The Journal of Symbolic Logic

http://journals.cambridge.org/JSL

Additional services for The Journal of Symbolic Logic:

Email alerts: <u>Click here</u> Subscriptions: <u>Click here</u> Commercial reprints: <u>Click here</u> Terms of use : <u>Click here</u>

Forcing the failure of CH by adding a real

Saharon Shelah and Hugh Woodin

The Journal of Symbolic Logic / Volume 49 / Issue 04 / December 1984, pp 1185 - 1189 DOI: 10.2307/2274270, Published online: 12 March 2014

Link to this article: http://journals.cambridge.org/abstract_S0022481200042456

How to cite this article:

Saharon Shelah and Hugh Woodin (1984). Forcing the failure of CH by adding a real . The Journal of Symbolic Logic, 49, pp 1185-1189 doi:10.2307/2274270

Request Permissions : Click here

THE JOURNAL OF SYMBOLIC LOGIC Volume 49, Number 4, Dec. 1984

FORCING THE FAILURE OF CH BY ADDING A REAL

SAHARON SHELAH AND HUGH WOODIN

We prove several independence results relevant to an old question in the folklore of set theory. These results complement those in [Sh, Chapter XIII, §4]. The question is the following. Suppose $V \models "ZFC + CH"$ and r is a real not in V. Must $V[r] \models CH?$ To avoid trivialities assume $\aleph_1^V = \aleph_1^{V[r]}$.

We answer this question negatively. Specifically we find pairs of models (W, V) such that $W \models ZFC + CH$, V = W[r], r a real, $\aleph_1^W = \aleph_1^V$ and $V \models \neg CH$. Actually we find a spectrum of such pairs using ZFC up to "ZFC + there exist measurable cardinals". Basically the nicer the pair is as a solution, the more we need to assume in order to construct it.

The relevant results in [Sh, Chapter XIII] state that if a pair (of inner models) (W, V) satisfies (1) and (2) then there is an inaccessible cardinal in L; if in addition $V \models 2^{\aleph_0} > \aleph_2$ then $0^{\#}$ exists; and finally if (W, V) satisfies (1), (2) and (3) with $V \models 2^{\aleph_0} > \aleph_{\omega}$, then there is an inner model with a measurable cardinal.

DEFINITION 1. For a pair (W, V) we shall consider the following conditions:

(1) $V = W[r], r \text{ a real}, \aleph_1^V = \aleph_1^W, W \vDash \text{ZFC} + \text{CH but CH fails in } V.$

(2) $W \models \text{GCH}.$

(3) W and V have the same cardinals.

THEOREM 1. Assume ZFC. Then there is a pair (W, V) of generic extensions of L satisfying (1). In fact W has the same cardinals as L and the only cardinals that are collapsed in passing from W to V are \aleph_2 and \aleph_3 . Furthermore V may be chosen with 2^{\aleph_0} arbitrarily large.

PROOF. We start with $V_0 = L$. Fix λ , any cardinal of L with $cof(\lambda) > \omega_2$. Let P_0 denote the Cohen type forcing conditions for adding λ subsets of ω_1 , i.e. $P_0 = \{f: \text{dom } f \to \{0, 1\} | \text{dom } f \subseteq \lambda, \text{dom } f \text{ countable} \}.$

Suppose G_0 is a generic subset of P_0 over V_0 and let $V_1 = V_0[G_0]$. Since P_0 is countably closed and satisfies the \aleph_2 chain condition, V_1 and V_0 have the same cardinals and reals.

Let P_1 denote in V_1 the following variant of Namba forcing. Conditions are subsets $T \subseteq \omega_2^{<\omega}$ such that for each $s \in T$, $\{t \in T \mid t \text{ extends } s\}$ is of size \aleph_2 . The ordering on P_1 is the obvious one: for $T_1, T_2 \in P_1, T_1$ is stronger than $T_2(T_1 \ge T_2)$ if $T_1 \subseteq T_2$.

©1984, Association for Symbolic Logic 0022-4812/84/4904-0014/\$01.50

Received March 29, 1983.

We claim that P_1 satisfies the \aleph_4 chain condition in V_1 . This follows by a standard chain condition argument; one simply shows that the iteration $P_0 * P_1$ has the \aleph_4 chain condition in V_0 . The situation is identical to that with P_1 replaced by Namba forcing (for more details see Claim 4.3 in [Sh, Chapter XI]).

Assume G_1 is a generic subset of P_1 over V_1 and let $V_2 = V_1[G_1]$. All of the standard fusion arguments for Namba forcing work for P_1 ; in particular since CH holds in V_1 , V_2 and V_1 have the same reals. Further the only cardinals of V_1 that are collapsed are \aleph_2 and \aleph_3 , which in V_2 have cofinalities ω and ω_1 respectively.

Note that in V_2 any countable set A of ordinals can be covered by a set $X \in V_1$ with $|X|^{V_1} \leq \aleph_2^{V_1}$.

Define forcing conditions P_2 in V_2 as follows. Conditions are pairs (A, X) such that $A \subseteq X \subseteq \lambda$, A is countable, $X \in V_1$, $|X|^{V_1} \leq \aleph_2^{V_1}$ and $A \cap Y$ is finite for each $Y \in V_1$, $|Y|^{V_1} = \aleph_1$. The ordering on P_2 is given by $(A_1, X_1) \leq (A_2, X_2)$ if $A_1 \subseteq A_2, X_1 \subseteq X_2$, and $A_2 \cap X_1 \subseteq A_1$.

We claim that P_2 has the $\aleph_2 (= \aleph_4^{V_1})$ chain condition in V_2 . Suppose not and let (A_{α}, X_{α}) ($\alpha < \aleph_4^{V_1}$) be an antichain in P_2 . Let $X = \bigcup_{\alpha} X_{\alpha}$. Choose $X^* \in V_1$ with $X \subseteq X^*$ and $|X^*| = \aleph_4^{V_1}$. Choose in V_1 a map $\pi: X^* \to \aleph_4^{V_1}$ that is one-to-one and onto. For each α , let $B_{\alpha} = \pi[A_{\alpha}] = {\pi(\beta) | \beta \in A_{\alpha}}$ and let $Y_{\alpha} = \pi[X_{\alpha}]$. It is easily seen that each (B_{α}, Y_{α}) is a condition in P_2 and that (B_{α}, Y_{α}) ($\alpha < \aleph_2$) is an antichain in P_2 . Each Y_{α} is a subset of \aleph_2 and has ordertype $< \aleph_3^{V_1} < \aleph_2$. Hence we can find $\gamma_0 < \aleph_2$ and a subset $S \subseteq \aleph_2$ of size \aleph_2 such that for all $\alpha_1, \alpha_2 \in S$, $Y_{\alpha_1} \cap Y_{\alpha_2} \subseteq \gamma_0$. The cardinality of γ_0 is \aleph_1 and CH holds; therefore there are $\alpha_1, \alpha_2 \in S$ with $\alpha_1 \neq \alpha_2$ and $B_{\alpha_1} \cap \gamma_0 = B_{\alpha_2} \cap \gamma_0$. But then $(B_{\alpha_1}, Y_{\alpha_1})$ and $(B_{\alpha_2}, Y_{\alpha_2})$ are compatible, a contradiction.

We show that forcing with P_2 over V_2 adds no new reals. Before proceeding we fix some notation in V_1 , since this is where we shall eventually be working. For $T \in P_1$ and $s \in T$ let $(T)_s = \{t \in T \mid t \text{ extends } s\}$. Similarly if $S \subseteq T$ let $(T)_S = \{t \in T \mid t \text{ extends some element of } S\}$. Suppose $T \in P_1$ and $f: T \to \lambda$ is a function from T into λ . T and f determine in a canonical fashion a term of a countable subset of λ . We denote this term by G_f . Conversely suppose τ is a term in $V_1^{P_1}$ for a countable subset of λ . Then for each $T' \in P_1$ there is $T \ge T'$, $f: T \to \lambda$, such that $T \models G_f = \tau$. From this it follows that if $\tau \in V_1^{P_1}$ is a term for a condition $(A, X) \in P_2$ then for each $T' \in P_1$ one can find $T \ge T'$, $f: T \to \lambda$ and $Y \subseteq \lambda$, for which $|Y| = \aleph_2$ (in V_1) and $T \models "(G_f, Y) \in P_2$ and $(G_f, Y) \ge (A, X)"$.

Now suppose b is a term in $V_2^{P_2}$ for a real. We regard b as a term for a subset of ω . Fix $(A, X) \in P_2$. We seek $(A', X') \ge (A, X)$ such that (A', X') determines b. To find (A', X') we work in V_1 , so choose terms for b, (A, X) in V^{P_1} and fix $T \in P_1$.

Construct an infinite sequence $\langle T_0, f_0, X_0, S_0 \rangle, \dots, \langle T_N, f_N, X_N, S_N \rangle, \dots$, where $T_N \in P_1, X_N \subseteq \lambda$ of size $\aleph_2, S_N \subseteq T_N$ is an antichain and $f_N:(T_N)_{S_N} \to X_N \subseteq \lambda$, such that:

(1) $T \le T_0 \le \cdots \le T_N \le \cdots$ is an increasing chain in P_1 .

(2) For each N, M, $S_N \subseteq T_M$ and is of size \aleph_2 , each element of S_{N+1} extends some element of S_N and for each $s \in S_N$, $\{t \in S_{N+1} | t \text{ extends } s\}$ is of size \aleph_2 .

(3) $T_0 \Vdash (G_{f_0}, X_0) \ge (A, X).$

(4) $T_N \Vdash ``\langle G_{f_0} \cup \cdots \cup G_{f_N}, X_N \rangle$ decides $0 \in b, \ldots, N \in b$ ''.

(5) For $s, t \in S_N$, $s \neq t$, range $(f_N \upharpoonright (T_N)_s) \cap$ range $(f_N \upharpoonright (T_N)_t) = \emptyset$.

(1) and (2) guarantee that $\bigcup_N S_N$ is a condition in P_1 that lies above each T_N .

1186

Sh:159

Suppose $\langle T_N, f_N, X_N, S_N \rangle$ is given: we find $\langle T_{N+1}, f_{N+1}, X_{N+1}, S_{N+1} \rangle$.

Choose $S_{N+1} \subseteq T_N$ an antichain in T_N satisfying (2). Enumerate S_{N+1} in length \aleph_2 , $s_1 \cdots s_{\alpha} \cdots, \alpha < \aleph_2$. By induction on α construct a sequence $\langle f^{\alpha}, T^{\alpha}, X^{\alpha} \rangle$ such that $T^{\alpha} \subseteq (T_N)_{s_{\alpha}}$ is a condition in $P_1, X_N \subseteq X^{\alpha} \subseteq \lambda, X^{\alpha}$ of size $\aleph_2, f^{\alpha}: T^{\alpha} \to X^{\alpha} \subseteq \lambda, T^{\alpha} \Vdash (G_{f_0} \cup \cdots \cup G_{f_N} \cup G_{f^{\alpha}}, X^{\alpha})$ decides $0 \in b, \ldots, N + 1 \in b^n$, and finally such that range $(f^{\alpha}) \cap X_N \cap (\bigcup_{\beta < \alpha} X^{\beta}) = \emptyset$. Set $T_{N+1} = \bigcup_{\alpha} T^{\alpha} \cup S_0 \cup \cdots \cup S_N$, $f_{N+1} = \bigcup_{\alpha} f^{\alpha}$ and $X_{N+1} = \bigcup_{\alpha} X^{\alpha}$. It is clear

that $\langle T_{N+1}, f_{N+1}, X_{N+1}, S_{N+1} \rangle$ is as required.

Let $T^{\infty} = \bigcup_{N} S_{N}$. Hence $T^{\infty} \in P_{1}$ and $T^{\infty} \ge T_{N}$ for each N. We claim that

$$T^{\infty} \Vdash ``\langle \bigcup_N G_{f_N}, \bigcup_N X_N \rangle \in P_2".$$

For this it suffices to see that for each $Y \subseteq \lambda$ with $|Y| = \aleph_1, T^{\infty} \Vdash "(\bigcup_N G_{f_N}) \cap Y$ is finite". It is routine to verify that condition (5) guarantees this. Finally, from all of this it follows that $T^{\infty} \Vdash (\langle \rangle_N G_{f_N}, \langle \rangle_N X_N \rangle$ decides b" and therefore forcing with P_2 over V_2 adds no reals.

Suppose G_2 is a generic subset of P_2 over V_2 . Let $V_3 = V_2[G_2]$. V_3 and V_2 have the same cardinals and reals.

Let $(\alpha_N: N < \omega)$ be the cofinal "Namba" sequence through $\aleph_2^{V_1}$ defined by G_1 . Let $P_3 \in V_3$ be a c.c.c. forcing notion for coding the sequence $(\alpha_N: N < \omega)$ by a real. Since CH holds in V_3 one can use the technique of "almost disjoint" forcing to define P_3 (see [JS] for further details).

Let a^* be a real generic over V_3 for P_3 , and let $V_4 = V_3[a^*]$. Let $(r_{\alpha}: \alpha < \lambda)$ be a generic sequence of Cohen reals over V_4 . Each r_{α} we view as an infinite sequence of zeros and ones, i.e. as a function from ω onto $\{0, 1\}$.

Let $f_0 = \bigcup_{f \in G_0} f$, $A^* = \bigcup \{A \mid (A, X) \in G_2 \text{ for some } X\}$. Thus f_0 is a function, $f_0: \lambda \to \{0, 1\}$, and A^* is a subset of λ with size λ . A^* has the additional property that for each $Y \subseteq \lambda$, $Y \in V_1$, $|Y|^{V_1} = \aleph_1^{V_1}$, $A^* \cap Y$ is finite. The key point is that for each (open) dense set $D \subseteq P_0, D \in V_0$, there is a dense set $S \subseteq D, S \in V_0$, such that for every $f \in S$ and any $g \in P_0$, if $\{\beta \mid f(\beta) \neq g(\beta)\}$ is finite and dom f = domg, then $g \in D$. Using this fact we define a function $f_0^*: \lambda \to \{0, 1\}$ such that f_0^* determines a V_0 generic subset of P_0 . Define f_0^* by:

$$f_0^*(\beta) = \begin{cases} r_\alpha(N) & \text{if } \beta = \omega_2^{V_0} \cdot \alpha + \alpha_N \text{ for some } \alpha \in A^*, \\ f_0(\beta) & \text{otherwise.} \end{cases}$$

Let $Z = \{\beta \mid f_0(\beta) \neq f_0^*(\beta)\}$. For each $Y \in V_0$ with $|Y|^{V_0} = \aleph_1^{V_0}$, $Y \cap Z$ is finite. Hence f_0^* does determine a V_0 -generic subset of P_0 , as desired.

Let $W = V_0[f_0^*] = L[f_0^*], V = V_0[f_0^*, a^*] = L[f_0^*, a^*]$. Within $V, (\alpha_N: N < \omega)$ can be computed from a^* , and from this r_{α} can be computed for each $\alpha \in A^*$. Hence $V \models 2^{\aleph_0} = \lambda.$

This completes the proof of Theorem 1.

П

If we work within a theory stronger than ZFC then we can find a pair (W, V)satisfying (1) and (2). Specifically we prove the following:

THEOREM 2. Assume ZFC and that there is an inaccessible 2-Mahlo cardinal in L. Then there is a pair (W, V) of generic extensions of L satisfying (1) and (2).

PROOF. The proof of this is very similar to the proof of the next theorem (Theorem 3). Let κ be an inaccessible 2-Mahlo cardinal in L. Using an Easton style product, force over L to add a generic subset of λ^{++} for every inaccessible cardinal λ that is less than κ (use the appropriate notion of forcing as defined in the proof of Theorem 3). Let L_1 denote the generic extension. Thus GCH holds in L_1 and κ is an inaccessible 2-Mahlo cardinal in L_1 . Using Theorem 7.3 of [Sh, Chapter XI] one can force over L_1 to make $\kappa:\aleph_2$, in such a way that in the generic extension $L_1[G]$ there is a closed unbounded set $C \subseteq \aleph_2$ of inaccessible cardinals of L_1 . Using this the proof is similar to the proof of Theorem 3.

We now leave the confines of L in order to find even nicer pairs (W, V). Our goal is a pair satisfying (1), (2) and (3), and we will use measurable cardinals. First we use $0^{\#}$ to improve Theorem 2. Theorem 2 has the defect that for the pair (W, V) produced we can only make $2^{\aleph_0} = \aleph_2$ in V.

THEOREM 3. Assume ZFC and that 0^* exists. Then there is a pair (W, V) satisfying (1) and (2), $W \subseteq L[0^*]$, V is a (c.c.c.) generic extension of $L[0^*]$ and further V may be chosen with 2^{\aleph_0} arbitrarily large.

PROOF. Fix λ a regular cardinal in $L[0^*]$ with $\lambda \ge \aleph_2^{L[0^*]}$.

Suppose δ is a cardinal in L, $\delta < \lambda$. Define a partial order P_{δ} in L by

$$P_{\delta} = \{ f \in L \mid f: (\delta, \alpha) \to \{0, 1\} \text{ for some } \delta < \alpha < \delta^{++} \text{ where } (\delta, \alpha) = \{ \beta \mid \delta < \beta < \alpha \} \}.$$

Define a partial order P in L by $P = \{F \in L \mid F \text{ is a function with domain a set of limit cardinals in L, <math>|\text{Dom } F \cap \kappa|^L < \kappa \text{ for every inaccessible cardinal } \kappa \text{ in } L$, $\text{Dom } F \subseteq \lambda \text{ and } F(\delta) \in P_{\delta}\}.$

Both P_{δ} and P are ordered naturally, i.e. P_{δ} is ordered by inclusion, P as a product with restricted support.

Let $\kappa_0 = \aleph_1^{L[0^*]}$. κ_0 is an inaccessible cardinal in *L*. Let *Q* denote the partial order of forcing conditions for collapsing all cardinals $< \kappa_0$ to ω . Take for *Q* the usual Levy conditions so that forcing with *G* makes κ_0 , \aleph_1 .

By Beller, Jensen and Welch [BJW] there is a set $G_P \times G_G \in L[0^*]$, $G_P \subseteq P$, $G_O \subseteq Q$ such that $G_P \times G_O$ is a generic subset of $P \times Q$ over L.

Choose $C \in L[0^*]$, $C \subseteq \lambda$, a closed unbounded set of inaccessible cardinals of L. It is easy to verify that for each $F \in P$, dom $F \cap C$ is finite.

Suppose $(r_{\alpha}: \alpha < \lambda)$ is a generic sequence of Cohen reals over $L[0^{\#}]$.

Let $F_0 = \bigcup_{F \in G_P} F$. Thus F_0 is a function F_0 : dom $F_0 \to \{0, 1\}$, where dom $F_0 = \bigcup_{\delta < \lambda} (\delta \cdot (\delta^{++})^L)$ (δ a limit cardinal in L). For each $\delta \in C$ let $(\alpha_N^{\delta}: N < \omega) \in L[0^*]$ be a cofinal sequence through $(\delta^{++})^L$. Define F_0^* by:

$$F_0^*(\beta) = \begin{cases} r_\delta(N) & \text{if } \beta = \alpha_N^\delta, \, \delta \in C, \\ F_0(\beta) & \text{otherwise.} \end{cases}$$

Much as in the proof of Theorem 1 it is easily seen that F_0^* determines a generic subset of P over L. Call it G_P^* . Similarly it follows that $G_P^* \times G_Q$ is a generic subset of $P \times Q$ over L.

Let $W = L[G_P^* \times G_O]$ and $V = L[G_P^* \times G_O, 0^*]$.

It is clear that $r_{\delta} \in \overline{L}[G_{P}^{*} \times G_{Q}, 0^{*}]$ for each $\delta \in C$; hence $V \models 2^{\aleph_{0}} = \lambda$. V is also clearly a c.c.c. extension of $L[0^{*}]$, $V = L[0^{*}, (r_{a}: \alpha < \lambda)]$.

We now use measurable cardinals to find a pair (W, V) satisfying (1), (2) and (3). THEOREM 4. Assume ZFC + GCH and that there are λ many measurable cardinals $(\lambda > \aleph_1)$. Then there is a pair (W, V) of cardinal-preserving generic extensions of the universe satisfying (1), (2) and (3) with $2^{\aleph_0} = \lambda$ in V.

Sh:159

1188

PROOF. Let $V_0 \models "ZFC + GCH +$ there are λ many measurable cardinals, $\lambda > \aleph_1$ ". Working in V_0 , fix a set S of measurable cardinals, S of size λ and such that no element of S is a limit point of S. Define a notion of forcing P_0 in V_0 as follows. For each $\kappa \in S$ fix a normal measure μ_{κ} on κ . Let Q_{κ} denote the corresponding partial order of Prikry conditions. Put $P_0 = \{F \in V_0 \mid F: S \to V_0 \text{ such that } F(\kappa) \in Q_{\kappa} \text{ for each} \kappa \in S \text{ and } F(\kappa) \text{ is a condition in the form of a subset of } \kappa \text{ for all but finitely many } \kappa \}$. Thus P_0 is the usual "Prikry" style product of the Q_{κ} .

Suppose $G_0 \subseteq P_0$ is generic over V_0 . Let $V_1 = V_0[G_0]$. Thus V_0 and V_1 have the same cardinals and reals. $V_1 \models$ GCH, so by Beller, Jensen and Welch [BJW] it is possible to force to find a real, a^* , class generic over V_1 such that $V_1 \subseteq L[a^*]$ ($V_1 \subseteq V_0[a^*]$ will suffice) and such that $V_0[a^*] (= L[a^*])$ is a cardinal-preserving extension of V_1 .

Let $(r_{\alpha}: \alpha < \lambda)$ be a generic sequence of Cohen reals over $L[a^*]$. As usual each r_{α} we view as a function from ω onto $\{0, 1\}$.

 G_0 may be interpreted as a λ -sequence $(s_{\alpha}: \alpha < \lambda)$, where each s_{α} is a Prikry sequence through κ_{α} , the α th element of s. For each $\alpha < \lambda$ define a subsequence s_{α}^* of s_{α} by $s_{\alpha}^* = \{\beta \mid \beta = s_{\alpha}(N) \text{ and } r_{\alpha}(N) = 1\}$. Thus s_{α}^* is the subsequence of s_{α} corresponding to r_{α} . It is routine to show that $(s_{\alpha}^*: \alpha < \lambda)$ defines a generic subset G_0^* of P_0 over V_0 .

Let $V = V_0[G_0^*]$ and $W = V_0[G_0^*, a^*]$. Thus V and W are cardinal preserving extensions of V_0 , $W \models$ GCH and $V \models 2^{\aleph_0} = \lambda$.

There are endless possible variations of Theorem 4. We state one and leave the others to the reader's imagination.

Using the methods in the proof of Theorem 4 one can find a pair (W, V) such that W, V have the same cardinals, V = W[r] for some real $r, W \models "ZFC + GCH"$ and $V \models "CH + 2^{\aleph_1}$ is large".

The essence of all of this is that if one allows inner models of large cardinals then there seems to be very little that can be deduced about V[r], for r a real, even given that V and V[r] have the same cardinals and that $V \models \text{GCH}$.

In closing we suggest another problem. Suppose V[r] is a cardinal-preserving extension of V obtained by adding a single real and that GCH holds in V. Can GCH fail everywhere in V[r]?

REFERENCES

[BJW] A. BELLER, R. B. JENSEN and P. WELCH, *Coding the universe*, London Mathematical Society Lecture Note Series, no. 47, Cambridge University Press, Cambridge, 1982.

[JS] R. B. JENSEN and R. SOLOVAY, Some applications of almost disjoint sets, Mathematical logic and the foundations of set theory (proceedings of an international colloquium, Jerusalem, 1968; Y. Bar-Hillel, editor), North-Holland, Amsterdam, 1970, pp. 84–104.

[Sh] S. SHELAH, Proper forcing, Lecture Notes in Mathematics, vol. 940, Springer-Verlag, Berlin, 1982.

THE HEBREW UNIVERSITY

JERUSALEM, ISRAEL

CALIFORNIA INSTITUTE OF TECHNOLOGY

PASADENA, CALIFORNIA 91125