B with 
F(t ,  q, r)EJ';  (2) for every bad triangle as in (1), F(t,  q, r ) < i n f J , .  If  the 
first possibility occurs, then for every witness e, satisfying x(e) < F(t ,  q, r), 

A(e, t, q) is bad, and we are through with the induction step by shrinking 
other neighborhoods and choosing the new neighborhoods, one around t, the 
other around q. If  it is the other possibility that occurs, we give up temporarily, 
and start the whole construction again inside u,. Now at the induction step we 
can always choose a bad triangle A(t, q, r) as above in the neighborhood to be 
split, and choose the two sub-neighborhoods around q and r. This proves the 
claim. 

So we have at hand now a perfect set P = {b~IaEBr(T)}  C_ B where 
T __. <'°2 is a perfect tree and.Br(Ti is the set of  infinite branches of T, such 
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that the points of  the set lie on the graph of  a convex function f ,  and such that 
al < a a 2  implies that x(b , )  <x(b~).  Furthermore, if a I ~lxOt2~lxOt3 are in- 
finite branches of T and ~l separates from a2 before a3 does then 
con(b,,, b,,, b~,) ~ S. 

CLAIM. There is a perfect subset P '  __ P such that for all triples p,  q, r ~ P ' ,  
con(p ,  q, r ) ~ S .  

PROOF. We go over the construction of  P again, and "thin out" the tree Tto  
a sub-tree T' which is also perfect. Namely, when coming to split a neighbor- 
hood u~, q E T, we do not necessarily take u~^<0> and u~^~l> as the next two 
disjoint sub-neighborhoods, but take uv, u~ where v, ( E Tare two extensions of  
~/picked as described below. 

We define analogously to the definition of F before, a function G on bad 
triangles of  P, with its values on the x-axis on the fight side of each triangle. At 
the induction step we fix witnesses (from P) only in the neighborhoods which 
are to the right of  u~, because we already have the property (@). Now if there 
exists a bad triangle A(p, q, r) with vertices p, q, r, x ( p ) < x ( q ) < x ( r )  in 
P N u~ such that G (A(p, q, r)) ~ J~, then pick two neighborhoods around q and 
r. Otherwise, start again in J~, and in what follows always pick neighborhoods 
around p,  q in such a situation. This guarantees that all triangles in P' are bad, 
and thus completes the proof  of the theorem. 

Combining Theorems 1.2 and 2.2 we see that there are only two types of  
closed planar sets S with uncountable 7(S): either there is a perfect, visually 
independent  subset V c_ S, and in this case a(S)= R, or (as in Example 2.1) 
a(S) = f l ( S ) =  b~ 0 and there is a perfect seeing subset P c S such that 
for all distinct triples p, q, rEP* ,  con(p,  q, r)f£S, and in this case clearly 

7(S) = R. 
To complete the classification of closed planar sets, we recall that if 

a(S) = m then by [PS] 7(S) < m 6. The remaining case is when there are 
visually independent  subsets of  arbitrary finite size, but not infinite such 
subsets. In this case a(S) _-> R0 trivially, on the one hand, and on the other 
hand 

2.3. FACT. A closed set S in a Euclidean space is locally starlike with 
relation to every one of its points iff there is no infinite visually independent  
subset of  the form of a convergent sequence together with its limit. 

PROOF. Suppose S is not locally star-like with relation to x ~ S. Find x0, 
then, that does not see x. As S is closed, x0 does not see a neighborhood u0 
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ofx .  Continue by induction to find xn +l @ un. The set { (x~ I n ~ N) U {x } } is a 
visually independent set as required. Conversely, suppose such a visually in- 

dependent subset of  S exists; then clearly S is not locally star-like in rela- 
tion to x. 

The fact assures us that if there is no infinite visually independent subset of  

S, then S is locally star-like with relation to every point. So the union of  all 

convex kernels o fS  N u~, where (u~ [ n E N) enumerates all rational neighbor- 

hoods in which S is starlike, is a countable cover of S with convex subsets. So 
we have established that if there are arbitrarily large, but not infinite, visually 
independent subsets of  S, then 7(S) = Ro. 

3. More on uncountable 7 

In this section we phrase a necessary and sufficient condition for closed 

sets in R d to have uncountable 3'. Then we sketch the proof mentioned be- 

fore, of  the independence of the size of  an uncountable 3,(S) for a closed 
S ___R 3. 

3.1. THEOREM. For a closed set S c_ R d the following conditions are equiva- 
lent: 

(1) 3,(S) is uncountable; 
(2) there is a continuous, 1-1 function f :  ' ° (d+ 1 ) ~ S  such that i f  

~0, ~1 ° ° " ~ d -  l ~ °'(d + 1) are d + 1 distinct sequences satisfying that there is an 
integer h such that for O < i < j  < d ,  rli t h = r b f h but ~h t (h + l) # r bt  

(h + 1), then con(f(r /0) , . . . ,  f(rld))~S. 

PROOF. Suppose 7(S) is uncountable. Let B denote the subset of  S con- 
sisting of all points X such that for every open neighborhood u of x, u n S is 

not a countable union of convex subsets. Set B is closed and uncountable. We 
define f by approximations, namely for each finite sequence ~/we define 

F(~/) : - u ~  a closed, relevant neighborhood, with u~ n u~ = ~ whenever 

~/÷ v, and with u~, _ u,~ whenever ~/l > ~/2. To get uniform continuity we may 
demand that lg(~/) ->_ n implies that diam(u 0 < 1/n. The crucial condition we 

wish to satisfy is that if ~/0 . . . .  , ~/d are all d + 1 successors of some v, then for 

any (d + 1)-tuple x0 . . . .  ,xa such that xuEu~,, con(x0, . . .  , xa )KS .  All con- 

ditions are easily satisfied in defining F. In particular, Carath~odory's theorem 
assures us that in any relevant u~ there are d + 1 points of  B whose convex 

closure is not contained in S. Blow up around them the required neighbor- 

hoods. 
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For the other direction, suppose that f is given. If, contrary to 1, S were 
a countable union of convex subsets, S = U Cn, then by the Baire category 
theorem and the fact that '°(d + l) is a complete metric space, there would 
be an n such that f-~(Cn) was dense above some finite ~/. So we could pick 
(d + l) infinite sequences that pass through all immediate  successors of  ~/. By 
the demand on f the convex closure of their images under f would not be 
contained in S - -  contrary to the assumption that these images lie in a convex 
subset of S. 

3.2. EXAMPLE. We define a set S _C R 3 which has an uncountable 7, but 
which cannot have a perfect subset all of  whose 4-tuples form bad 4-gons, and 
which consistently is the union of R~ convex subsets, for R~ strictly smaller 
than R. 

Let us construct on the three dimensional sphere D a perfect subset B, and 
exclude from the interior of the ball open 4-gons to get a continuous function 
f :  ° ' 3 - -D  with the property that con(f(v), f(rh), f(~/2), f(~/a)) is defected (i.e. 
has non-empty intersection with one of  the 4-gons we exclude) if and only if 
there is a finite sequence r/such that three of the four sequences, say t/l, 172, r/3, 
pass through the immediate successors of ~/, while t / and  v are incomparable 
(see Fig. 6). 

v ~72 ~/3 

Fig. 6. 

The construction is, as usual, by approximations, and we describe only the 
induction step, in which we split a spherical cap to three subcaps. Choose three 
arbitrary vertices, a, b, c E u,, of  an equilateral triangle and draw around it a 
circle C, on the sphere, which separates it f rom all other neighborhoods, but 
does not touch it (see Fig. 7). 
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Fig. 7. 

Remove now an open 4-gon from N x~cCOn(x, a, b, c). Evidently, this 
removal defects all 4-gons of the form con(a, b, c, d) where d is taken from 
another neighborhood. Also, if we look at a 4-gon of the form con(a, b, d, e) 

where d and e are in other neighborhoods, we see that this 4-gon is separated 
away from what we have removed, by the choice of C. Now blow up a, b and c 
to sufficiently small closed neighborhoods. 

As in Example 2.1, we take the convex closure of B and subtract from it 

all the 4-gons removed in the construction. This is a compact set S. An 

argument identical to that in 2.1 shows that a(S)= Ro. An easy applica- 
tion of 3.1 shows that 7(S) > Ro (simply use the fact that above every finite 
sequence there is a 4-tuple of the type described in Fig. 8). So B is the set 

of bad points of S. But is ),(S) = R? First, let us observe that there cannot 
be a perfect set P _c B such that all its 4-tuples form bad 4-gons; for in any 
perfect subset of B must appear the type of four points shown in Fig. 8, and by 
the construction such four points are the vertices of a 4-gon whose convex 

closure is contained in S. This means that the analog of 3.2 for the 3-space is 
not true. 

But we know even more: note that if T is a perfect subtree of co 3 such that 

through every finite sequence r/there are at most two immediate successors 

through which sequences of T pass, then by our construction of B, the con- 

vex closure of all points of B indexed by the branches of T is a convex 

subset of S, because for every four such points the convex closure is contained 
in S. 

Now it is possible, using the technique of iterated forcing, to construct a 
model of set theory in which the continuum equals R2, and o, 3 is the union of 
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Fig. 8. 

R~ such trees. So in this model of  set theory 7 (S )=  Rl. This means that we 
cannot prove even the corollary of 3.2 - -  namely that 7(S) respects the 
continuum hypothesis p for closed sets in R 3. 

For the interested reader we sketch here the forcing construction. Start with 

a model of  CH. Then force with a finite support iteration P = (Pi, Qi I i _-< o9~) 

where a condition of Q~ is a finite function from '° 3 wP'J to o9 which satisfies that 

no three branches which separate simultaneously are mapped to the same 

member  of o9. So a generic set of  Q~ gives a decomposition of the old branches 
into R0 desirable sets. A simple A-system argument shows that each Q;, and 
therefore also each P~, satisfy the countable chain condition. So in V tel we have 

a decomposition of o~ 3 into R1 desirable sets, while during the iteration •2 reals 
were added. In a similar way we can get a model in which the continuum 
equals some 2 = 2 ~0, while our set S is the union of x --- cf(x) < 2 convex 
subsets. 

4. Other restrictions on a(S) 

We know that for a closed S _c R a a countable a(S) does not imply a 

countable y(S). But maybe stronger restrictions than merely countability of 

visually independent subsets imply this. 

4.1. DEFINITION. Let us denote by Cn(S) the condition "every visually 
independent subset V _ S has at most n accumulation points" for n ~ Nand  by 

C<,o(S) the condition "every visually independent subset of  S has only finitely 

many accumulation points". Denote by Co(S) the conditions "every visually 
independent subset of  S has a countable closure". 
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We mention here that in case 7(S) is not countable, S cannot be locally 
star-like with respect to every point (for then the convex kernels of the rational 
neighborhoods in which S is starlike would produce a countable cover of 
convex subsets), therefore there always exists a convergent sequence of points 
of  S which together with their limit constitute a visually independent set 
(see 2.3). 

This means that Co(S) (which really makes sense only for non-bounded sets) 
does imply that ~,(S) is countable, for all R d. 

The following example will show that in dimension greater then or equal to 
three, we cannot hope for more than that. 

4.2. THEOREM. There exists a set S c_ R 3 such that 2:(S) is uncountable, but 
such that every visually independent subset of  S has at most one accumulation 
point. 

PROOF. This is a variation on the previous example. The difference is that 
now, instead of removing open 4-gons from the interior of the 3-ball, we 
remove open pyramidal indentations. We again wish to construct a perfect set 
B on the sphere in countably many approximations, with the property that the 
type described in Fig. 6 is a bad type. This will again assure the uncountability 
of  y. However, we add the following demand: if bl and b2 are two different 
points of B, then there are open neighborhoods ul and u2 of bl and b2 
respectively, such that every point in S tq ul sees in S every point in u2 N S. We 
describe now the induction step. Coming to split the spherical cap u,, indent 
into the ball a pyramidal indentation through u, which is so fiat, that it can 
hide from no point of what is left of u~ no point from any of the other uv s. Next 
pick three points on u~ such that the plane they span meets the indentation. We 
leave the details to the reader. 

By the same argument which was used in the previous examples, we see that 
every set of visually independent points can have only a finite intersection with 
any ball of smaller radius; so a set of visually independent points may have 
accumulation points only on the sphere. By the additional demand, such an 
accumulation point is unique. 

So it is left to see whether for closed sets in the plane, Cn implies a countable 
~. We prove here a conjecture of G. Kalai: 

4.3. THEOREM. I f  S ~ R ~ is closed, then C~(S) implies that y(S) < Ro. In 
other words, i f  every visually independent subset has at most one accumulation 
point, then S is a countable union of convex sets. 
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PROOF. Suppose that S _c R 2 is closed, and that ~,(S) > R0; we intend to 
construct a visually independent subset of  S with two accumulation points. 
Define as usual B _ S, the set of  all (bad) points, which have no neighborhood 
in which S is a countable union of convex subsets. By the assumption ofT(S), B 
is a non-empty perfect subset. We also may assume, without loss of generality, 
that B is a seeing subset, for otherwise we would have as in the proof of  1.2 an 

uncountable visually independent set (which has uncountably many accumu- 

lation points). 

We construct now by induction on n a visually independent set (xi, yi [ i < n ) 

and two neighborhoods un, vn such that un A B 4: ~ and vn tq B 4: ~ with the 
following properties: (1) for all i < n, xi, y~ do not see any point of  un U v~; 

(2) diam(un), diam(v~) < 1/n and u0 tq v0 = ~ ; (3) if m > n then Um ___ u~ and 
Vm C_ Vn; (4)X~+IEU~ and y~+lEv~. 

Clearly, if the construction is carried out successfully for all n, the set 
(x~, y~ I n ~ N )  is a visually independent set which converges to two points of  

B, N n u~ and N ~ v~. 

At the stage n = 0 pick two points of  b and let u0 and v0 be two sufficiently 
small disjoint neighborhoods of those points. We break the stage n + 1 into 
two parts. We first pick x~, then y~. First we pick a triangle A(b~, b2, b3) whose 

vertices belong to u~ N B and such that con(b~, b2, b3)~ S. We know that such a 
triangle exists by the fact that con(B ~ u~)f~S and Carath6odory's theorem. 
Pick a hole inside A(bl, b2, b3), namely a connected component of  R 2 - S. By 

the assumption that B is a seeing subset, all the edges of the triangle are in S, 
and therefore the hole is contained in the interior of  the triangle. 

4.3.1. CLAIM. There is an ellipse of maximal area that is contained in the 

hole and its boundary touches the hole's boundary at three points such that the 
ellipse's center is contained in their convex closure. 

PROOF O~ CLAIM. Pick a maximal ellipse which is contained in the hole. By 

applying an affine transformation we may assume it is the unit circle. We 
assume to the contrary that the intersection of the ellipse's boundary with the 
hole's boundary does not contain the origin in its convex closure. Without loss 

of  generality, this intersection lies in the lower half plane. Pick a constant 
0 < c < 1/2 and define the ellipse 

E~=((x ,y )  Ix2+y2-e(y-c)(y+ 1)__ < 1). 

This is a stretching of the circle upwards which fixes its lowest point, with 
center 
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0 e (1 -  c) 
'2(1 ~ ) "  

As there is a minimum to the distance between the hole's boundary and the arc 

{ (x, y)  Ix  2 + y2 = 1, y >_- c }, a choice of a sufficiently small e guarantees that 

E~ is contained in the hole. A direct calculation shows that the area of E~ is 
greater than that of  the unit disk, thus contradicting its maximality. This shows 

that the origin is in the convex closure of the intersection of the boundaries, 

therefore it is in the convex closure of  some three intersection points. 
So we pick such an ellipse and three such points. Each of these three points 

does not see (at least) an open half-plane determined by the tangent to the 
ellipse at that point. These three half planes cover the whole plane (because the 
ellipse's center is contained in the convex closure of  the points). So at least one 

of  these half planes contains points of  B f) vn. Let x, be one of those three 

points which does not see a point b ~ v, • B. By the definition of xn, there 
must be a vertex, say b~, that x, does not see. Let u' be a neighborhood ofb~ not 

seen by x, and let v' be a neighborhood of b not seen by x.. 

Now change the roles, and let v' act as u, and let u' act as v, in the choice ofx.  
to choose y, and two neighborhoods v, + ~ c_ v. and un + 1 c_ un. Lastly, shrink the 

chosen neighborhoods further, if necessary, to have sufficiently small diameter 
as required by the construction. It is easy to verify that the choice fulfills the 

induction hypotheses. 

4.4. PROBLEM. Calculate for which n does C, imply a countable Y for 

closed S _c R 2. 

5. Non-closed sets with finite a and y = R 

5.1. EXAMPLE. We define A C W with a(A) - 2 and ~,(A) -- R. 

Define the curve M = {(cos 0, sin 0, cos 20, sin 20) [ 0 _-< 0 =< 2zc} and let 

K -- con(M), ext(K), the set of  extremal points of  K, lies on a 4-sphere, so we 

note that bd(K) -- N q,peu(P, q). 

CLAIM. Every edge (p,  q) is an edge of  K. 

PROOF. Let p = M(¢~), q = M(c/;2). Observe the function 

u(O) -- (1 - cos(0 - ~1))(1 - cos(0 - ~2)). 

Clearly, u(O)>= 0 and equality holds only when 0 = q~, or 0 = ~2. Using 

trigonometric identities, we can express u(O) -- ao + al cos 0 + a2 sin 0 + 
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a3 cos 20 + a4 sin 20 where the ais are constants that depend only on ~1, 02" 
Now define the function F(xl ,  x2, x3, x4) = ao + aixi, 1 _-< i _-_ 4. The non-negti- 
vity o f u  assures us that F- t (0)  is a supporting plane of  K i n  so we have proven 

the claim. 

An easy corollary of  the claim is that for any two open segments (p ,  q) and 

(r, t) the intersection is empty. 

We make use now of [ER], which assures the existence of  a triangle free 

graph of  size R whose chromatic number is also R, to pick such a graph 

whose vertices are the points on M. To define our set S, remove from K all 

open segments (p ,  q) such that p, q are connected by an edge of  the graph we 

picked. 

Now as the chromatic number of  the graph is R, it is clear that we cannot 

cover S b y  less than R seeing subsets. Note that if p, q do not see each other in S 

it must be that p, q E M  and that (p ,  q) was removed, by the claim and its 

corollary. So we cannot have a visually independent set of  size 3 because the 

graph has no triangles. 

5.2. EXAMPLE. We define a Borel set S _ R 4 with a(S) = 3 and 7(S) = R. 

Enumerate in a sequence (un In E N )  all rational open neighborhoods. By 

induction pick xn such that x, ~ u, and such that xl . . . .  , x, are in general 

position. There is no difficulty in carrying out this process. Now let S - -  

R 4 - (xn }.eN. If  v~, v2, v3, v 4 ~ S  is a visually independent set, then either there 
are three x, s on a line m in case all the v~ s are collinear - -  or there are at least 5 

x ,s  in a 3-space, contrary to the definition of  (x , ) .  So we establish a(S) <= 3. 

The reverse inequality is easy. As for the ~,, the set of  points (t, t 2, t 3, t4), where t 

is a real number, is such that every 4-tuple of  them forms a simplex from which 
a point was removed - -  therefore ~,(S) = R. 

5.3. EXAMPLE. We define a Borel set S _ R 3 with a(S) = 4 and 7(S) = R. 

Enumerate all rational neighborhoods. At the nth stage remove x, E un - 

Cl (Q(xx , . . . ,  x ,_  l)), where CI (Q(x l , . . . ,  x ,_  1)) is the algebraic closure of  the 
field extension obtained from the rationals by adding the 3n - 3 coordinates 

of  the x s. So the set (x , )  is dense, and the set of  the coordinates of  its members 

is an algebraically independent set. Let S be R 3 - {x,). As before, 7(S) is 

clearly the continuum. Let us see why ~(S) >_- 4. Pick any non-degenerate 4-gon 

T. Pick a small enough neighborhood around the middle of  each of  the 6 edges 

of  T. The neighborhoods are so small, such that any choice of  six points, one 
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point from each neighborhood, determines a non-degenerate 4-gon whose 

edges pass through these points. Use the density of  the x~ to pick one x~ inside 

each neighborhood. So each 3-tuple of  x s determines a side of  a 4-gon. The 

algebraic independence of  the x s assures that the vertices of  this 4-gon are not 

x s. As in each edge there is a missing point, the vertices are a visually 

independent set. 

For the converse inequality, note that if ( p~ . . . .  , Ps} is a visually indepen- 

dent set, no four ps  are co-planar, for then we would have at least five xs, 

which are required to hide the ps from each other, in one plane. So the p~ s 

are in general position. This means we need exactly 10 x~ to interrupt see- 
ing. Now add to the field of  rationals the 15 coordinates of  the p~ s. An addition 

of  the coordinates of  each x of  the 10 points on the edges increases the 

transcendental degree of  the field by at most 1, for it is on an edge whose 

endpoints are in the field. So we can have all ten xs  in a field of  transcendental 

degree of  no more than 25, while by the construction 30 is required. Contradic- 

tion. 

5.4. EXAMPLE. We define a set S ___ R 2 with a(S) = 5 and 7(S) = R. 

Enumerate all rational neighborhoods. At the n th stage remove xn E un - 

CI(Q(xl . . . . .  x ,_  0), where CI (Q(xI , . . . ,  x ,_  1)) is the algebraic closure of  the 

field extension obtained from the rationals by adding the 2n - 2 coordinates 

of  the x s. So the set {x, } is dense, and the set of  the coordinates of  its members 
is an algebraically independent set. Let S be R 2 -  {x,}. As in the previous 

example, obviously 7(S) -- R. Now let us see why a(S) > 5. 

In Fig. 9 we first choose four xns, without loss of  generality xt, x2, x3, x4 

which are near (0, 1 ), ( - 1, 0), (0, - 1 ) and ( 1, 0) respectively. Assume, for 

simplicity, that Xl = (0, 1 ), x2 = ( - 1, 0) and so on. Let P0 = (0, 0). Let 
p~ = (0, 2). Let pE(p~,  ( - 2, 0)) be such that d(p~, p) = 1/2. Within e o f p  

pick x5 and let P2 be the intersection point between the x- axis and (p~, xs). So P2 

is near ( - 2, 0). Do the same to find P3 and P4. Pick P5 on the y- axis, an epsilon 

below Pl, and let xs 6 (p4, P~) be such that [ d(xs, P4) - 1/21 < e. So P0 does not 
see any of  the other p~ s, and p~ does not see neither p~ + 1 nor p~ + 2. But maybe p~ 

sees P4. In this case imagine that the x, s are hinges, and that ( p~, p~ + t) are rods, 

and pull pl upwards. Follow the arrows to see that P5 will move upwards faster 

than p~, so in a short way p~ and Ps merge. As two x s are already removed from 

the y-axis, p~ and P5 do not merge at a point which was removed. This yields a 

visually independent set, ( Po, • • •, P4}, of  size five. 

It remains to be seen why a(S) < 5. So assume to the contrary that a~ . . . . .  as 
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P2 J _ . ~  I p0 

X2 X4 

X6 

p3 4' 

Fig. 9. 

X8 

are six points which constitute a visually independent subset of  S. This 

means that in every interval (ci, cj) there is a point c E {xn }. We pick a set of  

such cs of  minimal size and order those points in a list cl . . . .  , Cm where 

m < 15. Define Vk as the number of  intervals (c;, cj) such that Ck~(a i ,  Cj), but 

for no I < k ,  Cl E (a~, aj). We compute now a bound Ak of  the transcendental de- 

free of  Q(a~ . . . .  , a6, c~ . . . . .  Ck) by recursion. 2o = 12 - -  for we have twelve co- 

ordinates of  the a~s. I fVk = 1, then AK is Ak, + 1, for once one of  the coordinates 
o f  Ck is added to a field which contains the c~s, the other is a solution of  a 

linear equation. In case VK > 2, the coordinates of  CK are already in the field 

containing the c~ s, being the solution of  a linear system of equations. In this 

case AK = '~k- I. Note that Vk < 3 (for there are only six c~ s), and that the value 3 

can be assumed at most once by Vk. So, in the first case assume that Vk < 2 for 

all k < m. Then we can write 20 = 12 and for k > 0, Ak = Ak-~ + 2 -- Vk. This 

gives that Am = 12 + 2m -EVK = 12 + 2m -- 15 < 2m - -  a contradiction to 

the algebraic independence of  the 2m coordinates of  el . . . . .  cm. In the second 
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case  we  a s s u m e  w i t h o u t  loss  o f  g e n e r a l i t y  t h a t  v~ = 3 a n d  w r i t e  2~ = 12, 

2k = 2k-~ + 2 -  Vk. NOW the  r e c u r s i o n  has  o n l y  m -  1 s teps ,  so we h a v e  

2m = 12 + 2 ( m  - -  1) - -  EVk = 12 + 2 m  - -  2 - -  12 < 2 m ,  aga in  a c o n t r a d i c t i o n .  
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