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We try here to find the connection between how saturated is, or can
be an ultrapower. and some properties of the theory of the model and
of the ultrafilter. We deal also with similar problems for ultralimits, ul-
traproducts, limitultrapowers: and the existence of categorical pseudo-
elementary calsses contained 1a given elementary classes. In another
formulation, this is equivalent to the investigation of Keisler’s order <,
and a generalization <<* defired here (see Def. 1.3 in §1). Another ge-
neralization which was suggested - replacing ultrapowers by reduced
limit powers. is not checked here. Almost all the results here (and more)
appear in Shelah [13] §0. F, G (together with historicai remakrs) and
thev appeared previously in the rotices [15], [16]. We solved here,
partially, question 25 (of Keisler), from Chang and Keisler (4] ; and,
equivalently. some questians and conjectures from Keisler [6]. The
different sections here are quite unconnected, but §4 depends heavily
on[13].

In Section §1 we define notation. In Section § 2, we investigate <
for uncountable theories. We find a way to deduce from theorems about
<1 on countable theories theorems about < for uncountable theories.
We proved that there is a non <l-minimal nor <]-maximal theory (2.13A),
and that if G.C.H. fails (i.e. there is at least one A, 22 > A", then there
are two <l-incomparable theories {Th. 2.13B). (Those results answer
questions of Keisler).

* Revised 26 October, 1971
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In Section §3, we mainly prove that certain ultrapowers are not sa-
turated.

Section §4 contains the main results. We affirm a conjeciure of
Keisler; characterizing countable <d-minimal theories. We prove that if
G.C.H. fails, there is a2 countable non <I-minimal non <}-maximal theo-
ry (Th. 4.10, 4.11). We find for models of countable stable theories. al-
most exactly how saturated are their ultrapowers (Th. 4.11 We lso
characterize the countable theories 7. such that for some 7 2 7 the
class of reducts of models of 7' to the language of 7 is categorical in
some A>T, L.

In Section §5, we find, quite accuratelv, how saturated are ultra-
limits.
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§ 1. Notationg

¢ shall mostly use the notations in Shelah [13] §1. T will be a com-
plete {irst-order theury with equality and with no fmm. models. The
first-order language generated from L by adding the predicates R, ...
and the symbol functions Gy, ... isdenoted by LU {R, . ..., Gy}
Ultratilters will be denoted by 12, and we assume they are non-principal
uniform and R, -incomplete, and 2 will be over /, if not mentioned
otherwise. We shall use freely Los' theorem (see e.g. [ 1] or [4] on ul-
trapowers and ultraproducts). Elements of 7 will be denoted by i, s, ¢
In an abuse of notation if, for example, M, is an L-model, L, = Lu {P},
P; a relation over 1M;1 for every { € [, then (M;, P)) is an L;-medel and
it N =[T,, M/D then (V. P¥) =] 1, (M, P,/D. We shall denote ele-
ments of | LwM /D also as 1micxui sets (g, :7 € I and not always as
equivalence classes of such indexed scts. Also ifa € N = ﬂ,.( 4 4;/D, then
a=aiil i€ l)and rora= ((‘IO. 41,, Yoalil =<aylil. ....a,lii) For
a €MD, eqla) = {s, :als] =alr]}. and for a filter G over IX I,

i!” /G is a submodel of MI/D, whmg set of elements is{a € M//D:
en(al € G}, This is defined and investigated in Keisler [9].

An ubtrafilter D is (u. \)-regular if there is a family of A subsets of /,
which belong to D, and the intersection of every u sets from the family
is empty. D is regular if it is (R4, [/D-regular.

For a model M the set p = {0, (X, ) : & < ko} (@% S I21) is consis-
tent over A{, if for every finite w C &y, M E @A kew Ok (x, ak). Such
a consistent set is called a type over M. If all the a* are from 4, A C IMI,

then p is a type over 4. A sequence ¢ realizes p if o(x, @) € p implies
MEpld, dl. M realizes p if some ¢ € 1M realizes p, and it M does not
realize p, it omits p.

At is A-compact if it realizes every consistent type (over it} of cardina-
lity < AJ M is A-saturated if it realizes every (consistent) type over any
subset 4 C IMIAT< AL By Keisler [8] D is A-good iff for every M,
MI/D is A-compact; and every (N, -incomplete) D is ¥ 1 -good, but not
117" -good. D is called good if it is 1/1°-good. M is A-universal, if every
set of A formulas which is finitely satisfied in M is satisfied in M. M is
(< A-universal if for every g < A M is p-universal.

By [S] (orseee.g [1].[4] or {6]) for every Dy, D, over [y, I, we
can define the ultrafilter Dy X D, over I, X I, such that for every M,
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M2 /p. x D, is isomorphic to (MV/D,Y2/D,. If D, . D, are regular,
1 2 I 2 1~ 42
then D| X D, is regular, and for every X, D, X D, is \-good if7 D, is X
good (see Keisler { 10]).
After Keisler [6] we define:

1.1. Definition. T} <J, T, provided that: for every models 3, M, of
Ty, Ty, and (Rg, N-regular ultrafilter D over A, i M3/ is X*-compact,
then M}/D is X*-compact.

1.2. Definition. Ty < T, if ior every \. 7y <, T,.
A generalization cf < is

1.3. Definition. T; <I* T, if for every /. D, G. X and (X" +i/1")-sat irated
models M, M, of Ty. Ty, if M5 51 G is N"~compact then MY 16 is X'
compact.

Keisler [6] shows: 70 T (2.1a). Tis J, -minimal iff for every regular
D over A, and model +f of I, AIN/D is X -compact (§4) and the theory
of equali‘y is <, -minimal: and 7 is <, -maximal iff for every non-good.
(Ng, A)-regular D over A, and model M of T, M*/D is not A" -compac?,
and e.g. the theory of numbers is <J, -maximal (Th. 3.1). He also shows
that for X > R, . no theory is both <, -minimal and <, -maximal.
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§ 2. Keisler's order for uncountable theories

Remark on notations.

We shall assume that different theories have languages without any
common predicate or function symbol. So writing a formula. it is clear
to what unique language it belongs, Let & denote an (indexed) set of
formulas @{X): with repetitions possibly, @ isof L= L(I) if it is a set of
formulas which belongs to L. We write @ € ..

2.1. Definition. G: (@, . m ;> < ($,, m,) holds, where ®; C L(T}),
®, C L(T,), provided that &, = {@,(X. )k < k,} Gly, (¥, 20)] =

ak € IM 1. T, has a model M, and b¥ € IM, 1 such that:

forevery w C Ay (F{1:11<ky})
{@ctx, a® )k € w}is consistent over M,
T {W, (3, b)Yk € 1w} is consistent over M, .

2.2, Defuition. (by, my > <Py, my) holds if there is G such that
G Dy, ) S (P, my) holds.

Remarks. A) Clearly by the compactness thecrem G (P, m) <

(®,. m,) holds iff for every *nite ® C &y, Gid: (D, m> S (Py, my)
holds.  B) In Definition 2.1 v-e can take M, M, as fixed N-universal
models.

Lemma 2.1, A) [f (@, m > < by my), L C @y, &, C ¢ then
(D) S (DL, my).

B) If @1(&2) is the closure of (P, uader conjunction and disjunc-
tion: then i@y, myy <Dy, my) implies (Y, myy <7, my).

NIy m ) S by, my), and Dy, my) SABy, my) then (Py, m) <
@y, i3

Proof. Immediate.

Theorem 2.2. A) If for everv &, C L(T), 1® 1< X there is o C L(T)
and my < w such that @, D <SPy my) then Ty <, T,
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B) From the hypothesis of A) we can conclude: if My is a x-compact
model of Ty, M, a (<k)universal model of Ty. D) a {x, Nyregular ultra-
filter over u, and M5 /D is X'-compact, then M4 /D is X'-compact.

C) In B) if M, is N'-compact. My N-universal. then the regularity of
D is superfluous.

D) In the hiypothesis of A) {and also BY, OV we can replace “for
every &y C L(T)," by “for every &, € K " where K is a class of sets
of formulas of L(T) such tha::

if Ny is a non-X'-compact model of T, then ihere isa type p =

{0p (x, @)k < kg S A} over Ny which Ny omit and {¢; (x. ¥¥):

k< ky} C ® €K forsome .

Remark. This and Theorem 2.5 generalize Keisler [6]. Th. 2.1, p. 29.
The generalization [6], Th. 2.3, p. 33, is seemingly incorrect. (On the
one hand assums too little — an assumption like 2.2, and conclusion
like 2.5; and on the other hand the pattern includes supertluous infor-
mation). Nevertheless, the generalization goes casily.

Proof. We shall prove only the conclusion of C) by the hypothesis of D).
The other cases follow or have similar proofs (or. alternatively, using
Keisler [67, p. 29, Th. 2.1). So suppose 4, is a X"-compact model of
T\, M, aX-umversal model of 75, £ an ultrafilter over . M5/D is X"-
compact; and we should prove M{/D is X*-compact. Suppose this is not
so, and we shall get a cor tradiction.

As Ny = MY /D is not X'-~ompact, it omits a type (over N p =
{¢r(x, @)k < ky S A}. By the definition of K, we can assume @ =
{pi(x, ¥*); k < ky} € @, € K. By assumption there are &, C L(T;),
G, 11, < w, such that G (&, 1) <{P,. m,). By Lemma 2.1A we can
assume ® = @, . Let Gly (x. vF)] = ¥ (x, 29 () = m,).

By Definition 2.1. remembering M, is N-universal. for every i< u
there are b% [i] € 1M, 1. k < k, such that:

for every w C &y
{op (x, a* [i]): & € w} is consistent over M,
iff (¥, (x, BX[i]7: k € w}is consistent over M,.

As b¥ [i] is defined for every i < p. b* € M4/D is also defined.
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Let g = {p(x. %) & < ko). and we shall show g is consistent over

M,. Forlet w C kg, hwl< R,. We should prove E (3x) A U, (x, b%).

1Y

ke
This to!lmn from Los theorem. definition of b¥ {i] and consistency of p.

So { W, 1x. BR Yk € w}is consistent over M5 /D, As this is true for
every Tinite w C ky. ¢ is consistent over A4/,

Now as ME/D is N'-compact, there is a sequence ¢ from it that realizes
¢. We shall p;mvc that p is realized in M5 /D. and get the contradiction.

Letiori<uyu

wlil = {k < iy:My B[] BRi]]} .

Clearly qlil = {W,(x. bX[i]):k € wli]} is consistent. So. as before, by

the definition of the #¥ {i]. also pli} = {@p (v, d¥1i]) 1k € wlil} is con-

sistent over M, . As M, is X-compact there is ¢[7] that realizes p[i]. So
¢ € MY /D) is defined. Now for every & << iy :M4/D & W [c, 6] (By the
definition of ¢). Hence:

{i<p:My B [elil. ORI} €D or
{i<pkewlilleD so by the definition of c[i]
{i<uM Eolelil.d*[il1} €D hence

MEID gl db .

So ¢ realizes p, contradiction.

2.3. Definition. Let &, ¢ L(T}). &, C L(T,). &, = {¢p (v, v¥ )1k < ko,
IX)=m . G a function Gle (v, 2] = W (v, 2) € D,.10:) = my.
Then G :(dy. my) <¥ (P, my) if for every modet M, of Ty, and
¥ e M, . there are a model M, of Ty, and bY € M, (k < k¢ n'< w)

such that:

forevery wC Ag X w

{ve (x. @} )¢k, D € w}is consistent over M,

iff {W (. BE) <k, m € w} is consistent over M, .

2.4. Definition. Let (®;, m ) <* (®,, m;) holds if for some G,
G:@y, m) $*(D,, my) holds.
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Lemma 2.3. A) In Definition 2.3, we can replace w by any a = w.

B) G :(Dy, my) S* (Do, my) implies G (D, my) <Dy, my)

CY(Dy, my) S¥LD,, my) implies (by. my) < Py, my)

D)If ®,, ®1 contain the same formulas Gwvith a different number of
repetitions) thon

(By, m)y S* Dy, my) o (DL, m) SH Dy, my)

E)If ®1 C &, &5 C D then (Py. m) < (D, my) implies
(@, my) S* (D2, iny).
F) @, m) S* Py, my) (by the identity map).

Proof. Immed:ate.

Lemma 2.4. The following statemenis about T, Ty arc cquivalent.

A) For every ®; C L(T,) there are ®, C L(Ty)and my < w such
that (@, 1)< (Dy, my).

B) For every ®; C L(T{), @IS AT H+ 1T, 1 there are 5, C L(T)
and my such that (P, 1 < (P, my)

C) For every &, C (T,) there are @, C L(T,) and iy such that
(B, DDy, my).

D) For every ®, C L(7 ), (@1 < 1Tl there are (bq C L(Ty) and m,
such that (o, 1) <¥ (By, my).

E) Let &y be the set of formudas ¢(x, vYE LT, Y (cleariy 1Pyl = 1T D).
There are @2 C L(Ty), my such that @y, <X @y, my).

Proof. Clearly A= B.C~> D~ E. Soweshwld prove B~ C.E > A
only.

Suppose E* holds, and we shall prove A). Let &, C L(7): clearly &,
has a subset ® such that every formula which appears in &, appears in
® exactly once. Hence ® C @, [of E)], so by Lemma 2.3E(®, D<*
(®,, my) [®, — of E)]. By Lemma 2.3D also (@, D<* @, m,). and
s0 by 2.3C«(®,, 1> £ (®,, m;). So A) holds.

Now suppose that B) holds, and we shall prove C). Let A= 1T+ I T,[",
and let @, ¢ L{T). We should prove that there are ®, C L(T;), 1,
such that (@, I £* Py, my). By Lemma 2.3D we can assume without
loss of generality that no formula appears in &, twice, hence {d] <
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ITY IS X Let®, ={g(x, v¥):k < kp}. Let @1 € L(T)) be such that
every formula of L(7;) appears in it exactly I7," times. By B) there are
$, C LTy my and G such that G (!, 1S (P, m,). Now each for-
mula ¢ (x, v9Y € L) appears in d T, times, but there are 1T, for-
mulas in L(7,). So for some W, (v, zX)y € L(T,). for IT, I' appearances
of g (v, ¥y in ®1, Glgp (v, v8)] = W (x, £%). So define G, : @, > &,
by G, {¢,(x, ¥¥)] = W (v, z%). It is easy to check that G, (P, 1) <*
Py, 115

Theorem 2.5. A) If &, is the set of ¢ll formulas in L(T} ), and for some
by CL(Ty).my < w by, DS¥Py, myy then T) <* T,

B) In fact ir suffices to demand that there are ®; i < iy such that: if
My is a non-X'-compact model of Ty, then there is a type p over My,
P = e a* )k < kg < X'} such thar for some i < iy every
o (X 3KV € @iand there are ®,; C LTy my; < co such that
<‘i",~. <= (ﬁ)lj' ”331)-

Proof. It is very similar to that of Tleorem 2.2. so we omit it. The only
differences between the proofs are that here we cannot treat eachi< u
separately, but all together; and that we use <* instead of € and Lem-

-

mas 2.3, 2.4 are also used.

Theorem 2.6. AYIF T has the strict order p. (see Shelah [13], Def. 4.2)
then Ty g <I* T, hence T,y < T. Also the other conclusions of 2.2 hold
orar T2 =T

B) If T has 11 ¢ independence p (Shelah [ 131, Def. 4.1) then Ty <%
T hence Tyg <11, Also the other conclusion of 2.2 holds for Ty = Ty,
T,=T.

CYIf T is unstable (Shelah [13]. Def. 2.1D) the:i Tyqg <* T or
T g <* T (or both hold).
Remark. T4 is the theory of the rational order. 7,4 is defined in [13]
Th. 4.7.

Proof. A) and B) imply C) by {131, Th. 4.1. Now it is easy to check
that for Ty, iy = 1, @5 ={x <y, 7x < y} satisfies the requirement of
2.5B:and for Ty, &4 = {P(¥), 2, Ex, 1z, Ex}, @, ={P(x), xEz,,
IxEz, ), ip = 2 satisfy those requirements. Hence the conclusion follows
by 2.5B.
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2.5. Definition. A complete theory T is simple if it satisfies the follow-
ing.

A) In L(T) there are one two-place predicate xEy, and one-place pre-
dicates. For every model M of 7, EM is an equivalence relation over
M. (Also the equality sign€ L{T)). Foramodal M of T, a € M let

[alpy ={b€eM:MEbE a. for every predicate P(x) of L(7),

M E P@)= P(bY}.

B) There is a model M of T such that for every @ € M, {a],; is infinite.

C) There is a model A of T such that for every a € A, there are infini-
tely many b € M from different F-equivalence classes which realize the
same type.

Lemma 2.7. Let T be a simple theory.

A)IfMisamodel of T. a € M. then any permuiation of lal y is an
automorphism of M.

B) Every formulda (of 1L.A(TY) is equivalent o a boolean combination
of formulas of the following forms

Dx=uv, X Ex, 23 P

4)@EIYEy A A P(YA A TP

& . E .
; i.n j<m

1)
&
i N

C) T is stable ia every A = 2T (stable — see {13). Def. 2.1D). So T
is superstable.

Proof. Immediate.

Lemma 2.8. Suppose M is a non N-compact model of a simple theory T.
Then M omit a tvpe p (over M) which is of one of the foliowing forms.

Dp={xEa} U {P, )™ 1< iy <min A ITH}U {x = o 1k < &y S A}

) p={P(x) 1" 1< Iy € min AATN}U py U {VxEcy 1h < kg S A}
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where p, consist of formulas oy the fourth forn: from Levuna 2.7B, and
negations of such formudas. (n is a sequence of ones and ~eroes, 0 =,
w! =)

Proof. As A is not X\'-compact, M omits a 1-type ¢. Igl < X. Without
lose of generality suppose 1L(T < lgl+ N, = Ig], because otherwise
we can replace A by an appropriate reduct. So theie is A C MU,
LTS 1S A such that g is & type over A, so there is a type ¢, € S(4),
g < qy, and clearly ¢, is also omitted.

It is clear that if ¢, C g and:

for every ¢ € g, there are ¥ . ..., ¥, € g, such that
24 1
ME (\7’.\‘)[ A v, - @J {x - the only free variable in

rr =l

the formulas of ¢y ),

then M omits also q5,.
So if g, is a subtype of g, consisting of the formulas of the forms
mentioned in 2,78 and their negations. then clearly A/ omits ¢,.
Now our proof split to two cases. occording to whether some x Ea
belong to g, or not.

Case I xEa € q,. Clearly no formula x = ¢ belongs to g, (otherwise ¢
will realize g»). Soforevery c € 4, (x # ¢) € g € S(4) hence (x # ¢) €
q,. Clearly if ¢ = xEa; € g, then as g, is consistent over M,
M EwOxEae - ). Similarly if o = IxEa| € g5, M F (vx)xFa- ).
Similar implications hold if ¢ € g, is of the form
@BWIXEry A A P00 A A TIP(3)] or its negation. So if p is the sub-
1 H

type of ¢, consisting of the formulas x Ea. P, (x) [if Pr{x)€q,]1 P (x)
[if 1P ()€ g, ) and x # ¢ for ¢ € A then M omits p, and p is of the
form D:and Ip1< g 1SN

Case Il Fornoa xE a€p. Clearly foreveryced,x # ¢, TxEceq,
and A = (vx)(xEc - x # ¢) Hence itis clear thatp = g, —{x# c:
¢ € A4} is omitted in M and it is of the form 2).
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Lemma 2.9. If M is a A-compact model of a simple theory T, and N =
Mg |G is IT1"-compact then N is \-compact. (In fact it is ?\‘;; 1G-compact.)

Proof. If A < ITI", then there is nothing to be proved. So suppose

A > IT1. Assume N is not A-compact and we shall get a contradiction.
By the previous lemma we can assume .V omits a type p which is of one
of the fcrms mentioned there. So we have two cases.

Case I. M omits p (which is consistent over 3/} where
p={xEa}u {P(x)D < ITIHU {x = ¢ k< ky <A}

(thers are |71 one place predicates in i T1): clearly it suffices to prove
that at least A-elements of N realize p, . where

py ={xEa}u {P,(x)D 1< T}

As Ip I < iTtand N is [TV -compact. some & € N realize p;. As M is

A-compact, for every i € [, [£[i] ] is a sov of cardinality X, So we can
define for every k < A\, i € [, an element #; [i] € M such that
k#1= b, [i] # b,li1: D1} = 6171 = by i} = £ [7]. Hence for every £,
by € IMI is defined, and eq(d; ) = cq(b) € G hence by € N. It is also
clear that each -, belonasto [H)l - and k=7 = b, # b;. As every ole-
ment in [b] realizes s, p; is realized 2 X tines in V. Hence p is rea-
lized in N, contradictior.
Case I1. M omits » which is of form 2} from L »mma 2.8, The proot is
similar to that of Case I, except that here we should find X\ non-£-equiv-
alent elements of V realizing a tvpe over the e npty set. Here we use part
C) of Definition 2.5 instead of Part B).

The proof that NV is )‘glc?»campact is simila, so we omit it

Corollary 2.10.  A) 4 siriple covntable theov is <3®%-minimal, and
y i

hence <&-minimal.
B) if M is a model of a simple theory T, D ¢« 1TV -good ultrafilter on

W, ther M /D is W§/D-compact. Hence if D is Ny wyregular, M /D is
2¢-compact.

Proof. Immediate.
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Theorem 2.11. For every theory Ty and cardinal X there is a simple
theory Ty such that Ty <3, T, <, Ty If T < X then also 1T, < .
Moreover if D is a (Ng, Nyregular ultrafilter over u, My a model of T},
My a model of Ty then M§ /D is X'-compact iff M4/D is X'-compact.

Proof. We shall deal only witn the case 171 < X The other case follows
from Theorem 2.12.

Let &, be the set of formulas of 7 each repeated X times. Clearly
I, 1= \. It is also clear that if for some ®, C L(T,),<®;, D<AP,, D
then Ty <, T,. (Because if @1 < L(T)). {®1 1< X then ! C ¢, and
our conclusion follows by 2,1, 2.0,

Let @; ={g, (x, ¥¥ )k <A}

We shall nov defize a model M, and T, will be its theory. We list
the propertics of M, e need, and it is trivial that M, exists:
1y The realitiuns of M, are an equivalence relation £ = EM2 and for
each & <X a monadic relation Py = M2,
2y Forevery a € M, [aly,, is infinite.

{[ali‘,1 ={b:b& My aEb. and Pi(a) = P, (b)
for every A < A}

3) For every model M, of T and a; € M, . k < X there are infinitely
many a € M, such ‘hat they are not £-equivalent and
(*) forevery w C A g€ A2

{&r (v, @ "®Y k€ w} is consistent over My, iff

{xEa A P (xR ke w} is consistent over M.

4) For every a € M, there are a model M| of T} and q; €
such that (*) holds.

M, k<A

Remark. We can replace “for everv M, ™ by a fixed A-universal model
My of T,.

Now let T, be the theory of M,. Clearly T, is simple, 1T, = X. Let
Py ={xEV A P (x):k <A}
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By 3} in the Definition of M,, (®, 1) <<d,, ). Hence by 2.2A
Ty <) T,. By 2.2B, if D is (Ry. N)-regular, over I: M5/D is X*-compact
implies M’l /L is X*-compact. We should prove that ;Hé /D is not X'-com-
pact implies M} /D is not X*-compict. By Lemma 2.8 there are two cases.

Case I. Ny = M4 /D omits a type p (which is consistent over Ny )
p={xEa} U {P (x :hewC Au{x = o th < hg S

By extending the type we can assume w = X. Let p; = {xFa} U {P, (x)D
k<)

As in the proof of Lemuma 2.9 it follows that V5 omits p,. By condi-
tion 4) in the definition of 3/,

UxEa A Ppx)n® k< DL gy, ¥R k<N D
(We extend L(T) to include a, temporarily. and also extend /' accor-
dingly.) So by Theorem 2.2, i fact. M‘; /D is also not X' -compact.

Case I1. M /D omits p [ py asin 2.8, D)}.
p= {P;\.(x)’ﬂ“ kEwc AU {’1.‘:5:"(“,;. k< ky <Alu Po

Let py ={P ()0 tke: w C AU py.
By the proof of 2.9, “!’2;’{) omits py. But by Keisler {6]. Th. 1.5,
M5 /D is N-universal, contradiction.

Theorem 2.12. For everv set { Ty -k < ky} of theories there is at least
upper bound for each of the orderings <%, <. <, Its cardinality is
S IATLL

Proof. Let Q. & < &, be ky new one-place predicates. Let

T={U3OQ; () A Q) ik 1< ko k= DNU{¥% W eT,.

k< Ko} U {Ovx) X DIRWYG . xy) =
n
N Qitxp] R of L(Ty)}

=1
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(W€ is ¥ relativized to Q - (3X)¢ is replaced by (3X)Q(x) A ©)].
It is clear that 7 satisfies our demands.

Using the last two theorems we can prove many properties of the
order < between theories. if we know something about the order among
countable theories.

Theorem 2.13.  A) For every X there is a simple theory T, . {T,1= X\
such that T, is <y -maximal. Hence if N< pu, Ty I T, but not T, ATy,
So there is an (uncountable) theorv which is not <-minimal nor <-
maximal.

B) If there is a countable theory T witich is not <~minimal nor <-
maximal (see T 4.11) then there are <incomparable theories.

Proof. A) Let 71 be the (full) theory of numbers. By Keisler [6] T is
<-maximal, and if M1 is a modet of 71, D an (N, N)-regular ultrafilter
on \, then (M1 /D is N -saturated it 2 is X*-good. By 2.11, for every
A there is a simple theory T, (17, 1= X such that 71 <, 7, <, 7". By
the construction (and also by Th. 2.11 itself) it is clear that for A < u,
T, AT, . NotT, <T,. follow from the existence of A"-good but not
A" -good (R, w)-regular ultrafilters on u.

This is bv 2.10B and the definitions. The existence of such D follows
from Kunen [12]. and Keisler [10].

B) By 4.1B we can choose such 7. such that if M is ary model of 7,
D a (Ry. N-regular ultrafilter over A, then MM/D is not X'-compact iff
for some ;. 8y < Tn;/D < . Hence by 2.10B (M, from 2.11) M} /D is
@ -compact, but A/D is not u*-compact. So not 7' T,.

On the other hand as 7 is not maximal, there is an ultrafilter D over
a set 7. such that 22 is not good, but Ny < Tln,/D = 11 < Mn,/D. Define
A= So M]; /D is I1"-<compact, but as D is not good, X = |Il, MI/D is
not 1{"-compact. Sonot T, < 7,.

Conjecture. Every theory is the least upper bound of a set of < 250
countable theories and a simple theory of cardinality {71,
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§ 3. Unsaturated Ultrapowers

Theorem 3.1. Let T be with the {.c.p., g = Tlm;/D. D an ultrafilter over 1.
Then MI/D is not u*~compact, hence is not (29 -<compact.

Remark. The f.c.p. was first defined in Keister [6], p. 38. This is essen-
tially Theorem 4.1, p. 39 Keisler [6], and we repeat it for completeness
ohly.

Proof. et A = min{I1n;/D:T1n,;/D = N} and X\ = [In;/D. By the defini-
tion of f.c.p., there is a formula ¢(x, 3') of L{T), such that for arbitrarily
large natural numbers #, the following holds:
(*) there are a9, ..., a*" ! such that

-1

MET@EY) A px. &)

i=

n o

and forj<n ME(3x) A @ al)
i=0
ey

Let for every i € I, f{i) be the maximal number < n, for which (*)
holds. Hence f(i) € n,, hence TIf())/D < In,/D = A. On the other hand
for every n® there is n! 2 n® for which (*) holds. So n; 2 ! implies
fiy= n! 2 nl. So

{i:m;z "y c {2 nt} c{if)= nt
AsTln,/D 2 Ry, {i'n; 2 nt} € D, hence {i: /(i) 2 n%} & D, hence
NF@)/D 2 n0. Asn? is arhitrary, TIA(H/D 2 Ry so by “he definition of
N Ofo/D =\
Let Pi={al,. ... k] '} . ltis casy to sce that the models (M. P
satisfy the following sentences

) HIVYIIPO) = ol )]

(i) (YIIPO) > BXYNVIHPEY AV # 2= o(xioN] .
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Let ¢V, PYY T, POY/D. Clearly 1PV | = TTIPH/D =TT (/D = \.
As the sentences (1), (ii) are satisfied by every (M. PY), they are satisfied
by (N, PY). So p ={e¢(x. @):a € PV} isa type over N, (by {ii)) but is
omitted (by (i), and Ipl= 1PV =X < p. So N is not ¢"-compact.
Theorem 3.2. Let M be a model of T. T has the f.c.p. . Let p(x: v)€ L(T),
and P, the ser of n < w Jor which (%) (from 3.1 is satisfied, is infinite.
Let (N <. PVy=(w.<.PLIG ae PV u=I{beN:b<a}l. Then
orver M‘fj |G there is a type p. Ipl =, which is omitted, but q C p,
q # p = q s realized. Moreover, p consists of formulas of the form
w(x, &) oniv.

Proo.. Clear from 3.1,

Theorem 3.3. Lot M be a model of an urstable theory T, Tgpm; /D < 2%,
Then MUD is net N'-compac:.

Proof. Let g = min{Ilni/D:1Ini/D = R} p=ni/D < 2X n; = [logyni—1]
([x1- the integral part of x). Clearly Ry < Iny/D < IIn'/D = u, hence by
the detinition of p, [In,/D = p. By [13], Th. 4.1A there is a formula
¢ = ¢(x13) € L{T) which has the strict order p, or the independence p.
For simplicity let ¢ = (v v).

By the definitions for every i € [ there are elements a?, a?’rl of M
such that:
(1) i @ has the independence p. then for every w C n,,

{o(x. aHVTEEW - p 5 Y is consistent over M

(i) if v has not the independence p, (hence has the strict order p) for
kod<n;

ME@EOD[ e, @) A v d)] Tk <!

Let P, ={a} :k < n;}. and §; C 121 be such hat:
(1) for every a € M there is b € §; such that:

foreveryc € P, M Eola, c] = plb, ]
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(2) there are noa, b € §;, a # b, such that:
ceEPi=MFEvpla cl =¢lb ]

Clearly 72, S ISAS 2" < pf as 1Pt =y Lt N=MU/D (N, PV, Yy =
M, (M, P, S,)/D. Clearly iPV )= H !P,!f[) =n,/D =y and ISH 1=
IS 1/D < T /D = p WSV 2 /D = poso ISVE=p

Now we split the proot to two cases.

Case I p(x; y) has the independence p. et X; = min(\. &), and choose
A C PV 1A1=2X,. By the definition of the P,’s, clearly for every B C A.
py ={p(x, a)f@EB): g € A} is consistent over N. Now by the definition
of the §;, if pg is realized in .V, it is realized by some clement of Si".
Hence the number of types 5. which are realized in NV is < 1S1=
(because B #+ B, implies no elements realized both pg and pg, ) On
the other hand the number of such typesis ({B:B C. 1}? = i z 2
Clearly 2# >> u, and by hypothesis and definition of g, 22 > u: hence
2M > . So for some B C A. N omit pg. and as Ipg 1 = X, <A,V is not
A*-compact.

Case II. ¢(x, ¥) has not the independence p. hence has the strict order p.

Let us assume N is A"-compact.

Clearly the formula v < 2 = (3X)[Te(x. V) A @y, 2)] define an order
on PV . It is easily seen that foreveryv a € N, eitherc € PV = N E ¢(a, ¢)
or there is » € PV suck that c € 2V = N E ¢{a, )= b < ¢ [as the corres-
ponding sentence holds in every (M, P;)]. Hence if there is a set of Yor-
mulas {PM}u{x<c:v=Cy Cc PV} u{e<xice C, € PV} whichis
finitely satisfied in (V. PV, SV¥) but not realized in it. ther V will not
be A'-compact, contradiction. So there is no such set of formulas.

Now we define by induction onl/(n). n € AT 2 elements a, b, e i
such that:

(D forevery m, (NN PYFE 3y v LA PO A <Ay <iaa.

i=1
wA Y, <b.l
Qyifk<I(m)thenay <a, <h <bhy,

Ra, o <bpop<a,qn< b
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Clearly the definigion is possitle henee
A>u=I1PViz Ha, ;e 2 ={nipe 2=
contradiction. So M/ is not X' -compact. also i the second case.

Theorem 3.4, Suppase T has the sivict order p, M is a XN-universal model
Remarks. 1) this theorem was proved indepeadently by Keisler and
the author.

2) The demand of X -universality of M is necessary, because by an
unpublished result of Solovay. it is consistent with ZFC + 250 > N 1
that there is an ultrafilter D on w such that got any countable model
ST ot a countable anguage. W< /D is saturated.

Also, for a weaker vesult that follows from ZFC, see [17].

Jroof Letu =2 ,.. Note that p* = g p*" > poand w.ho.g u> 171,

WA /D s not X -compact, the theorem holds. So assume it is X -com-
pact. So by Theorem 2.6, 10V is a model of Ty ( the theory of dense
order) then N7/ is X' -compact. LetJ = «> (L% + ), (u* is ¢ with in-
verse order). Let < orderJ by the lexicographic order. Note that (J, <)
satisfies

(1} J is dense without iast and first element

(i) s <1, 5. 1 € Jimplies there are s;. ;. i < u such that

i{j([}*S(é‘i{: I}'<S!'<[j<u’.

W.Lo.g. assume M s u'-saturated. Now as T has the strict order p, and

M is universal. there is ¢(x. 1Y€ L(7) and a, € IM| for s € J such that:
() M E @0 T a) a oy, )] iffs<r

Let P =fgoised} <M ={(a. ayis < r}oand (N, BY <V =
(M. PM <M W/D. Note that <M order PM is in a dense order without
first and last element, hence (Y, <) is X" -saturated. Notice that also
(ii) is satisfied by (PY,<Y). So we can defline @, b, € PV forner™>y
such that:
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A Ifk<I(m), r=nlk thena, < (? <h, <b,

n

(B) If i < k< p, thend, . < by < Ty < b

n=A

Now for every n € X u, the tym
=10 a1 <V udow, byl < X'}

is consistent over N, and 1p, 1= A" If any p,, is omitted ~ the conclusion
of the theorem holds. So p, is rediized hy « y~ and clearly 7.7 € Mo,

n # T implies c,FCL . As in the ;vmoi of 1 ‘kanm 3.3 (the use of SYwe
see that in N at mos: u types C{@(%, ¢¥:ic . de PV} are realized.
Contradiction.

Lemma 3.5. /f Tis <, ~minimal, AN then Tis 1 nenbmal

Proof. By Keisler {6] 7 is not <, vinimal iff there is an (N, k)-regular
ultrafilter D on &, and a model M wf 7 such th ¢ M%/D is not k-compact.
Assume 7 is not < -minimal. So flgere is a (8. w)-regular ultrafilter on
u, and @ model M of T such that Me# /1y js not g'~compact. Let D, be a
(¥4, N)-regular ultrafilter on X, D ) = Dy x D I=XX p.soD,isanul
trafilter on 1, 1/1 =X D, is(R,. A Megular and 317/ Dy = (MDD #D s
not u'-compact.

Hence not N'-compact. So Tis ot < -minimal Contradiction.
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§ 4. Saturation of ultrapowers and categoricity
of pseudo-elementary classes

Theorem 4.1, Lot T be counzable theorv, M, a model of T for every
i€ 1 and D an wltrafilter over I Let N = gy M/D. Then
AYIFT has nor the fep. A = bs@/D. then N is X-suturated
B) If Tis stable and has the f.c.p. then N is max A-satvrated where
= min {Tln/D:n/D = Ny}
CY If T has not the f.c.p.. cach M, is g sarurated. and
N =ul/D then N is A=saturated.

D) For every findite A € L(D) let

Y = min {Iplpis A-1-tvpe over M which is

omitted by M;}
A¥ = min {n\ (QYD:AC L(T). 1AI< Ry}

Let N be the first cardinal. X = TIN'/D tor some N, and for every

finite A LANAGN S (A }eD.

Then if T has not the f.c.p., N is N-saturated, but not (\*)-saturated.

Remarks. 1) Clearly the results, except D, are the best possible. For ex-
ample in A). if we choose the M, as countable models, then INI =
R4/D = X, hence NV is not \'-saturated.

M) Instead demanding 7 is countable, we can demand D is | 71"-good.
By Theorem 2.5 this is necessary.

Proof. Notice: as T is countable, for every model M of 7 and cardinality
K> N¢. M is k-compact iff A/ is k-saturated.

Now in case B), N is not X'-saturated by Theorem 3.1. Similarly we
can prove in Case D) N is not (A*) -saturated. So-it remains to prove
that in all cases .V is A-saturated.

Clearly Vis N -saturated. By [13] Th. 5.16, as 7 is countable and
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stable, it suffices to prove:
if {¢;:i < w} C INlis an indiscernible set ([ 13]. Def. 5.1, 5.2), then

it can be extended in N to an indiscernible set of cardinafity A
For every i € I let us choose a family S; of subsets of L!!g such that:

1) 1S = 1M1

2) every finite subset of 1M, belongs to S,

3) forevery finite A C l(f) n < w,ifwe S, is A-p-indiscernible set,
0< p < 1M1 and there is a A-n-indiscernible set w', w < w’ C 1ML
Iw'l =, then there is w' € §;, Iw"l= g, w C w"” C M land w' is
A-n-indiscernible set.

Let lMl"{a < 1M, !i} S, = {u, j < ¥A1I} Let us define the refation
€ onlMi: €= <a,,ak S = wi}. We shall write x € v instead of
€(x, ¥). In the language L = L{T) U {€}. clearly there is a formula
@a n(¥) meaning {3 :y € x}is a A-n-indisceraible set, for every finite A,
no

Now for every j € [ we define Pg according to the part of the theo-
rem we want to prove; in
A) P ={d} :Iwi12 ¢}, in
B) P"={a,; k< IM )= 1241, in
C)P= {ak hot 12 p} in
D) P = {a} : w12 N}
where N are defined such that ITAY/D = X, and for every finite A,
{i:N<N(Q)}ED.

Now the followir g hold

(*) For every finite A ¢ (). n < w there is 'n = (A, 1) < w such
that the set o7 i’s for which the following holds belongs to D:

(**) For every A-n-indiscernible set wh . hwl 12> i, there is a A-n-
3 -1nd _ & 3
indiscernible set wj. wj; C wj € Pl

Let us prove it. In part B) it is trivial. In the other parts 7 has not the
f.c.p., so in part A) it follows from [13] Th. 5.5C. in part C) from 5.5B.
and in part D from the proof of Th. 3.5A in [ 13]. Not ce that except
in D) (**) holds for every i.

Now clearly (**) is equivalent to a first-order sentence in L™=
Lu{e}u {P}. Let N'=(N, €%, PV) = Ti(M,. €. P)Y/D. Clearly N is
N, -saturated.
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By (*) clearly the sontences corresponding to (**) are satisfied by V.
Remember we say it suffices to prove that {¢;:7 < w} can be extendad
in N to an indiscernible set of cardinality A As {¢;:7 < w} is an indiscer-
nible set, for every A, o it is a A-n-indisc rnibie set. Hence every finite
subset of

pefe, v wlu{e,, (AL,

AT Ry on < w} U {PL)}

is satisfies in A, hence p is satisfiad in V. say by b, As for every A, .,

N E g, (b)Y, clearly w = {g € IVI:N' E g € b} is an indiscernible set.

and of course {¢; 17 < w} Cwl  As N E LD and wl 2 He i < wll =
N, . clearly hel 2 X (the check for each part is casy). So we prove the

theorem.

[t will be more satistactory it in 41D, » = X*. (This holds it A, = Al).
For this it suffices to prove

Conjecture A, Let (F, < = {u. <MD (< - the natural order on ordinals.)
Forae J letlal= b &.l:b <a}l. Supposeq, €1 forn < w. lg,l=
lagt. Tizen there isa € J, a < a, and lal = lag 1.

Theotem 4.2. Lot M be a A-compact model of T, {TI< 11, N=M!/D.
If Nis Q4 -compact. then N is N /D-saturated.

Remerks 1) This affirms conjecture 4D of Keisler {61, p. 41, ~vhich
savs that Vis A-saturated.
2) For countable 7, this theorem follows from Theorems 3.1, 4.1C.
3) Here the proof works also for 8| -compiete ultratilter D.

Proof. As N is (27 -compact, by 3.1, T has not the f.c.p. Hence T 1s
stable ([ 131, Th. 3.8A). As N is (2¥') -compact, I/1 < 1T, clearly every
infinite indiscernible set can be extended to one with cardinality
2021 By [13].5.16 and 5.11 (remembering that by [13] Th. 4.1A
T has rot the independence p). It suffices to prove that:

If W, is an indiscernible set in X, [W 1.2 (2", then there is an in-
discernible set ¥, 1, N WL 12 Rg W, 12 NM/D.
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Let{a :k < (2¥)'} ¢ W, . Now the following statement will be
proved later.
(*) there is an infinite w C (2)* such that for everyi €/, ta il ke w}
is an indiscernible set in M. .

We can assume A > |71, as otherwise the conclusion of the theorem
is trivial. For every { € / let P be a maximal indiscernible set {a, [7]:
kew}c P cIMl As Mis A-compact, A > 171, clearlyv 12112 A Let
(N, PNy = 1(M, P)Y/D. Clearly |PL = 11IPH/D > N /D Now for every
finite A C L(7), n < w. the statement P is a A-n-indiscernible set™ is
elementary, hence P is an indiscernible set. So P < 131, {a; :k€w}C P,
hence [P W12 [{a; :k € w} 2 R,. So P satisfies the conditions for
W, . Hence we should prove only (¥}).

As Tisstable, by [12]. Th. 2.13, 181 < 27 implies IS < 21T =
2 1t is also clear that for B, C 1M1, 1B,1< 27 foreverv i€ [
Mgy SB) = Mgy 1ISBI S (2= 210

Define for k < 11", sets w, C (2 by induction:
Dwg={ }.wgs = U w; foralimit ordinal §.

<8

2) Let w, be defined Then ferevery /< (2 Fy* there is a unigque

k € w,,, such that: forevery i € 1 a; {i]. a;[i] rvealizes the same type

in M over {a;[i} :j € w, }.

Clearly for every k. hw IS 27 Choose ag < (27)", ay € w .. For
every & < III. let K be the ordinal such that for every 1 € /, T4 1.
@ [7] realizes the same .ype over {g;[{] :j € w_} and X, € w_ ;. Clearly
foreveryi,a <<y < 17, aksfii TN {#] realizes the sam:2 type in M
over {ay, 1< a}.

By [13], Th. 5.17. for every i, there is /() < /" such that {a;_[i]:
1(/) < a < 11} is an indiscernible set. Let Iy = sup /(). w = {k 1/, <
a < U1}, Clearly this is the w required in (%).

Remark., We can in fact find such w of cardinality (27"

Theorem 4.3. If T"is countable, superstable. and has not the f.c.p.. then
there is Ty, T C Ty, \Ty1= 270 such that PC(T,. T) is categorical in
every cardinality = 270, Morecver every model in PC( Ty Dyof cardi-
nality > Ry is serurated.
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Remark. PC(Ty. TYis the class of reducts to LET) of models of T,. Note
that by Theorem 4.8, and by [13] Section 0. G.7, G.10: the theorem is
the best possible.

Proof. Let A be a countable model of 7. We expand M to M, by adcing
names for all the possible relations and functions over 12{] (i.e. M isa
complete model). Let Ly be the language of M and Ty the theory of
My (ie. the set of sentences trom Ly that M, satistied). Clearly T
contains its Skolem functions.

Let N} be any uncountable model of 7, and let .V be the reduct of
N, to L(T). It suffices to prove that \V is saturated (as by Moricy and
Vaught [18]. every two saturated models of the same complete theory,
which are of the same cardinality are isomorphic). So let p be any 1-
type over N, Ipl <IN, and it suffices to prove that p is realized in V.

Let p; be any extension of p to a compleie tyvpe over NI, and let
¢(x, @Y € py be such that Deg{e(x, @} = Deg o, . (see [13], Def. 6.3,
Lemma 0.2A,6.2B). Let 1M1= {q,:7 < w}. and let ¢;, i < ¢ be individual
constants in L, such that¢ "’ = g,. Clearly there isa® € IN{ 1, a% # ¢; M
fori< w. Define 4 = "‘\’ [a. a®} :# a function symbol in L} . (lcarly
the submodel NT of ;\1 , INTE= A is an elementary submodel it Ny (by
the definition of 7, and Tarski-Vaught Test). Lot V¥ be the reduci of
A to Lely Clearly VF is an elementary submodel of N We shall show
now
(¥ AT is N ~compact, hence V¥ is ¥ -saturated

So let ¢ be a countable tvpe over r N{. and we should prove it is rea-
lized in N}. Let tq ={@; ¥ df. @) )i < w)

As overv a ] A. for some [ € Ll A ’-“ [a a%1. So by substituting
we get g = {Wxv. @ a®) i< w} chmnwang~ Ml ={a; ' < w}, ch =
a;. My is complete: it is clear that theie is a function symbol G in L
ﬂuLh that for every a,,. b, o0 from IMi, G 1 (a,. b, b®) realizes
{W(x, b, pY) i < m }for the maximal possible 7 < n. Clearly for every
n

noi nl

M, #(vf)(v.xs)[ Ay a@x) A Wy o)
=Q =0
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Asa® # V" fori < w, clearly GV*(a®. 4. a®) realizes . So we prove (%),
As N* is R -saturated; by [13], 6.8A. 6.8D. we can find B & \'=%,
IBl= R such that py 18 is fixed ({13]. Det. 6.5), and we can define
b; € N* for i < w, such that b; realizes py B U {h, 1/ < i}. By the defi-
nition of a fixed type we c.n define b, w S i< w + w= 2 such that
b; realizes over INLU {h;:j < i} atype popy € py Degpy = Degp,. By
[13] , The 6.12A, {h; 17 < w2} is an indiscernible set over B, By [ 13]
Th. 4.1 T has not the independence p. So d(x. ©)& p| implics #8{b,. ]
forw < i< w2. So {i< w2:EA[b, c]} isinfinite, so by [ 13}, Th. 5.9,
{i < w2:ET01[b; cl} is finite. so {i < w:ETTO[d, ¢]} is finite. So if
W is an indiscernible set in N. b, € W for i < w. then 8(x, ¢) € p, implics
{be W:NET8(b, &)} is finite. So clearly it suffices to prove that
{b; 1 < w}can be extended in N (not NV ) to an indiscernible set of car-
dinality IN1. (Because then all but < !ni + X, elements of the set will
realize p.)
Let s be a family of subscts of LM such that

1) ISt=

2) everv finite subset of 13/ belongs to &

3) If Wis a finite A-n-indiscernible subset of M. (A a finite subset of 1)),
and W can be extended to an infinite A-r-indiscernible set in M. then
there is such extension which belongs te §.

LetS={I,:i < o, and noting 1341 = {q,:i < &} let €Y1 = {Capep:
a; €W} P = {a;: W;1=n,}. where € P belongs to Ly and let Fe L,
be such that for every ¢ 1 € P My a;) is & function from I, onto
[Ml; and we writex € v n‘xtead of €{x. v ) Clearly for every hmte
AC LT, 1 < w, thereis a formula ¢, ,(x) in by saying that {y 1y €x}
is a A-n-indiscernible set. Let

g={eyac Min<w lAl< N} U
v b, exii< wlu{PO}

1t suffices to prove that g is consistent over N{. Because as V{ is N i -

compact, q is realized, by some element » € N§ Hence W={ceN;:
N, Ec € b} is an indiscernible set {as V{ & ﬁ%s (!ﬂ Fisan clememaw
submodcl of Ny). Cleariy b, € W lori < w. Also W= ’\’ as N, FPb]

[using #V1(x, b)! .
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Now in order to prove that ¢ is consistent over .V it suffices to prove
that every finite subset of it is consistent. Bv {13}, Lemma 5.1C instead
of a finite number of ¢, ,, (¥} we can take one. So it suffices to prove the
consistency of ‘

g =P, oy WU D € v m < )

By [13] Lemma 3.5C for every finite A, 2 there isr= r(A, m < w
such that: if m 2 r. {by. ... b,,} is a A-n-indiscernible set in M, then
there is an infinite A-n-indiscernible set in M which extends (. ..., b,,}.
Soforr 2 r(A. )

My BV Y, o) L( A v Ay, (08 A J’,E.x) -

<y i<r

"(EJ‘)(\;’JM;(_\')A POY A A _v,-Ey)]

ILr

This clearly implies the consistency of ¢'. as {b; 17 < w} is an indis-
cernible set (in (7)) and for every ¢y .. ¢, € N, there isc € V| such
1
5 P -
that V) B(VXX v &€c= V x =)
i= 1

The following theorems have similar proofs, so we omit them.

Theorem 4.4, A If T is countable, withoui the f.c.p., end stable in ¥
(e, rotally transcendental) then there is Ty, T C T, 1T 1= Ry, such
that PC(Ty. TVis categorical in every N = Ry, and every model of it is
saturated.

BYIf T has the {.c.p.. is couniable and stable in Ry, X - 280 then
there is Ty T ¢ Ty G V= Nsuch that PC(T . TV is categorical in X and
every model o7 it of cardinality N is saturated.

Theorem 4.5. If T is countable and superstable, then theveis T, TC Ty,
IT, 1= 230 sueh that PC(T, . TYis categorical in 280, ane every model

1 < 1 £ :
of it of cardinality 200 s saturated.

Remark. We use *he following fact: if A is a complete model, whick
expands (w. <), V; is an uncountable model of the theory of M,
a€ IN L, {be N, :b<a}lZ R, thea i{b € Ny :b< a}l 2 270,
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Theorem 4.6. Let M be a model of a countable and superstable theory
T, N=MLIG, INI> Ry, V' # M. Then

A) Nis 3,-saturated.

B) If T has not the f.c.p., M is \-compact then N is )«’}) {G-compact,

C) If J, Y =(w, LG and fornose J. Ny S Hbe T, QO EbL
a}l <\ then N is N-saturated.

Theorem 4.7. A) Let M be g countable maodel of a stable theary T
which has the t.c.p., and A C I(T) be finite. Let p be a A-1-tvpe over
N = Mf) |G which is omitted by N: but every q C p. gt < \plis realized
by N; and \plis regular. Then there is

s€w+ 1, OLIG such that 1pl= Hri(w+ i, QLG Frs)

Remark. 1) This theorem is a converse {0 Theorem 3.2.
2) For uncountable A!, we should replace w1 by A+, N = 1A{Ql,

Proof. By [13] Th. 5.9A there are finite 4. »; such that:

(M) I p(x. y) € A, {a;:i < a) isa & -1y -indicernible set in N then for
every b from N either I{i < a:N Egla, A1} <n, or
Hi<oa:NETela. 1} ny.

By [13]. Th. 5.10 there are finite 45, 15 such that
(**) () every Ay-n,-indiscernible set is a A -ny-indiscernible set.
ny 2 Hy.
(i) if W; is a Apn -indiscernible setin N, ¢ =1, 2 and 1W, N I, 12 n,
dim(W,, Ay, 1y NY2 Ry then dim(W, . A 0 N2
dim(W,, 4,. 15, N) ([131, Def. 5.4 define dim).

Similarly we can define finite A5, 7; which will relate to A, 1, just
as A,, ny velate to A . iy

Now let p = {,(x. a):i < Ipl}. (So for every i. g,ix, ¥) belongs to A.
or is the negation of a formula from 4.) For every j < ‘plletp; =
{p;(x, a):i < j}. By our assumption each p; is realized by some bj €N,
As iplisregular, by {13}, Th. 5.8 there is w C Ipl, lwl = Ipl such that
W, = {bj :j € w} is A;-n3-indiscernible set (hence also A,-n,- and
A, -n,-indiscernible set). Clearly din(W;., &,, 1. V) 2 \pl Let us prove
that the equality holds. Otherwise there is W1 w/, < Wl 11> Ipland
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W is also Ay iy -indiscernible. Now ¢, (v, @) € p implies i < j < Ipl=
NEglb, af], hence b & W 1B g b ]} 2w, heme Hbe w!:
B, @]} 2 Ry, hence by (%) {b e WLIN B¢ (b, a1} 1< ny. So
the number of b € W1 which do not realize p is < n; Ipt< 1WH, sop is
realized in V. Contradiction. So dim(W' [, Ay . n, . Ny=Ipl.

Let us choose in M any countable set PM = {4,/ < w}. and define an
order relation <M = {<ap @)1 (we write v < v instead < (x, »)).
We also define a relation C}" such that: if {og. .. €,,} is @ Ay-n1y-indis-
cernible set in M. then {c € M {c. oy . Cpg? € Q"’} is a maximal 4A,-
n,-indiscernible set in M, and iz includes €. - Cyy - Letus define
also a function F¥ such tha: for every ¢y ... ¢, € M. let W= {c € M:
(€0 €3 E QM Finow W=7 < e tmphs\ FMey ... =0,
and IH 12 Ng implies F¥ (e o) =a . Wealso deime I%f such
that it I3 (€)oo, = gy l! (Y. €1 o ¢y ) Will be a one-to-one
function from {a, i < rj onto {e @ M e o0y € OM} ;and if
Fo ey e Y = ag AP e e will im a one-to-one function
from {a,:/ < w}onto {c € M. ¢y. W E OM}. Let

Ny =V PY <N Y QN N Y= (MOPM <M M oM M ){)IG

Let us choose ny different eleinent of W (C INI) — ¢y, ... Cry- Let
HE{ce NN, EQlc. ¢y ... Oy 1}. C!early Wy isa ma“maIA,
nz-md;s‘armbk set hence dim{#¥,. Aa 1y, Ny=1W,l. Let
a=F"1 {cy. 3 j.and A= I{be PV N ltt b< a}l. Clearly, (using
A I, = X Ttis also clear that oy ... ¢,y € Wy, hence [W 0 Wyl 22 ng.
As Wy is Apr-indiscermole set fori= 1, 2, 3.

(D) pl=1W S dim(W . ony, Ay . N < dim(W, Ay, g, N) = Ipl
As W, N W,12 ny, and W is infinite, by the definition of Ayny.
G W, = dim(¥,. As. s M2 dimiW,, Ay iy, N)
Hence Ity is infinite. As W N W,y 12 1y 2 75, by (¥*).
G0 dim(W, . Ay, iy, N2 dim(W,. Ay, 1y, V).

By (i), (i), (i), Ipt = dim{W, . &y, n . N) = W, 1= A, So we prove
the theorem: Ipi =X\ Remark: We could choose PM 1M1



Sh:14

104 S. Shelah, Saturation of wlirapowers grd Keisler's onder

Conjecture 4B. The theorem holds also if Ipl is singular.

Theorem 4.8. Suppose T is stable and has the f.cp. Let X 2 1T+ R N
=280 and TC T,. Thenin P((Tl. ) there are ai 3{’& g 2eed gon-
zsomorphzc models of cardinality N

Proof. Follows immediately from Theorems 3.1, 4.8, (and L 1A MR is
singular) depending on the following.

Fors € P, where P C J, < order J, define Is' = I{r:¢J, <) B < s}
SP(J, <, Py) = {lsl :s € P, Islis infinite and regular. or Is. = 270},

Let K be a set of regular cardinals 2 270, and may be ciso 279 and
assume there is a greatest cardinal in K, and let 2 be a set of natural
numbers. Then there are . D, & such that

K = SP((w. <. PYLIG). Xo/p1G = max{X:x e R}

Theorem 4.9. If T is not <, -minimcl, then it is not <3 ﬁw:mimal for
every u = min(2'7' X5,

Remark. If T is countable. stable and with the f.e.p.. T is <J, -minimal
iff; < 270,

Proof. If u = A. the conclusion follows by Lemma 3.5, So we can assume
A> p = 2T and by the same lemma it suffices to prove the theorem
for the case = 27" So let A> g = 27", T is 4 -minimal but not <, -
minimal.

As T is not <, -minimal, " Keisler {6} there isan (N5, M-regular
ultrafilter I over A, such that for everv model N of 70 N™-/D is not X™-
compact. Let M be a X*-saturated model of T2 {/, 1k <X} < D a family
of sets. the intersection of any infinite subfamily of it is empty.

Suppose first M}/D is not 1 T1-compact. Then there is A C [ /D1,
IAT< 1T such that MM/D omit a type over 4. Without loss of general-
ity there is eq € XA X A, such that for everv @ « .1, eq(a) 2 eq and ¢q has
|71 equivalence classes. Let G be the filter over A X A generated by eq.
Then also Mi‘) IG is not I 71 -compact. and clea-ly for some filter 2| over
IT1, M} 1G is isomorphic to M'7/D, 1 so T is not <,r-minimal hence not
<1#-minimal.

Assume now MM/D is i T -saturated. By 1137, 3,16, there is an iadis-
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cernible set W= {a, 10 < w} in MY/ D dim(W, ) < X Without loss of
generality there is an equivalence relation eq C A X X with < [ 71 equiv-
alence classes such that eqla, ) D eq for # < w. Let G be the filter over
A X A generated by eq. Clearly :11}3 IG is an elementary submodel of
MDD (Keisler {9 and W C 315 1GL Tt s also clear that for some ulira-
filter D) oser 1T MMG N =MTYD, are isomorphic. As M is \-satu-
rated, A > 277 it .smhu‘h to prove M) 16 s not (217 -saturated. 1 it
was, by Lenuma 4.2 it will be X -saturated, hence X 2 dim(W, MA /D)=
dim(¢, MJM1G) 2 A, Contradiction.

Now we shall try to deduce some results on <.

Theorem 4.10. AY Lot T be countable. T is <minimal iff T has not the

f.ep.

B) For X 20 Py Ay -minimal iff T has not the £.¢.p.

CYIFNG <AL 20 N Ty <, -minimal iff T is s:able.

MIrR, <AL 2N0 then if T is stable, it is <y -minimal, and if it is <, -
minimal it has not the striet order p.

Proof. A, B) Follow from 4.1A and from 3.1 with product of ultrafilters.
) Follows from 4. 1A, B and from 3.3 with product of ultrafilters.
D) Follews from 4.1A. B and from 4.4 with product of ultrafilters.

Theorem G318, There is a non-<-minimal or <-maximal countable theo-
rv Tiff there is a non-good ultrafilter D, such that X=TIn,/D 2 R,
mspi:f SA> i1 Ur G.C.H. fails, there is such D,

Proof. If there is no such 120 by 4.1 every T with the f.c.p. is <l-maximal;
so by 4. 10A every countable theory is either <J-minimal or <J-maximal.
If there is such D, every stable counuable 7 with the f.c.p. is not <-
minimai (by 4.1A) nor <J-maximal (by 4.1). By [ 13] Th. 3.9A or
Keisler [6]. p. 44. 45 there issuch 7.
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§ 5. Saturation of Ultralimits

For every M and D, there is an elementary embedding of A mto
M!/D—a > f,/D where 7,() = a for every i € I. Hence we can look at
MI/D as an elementary extension of M: and can repeat extending the
models by taking ultrapowess and at limit stages take union. So we get
an increasing elementary extension of models, which are ultralimits of
M. For simplicity, all the ultrapowers will be with the same ultrafilter
D. This notion was defined and investigated in Kochen {11], Keisler
[91 §5.

Let us make the definition more precise.

5.1. Definition. UL{(M, D, a) will be defined by induction on a, such
that for 8 < «, UL{M, D, B) is an elementary submodel of UL{M. 1), «).

) fora=0, UL(M, D, a)= M
2) for « a limit ordinal. UL{AM. 2. Y= U ULM D5

g @
3) for a = 8+ 1, UL(AL D, &) will be isomorphic to UL, D, Y /D,
and the isomorphism F takes each f,/0 € UL(M, 1. §) to
a€ ULM, D, By UL, D. o) (£, is defined Ly f () = a).

Notation: At most of tb. time M and D are fixed. we let M =
ULM, D, o) and F_ th> isomorphism mentioned in 3} We assume also
M is a model of T.

Clearly we can assume that for every a. 8. UL, D, a5} =
ULM,. D. B).

We shall try here to find how compact the ultralimits are, by proper-
ties of the oridnal, the uitrafilter and the the theory of the model. As
M, is isomorphic to .1t} /D, we shail restrict ourselves to M for limit
ordinals &.

The following theorem is well known.

Theorem 5.1. If the cofinality of &, ¢f(8). is . and for every X< u. D is
(Rg» Nyregular, then My is p-compact.

Proof. Let p be a type over M of cardinality <u. Then clearly pisa
type over My for some § < 8. As D is (Ng. Ipl)reguler, p is realized in
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Mgy (sce. e.g. Keisler [6], Sec. 1), hence p is realized in Mg . So every
type over My of cardinality <u is realized in M, ; hence Mg is g-compact.

I

Theorem 8.2, If T is unsrable, u = cf(8) then Mg is net u* compact.

Proof. As mentioned in Section 1, Af 1 should be N -compact (remember
we deal enlv with X -incomplete ultrafiliers). As T is unstable, by [13],
Th. 2.13, (1), (3): there is a formula ¢(x, v) and sequences a2, a%, ...,
a*. ... from M (all of the length of ¥) such that:

for every m < w, {(v, @) 7 2m: 5 < o}
1s consistent over M, .
Ascfi§) = let § = U op. where k <7< pimplies 1 < o < q,.

k<pu
We shall now define by induction on & sequence a¥ such that

Dk €M, @l .

2D {ex g, in < w} U {e(x, )} is not realized by any e'ement of
M., .
o

3y forevery m < w. pf' ={ex. q))0Zm n < w}u{pl, a): <k}
is coasistent (over Mo;- +1).

If we shall succeed in defining the @*’s then clearly by 3) p =
{ Totx. @, )in < w} U {p(x. a):1 < uj is consistent (over M, ), because
every finite subsat of p is a subtype of p{’. On the other hand if p is
realized in M, , then it is realized in M, for some 8 < §, so there is
k< cf(8). B < ay < 8. Hence p is realized in Mak, contradiction to 2).
Hence p is a consistent type over M, which M omits, and Ipl= R, +
u< u'. So M, is not u'-compact.

It remains only to define af, assuming a’ for I < & has been defined.
As D is ¥y -incomplete thereare [, € D, [,  C I iy =1, N I, =0

n<w

Letusdefineae M} /D ifiel, —1,,, thenali] =a,,soa=1ali]:
ie /D, and gk = Fak(é). Let us check conditions 1), 2>, 3) are satisfied.

Clearly a* € My, +1- Now forany n < w, {i € I'ali} =a,} =1, —
I,4 € D hencea® ¢ My, - So 1) is satisfied.
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For proving 2) suppose ¢ € Mak realizes ¢ = { Te(x. 4,V n< wiv
{¢(x, a¥)}. Then

{i:M,, EelF-Y)il.alill}eD
that is
{i:My Eelcalill} €D,

Hence for some i, Mak Eelc.alil]l.and alil =a, for some n. But
as M, 4y elementarily extend M, . My a Eele alil}l. So ¢ does not
realize ¢, contradiction, hence 2) holds. Part 3) has o similar proot. So
we finish the definition and the proof.

5.2. Definition. Let u(D) be the first cardinal g such that D is p-descen-
dingly complete, that is, g is the first cardinality such that /, € N,
k<Il=1[ C I, implies N [+ 0 (cquivalenthy N [, ¢ D).
A< u A<u
Nodice if D is (N, &) regifar, then & < u(7): also (D) < P Note
also that u{D) should be regular.

Theorem 5.3. IF 0 < u(M. u < ¢i(d) then M iz p-compact.
Remark. 1 don't know whether this is known.

Proof. Let p be a type over A, Ipl < . and w shall prove that p is
realized in My, and so prove the theorem.

Asipl< u< cf(8), pisa type over M, forscme a < 8. Let Ipt= N,
We shall prove by induction on y < 8. that '

(*) every subtype of p of cardinality <> _ isrealized in M, ;.

AsBS N, = Ipl<p S el(8) o +3+ 1< 8, hence by proving this we
shall prove that 7 is realized in M .

Suppose we have proved (*) for every y; < y. Hence every subtype
of p of cardinality <R is realized in Muﬂ, {remember every model is
Ng-compact, hence every finite subtype of p is realized in M_ ). Letyg
be any subtype of p of cardinality R,. ¢ = {g; (x. a3 )1k < N, }. and we
shoudl prove q is realized in M, ;. By the induction hypothesis for
every k < 8, thereis ¢y € M+, which realize {¢;(x, @) 7 < k}. As
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N, S pt< < a(D) there is a decreasing sequence L k< R, [, €D
N I =0.and /y =/ Letus define ¢ € (My,pqy V/D:

AR
itie N I~ then efi} = ¢, (clearly ¢ is well Jefined), Now clearly
<k
Foy ey &M o realize g, as for every A <N,
{0V, Beleliliq ) 2livie N L -1 1> k}=1,, €D

<

So q is realized in M, _,,:s0 p is realized in M, .

5.3. Definition. A model NV strongly omits a type p (over it) if no sub-
type of poof cardinality Iplis realized in V.

Lemama 5.4 AY IS M serongly omits p ipl= wD), then aiso M, strongly
omits p.
omitsp.

OY In AV B) iusread of Ipl= u(MN, ir suffices to assume that there
arenol, € Djork <iplk<lI=0Lcl,, N I =0;and iplis
regular. k<ipi

Proof. We shall prove A), as B). C) have similar proofs.
Suppose A) fails. so ¢ € M| realize ¢ C p. gt = Ipl. Let c; = Fy(c),
g ={¢lx, a )k < lgl). So clearly for every & < Ig! = Ipl

{ivvel Mg lclilialleD
It is alse clea- that foreveryie
g = {¢r (v, f?k )M B leli]. 5k 1}

is a subtype of g, hence of p. whicl. is realized in M; hence Iq(D) <7 Ipl.
As Ipl= u(D) is regular, for every i € [ there is a bound A()) < Ipl to
{h:M Egclclil. a1}, Let, for 1 < Ipl Iy ={i k() 2 1}. Clearly I,

1 < Iqlis a decreasing sequence, and by the definition of k(3), N ;= 0.
I<ipl
In addition cach /; € D as I, ={i: k() 21} > {i:M k g[clil. )]} € D.

So we get a contradiction to the definition of u(D).
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Theorem 5.5. If T is unstable, 8 = u(D), then My is not p(D)'-compact.
Moreover there is a type over Af D) of cardinclity p(IM which M
strongly omits.

Proof. As it is similar to 5.2, 5.7 we omit it.

Conclusion 5.6. If T is unstable, g = min(cf(d) p(DN. then M is maxi-
mal'y y-compact.

D

(7]

Proof. immediate by 5.2, 5.3, and

5.4. Definition. 7 satisfies (C*)\) if: there are an increasing sequence of
sets A;, kK S \;atype p € SiA,) (113], sec. 1) such that for every

k < \ there is a formula ¢, (x, ¥, ) and a infinite-indiscerible set over
Ay (1131, Def. 5.2), {ay,, :n < w} such thatdg . @ € 4,4, and

T (X, ) o @y )€ P

5.5, Definition. (7} is the first cardinality « such that 7 does not satis-
fy (C * k).

Remark. (C+=1\) was detined and investigated in ! 4]. By [ 14]. Th. 4.4
for stable 7. and X2 2T Tisstable in Niff A = X, o A*.

Theorew $.7. If k(1) > p = min{p(D), ¢(8)] T is stable. tien My
maximally p-compact

Proof. By Theorem 5.3, M is u-compact, so we should prove only that
Mg is not u* ‘ompaat. By hvpothe\ls T satisfies (C=u). so there are A,
k< pe S opx. v and ag,, . & < un < wisuch that

k<i=A4; CApfag, 7 <w}isan indiscernible set over
Ak' {33\0. i;;{‘! & ;‘1;\.*1 and mi@;\ (\ (}AQ ) i {x, tff»k‘! Y€ n.

Clearly it suffices to prove the theorem for the case L = L{T) is the
minimal language containing all the formulas ¢ (x, vy hso LIS a.

Choose a; < & fork < cf{id)suchthaté= U ¢y
R<J{m

Let us define: a function H is elementary if forevery ¢ & L. ay.....a,
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Eelu o oaa, b it BEelila) . Hig)l
and let

!{(((}l W e (1”‘>) = \f{(gi ). e 1;’{%’}”}>.

Now we define by mduction an increasing sequence of clementary
functions H and ordinals 8; < 8 for & S uosuch that:
1) the domain of /. is U Range(a;y7a;))
<k
2) the range of f; is included in My . B = oy

Ntk << p then §; <5, < 8. and forevery ¢ € MW‘_.
I‘[S }: \{3‘, [(‘, i]f*‘l (i?,‘())} ES y’)il(’. [1{’*] (di.l )] .

For & = 0, I, will be the void function, §; = ay.

For a limit ordinal i H, = v L B = max(ey. U B [T & <,
B < it because g < i}, T I<k

Sunpose 1, B are defined, & < p.and we shall define Hy . Bryy -
We first show:

(*)  there is § < § such that we un extend H, to an elementary func-
tion H* from Dom H,uU {Range d; ,: n < w }into M,.

If = N, this is true, as for every V. N/D is 8 -compact, so §=0; +1
will suffice. So assume u > 8y. W2 define now by induction on » an in-
creasing sequence of functions " from Dom H,ulU {Range a ., 1 m < n}
into M. If we have defined /7. and cannot define /,,;, this means A
is not u'-compact {as it omits

{elx, FeN:pe Loc € Dom H", Eolag,. cl}]

and so the conclusion of the theorem holds. So we can assume H7 is
defined forevery nand ket i* = U H7. Clearly H* is au elementary
3w
function, with the appropriate domain into M. As u is regular (as u(D),
cf (8) are regular) u > R, /¥ is into M for some § < 8.
So we proved (*).
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Define By,; = max(8, ap). Let/, € D. I, D1 . Lh=1L 0 1 =0

el

(they eXist as D is Rl-mcomplete) Define Hy,tag 0 ) E ,li’sﬁg as
Fg, (c), where c € M, 1D is defined as follows: if i € [, — 1., . ¢lil =
H*@ay, " @p ey )- 118 easy to verity Hy . B,y satisfies the induction
conditions.
Now
P={0p e Hisy Qo) = Vg (6, Hy o @ N0 K < i}

is a consistent type over 1! . and it is strongly omitted by ’if ay
B, < &, by Lemma 5.4, also 11 omits the type. so Mis not g mompmt

It is natural to conjecture that if x(T) < .z = min{u(D). cf(8)]. and.
a,B< 8= a+ <8, then My is UL(Rg. D, 8)saturated (UL(R,. D, §) -
the cardinality of UL{(M, D, &) for every countable M) [ this would ge-
neralize 4.1A]. But this is not true. 7 may be superstable [s(7) = X, ]
or even simple [Def. 2) and 3f or Af; will omit strongly a type of car-
dinality u(D). However

Theorem 5.8. Suppose k{1 < min{u(. 8. D is (Xp N Tregular
ultrafilizri . § < 8 = a + 3 < 8. Then M is N-saturated. where
A= UL(X,. D. 8).

Remark. 1) Forevery §; thereare 8,.8:8; =8, +d:a.f< é=0a +
B< 8, and UL(M, D. ¢ Y= UL{M,,. D. §;). So the restriction on § is
naturat. i

2) Clearly A > 71, so it suffices to prove My is A-compact.

Proof. Let p be a type over M . Ip! <X\ We should prove pr is realized
in ;. Letg be any eMm:don ot p inS(A ).

Notice that if 1B < &(T) < ¢f(8). B C M, . then for some a < 8.
B C M, . Hence by Shelah [19] thereisa < § s.t. forevery ¢ = p(x. M €
L, Rank,(qlp) = Rank‘ﬁ[(qm[a)!ga} (sec {131, Def. 2.4, 2.5, and Th.
2.13, ple is the maximal ¢-type contained in p, pid - the maximal type
over A contained in p). So by {13]. 2.5B: thereisaset B C M. IBIST.
such that for every @. Rank, (giy) = Rank  [(g18)¢]. Now we can de-
fine a, for n < w such that
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D a, realizesglB U{a,, m<n})
i =
Difé> w,d, © JF!Q,+,’+‘

As D is (R, ITregular, this is possible. As in the proof of 4.1, and
in {13}, 5.16, it follows that:

if (v, D) € q, then {n < w: F Te(a,, b} is finite,
and {a, 7 < w }is an indiscernible set over 5.

Suppose for amoment § > w. LetP={a, :n < w}C M,, , (as
a<d w<diatw<d) Let (M. P)Yy=ULU(M,,. P D, §)(remem-
ber§ = a + w + 8) Clearly P§ extends P and is an indiscernible set over
¢. So @lx, b)Y € p implies ¢(x, Y € g implies {¢:a € PP, E T ¢(a. B)} is
finite. So all except Ipl- Ny < X members of P3 realize p. As [P | =
UL(R,. D, §) =\, the theorem follows and we remain only with the
case § = ! and we can define the g, ’s simultaneously in M, and the

proof gaes in the same way.
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