
On the Temporal Analysis of Fairness

by

Dov Gabbay(~’, Amir Pnuelj_(;’* , Saharon Shelah
(f, 9,9,

, Jonathan Stavi(”
Bar Ilan University, Ramat-Gan, Israel

[L: Tel Aviv University, Israel
(,~$,9,$

The Hebrew University, Jerusalem, Israel.

the temporal logic formal-
reasoni.ng is ~eviewed. Sev-
res~onsiveness and fair-

Abstract

The use of
ism for program
eral aspects of
ness aye analyzed, iea,di.ng to the need for
an additional temporal operator: the ‘un-
til’ operator -U. Some general questions
involving the ‘until’ operator are then
discussed. It is shown that with the addi-
tion of this operator the temporal lan-
guage becomes expressively complete. Then,
two deductive systems DX and DUX are proved
to be complete for the languages without
and with the new operator respectively.

1. Introduction

The formalism of temporal Logic has

been suggested as a mcjst appropriate tool,

for reasoning about programs and thei~ ex-

ecutions. Originally, temporal Logic has

been designed in order to analyze and rea-

son about time sequences in general, Formal-

izing the possible variations in time of a

varying(dynamic) situation, we consider

time sequences SO,S1, ,.., where each Si

is a state giving a full description of the

s~tuatlon at Instant :L = O ,1, Temporal

Logic introduces a clear distinction bet-

ween variability within a state, which is

described using classic connective and

quantifiers, and the variability over time,

moving from one state to another. For

changes over time, special temporal oper-

Permission to copy without fee all or part of
this material is granted provided that the copies
are not made or distributed for direct commercial
advantage, the ACM copyright notice and the title
of the publication and its date appear, and no-
tice is given that copying is by permission of
the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and)
or specific permission.

ators are introduced. The Temporal opera-

tors that we will consider in this paper

are

for

~.

given below with their interpretation

an arbitrary time sequence:

Sn,s, ,... .“. ~.

The truth value of a classical (non-

temporal) formula w at instant i is

found by evaluating w on Si.

F is the existential future operator,

Fw is true at an instant i if there ex-—

ists some future instant j, j>i, such

that .W is true at the instant j .

G is the universal future operator.

Gw is true at an instant i if for all

future instants j, j>i, w holds at j.

X is the next instant operator. Xw

is true at i if w is true at i+l.

U is the until operator. W1UW2 is

true at i if there exists a future in-

stant j, j>i such that W2 is trwe at

j and for all instants k in between,

i.e., i<k<j , W1 is true at k. Thus

w Uw
12

means that
‘1

will be true until

the next occurrence of W2. By our defini-

tion w1Uw2 implies FWZ .

To write the above truth definition

formally we consider a language L(F,X,U)

@198(IACM 09791.01”1-7/80/0100-0163 $00.75

163

Permission to make digital or hard copies of part or all of this work or
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers, or to redistribute to lists, requires prior
specific permission and/or a fee.
© 1980 ACM 0-89791-011-7…$5.00

Sh:134

with atomic sentences q~,ql>q2, . . . the Gw is defined to be the formula ~F~W.

classical connective ~,A>V,2 and the

tense connective F,X,U. We let M ❑

(M,<,Q0,Q1,Q2,. . .) be a model, where (M,<)

is a linearly ordered set and Qig. FOP

each atom q. of the language, Qi is con-
1

sidered the truth-set of q. . We define
1

the notion II W[(:, fol? mEM by induction

on the formula w. (\(w[l~ is the truth val-

ue of w at m in the model M). M is

usually omitted and we write Ilwllm

(1)

(2)

(3)

(4)

(5)

For W ❑ q. atomic, Ilwl[m ❑ true iff
1

mCQi.

[/’W/lm= =iff Ilwllm= false.

Ilwl=wzllm _❑ true iff Ilwlllm _= false

or IIW21] ❑ *

{lXw\[m ❑mtrue in case m has an imme–

diate successor m’EM and Itwllm, =

true

IIFwII,, . ~ iff ~ml.m s.t. IIwlj .

‘1

true

llw~”wJ/m‘ Lxxs if ~m2>m such that

[lw211m2—❑ true and for all ml,

m’m~’m~ * llw~ll ❑ g.

‘1
M is called an u-model when its “time

structu~el! (M,<) consists of (set u of)

the natural numbers with their usual order-

ing. A formula w is said to be u-valid

when Ilwlln ❑ true for all w-models M and

all nEu.

We denote by L(U) the sublanguage

obtained from L(X,F,U) by omitting X,F.

This involves no loss of expressive power

since
Fw a (true U w)

Xw ~ (false U w).

The application of temporal Logic to

Program Reasoning is based on the view of

prOgrams as generators of execution sequen-

ces . If we allow nondeterministic prog-

rams , then each input to a program gener-

ates a set of possible execution sequences.

Each execution sequence is a sequence

o = ‘O’sl’””” of program states, such that

‘o is the initial state containing the

input and each is derived from s .‘i+l 1

by executing the appropriate program inst-

ruction. By including the program location

as part of the state, the appropriate inst-

ruction (or set of possible instructions in

the nondeterministic case) is uniquely id-

entifiable. Obviously, by stating proper-

ties which hold for all the execution sequ-

ences of a program, we are stating proper-

ties of the generating program.

To illustrate this point let the pro-

gram be labeled by labels go,... fie, !0

being the entry point and %e the exit

point. Let us select a set of propositions

at% ,... ati
o e

such that atl. is true
1

in a program state s iff when in state s

the program is about to execute the in-

struction at location &i, The following

temporal formula expresses then the prop-

erty of partial correctness with respect to

an input-output specification (W,~):

(atLoA~=~AqI(~))-G(atie=~(~ ,j))

Interpreting this formula in state so of

an execution sequence so, s ,... it reads:
1

If at ‘o we are at
‘o

with the

program variables ~ equal to an input ~

164

Sh:134

satisfying ~(~), then it is invariably

true that whenever we reach the termina-

tion point J.e, ~ will hold between the in-

put values ~ and the current value of the

program variables, Note that this guaran-

tees correctness provided the program term-

inates, but does not guarantee termination

itself.

Similarly, to express total correct-

ness we write:

(at~oAj=~AQ(~))=]?(at8eA+(~ ,j)).

This guarantees ‘that if we satisfy the

proper initial conditions then we will ev-

entually get to a sta-te at which both at~e

and ~ are true, hence to correct termina-

tion.

This general idea of expressing and

proving properties of programs, by temporal

reasoning on the set of their execution

sequences was pursued in greater detail in

several works, ([PI], [P21, CMpl, [K~l).

It has been shown there that the language

L(X,F), consisting of the operators X and

F (and hence also G) is a powerful tool

for formalizing many important properties

of programs. Its main strength and advan-

tage lie in the treatment of properties

which cannot be expressed when viewing pro-

grams as functions or relations. The se

properties are of cou?se essential in dis-

cussing operating systems, concurrent pro–

grams and nonterminating (cYClic) programs

in general. Classifying properties accord-

ing to the form of the temporal formula

(and hence the applicable proof method)

expressing the% we arrive at the following

simplest classes:

Invariance - Properties expressible

by a formula of the form: p=Gq. The class

of invariance contains the properties of

Safety, Partial Correctness, Mutual Exclu-

sion, Clean Performance, Deadlock Freedom.

Eventualities - Properties expressible

by a formula of the form pZFq. It includes

among others the properties of: Liveness,

Total Correctness, Accessibility, Livelock

Freedom, etc.

The language was also shown to be ade-

quate for the detailed description of the

execution of a concurrent program model.

This enables the definition of the semantics

of a concurrent system and a derivation of

proof principles for proving its properties.

([P21)$

However, investigating more complica-

ted properties, in particular these involv-

ing fairness, led us to the realization

that the L(X,F) language is not expressive-

ly complete. By this we mean that there ex-

ist some important properties which cannot

be expressed in such a limited system. The

simplest one is that of the ‘until’ condi-

tion itself, p U q, which states that” q

is bound to happen, and until it happens,

p will hold. As a result, the language

that we present here is an augmented lan-

guage L(U) ❑ L(X,F,U) , which is based on

the operators: F,X,U (and G). The question

naturally arises, whether we will not even-

tually encounter some further properties

which could not be expressed even in this

extended system. We provide a negative ans-

165

Sh:134

wer to this question by showing that the

L(U) language is expressively complete. We

also provide an axiomatic system, DUX which

is shown to be deductively complete for

L(U).

We will emphasize the importance of

the operator tul by listing first some

properties, involving responsiveness which

can be expressed without the ‘U! , and then

some properties which must use the ‘until’

operator for their expression. We will list

first different shades of responsiveness

according to the strength of their commit-

ment :

a) Response to Insistence

The weakest form of responsiveness

states that a permanent holding of a condi-

tion or a request p will eventually force a

response q.

This can be written as: Gp z Fq, or

if stated ove~ all future behaviors

G(Gp - Fq).

Sometimes, the response q frees the

requester from being frozen at the request-

ing state. In this case once q becomes

true> P ceases to hold, apparently falsi-

fying the hypothesis Gp. This difficulty

is only interpretational and we can write

instead the logically equivalent condition

* G(p A% q), namely, it is impossible for

P to be frozen indefinitely and q never

to realize.

To illustrate the utilization of such

a statement, consider a component of a

process which is busy waiting for a condi-

tion (say, x>O) which presumably some

other process is expected to generate.

m: if x ❑ O then ~ to m— —.

We use the proposition ‘atm’ which is true

at each time instant in which the execution

of our process is at m, namely about to ex-

ecute m. Then, the only statement we can

make about this situation and its resolu-

tion is:
m G(atmAX>o)

i.e. it is impossible for the process to be

stuck at m while x is continuously posi-

tive . It implies that the scheduler will

eventually schedule this process which

will find x positive and proceed beyond m.

This is also the weakest definition of

a semaphore’s behavior, as well as the mini-

mal fairness requirement from any scheduler.

It requires that any process will eventual-

ly be scheduled for execution. Note that

for semaphores this allows infinite over-

taking.

b) Response to Persistence

A stronger requirement and the one

which most suits a semaphore’s behavior

is that the infinitely repeating occurrence

of the condition p will eventually cause q.

We do not require p to hold continuously,

but only to be true infinitely often. The

statement of this eventuality is:

GFp a Fq

or if required continuously: G(GFp z Fq).

Similarly to the case above the

first form is logically equivalent to

~G(FpA~q) which we will sometimes prefer.

166

Sh:134

Consider a semaphore instruction:

m: P(x)

The proper statement of its behavior is:

~ G(F(x>O)Aatm)

This st’ates that no process can be

waiting indefinitely at m for a semaphore

entry while the semaphore’s variable turns

true (positive) infinitely often. Note that

to ensure this it is not sufficient to

guarantee that this process will be sched-

uled infinitely often. Because by some high-

ly improbable run of bad luck all these

scheduling instances could exactly coin-

cide with the instances in which XZO, and

the process will never proceed. The same

criterion should alscj apply to the fairness

of conditional critic!al section instruc-

tions :

m: with P when B do S..— —

Here we should also require:

w G(F(r>OAB)Aatm)

i.e. it is impossible to remain stuck for-

ever at m while states in which both B

hold and the resource (r) is free, repeat

infinitely often. This can be implemented

by means of semaphores and a queue, or us-

ing an unbounded counter ([LII). It cannot

be done with semaphores alone (see [GRI and

[KRI for a discussion).

A weaker interpretation of the condi-

tional critical section is also possible:

- G(F(r~O)AatmAB)

This one guarantees admission only if

B is permanently held true from a certain

point on, while r becomes free (positive)

infinitely often, The implementation of

this weaker construct by semaphores is easy.

c) Response to an Impulse

The strongest type of responsiveness

is the one in which a single occurrence of

p guarantees q. This is written as: p 1 Fq

(more generally G(P ~ Fq)). It is a natural

and useful expression for the discussion of

total correctness, ‘sometimes’ reasonings,

and other temporal causalities of internal

events, It is too strong, on the other hand,

for the expression of responses to extern-

al signals and conditions. This is so be-

cause it is seldom the case that a system

is so attentive that it could always detect

a single occurrence of an incoming signal

which does not repeat.

Having formulated the different types

of responsiveness, we can augment them with

requirements for fairness. While managing

quite well in cases a) - C) with just the

F,G operators, we must introduce now the

‘until’ operator U.

Consider the following situations:

d) Absence of Unsolicited Responses

We may wish to complement the state-

ment that p will eventually cause q

(p a Fq), by saying that on the other hand,

q will never happen unless preceded by

a p, We may wish to state for example that

a resource allocation system will not grant

a resource +0 somebody who did not request

it. Ignoring boundary effects (i.e. p and

q happening simultaneously), this can be

167

Sh:134

expressed as: the program. An example of statements and

Fqo(mqup)

i.e. that if q is going to happen at all,

it cannot happen until p happened first (or

concurrently) .

e) Strict Fairness

Suppose there are two requests PI

and p2 and two corresponding responses ql

and’ q2. We may wish to impose strong FIFO

discipline on the responding agent and

state that if pl preceded p2 then ql will

precede q2.

For this it is convenient to express

the fact that starting from the present,

the first occurrence of P2 must be pre-

ceded bY an occurrence of P1. In fact this

is exactly the expression used in d) above

and we define generally:

Pe(P1,P2) ❑ FP2 ~ (~ P2 U PI)

The strict responsiveness discipline (FIFO)

can now be written as:

Pr(p1,p2) =1 pr(q1>q2)

Consider for example two competing sema-

phore instructions :

m: P(x) n : P(x)

m’ : ~l.

A FIFO implementation of semaphores would

require:

Pr(atm, atn) 0 Pr(atm’, atn’).

One could use this as a basic axiom for the

behavior of semaphores under a given (FIFO)

implementation and then deduce from it

a global FIFO behavior of larger parts of

reasoning about strict fairness exists in

[Ll].

d) and e) ape really only a first

approximation to the properties we had in

mind. For example Pr(p,q) strictly ensures

only that the first occurrence of q is

preceded by an occurrence of p. What exact-

ly we would like to have is: “Every q is

preceded by a p which happened after the

last q, if any”. Thus we cannot be satis-

fied with a single p succeeded by many

q’s, even though this situation formally

satisfies the requirement: “every q is pre–

ceded by a p“. The property described

above, i.e. interleaving of at least one

p between consecutive q’s can be described

as :
Pr(p,q)AG(q~pr(p,q))

It states that picking as a reference point

either the initial state, or any instant

in which q holds, ensures that the first

instance of q after the reference point

is preceded by an instance of p occurring

between the reference point and the in-

stance of q.

In view of the demonstrated importance

of the operator ‘U’ we will now address

ourselves to the more theoretical questions

of its contribution to the expressive power

of the language, and the appropriate deduc-

tive system for reasoning about L(U).

Sepcifically, we pose the following

questions:

1) Is L(F,X,U) expressively stronger

than L(F,X), or could we perhaps express

u in terms of F,X?

168

Sh:134

2) Is L(U)=L(F,X,U) expressively

complete, or are there some other reason-

able properties which cannot be expressed

even in L(U)?

3) What is an appropriate de-

ductive system for L(F,X)?

4) What is an appropriate deductive

system for L(F,X,U)?

Question no. 1 was answered by Kamp

([KP1], Ch. IV Theorem 3) who showed that

U cannot be expressed. in terms of an even

richer language than L,(F,X). Kamp was ac-

tually the first to deal with these ques-

tions, realizing that L(F,X) is expressive-

ly incomplete, and to introduce the ‘until!

operator as well as its past counter-

part, the ‘since’ operator. He also showed

that the Language with both the lsincel

and * until f operators is expressively

complete for expressing situations extend-

ing over the past, present and future. The

main new point in our work, as compared

to his is, in addition to a simpler proof,

the isolation of the future fragment and

showing its independent completeness. Since

a dual proof applies to the past fragment,

this provides an alternate derivation of

Kemp’s original result, and a separation

property of the mixed Language L(U,S), in-

to L(U) and L(S). Also our methods have led

to a solution of a problem left open by

Kamp, that of obtaining a natural temporal

language which is expressively complete for

arbitrary linearly ordered time structures

(see end of section 2,). The affirmative

solution to question 2) is presented in sec-

tion 2.

Deductive systems for both L(X,F) and

L(X,F,U) have been suggested in [P2] and

[MY] respectively. These system, DX for

L(X,F) and DUX for L(X,F,U), have been

claimed complete in these works but proofs

were not presented. In section 3 we pro-

vide an outline of a proof which applies to

both systems and establishes their complete-

ness .

2. L(U) is expressively complete

We begin by defining our notion of

expressive completeness. The standard of

comparison will be the first-order lang~age

L1 of linear order. L1 is a first-order

language with equality, containing the bin-

ary predicate < and unary predicates

qo>ql>q2>. ..Y which we identify with the

atomic sentences of the propositional tem-

poral language L(U) described before. Note

that L1 and L(U) are interpreted in the

same kind of models, namely in structures

M z <M,<,Q0,Q1,Q2, ...> where ~ is a lin-

ear ordering of M and Qi ~ M for i~u. The

model M is said to be complete when every

non-empty bounded subset of M has a least

upper bound and a greatest lower bound (in

the ordering <); discrete when every ele-

ment mEM which is not maximal in <M,<> has

an immediate successor, and every non-mini-

mal element has an immediate predecessor;

an w-model when <M,<> is the set of natur-

al numbers with its usual ordering. Every

u-model, as well as a model ordered like

the integers, is both discrete and complete.

The ordered set of real numbers is complete

but not discrete, and the ordered set of

rational numbers is incomplete.

There is a natural translation of

L(~)-formulas 9 into L1-formulas e~i(x) such

that for every model M = <M,<,.. .> and

mEM, e>? is satisfied in M

ment m i ff e is true in

instant) m. We express this

by the ele-

M at (the

by saying that

169

Sh:134

9->’t = e in M at m for all models M and all

mEM. Expressive completeness means the ex–

istence of a translation in the other dir-

ection, and is given for u-models in the

following theorem.

Theorem 2.1. For every formula ~(x)

of Ll there is an L(U) - formula 8 such

that w = 6 in every u-model at the point O.

[The restriction to point O is necessary

because the truth value of any 6EL(U) in M

at m depends only on what happens in M at

and after m, not before m, whereas Ll–form-

ulas may refer also to the past.]

This theorem is a special case of the

following one, in which the ~estriction to
X ❑ O is removed but we assume that Q(X)
has a special form, By a fu+ure formula of
L1 we mean a formula ~(x)~<ch all

quantlif~ers ape restricted to [x,~), i.e.

are of the form (Vy>x] or (3y>.x). Such form-

ulas refer only to the present and future

@f the moment x.

Theorem 2.2. For every future formula

Q(X) of L1 we can find an L(U)-formula El

such that v ❑ 8 in every discrete complete

model at every point.

This is closely related to the main

result of [KII, which asserts that the lan-

guage L(S,U) with Since and Until is ex-

pressively complete, with respect to the

full language Ll, over complete models.

Our approach to Theorem 2.2 can easily be

adapted to give a simpler proof of Kamp’s

theorem, which in fact follows from Theorem

2.2 and its dual for the case of discrete

complete ordering. Conversely, Theorem 2.2

follows from Kamp’s theorem together with

the following:

Theorem 2.3. Every L(S,U) formula is

equivalent, over discrete complete models,

to a Boolean combination of L(S)– and L(U)

formulas.

In a sense 2,2 is equivalent to the

conjunction of 2.3 and Kamp! s result. In

[G2], Theorem 2.3 is proved by a direct

syntactical argument and shown to imply

Kamp’s theorem (and hence Theorem 2.2).

The proof of 2.2 presented here follows

[ss1.

Proof of 2.2 (outline). First we need

a normal form for L1-formulas with any num-

ber of free variables, in order to restrict

later inductions to formulas @(x,y) which

refer only to what happens between x and y

(allowing y=- or x=-~, this includes also

formulas about the future of x or the past

of y). For every variable z let At(z) be

the set of all formulas of the form +q:(z)

(i.e. qi(z) or m qi(z)), iCu. If x and~y

are distinct variables define the set

Betn(x,y) of formulas by induction on n as

follows:

BetD(x,y) = 0; Betn+l(x,y) ❑

{~3Z(X<Z<YATJ1A. . . Aq2m) ImCu and for each i,

@i E Betn(x,z) UAt(z)UBetn(z,y) }.

Let Bet(x,y) ❑ U Betn(x,y);
nEu

Aft(x) ❑ Bet(x,~); Bef(x) ❑ Bet(-~,x).

Call a formula *(xl,xk) special on

Xl,, ..,xk when it has the form

ITAI+lA. . . A*m, where n determines the rela-

tive order of xl,... ,xk (say xl<. ..<xk),

m~u and each vi is in the set

Bef(xl) UAt(xl)UBet(xl,x2)U. .. lJAt(xk)UAft(xk)

Lemma 1. E~:FI L1--farmula @(xl,. ..,xk)

is equivalent to a finite disjunction of

special formulas on xl, . . . ,x
k“

This is proved by induction on v and

is essentially [Kl, Ch. II, Theorem I]. The

next task is to analyze the expressive pow–

er of a formula in Bet(x,y) , where x or y

may also be -~ or +~. It is at this point

that our proof begins to diverge from

Kamp ‘ s . We define the notion of a Decompo-

sition Formula. This is a formula 6(x,y)

of the form:

X<YA ~ ZO,. .,>Z ~[x’zo<zl< . ..<zn=yl

n-1 n
A ~ 8i(Zi)A ~ btl(z i_l<u<zi3Qi(u) 1
i.1 i=l

where each 6. q.
1’ 1

is a translation into L
1

of an L(U) formula. If y = ~ we allow addi-

tional conjuncts of the form

Vu(wu)yj(v)

170

Sh:134

whe~e each
+j

is a:n L -translation too.
1

Main Lemma. Every formula in Bet(x,y) is

equivalent to a disjunction of decomposi-

tion formulas.

Applying this lemma to a Bet(x,~) form-

ula yields theorem 2.1 since a decomposition

of (x,’=) is easily translatable into an

L(U) formula about x.

The Lemma itself is proved by induction

on n for formulas in Betn(x,y). The diffi-

cult part involves negation and is over-

come by:

Prop. 2.4. A negation of a decomposition

formula is equivalent to a finite disjunc-

tion of decomposition formulas.

In order to prove this proposition

we introduce the concept of event express-

ions. These are terms of an auxiliary lan-

guage which describe first or last occur-

rences of events given by a temporal form-

ula. A typical event expression may be:

!!The last q occurrence before the

first p occurrence in the interval (x,y)”.

A main lemma is the proof states that

for each decomposition formula we can find

a finite set of event expressions, such

that their relative order determines the

truth value of the decomposition formula.

Conversely, every statement of the rela-

tive order of some event expressions is

equivalent to a disjunction of decomposi-

tion formulas. Since a finite set of event-

expressions has a finite number of possible

order arrangements, and any interval in a

given model realizes exactly one of these

arrangements, the negation of some of them

is equivalent to the disjunction of the rest.

This leads to proposition 2.4.

This proof can be modified to apply to

an arbitrary complete linear order (not

isomorphic to natural numbers). We can then

obtain an alternate p:roof of Kamp’s result

about expressive completeness of U and S.

Moreover, we can add to U, S two more conn-

ective U’ and S’ handling gaps and ab~ain

the following theorem:

Theorem 2.5 Every formula Q(x)EL, can be

translated into a formula e of L(S,U,S’,U’)

such that 9 Z O in every linearly ordered

model at any point.

3. DX and DUX are Deductively Complete

In this section we present twO axiom-

atic systems, DX for L(F,G,X) and DUX for

L(F,G,X,U) and prove their deductive com-

pleteness, i.e., every temporal formula of

the language which is valid in all u-models

is provable in the appropriate system.

Validity in this section should be taken

as validity in all u models .

The axiomatic system can be taken as

follows:

Axioms : Take G,X,U as primitive and de-

fine Fw ❑ ~G(~w).

Al. +G(pnq)a(Gp-Gq)

A2 . !-X(mp) = Wxp

A3 , i-x(p=Jq)=(xp=xq)

A4 ; l-GpaXpAXGp

A5 . FG(p=Xp)a(XpnGp)

U1 . FpUq~Fq

U2 . +pUq ~ xqV(xpAx(@q))

Rules of Inference.

R1 . If w is a tautology then kw.

R2 .
lf ‘wl=w2 and ‘W1

then FW2

(Modus Ponens)

R3 . If l-w then EGW (Generalization)

The system consisting of A1-A5, R1-R3 is

the system DX (1) , while the full system

(adding Ul, U2) is the system DUX(II).

The semantical interpretation is the one

given in the introduction.

Theorem 3.1 (Soundness)

(1) If [– ~w then w is valid.

(2) If +llW then w is valid

(For w in the two appropriate lan-

guages : L(F,G,X) and L(F,G,X,U)).

Theorem 3.2 (Completeness)

(1) If w6L(F,G,X) is valid then

[- ~w

(2) If wEL(F,G,X,U) is valid then

k IIW.

Proof:

Let WO be a 1- consistent wff. We

will construct a finitely representable

u-model satisfying WO.

The proof proceeds through several

171

Sh:134

major steps: We construct first a model S

foF w“ whose elements, A are each a

maximal consistent theory (a maximal set

of formulas which are consistent relative

to I OP II). S is not necessarily an u mod-

el, but it satisfies WO.

Next we take a finite set of formulas

r, which contains WO and all of its sub-

formulas and is closed under some appro-

priate requirements (e.g. if FwEr, then al-

so xwcr, xFw6r).

We construct a finite model $ obtained

by identifying states (points) of S which

agree over r: Up to this point the pro-

cess is very similar to the proof of com-

pleteness for Propositional Dynamic Logic

([GII, see also [FL]).

The problem with $ is that a state

may have more then one successor. We thread

through ~ an infinite path which has the

property that it traverses infinitely often

every node of one of the strongly connected

components of 3. In other words, if a node

nE3 appears infinitely often in the path

then so does each of its ~ successors. This

ultimately periodic path serves as our

final model.

A more detailed description follows:

Let S be the set of all maximal

consistent theories of the system. A stan-

dard argument shows that for some AO in

s, WOEAO. Define the following relations

< and + on S.

+
A ❑ {wIXWEA}

A<@ iff for all w, GwEA+wCO.

It can be shown, using the axioms and theo-

rems that:

A’+ES for every AES and

Vx,y,zES (X<YAX<ZAY+Z+Y<ZVZ<Y)

If FwEA then for some 0, A<EJ and wE@.

Thus <, restricted to the set of all A,

‘JAO’
is a linear order consistent with F.

The next step is to extend {wo} to a

set r of formulas having the following

closure properties:

(a) FwEr + Xw, XFwCI’,

xwcr + xmwEr

‘luw2Er + ‘W2’XW1’XW2’
x(w1uw2)er

(b) r is closed under subformulas

and boolean operations.

Moreover, r can be chosen so as to con-

tain only finitely many distinct formulas,

up to logical equivalence.

Let ~ = {AilrlAES}. Clearly S is a

finite set.

Definition. Define P+>P< on ~ by:

to+s iff for some AES, t=Anr

and s ❑ A+nr.

tp<s iff for some A,OES, A<O and

t = Anr, s = onr.

Lemma p< is the transitive closure of p+.

The proof uses the induction axiom

scheme A5.

We are ready now to define the model

(w,<,{di}). Let SO ❑ Aonr, which is an

element of ~ containing Wo. Let {Sn} be

a sequence of states from ~ such that

for any tE3, if t = Si for infinitely

many i then every t’ such that tp+t’

is also equal to infinitely many Si. We

use {sn} to form our final model, The

truth assignment for the atoms in this

model is given by Qi ❑ {nlqiCSn}.

Lemma For any wEr, Ilwlln ❑ ~iffwESn.

The proof proceeds by induction on w. For

each connective we use the axioms involving

that connective.

We thus get that llwJ ❑ true.

We have shown that” for any con–

sistent
‘o

there exist {Qi} such that

Ilwollo —❑ true in the model (u,<,{Qi}).

This proves the completeness theorem,

Corollary Both DX and DUX are decid-

able.

Since the final model constructed was

finitely representable we can deduce from

the proof a bound, depending on Wo, for

the size of its finite representation.

Hence if a formula is satisfiable it is

satisfiable by a model whose complexity

does not exceed this bound and a decision

procedure exists.

172

Sh:134

Comment.

In the earlier work ([P1],[P2], [MY])

the temporal operators were defined in a

somewhat different way than in this work,

The definitions here conform more closely

to the conventions used by temporal log-

icians. Denoting the temporal operators

under the interpretation given in [PI] etc.

by FO,GO,UO respectively they can be re-

lated to the operators used here as fol-

lows :

FOw : WVFW

GOw ; WAGW

Wluow
2

; GW1VW2V(WIA(W1UW2))

Note that the difference is whether

we include -the present as a part of the

future or exclude it. Also, U has an exis-

tential character while UO has a univer-

sal character. In discussing program prop-

erties the FO,GO,UO operators seem more

natural, as the attentive reader of section

1. might have realized.

The axiom systems DX and DUX described

above can easily be transformed to complete

axiomatix systems DOX and DOUX

and L(GO,X,UO) respectively.

AOl. kGO(paq)=(GOp=GOq)

AU2. i-x(mp) = Wxp

A03. I-x(p=q)=(xp=xq)

A04. t-GOp-pAXGOp

A05. !-GO (poXp)a(paGOp)

U“l. EGOp-pUOq

u02. ~puOq=qV(pAx(puOq)

for L(GO,X)

The inference rules are the same, using G
o in

the generalization. AOl-A05 , R1-R03 constitute

DOX, while the full system is DOUX.

A system equivalent to DOUX appears

in [MYI.

References

[FL] - Fischer, M.J. and R.L. Ladner:

llproPositional Modal Logic of pro-

grams”, Proc. of the 9th ACM Symp.

on the Theory of Computing, Boulder,

Col . May (1977).

[Gil - Gabbay, D.: “Axiomatization of Lc

gic of Programs”, Manuscript, Nov.
(1977).

[G21 -

[GRI -

[Kl] -

[K21 -

[KRI -

[Ll] -

[L21 -

[MP] -

[MY] -

[Pll -

[P21 -

[ss1 -

Gabbay, D.: “The Separation Property

of tense Logics”, Manuscript, Sept.

(1979).

Gries, D.: 11A proof of Correctness

of Reim’s Semaphore Implementation

of the with-when statement”, Tech-——

nical Report TR 77-314, Cornell

University, Ithaca, N.Y.

Kamp, H.W.: “Tense Logic and the

Theory of Linear Order”, Ph.D.

Thesis University of California,

Los Angeles 1968.

Kamp H.W.: Completeness Results in

Temporal Logic”, Preprint (1978).

Krablin, L.: “A Temporal Analysis

of Fairness,” M.SC. Thesis,

University of Pennsylvania (1979)

Lamport, L: “Proving the Correctness

of Multiprocess Programs”, IEEE

Trans. Software Engineering, SE-

3, 7 (March L977) pp. 125-132.

Lamport, L.: uproving the Cor~ect-

ness of Multiprocess Programs” ,

ACM TOPLAS, Vol. 1, No. 1 (JUIY

(1979) pp. 84-97.

Manna, Z. , Pnueli, A. : “The Modal

Logic of Programs”, Int. Conference

in Automata, Languages and Program-

ming, Graz (July 1979).

Myers, T.J. and A. Pnueli: “The Tem-

poral Situation Until Now”, Techni-

cal Note, University of Pennsylvan-

ia (1979).

Pnueli, A.: “The Temporal Logic of

Programs”, 19th Annual Symp. on

Foundations of Computer Science,

Providence, R.I.

Pnueli, A.: “The Temporal Semantics

of Concurrent Programs” , Int. Symp.

Semantics of Concurrent Computation,

Evian, July 1979.

Shelah, S., J. Stavi: “Expressive

Completeness for Temporal Logic”,

Forthcoming.

173

Sh:134

