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We try here to find the connection between how saturated is, or can 
bc an ultrapower. -rod some propertics of the theory" of the model and 
of  thc ultrafiltcr. We dea! also witll similar problems for ultralimits, ul- 
traproducts, limitultrapowers: and the existence of categorical pseudo- 
elementary calsses contained in given elementary classes. In another  
formulation, this is equivalen~ to the investigation of  Keisler's order<l ,  
and a generalization <l* def i led  here (see Def. 1.3 in § 1). Another  ge- 
neralization which was sug, gested - replacing ultrapowers by reduced 
limit powers, is not checked here. Almost all the results here (and more) 
appear in Shelah [ 13] §0, F, G (together with historical remakrs) and 
the.',; appeared previously in the rotices [ 15], [ !6] .  We soived here, 
partially, question 25 (of Keisler), from Chang and Keisler [4] ; and, 
equivalently, some quest:gns and conjectures from Keisler [6].  The 
different sections here are quite unconnected,  but § 4 depends heavily 

on [ 131. 
In Section § I we define notation. In Section § 2, we investigate <1 

for tmcountable theories. We find a way to deduce from theorems about 
<1 on countable theories theorems about <1 for uncountable theories. 
We proved that there is a non <l-minimal nor <l-maximal theory (2.13A), 
and that if G.C.H. fails (i.e. there is at least one X, 2 x > X+), then there 
are two ,,d-incomparable theories (Th. 2.13B). (Those results answer 
qt~estions of  Keister). 

t R~ised 26 October, 1971 
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76 S. Shebah. Saturation o]'ultral~.~wers ~:~at Keix.~e~r's ord¢'r 

In Section §3, we mainly prove that certain ultrapowers are not sa- 
turated. 

Section §4 contains the main results, We affirm a conje~zure of  
Keisler; characterizing countable <l-minimal theories. We p~ove that it" 
G.C.H. tails, there is a countable non M-l:finimal non ~-maximal theo- 
ry (Th. 4.10, 4.11 ). We find for models o f  countable stable theories, al- 
most exactly how saturated are their uitrapowers {Th. 4.1 ). Wc dso 
characterize the countable theories 7\ such that for some T 1:3 7', tile 
,:lass of  "educts of  models of ~r" l to the language of  T is categorical in 
.some ~ > IT 1 I. 

In Section §5, we find, quite accurately, how saturated are ultra- 
limits. 

Sh:14



1, ,Vot~tkms 77 

§ 1. Notation; 

",~e shall most ly  use the nota t ions  in Shetah [ 13] § 1. T will be a com- 
plete first-order the. ,ry with equal i ty  and with no finite models.  The 
first-order lavguage geqerated from L by adding the predicates  R 1 . . . .  
and the symbol  f imctions G 1 . . . .  is deno ted  by L u { R 1 . . . . .  G 1 . . . .  }. 
Ultr~filters wiYl be deno ted  b y / ) ,  and we assume they are non-principal  
unife, rm and ,~ ~ - incomplete ,  and D will be over I, if not  men t ioned  
otherwise.  We shall use freely Lo~'  theorem (see e.g. [ 1 ] or  [4] on ul- 
t rapowers  and ul t raproducts) .  Elements  o f / w i l l  be deno ted  b y  i, s, t. 
In an abuse el" no ta t ion  if, for  example ,  J4] i is all L-model,  L l = L u {P}, 
Pi a relation over IMit fo:" every i E l, then (:11 i, Pi ) is all L 1 -medel  and 
if i~,r = ]Ti~=tMi/D t h e n  (N, P-'v' )=l--[i~t (Mi, Pi)/D. We shall deTaote ele- 
nac nts o f  ~ ]i~l lilt~I) a l so  as indexed Sets (a i : i ~_ I) and not  a lways as 
equivalence classes o f  such indexed sets. Also i r a  ~ N = [-[i~.i/4i/D, then 

a = (a[i] :i C l> and 1k~r a= <a o . . . .  a,, ), a l i ] =  <a o [i] . . . . .  a n [i] ). Fo r  
a c ~. Mr~D, eq(a) = {(s, t~:a[s] = a [ ! ] } ,  and for a filter G o v e r l x  I, 
Mto/G is a submodel  o f  Mi lD,  whose  set o f  e lements  is {a ¢ M1/D • 
eq(a) 6 (7}. This is defined and investigated in Keisler [9] .  

An ultrafi l ter  D is (/a, ,X)-regular if there is a family o f  ~ subsets  o f / ,  
which belong to D. and the intersect ion of  every/a  sets f rom the family 
is empty .  D is re,-mlar if it is (S0 ,  ql)-regular.  

For  a model  M the set p = {~pk((:, ~77" ) : k < k0} (~t ~ IMI) is consis- 
tent over M. if for every finite w c k 0, M ~ ( 3 x ) A  k=~v,. ¢~- (x. ~k ). Such 
a consis tent  set is called a type  over M. If all the 6 k are from A, A c tMI, 

then p is a type  over A. A sequence/~ realizes p if ¢(~, 6) ~ p implies 
, I t~ ~p[?, d] .  M realizes p if some ~7 6 13tl realizes p,  and if M does  not  
realize p,  it omits  p. 

31 is ;~-compact if it realizes every consis tent  type  (over  it) o f  cardina- 
lity < X; M is X-saturated if it realizes every (consis tent )  type  over  any 

subset  .4 c 13tl IA 1 < 3, By Keisler [81 D is ~.-good iff  for every M, 
Mt/D is ,~-compact; and every (~ 1 - incomplete)  D is N 1 -good, bu t  no t  
I ll *'- good. D is called good if  it is IIl*-good. M is ~-universal, if every 
set o f  ~. formulas  which is finitely satisfied in M is satisfied in M. M is 
(< ~)-universal if for  every/a < X M is/a-universal. 

By [5] (or  see e.g. [ 1 ], [4] or  16])  for every D 1, D 2 o v e r / t ,  I 2 we 
can define the ultrafi l ter  D t X D 2 over I 1 X 12 such that for  every M, 
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78 S. Shelah, Saa~ration ~( uttral~wers attd .:[¢q,~ter ~ ¢~.der 

MLIXI2/DI X D~. is i somorphic  to (M &/D i ~12/D~, . . .  I f  D t . D,. a~'e regular. 

then D 1 × D 2 is regular, and for  every ),, D~ x D 2 is ,'~-good iff D, is X- 
good (see Keisler [ 10] ). 

Af ter  Keisler [6] we define:  

1.1. Definit ion.  T~ <Ix 7"., provided that: I\3r every models  M t . 31 z o f  
* ) T 1, T2, and ( S o ,  X)*regular ul trafi l ter  D over A. (fM~/.) is X -ct mpact, 

then M~ /D is X*-compact. 

1.2. Definit ion.  T 1 <1 T 2 if  for every X. T i <I~, T 2 . 

A generalization e f  <1 is 

1.3. Defini t ion.  T l <J* T 2 if for  every I, D, G, X and (X" + i l l ' ) -sat  ~rated 

models  M 1 , M 2 o f  T 1 . T 2. ifM~o tG is X*-compact then M~I ~t ( ;  is ),*- 
compact .  

Keisler [6] shows:  T <1 T (2. ta). T is ,.~a-minim.al iff for every regvlar 
D over X, and model  M o f  F, 3IX/D is U - c o m p a c t  ( § 4 )  and tile theory  
o f  equal i ty  is <]\-minimal:  and T is <]a-maximal iff  for every non-good.  
(~0 ,  X)-regular D over 3.. and model  ill o f  T. Ma/D is not X'-compa,::'~, 
and e.g. the theory  o f  numbers  is "-4 a-maximal  (Th. 3.1 ). He also shows 
that for  ;~, > ~0 ,  no theory  is both  <Jx-minimal and "~x-maximal- 
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2. Keider's order ]or uncountable ti, cories 79 

§ 2. Keisler's order for uncountable theories 

R e m a r k  on  notations.  
We shall assume that different  theories have languages w i thou t  any 

c o m m o n  predicate  or  f imct ion syn~bol. So writing a fommla ,  it is clear 
io what  unique langtmge it belongs, Let ,b deno te  an ( inde×ed)  set o f  
formulas  ~.%~); with repet i t ions  possibly,  q, i; o f  L = L(T) if it is a set of  
lk~rmula~ which belongs to L. We write qb c ~. 

2.1. Definition. G: (ql, z , m I ) <- (alp 2 , m 2 ) holds, where q~l c L(T  1 ), 
cI,, c L ( T ,  ), provided that ~ l  = {¢k( 3~:, -k ) k < ko} G[~o k (Y, 5~ )] = 
~t'~. (i:, 5 )  < 4 ' , ,  /(.~) = m t ,/I,~ 7] = m~, and for every model  M 1 o f  T~, 

ii t ~: l,'ll~ t, T 2 has a model  M 2, and t~" ~ IM? 1 such that: 

for e v e r y w C  k 0 ( = { l : / <  k0}) 
{v%(x, a t ) "  k ~ w} is consis tent  overM~ 

iff {q'x(i ' ,  ~;-k I k ~- w} is con dstent  over M 2 . 

2.2. Defiai t ion,  (,I~ I , m I ) < (q~2, m2 ) h )lds if there is G such that  

G "(~|'1, nil ) ~ (q%2, m2 ) holds. 

Remarks.  A) Clearly by the compac tness  theorem G ' ( 4 '  1 , m I ) 
(4~ 2, m 2 ) holds iff for every .~'qte 4? c q~l, Gl~b: (~ ,  m l )  <_ (~2 ,  m2) 
holds. B) In Defini t ion 2. i v'e can zake M 1 , M 2 as f ixed X-universal 

models. 

Lemma 2.1. A ) / f ( ~ b  1, m 1 ~ ~ ,4~ 2. m , ) ,  4 ~1 c ,b 1, ~2 c 4 ,-~ then 
(q,I. ml ) < (~2, m2). 

B) Zf ~ I  [c1.2 ) is the closure oj'4~ 1 (q%2) u:,Mer conjunctio,~z and disjunc- 

tiotl, [hcn (@t, till ) ~ (t~2' m2) implies (qbl  ml  ) <_ (q)2, m2). 

c) lf(~b 1, m I) <- (~b 2, m2), atzd (~2. nz2) <- (~3, m3) thet~ ( ~ l ,  rot)  <- 

(~3. m3 ). 

Proof .  hnmedia te .  

Theorem 2.2. A) l f f o r e v e o '  (I~ l c L(T  1 ), IcI)l I <_ X there is q~2 c L(T2)  

and  m 2 < w such that (q~,~ , t) .<- (~2.  m2> then T l "~x T2" 
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80 S. Shelah. Saturation o[ultrapow~'rs and Keisler'~ order 

B) From the hypo thes i s  Of  A )  we  can conclude: (FM l is a K-comp,wt  

m o d e l  o f  T 1 , M 2 a (<  ~)-universal m o d e l  o f  T 2. D a (K, X)-r,\¢uh-',r ultra- 
f i l ter  over It, and  M ~ / D  is X'-compact ,  then M* 1'/D is ~ ' - compacr  

C) In B) i f  M 1 is ~÷-cempacr  M 2 ~-tmiversaL then the r~\~ularity o f  

D fs superfluous.  
D) In the hypothes i s  o f  A) (and also B), C)) we can n7fface " ~ r  

every di, 1 c L(T 1 ) , "  by "j'br cveo '  ~1~ l ~=- K "' where  K is a class o f  sets 

o f  f o rm 'das  o f  L(T) such that: 
i f  N 1 is a non-~*-compaet  m o d e l  o f  T~, then :here is a type  p = 

{ ~I¢ (x, d t¢ ) : k < k 0 <_ ~,} over N 1 which  N 1 omi t  and  {~p~. (x. ~ ) : 
k < ko} c d/, ~ K f o r  some  cp. 

Remark .  This and Th eo rem 2.5 generalize Keisler [ 6 ] .  Th. 2.1, p. 29. 
The generalization [6 ] ,  Th. 2.3, p. 33, is seemingly incorrect .  (On the 
one hand assume, too  little - an assumpt ion  like 2, 2, and conclusion 
like 2.5; and on the o the r  hand the pat tern  includes super f luous  inl\;r- 
mation).  Nevertheless,  the generalization goes easily. 

Proof.  We shall prove only  the concluNon of  C) by tile hypothes i s  o f  D). 
The o ther  cases fol low or have similar prool~ (or. al ternatively,  using 
Keisler [6 ' , p. 29, Th. 2.1). So suppose  M l is a X*-compact mode l  o f  
TI ,  M 2 a X-umversal mode l  o f  T 2 , D an uttrafi l ter  over/~, M~/D is X*- 
compac t ;  and we should p: ove M~/D is X*-compact. Suppose  this is not  

so, and we shall get a cor tradiction. 
As N 1 = M ~ / D  is not  3,'~ ~-ompact, it omi ts  a type  t, over N I ~ p = 

{ ~0k (x, ~k) : k < k 0 <- X}. By the def ini t ion o f  K, we can assume • = 
{~ok(x ' f k ) ;  k < k0} c ~ l  ~- K. By assumpt ion  there are q~2 c L(T 2 ), 

G, 1:72 < w,  such that G : ( ~  I, 1> ~ (~2, m2)- By Lemma 2.1A we can 

assume • = ,t h . Let G[e~,t (x. )~"~l = q'k (.v. -~ ~ (l(x~ = m z ~. 
By Defini t ion 2.1. remember ing  M2 is X-universal. for every i < 

there are ~,-k [i] C 1312 l, k < k 0 such ttlat: 

for every w c /%,  
{~0~(x, d k [il ) : k  ~ ;~:} is consis tent  over M~ 
i f f  {'-Ilk (x, b -k [!] ) : k ~. w } is consis tent  over M , .  

As b -k [i1 is def ined for  ever) i < la. i~ ~ ~ 3I~/D is also defined.  
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§ 2. Keisl,'r',~ ot~&'r,,fi~r ~mcou:ae~blr theories 81 

Let q = {qtk(X. l; ~ ): k < ko}, and we shall show q is consis tent  over 
M 2 . F o r l e t w c  k 0 , 1 w l <  s 0 .  We should prove ~ ( 3 x )  A ~I'k(.~,-b~). 

k ~ w 
This fol lows f rom ~o.~ theorem,  defini t ion of  bt[i] and consis tency of  p. 

So { q'~+ ~i(, b~+ ) :k  ~ u,} is consis tent  over ~I*~ ;D. As this is true for 

eve~, finite w C ko, q is consistcnl  over 3,'~719. 
Now as M~/D is Y - c o m p a c t ,  there is a sequence  i7: f lom it that  realizes 

q. We shall prove that p is realized in M~/D, and get the contradic t ion.  

Let for i < / a  

w[ i ]  = {k < ;'o :312 ~ qtk[Yli],/S t [ i ]  1} • 

Clearly qlil = {q'k(X. b '~ [i1 ) : k  ~ w[i]} is consistent.  So, as before,  by 
the defini t ion o f  the t~: Ii1, also pli] = {vr~ (.v, d ,~: li] ) : / ,  ~ w[i]} is con- 
sislent over :tl I . As M I is Y - c o m p a c t  there is c[i] that realizes p[i]. So 
cC M~/I) is defined. Now l\~r every k < k 0 :M~/D ~ q'k [c. ~t  ] (By the 

defini t ion o f  b). Hence: 

{ i <  fl:,'t/z t: q ' k [ c l i ] "  b k [il }} '~ D or 

{ i < / ~ : k  ~ w[i l}  ~ D so by  the def ini t ion o f c [ i l  

{ i < / a : M  t b=~ot[cli],dk[i]]} ~ D  hence 

M~/D ~ ~k [c.. a*l .  

So c rcatizes ~, contradic t ion.  

2.3. Definit ion.  Let tl, 1 c L(T l L tb  2 c L(T2). ~1 = {'Pk( j:~ i-;::):k< k0}, 
1(7(:) = m I : G a funct ion G[,&(~:. zt )1 = q ' k 0 \  -k ) ~ '~2" t(~-:) = m 2 . 

Then G : (~b~, m ~ ) ~ *  (~2. m 2 ) if for  every model  M 1 o f T 1 , and 

-t  c M 1 there are a model  3I ,  o f  T,. and b,~ E 319 (k < k C n '<  co) 

such that: 

for every w c k 0 × co 
{¢k (.vl a~ ):<k. h c w} is cons is tent  over 11," 1 
i f f  {qtk(t:. -b~)'(k. it)E w} is consis tent  over M 2. 

2 .4 .  D e f i n i t i o n .  L e t  (4P 1 , m I )vZ* ( ~ 2 ,  m2 '~ holds if  for  some G, 
G:(dPl, m 1 ) ~ *  (qb 2, m 2) holds. 
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82 S. Shelah, Saturation of ul tral~ 'rs  a~td Kei~ler ~s o~der 

Lemma 2.3. A)  In Def in i t ion  2.3, we can replace co by ato ~ a > ¢~. 

B) G:( ' /h  , mr> <-* (~2' m2> implies G:¢I,~, mr> -<.- (~2, m . )  

C) (¢b l , m I )<-* (~2, m2) #np l i e s  (¢b l , Ltl I ) ~  ((~2' l~12) 
D) I f  dO 1 , ~b 1 contain the same formulas  (with a d(f ferent  ; m m b e r  o f  

repeti t ions)  th, 'n 

(qbl, ml )<*_ (c~2 ' m2 )¢> (qbl, ml  )<~*_ (~,,,,. m~). 

E) I f  cb 1 c (Pt, ¢b2 c cb 2 then (q3 t . m I ) :<--* (c~ 2, m 2 ) implies 

<q~l, ml><_,  (@2, m2). 
F) (q~l, ml  ) <-* (6Pl, m l  ) (by the iden t i ty  .,nap). 

Proof. Immediate. 

Lemma 2.4. Tlle f o l t ow ing  s ta tements  abou t  7" I . T 2 are equivalent. 

A) For  evepy qb! C L(T: ) tilere are, qb~ C L(T 2 ) and .12 < ~ such 

that  (clq, 1) -< ('i) 2, m2). 
B) For  every ~ l  c L(T! ), 1~! 1 <_ IT 1 t + t T 2 I" there are ,b 2 c L(T 2 ) 

and m 2 such ~'hat (dp~ , t) ~ (~z,  m2). 
C) For everr, ~l  c L(T l ) ;here are 4'2 C L(T 2 ) and  m 2 such that  

D) For  e;,erv 'b t c L(7 ! ), l~11 <- I Tll there are q3 2 c L(T 2 ) and  m 2 

such that ( ~ I ,  1) <-* (~2, 'n2)- 
E) Le t  ¢'0 be tt~e set ~Lffi)rmulas ~.~v, i;) ~ L(T! ) (cleariy t~o l  = IT!l). 

There are q5 2 c L(T2), m 2 such that  (tl" O, i) ~ *  (~2, m2).  

Proof. Clearb A -~ B, C ~ D -~ E, So we sh told prove B ~ C, E ~ A 

only. 
Suppose E'~ holds, and we shall prove A). Let ,b! C L(T 1 ): clearly tI h 

has a subset q3 such that every formula  which appears in ,:b: appears in 
,.I, exact ly  once. Hence 4~ c ~0 [of  E) ] ,  so by L e m m a  2.3E (cb. 1) <-* 
<@2, m2)  [qb2 -- of  E)] .  By Lemma 2.3D also <qb I . 1> <-* '~2, m2>, and 
so by 2.3C (q~l, /) <- (cb2' m2)" So A) holds. 

Now suppose that  B) holds, and we shall prove CL Let ~ = I Tll + t T21*, 

and let q~t c L(T l ). We should prove that  there are q'2 c L(T 2 ), m 2 
such that  (¢h ,  1) <-* (4~ 2. m2). By L e m m a  2.3D we can assume wi thou t  
loss o f  general i ty that  no formula  appears in q~l twice, hence f ,~ l  
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2, Kei.dc, \: order,tbr um'~mntablc theories 83 

IT 1 i <- X. Let ~ I  ={ ' ;k  (x' ~ ' ) : k  < k0}. Let 4 ~l c L(T I)  be sLlch that  
eyeD, fornmla o f  L(T l ) appears in it exact ly  I T2t* times. By B) there are 
~t, 2 c L(T~ ), m 2 and G stlch that (;" :(cb~, 1)<_ (4, 2. m 2 ). Now each for- 
mula Ct (x, ~7~.) ~ I,(T) appears in ,1,1 1 7'21" times, but there are IT21 for- 
mulas in L( 7" 2 ). So for some ff'¢. (3:.. zX ) ~ L ( T  2 ), for I T~ I ÷ appearances 
ofck( .x ,  3 :~" ) in ,b ~ , G[sok(x, in-)] = q~: (;~:, z-~- ). So define G~ :cb 1 -+ ~2 
by G~ [ek(x,  y~ )] = q~k(2x:, ~t ). It is easy to check that  G~ : ( ~ ,  1) <_* 

~q~2, n~2)* 

Theorem 2.5. A) I f  4~ o is the set o f  all formulas i ,  L(T 1 ), atM Jbr some 

~2 C L(T 2). m ,  < ¢o, (~I~ O, I) -<.-* (tb~, m 2) then T 1 ..~* T 2. 
B) hl fact  it suj:ficcs to demapM that there a r e  (I~ i i < i 0 such that. i f  

M I is a tloH-~%COml~act mo~h'l o f  T 1 , then there is a type  p over M 1 , 

P = {¢k (x, a~: ) : k ' <  k 0 < ~*}, such that for  some i < i 0 every 

~ox(x, i~ ;7c ) E ~i: aped t!~ere are ~b2. i c L(T  2 ! m2, i < (o such that 

(qh i. 1) ~ *  (~bL i, m2.i). 

Proof. It is very similar to that o f  TLeorem 2.2, so we omit  it. Th~ only 
differences between the proofs are that  here we cannot  treat each i < / s  
separately,  but  all together;  and that  we use ~ *  instead of<_ and Letu- 

P "  2.4 mas , .o ,  are also used. 

Tl~eorem 2.6. A) I f  T has the strict order p. (see Shelah [ 13] ,  Oe/: 4.2) 
then /'or d "-,1" 7; hence Tor d <3 T. Also the other  conclusions o f  2.2 hold 

,for T l = Torcl, T 2 = T. 
B) I f  T has t / e  independence p (Shelah [131, Oef. 4.1) then Tin a <~* 

T hence Tin d "..1 71 AIso the ,  qher conehtsion o f  2.2 hoMs ]'or T 1 = Tit ~, 

T 2 = T. 
C) It" T is :rustable (Shelah [ 13 ], D e f  2.1 D) the:, Tin a <]* T or 

Tot d ~ *  T (or both hoM). 

Remark.  Tor d is the theory  o f  the rational order.  Tin d is def ined in' [ 13] 
Th. 4.7. 

Proof.  A) and B) imply C) by [ 13],  Th. 4.1. Now it is easy to check 

that  for Tor a, i 0 = 1, q~ = {x < y ,  - Ix < y} satisfies tile r equ i rement  o f  

2.5B; and for Tin d , ~'9 = {P(x)~ z I Ex, "1 z2/~:x'), ~1 = { - iP(x) ,  x E z  1 , 
"qxEzz}, i o = 2 satisl~ ~hose requirements .  Hence the conclusion follows 
by 2.5B. 
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84 S. Shetah, Saturation of  ultrapower and Keisfer's order 

2.5. Definition. A complete  theory T is simple if it satisfies the follow- 
ing. 

A) In L(T) there are one two-place predicate xk)' ,  and one-place pre- 
dicates. For  every model M of  T, E M is an equivalence relation over 
IMI. (Also the equality sign E L(T)). For a model M of  ~ a E M let 

[a]M = {b E M :M ~ b E a, tot  eveg: predicate P(x} of t-f 1"), 

M D P(a) =-- P(b~}, 

B) There is a model M of  T such thai for every a ~ 3I, [a]~ I is infinite. 
C) There is a model M of  T such that for every a ~ 3I~ there are infini- 

tely many b a M from difl~rent E-equivalence classes which realize the 
same type. 

Lemma 2.7. Let  T be a simph, theoo'. 
A) I f  M is a model  o f  7", a ~ 3t, then an:" permutat io ,  o f  [a ] M is an 

automorphism o f  M. 
B) Every Jbrmula ( o f  L(T)) is equh'ah,~t to a boolean co~nb#tation 

o f formulas o f  the ,tbflow#~g.t'onns 

1 ) x = y .  2)  x E y ,  3~ P(x). 

,~ 4) (3v) [xEv.  . ^ A Pi(v). . ^ A 7 P J ( v ) ] . .  
i-. n j< m 

C) T is stable i,~ every ,~ ~ 2 ~r~ (stable - see [13] .  D<f 2.1Dk So T 

is superstable. 

P r o o f .  I m m e d i a t e .  

Lemma 2.8. Suppose 31 is a t,ov 3,*-compact model o f  a simph' theory T. 
Then M omit a O'pc p (over M) which is o f  one o f  the folJowing titans. 

1) p = {xEa} u {Pk(.v) ~t~'~ "l < l o <- rain (X. I TI)} u {x ~ c~. : k < k 0 <_ X} 

2) p = {Pk(x)  !;'z(h :i < l o <- rain (X. i Tl)}u P0 u {q xEc t :k < k o ~ X} 
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where I;o cot~sist o.f formuhts o } the  four th  Ji~rn: ./)'cm Lcmma 2.7B, and 
twgations o f  stwh .tbrmuh~s. O? is a sequence o['one~" and ~eroes, ~o ° = so, 

Proof.  As M is not  X÷-compact, M omi~:¢ a l - type  q, lql _<_ ,k. Without  
lose o f  generality suppose  I L{ T)t "g lql 4- ~0 = fql, because o therwise  
we can replace 111 by an appropr ia te  reduct.  So theie is..4 c IMI, 
L.t ! < Iqt ~ X such that q is ;~ type  over A, so there is a type  ql  ~ S(A),  

q C q l ,  and clearly ql is also omi t ted .  

It is clear that  ( fq2  c ql ~nd: 

for every ¢ ~ ql 
F~ 

M i= {¥x) I A 

there are vI, l . . . . .  q,,, ~ '72 such that  

n 
q%~ -~ c j  (x ,-- the only free variable in 

[tie formulas o f  ffi }, 

then M omits  also q2. 
So if q2 is a sub type  o f q l  consist ing ol the formulas o f  the forms 

ment ioned  in ..., B and their negations, then clearly ?vj omi ts  qz- 
Now our  p roo f  split to two cases, , :ccording to whe ther  some x Ea  

belong to q2 o r  n o t .  

Case L .yEa ~ q2" Clearly no formula x = c belongs to q2 (o therwise  c 
wilt realize q2).  So for every c ~ A,  (x ~= c) ~ qi ~ S(A ) hence (x 4= c ) E  
q2. Clearly i f ~  = x E a  I c q2 then as q2 is consis tent  o v e r M ,  
M ~ ~V.v)[xEa -* ~] .  Similarly il'~p = -1.yEa t ~ q2.34 D ( g x ) ( x E a  + ~0). 

Similar implicat ions hold if~o ~ q2 is o f  the form 
( 3 y ) [ x E y  ^ A Pt(Y) ^ A -qpt (y)]  or  its negation. So i f p  is the sub- 

1 l 
type  of  q2 consist ing o f  the formulas xEa,  Pk (x) [if Pk(x)  ~ q2 ] "qPk (x) 
[if  -1Pk(x) E q2 ] and x ~ c for c E et then M omi t sp ,  and p is o f  the 
form l j :  and tpl % Iql 1% X. 

Case ii. For  n o a x  E a e p. Oea r ly  for every c c A , x  ¢: c, - lx  Ec ~ q2 

and ell D (¥.V)(-1.vEc -~ X :~ C) Hence it is clear t h a t p  = q2 -{x=#  c:  
c ~ A} is omi t ted  in M and it is o f  the form 2). 

Sh:14



86 5;. Shelah. Saturation q;'uttrapowers and KeL~!¢r's order 

Lemma 2.9. I f  M is a k-compact model  o f  a s#nple theory T. am! N = 

MID I G is I Tl*-compact then N is X-compact. (In f iwt  it is ~ t G-compact. t 

Proof. I f  X < I TI ÷, then there is no th ing  to be proved, So suppose 
X > ITI. Assume N is no t  k-compact  and we shall get a contradict ion,  

By the previous lemma we can assume N omits  a type p widch is o f  one 

o f  the fc rms  ment ioned  there. So we have two cases. 

Case I. M omits  p (which is consis tent  over 31~ where 

p = { x E a }  t~ {Pt(x),Cn : I <  tTI} v {x ~ ek" :k < k o < 3,} 

(there are I Ti one place predicates in [ TI ): clearly it suffices to prove 

that  at least ~-elements of  N realize P l ,  where 

Pl = { x E a }  u {Pt(x)'~('3 :1 < ITJ}. 

As IPl i <- I TI and N is I Ti*-compact, some t" c N realize p I " As M is 

k-compact,  for every i E l, [b[i] ]M is a s,.'~ o f  cardinati ty ,'x. So we can 
define for  every k < k, i ~ I, an e lement  b x. ! i ] ~  M such that:  

k 4: l ~ b k [i] ~: bt[i] : b[i] = b[j] ~ b~ [ii = 1~. Li]- Hence l~r every k, 
bx. E IMP' is defined,  and eq(b k ) = eq(b) ~ G hence b k E N. It is also 

clear that  each -"'k belongs to ['~]N, and k :-~ t ~ bt¢ ~ bt. As every ele- 
ment  in [b] x realizes ? l ,  Pl  is realized >_ k ti~.les in N. Hence p is rea- 

lized in N, con t r ad : c t i o , '  

Case 11. M omits  ~ which is o f  form 2) from L :mma 2.8. The p r o o f  i'.~ 
similar to tha t  o f  Case I, except  that  here we .~hould find X non-E-equiv- 
alent e lements  o f  N realizing a type  over the e n p t y  set. Here we use part 

C) o f  Defini t ion 2.5 instead o f  Part B)~ 
The p roof  that  N is k~ IG-compact is simila , st) we omit  it. 

Corollary 2. t0 .  A) A simple cotmtabte theo,3' is ,d*-minimaL and 

hence <l-minhnal. 
B) i f  M is a model  o f  a simple theory T. D c I Tt*-good ultrafilter on 

g, then M~ /D is t~ ~ ~D-compact. t tcmw (t" i) i s ,  ~ o" la)-rc~ndar. 3I~/D is 
2U-compact. 

Proof. immediate. 
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Theorem 2.11. For ereo '  theoo '  T 1 and cardinal X there is a s#nple 

theory T 2 such that T 1 ,-1 x T 2 <Ix T1. I f  l Tli <_ X then also [ T2I <- ~k. 
Moreover ! f  D is a (~o ,  X)-re:edar ultrafilter over ta, M 1 a mode l  o f  T l , 
M 2 a mode l  o f  l'~ tl{cu_ .II~/D is X -cOral act (tf:ll~./D is ,X -corot act ,  

Proof. We shall deal only  with the case ITiI ~ X. ]'ile o ther  case follows 
from Theorem " 1 ~ 

Let q,~ be the set o f  formulas o f  T 1 each repeated X times. Clearly 
]qbll = X. It is also clear that  if  for some # I  c L(T,), ~%, l> <- <qb 2, 1> 
then T 1 <ix Tz. (Because ifqbl C L(T, X tq,' i_<_ x then qs1 c @l, and 
our conclusion t\~llows by 2.1, 2,2t. 

Let , l ,  I = { ~ k ( x .  {;~)'k < X}. 

We shall no'v defi~'e a model :ll 2 , and 7" 2 will be its theory.  We list 

tl~e properties o f  M 2 v e  need, and it is trivial that  M 2 exists: 
I t The realiti,,ns o f  31, arc an equivalence relation E = E M2 , and for 
each k < X a monadic  relation Pk = Q~t2. 

2) For  every a ::- :112~ [alM2 is infinite. 

[ [a lM!  = { b ' b  ~ 31~, aEb ,  and Pk(a) = Pk(b)  

for every k < X} ] 

3) [:or every model  M 1 of  T l and d k e M~, k < X there are inf ini te ly  

many a e M 2 such .'hat they  are not  E-equivalent and 

(*) for e v e r y w c  X , r / ~ X 2  

{ ~  (x, a- t t'~(k)'k E w} is consistent  eve:  M 1 , i l l  

{ x E a  A P~-(.v)'~(~') "k E w} is consistent  over M?. 

4)  For  every a ~ 312 there are a model  3I l o f  T l and a~: (- M 1 k < X 

such that  (*) holds. 

Remark,  We can replace "'for every 3f I '" by a fixed )t-universal model  

M I o f  T l . 

N o w  let T 2 be the theory  o f  M 2. Clearly T 2 is simple, 17"21 = X. Let 
co; = { x E y  ^ P~(x) :k  < X}. 
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By 3) in the Definition of M2, ((I~l, 1) <- <go 2, IL Hence by 2.2A 
T 1 <1~, T 2. Bv 2.2B, if D i s  (~0 X)-re~llar, over l III~/D is X'-compact 
implies 3t  / / D  is V-compact.  We sb auld prove that ;tI~/D is not X'-com- 
pact implies 'l,tll/D is not  ;~.+-comp ~ct. By Lemma 2,8 there are two cases. 

Case I. N 2 = MI /D  omits a type p (which is consistent over N~ ) 

p = { x E a } u { P k ( . x ' ) n ( k ~ : k E w C  X } ~ ' { x ~  c~ . :k<  k o ~ x i  

By extending tbe type we can assume w = X. Let p~ = {xEa}  u {Pk (r)~(~) 
k <  x}. 

As in the proof of  Lemma 2.0 it follows that -\'2 omits Pt .  By condi- 
tion 4) in ~he definition of  M 2 , 

(<xEa ^ pk(.x')~(g~ :k < X>, 1> ~ ((¢~,(A', ~;k ~,a~ ~) :k < M, I) 

C~re extend L(T;~) to include a, lemporarily, and also extend ?'x ;~ccof 
dingly,) So by Theorem 2,2, m fact, 3I] /D is also not X'-comv.act. 

Case II. M~iD omits p [P0 as in 2.8, 2)1, 

p = {P~.(x) '~(x~ :k ~ u' c X} u {-lx Ec k :k < k 1 _< X} u Po 

Let Pl = {;~'k~x) n(x) :k ~- w c X} u Po. 
By the proof of  2,9, ?fl,,/D omits Pl .  But by Keister {~], Th. 1,5, 

M~/D is X-universal, contradiction. 

Theorem 2.12. / :br  every set { T~, : k < k0} ~(  theories there # at least 
upper bouud J~r each ~!t" the orderings <1", ~ ,  ,dx~ fts car~#m~#O' is 
5 Z k !Tkl. 

Proof. Let Qg, k < k o i~e k 0 new one-place predicates. Let 

T={-l(-~xl[Qk(X) ^ Q~(x)] :k, I <  k 0` k ~  1}o {q, Ok :',I,~ T~.. 

k < k o } o {(vx~ .... ~',, )[Rtx ,  . . . . .  x ,  ~ -~ 

A Qk(xi)]  : R  o f L ( r k )  } 
~=1 
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[q'~) is q' relativized to Q .... (By)v9 is replaced by (3x)(Q(x)  ^ ¢)] .  
It is clear that T satisfies our demands. 

89 

Using the last two theorems we can prove many properties of  the 
order ~ between theories, if we know something about the order among 
countable theories. 

Theorem 2.13. A) For eve,T 3, there is a simple theoo'  T x , I TxI = ;k 
such that T x is <Jx-,naa'hnat. t lence if3, < la, T x <~ Tu but  not  T u <3 T x. 
So there is an (u~wounmble) theo13, which is m~t <3-~.niuimat nor <~- 
maximal. 

B) I f  there is a countable thcoo'  T which is not  ~-m#limal rtor <3- 
maximal (see Jh.  4. t 1 ) thou there arc ~-ilwomparable theories. 

Proof. A) Let F t be the (full) theory of  numbers. By Keisler [61 T 1 is 

<l-maximal, and i fM I is a model of  71 . D an (80,  ,'k)-regular ultrafilter 
on ~, then (M 1 )X/D is k'-saturated iff D is 3,*-good. By 2.11, for every 

lhere is a simple theery T~,~ ITxl = 3 ,̀ such that T 1 ~x Tx <ix ?'~- By 
the construction (and -flso by l"h. 2.11 itself) it is clear that for 3, </~, 
T x ~ Tu. Not T~ <1 T~, follow from the existence of  3,'-good but  not 

- ,~0,/~)-regular ultrafitters on t~. 
This is by 2.10B and the definitions. The existence of  such D fo!lows 

from Kunen [1 21, and Keisler [ 10]. 

B) By 4,1B we can choose such T, such that i fM is a~y model  of  T, 
D a (~0,  k)-regular ultrafilter over 3 ,̀ then Ma/D is not 3`*-cornpact iff 
for some n i, ,N 0 < . . . . . . .  1 - 1 t t i / D  < ~'" Hence by. ... "~ 10B (M1 fror'~ 2 .11)M~/D is 
bt÷-compact, but  MIlD is not p ' -compact .  So not T<I T x. 

On the other  hand as T is not maximal, there is an ultrafilter D over 
a set L such that D is not good, but ~0 <- Hni/D ~ III < l!ni/D. Define 
3  ̀= ti!. So M]/D is iIl*-compact, but  as D is not good, k = t11, MI/D is 

not ll l ' -compact.  So not T x <1 T~. 

Conjecture, Every theory is the le:~st upper bound of  a set of  <- 2 ~° 
countable theories and a simple theory of  cardinality I TI. 
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§ 3. Unsaturated Ultrapowers 

Theorem 3.1. Let T be wi;h the Lc.p. , /a = lqmd'D, D an ultrczt)Tter over L 
The** MI /D is not la*-compact, hence is not (2 ~Ity-compact. 

Remark. The f.c.p, was first def ined in Keis}cr [ 6 ] ,  p, 38, This is essen- 
tially Theorem 4.1, p. 39 Keisler [6 ] ,  and ~ve repeat  it fo~ comple teness  

only, 

Proof ,  Let  X = min{Flni/D:Flni/D ~ So} and X = llni/D. By the defini- 
t ion o f  f.c.p., there is a t 'ormu!a ~p(,v, f }  o f  L{T), such that t~r arbitrarily 
large natural  number s  n, the fol lowing holds: 

(*) there are h ° . . . . .  d',~-1 such that 

at l=~(3x)  A ~(x. a~,) 
i=0 

and , "o r /<  n :~! ~ ( 3 x )  A ~.x. al, ) 
z=0 

Let for  every i e I. f ( i )  be the maximal  n u m b e r  ~ n i for which (*) 

holds. Hence  f(i)<-" n i, hence llf(i)/D ~ l l n jD  = X. On tht o the r  hand 
for every n ° *llere is n I >- n 0 for which (*) holds.  So n; ~ ~r I implies 
f(i)>_n 1 >-n 0 . S o  

,,% 
{i:n i >_ n')  C {i:f(i)  ~ pz 1} C {i:.f(i) <: n 0} 

As Ilni/D >- ~0, {i'~ti ~ nl} E /), hence {i : f 0 )  ~: ,2 °} (~ D. hence 
Flf(i)/D >_ n°. As n ° is arbitrary.  Hf(D}D > s o, so by "he def ini t ion o f  

a, IIf(i)/D = X. 
Let pi = { a~h. . . . . .  g~(h),l,) 1}/. It is easY. to see thx: the models  (,11. pi} 

satisfy the fol lowing sentences  

(i) }(3x)(V]:) IP6:) -~ ~(x; f)] 

( i i )  (¥y)[PC~7) -~ (3x)(¥z)(P(£) ^ f ~  z~ ~(x::))] . 
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Let (N, p.~v~ . 1 ' l i ( M  ' pi)/l)" Clearly I/w I = Ii IP /D = Fl f ( i ) /D = X. 

As the ;en tentes  (i), (ii) are satisfied by every (M pi) ,  they are satisfied 
by  (N, pN).  So p = {SO(x, a):a ~ pN} is a type  over N, (by  (ii)) bu t  is 
omi t t ed  (by  (i)), and Ipt = Ip:vl = X _<-/~. So N is not/~*-compact .  

Theo rem " " ,,.~,. Let  M he a mode l  of" 7", T has the f .c .p . .  Let  ~p(x ; y )  ~ L(T), 

arid P. the xer o f n  < ~ for  which (*) (fi'om 3.1) is satisfied, is infinite. 

Let  (N I , < ,  P'~ ) = (co, <,  P)~) IG, a E p v ,  I2 = I{b ~ N ' b  < a}l. Then 

over M~)IG tkere is a type  p. tpl = tl, which is omit ted,  but  q c p, 

q ¢~ p ~ q .:.s reaIi.zed. Moreover, p consists of¢brmulas  o f  the form 

~(x.  £) onO'. 

Pro(),. ( ' tear f ror l  3 t. 

Theorem 3,3. l .ct  3I tw a modci  o f  au re:stable f lwory T, IIi~ I mi /D < 2 a. 

l)'t¢,t~ !I !/1) is rtt~t X -corn! ac:. 

Proof,  Let ia = ~nin{[lui /D:i l l t i / l?  ;2 No}, / l  = l ln i /D < 2 x, n i = [ log2n i -1  ] 

( [ x l -  the integral part  o f  x). Clearly S o ~ I lni /D ~ l l i l T i / D  =/a, hence by 
the def ini t ion ~ffp, IIni /D =/a. By [ I 3 ] ,  Th. 4. IA there is a fo rmula  
SO = so(x :~{7) ~ L(7") which has the strict order  p,  or the independence  p. 

For  s implici ty let SO = SO(x: y) .  
By the def ini t ions for every i e I there are e lements  a ° . . . . .  a~ ~t-1 o f  M 

such that:  
(i) i r e  has the independence  p, then for every w c n~, 

{SO(X, a k ) i f (k~ 'w)  • k <~ Hi} is c o n s i s t e n t  o v e r  At 

(ii) if so has not  the independence  p, (hence has the strict order  p)  for  

k , l <  n i 

.,I1 ~ (3x) [ - ] so(x ,  a~) ^ SO(x, a~)] i f f k <  l 

Let P i  = {a~ ° " k < ?li}, and S i c !3il be such that: 
( I ) for  every a ~ M there is b E S i such t h a t  

for every c E P/, M ~ vo[a, c] -=so[b, c] 
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(2) there are no a, b ~ S i, a #. b, such that :  

c ~ Pi ~ M ~ ¢[a,  c] ~ ¢[b .  ~']~ 

Clearly n i <_ tSil <_ 2 ni <_ n i as IPil = n i, Let N = MI/t) ,  (.\'. p v Sv ) = 

I Imj(M, Pi, Si) /D.  Clearly tP v I = 1] tP~I/D = l!nz/ l )  = #, and IS .~ ~ = 
r l lS i l /D  <_ Flni/D =/~, IS ,v 1 ~ l l n l /D  = ,u, so t,~vt =/~. 

Now we split the p r o o f  to two cases. 

Case I. ¢ ( x ; y )  has tile independence  p. Let ~l = rain(X./a), and choose 
A c pN, !A I = ~'1- By the deqn i t ion  o f  the Pi's, clearly for  eve~, B c A.  
PB = {~p(X, a) if(a=~B) : a ~ A}  is consis tent  over N. Now by the def in i t ion  

o f  the S i, i fpB is realized in N, it is realized by some element o r S  N . 

Hence the number  o f  typesb-B, which are realized in N is ~ ISI =/~ 

(because B 1 4: B 2 implies no elements  realized both  PB1 and Pt~, ). On 
the o ther  hand the number  o f  such types  is t{B:B c A } I - ' ~t~ : ,,at 

Clearly 2u 2,/a, and by hypotl~esis and def ini t ion of  ~, 2 x > ~: hence 

2 xl >/~.  So for some B c A. N omit  .p~, and as tpB t = ?'1%~ X. N is not  

),*-compact. 

Case II. ~(.~, y )  has not  the independence p, hence has the strict order  p. 

Let us assume N is 3, '-compact. 
Clearly the f o r m u l a y  < : = (3x ) [ -q¢ (x .  y'~ ^ ~(x ,  z)] define an order  

on pN. It i,, easily seen that  for every a ~ N. Other  c ~ p.v _~ N ~ ~c(a. c) 

or there is 5 ~'/~v sue!" that  c ~ /~v  =, N ~ ¢(a, ,') - b < c [as the corres- 

ponding sentence holds in every (M, Pi)]. Hence (t ' there is a set o f  !k~r- 

mulas(P(.~)} u { x  < c:c~:  ('1 c pv} u { c <  x : c C  C 2 c ?x}  which is 
f initely satisfied in (N, p x .  S,V ) but  not  realized in it, thet~ V will no t  

be U-compac t ,  contradic t ion.  So there is no such set of  t\~rmulas. 
Now we define by induct ion  on 1(~), rl ~ x > 2 e lements  a,~l% E {,x 

such that:  
¢I 

(1) for every n, (N. P) ~: (3y~ ...v,~)[ A PLy i) ^ a~ <v~ ^ y~ < y 2  ~ .-. 
i=I 

• "" ̂  Yn < bn [ 

(2) if  k < f(7) t h e n a o t  < a n < h~ < h,~x 

(3) ara0> < bn.<0 > < a,~ <1~ < b,~<l~ 
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( ' tearly the defini t ion is pcssil'le hence 

_ _ " .~ j t  E _ ~ x > / a = t p v t > f { a ~  ~ a - , ~  =l{p,:,7 x 2 } l = ~ x  

conm~diction.  So M:/D is not X*-compact, also i:~ the second case. 

Theorem 3.4. Sul)pose 1" llas the strict  order p, ,1[ is a M-universal m o d e l  
o¢" ~1~ D an ('~o" ~)-re.~tdar ultrafi l tcr on X. l'he;1 l lX/D is no t  X~*-compact, 

~emark::. ', ) this theorem was woved  indepe .den t ly  by Keisler and 
the author.  

2) The demand o f  ,V-universality of  M is necessary, because by an 
t :npubt~hed :'e.,'ult o f  Solovay, it is consistent w~tll ZF'C + 2 s0 > ~ 1, 

that  there is an ul traf i l ter  D on co such fllat got any countable  model  
.'l of  a coun table lmguage.  M '~/D is saturated. 

Also, for a weal.or ",esult fllat follows from ZFC, see [ 17]. 

? r o o f  Let/~ = -~ ~.q. Note that ta x - ~./a x" > ~, and w.l.o.g. # > I TI. 

l f . l l? ' /D is 'mr ;V-compact, *tle zheorein holds. So assume it is M-com- 

pact. So. by l 'hcorem 2.6, if N is a model of  To~ d ( the theory  of  dense 
order} then :~v/D is X*-compact. Let 3 = ,o > ( ; , ,+ /a ) ,  (/~* is/a wi th  in- 

verse order}. Let < o r d e r g  by the lexicograplfic order, Note  tha t  (J, < ) 
satisfies 

(i} ,I is dense wi thou t  last and first e lement  

(ill s < t, S, t C ,t implies there are s i. t i. i < / a  such that  

i < / < ~  l a ~ S < S i <  t i < s / <  t / <  t .  

W . I . o . g .  assume 31 t s / a ' - s a t u r a t e d .  Now :is T has the strict order  p, and 

:tl is universal, there is ~(x. y )  ~ L(T) and a s E IMI for s E J such that:  

(iti} M ~ (~.x:~[-lso(.x-. h s) ^ ~(.~, at)l  i l l s <  t. 

t.et t ~t = ~-a s :s ~ .i}, <m = {¢h~, a tY ' s  < r}, and (N, F v , < x )  = 

(M, p M  .<~, ),X/D" Note that  <~;f order  pM is in a dense order  w i thou t  

first and last e lement ,  hence (P:~, <..~v } is ;V-saturated. Notice that  also 
( i i )  is satisfied by (p :v  < x  ). So we can de.'ine a,7' b-,~ ~ pN for  r /~  ~'*>/.t 
such that:  

Sh:14



94 S. ,~'lcth, .~aturetion o f  u!trapow¢'rs and K ~'isler \~ onter 

(A) I f k  < l(rl), r = rllk then a~ < ~,~ ~ 7;,, < [~r 

(B) If i <'./~ < ~t, then an~ < bn'~'~ < ~ -~ :  < b~n-<;~" 

Now for  every rl ~ x'/a, the typ,/, 

p,, = {q,t, tZ  a,,~):1 < X,'] to 1¢~.(', b,.~):1 < X'} 

is consis tent  over N, and Ip n I = k'*, If any Pn is omi t t ed  - the conclus ion 
of  the theorem holds. So Pn is re'Jlti~eeI by v,r, and clearly rL r E x'/a, 

~ r implies c n =~ Cr- AS in the p,l¢}of ~f T!~eorem 3.3 ( the use o f  S) we 
see that  in N at most  # types  < { ~(~.~:, ~ ) i : i  ~ 2, ~1~ ~. pX} are realized. 
Contradict ion.  

Lemma 3.5. t f  T is <ix-minimaL t ~  ~. thc~.', 7" is ~ -,,~ip~imal. 

Proof.  By Keisler [6] T is not  <I~ valinimal iff there is an ( ~ o ,  h:j-regular 
ultrafi l ter  D ola to, and a model  3I ~1" 7" such th ~t 31 ~/D is not  ~ ' -compact .  
Assume T is no t  ¢du-minimal. So glcer~, is a (~0, /a)- regular  ul trafi l ter  on 
/a, and a model  M o f  T such that ~I~/D is not  ,u+-compact. Let D l be a 
(~0 ,  X)--regular ul trafi l ter  on X, D2 -" D,  X D, I = ,'k x /a, so D,  is an ul- 

trafilter on I, t!l = :X D 2 is (~0" L)~reg~.~ar and MY~I)2 = ( M ' / D  1 )~/D i.~ 

not ta+-compact. 
Hence not X+-c,-mq,pct. So f is II ~t v,:,].~-11till{tlt.:tt ('onm~dic~iot~. 
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§ 4. Saturation of ultrapowers and categoricity 
of pseudo-elementary classes 

11teorem 4.1. Let  T bc c o u m a h h '  theory,  :1f i a mode l  o f T . l e t  eveo,  

i ~ I, attd D apt Mtmf i l t e r  orer  I, Le t  N = II/~/Mi/D. Then 

A)  It" T h a s  no t  the f.c.p., X = Nto/D, then N / s  X-s, turated 
B) I f  T is stabh, and  has the f.c.p, then N is max X-satvrated where  

X = rain { H n / D : l I ~ i / O  ~ ~0}  

C ) / f  7" hds m.~t the f.c.p., each M i is ~1 sutm'ated, amt  

X = ~J/D then N is X-samrart'd. 

D) For eveO"/h:;te  .~ C t.(7") h't 

,XA3) = rain { !pl : p is ,3-1-O'pe over M i which  is 

o m i t t e d  by 3l i} 

X* -- rain { I IXi (&) /D:& c L(T). i A l <  No}- 

Let  X be the first  cardinal. X = HXi/D ~gr some X i, ~nd f o r  eveo '  

f in i te  ~ c L ( T ) . { i : X  i ~ Xi(A)}E D. 
Tl~en it" 7' has no t  the f.c.p., N i.7 X-saturated, bu t  no t  (X*)*-satttrated. 

Remarks.  I ) Clearly the results, except  D. are the best  possible. For  ex- 
ample in A), if we choose  the M i a s  coun tab le  models ,  tt:.en ItNtl = 

b/L X, hence N is not  X -~aturated. 
2) Instead demanding  T is countable ,  we can demand  D is I Tl*-good. 

By Theorem 2. 3 this is necessa~,.  

Proof, Notice:  as T is countable ,  for every model  31 o f  7 and cardinali ty 
> ~ ( ,  M is t~-compact i f f M  is s:-saturated. 
Nov, in case B), N is not  X'-saturated by  Theorem 3.1. Similarly we 

can prove in Case D ) N  is not  (X 'Y-sa tura ted .  So. i t  remains to prove 
that in all cases N is X-saturated. 

('!e _tr!y .V. is ~ | .~:~t,,r,,~ -,~ .~......... ~. By [ I ..~] Th, 5. I t6, as T is coun tab le  and 
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stable, it suffices to prove: 
i f { c i : i <  ~ }  c INlis an indiscernible set ( [131,  Deft 5 .1 ,5 .2L ~hen 

it can be extended in N to an indiscernible set of  cardinatity X. 
For every i E I let us choose a family S i o f  subsets o f  IMil such that: 

1) IS) = IIMill 
2) every finite subset of  t31i~ belongs to S i 
3) for every finite A C L ( T ) , ,  < w,  i f w  ¢~ S~, is A-n-indiscerqible seL 

0 <- tt <- IIMill and there is a A-n-indiscernible set w'. w c ~,' c !.ll~I. 
Iw'l =/a, then there is w" E S i, Iw"l =/2, w c: w" c IM) and w" is 
A-n-indiscenfible set. 

Let IMil {a~ : /<  tl3Iilt},S i {w~:/< l : l  i ,}. Let usdef ine  the relalion 
E i on IMil" E i = i~u i,¢'-i. Uk~.i,..a)i ~ w~.} . We shall write x (~ .~ in.~tt~ad of  

E(X, y). In the language L = L(T) u {~}, clearly there is a formula 
~pacz(x) meaning {y :y E x} is a A-n-indiscernible set, for evely finite A 
n ,  

Now for every i E 1 we define U x according to the part of lhe theo- 
rem we want to prove; ia 

A) P" = {a~. • Iw~.l ~ ~'o}" in 

B) ~ = {a~. :k < IIMi[I} = IMil, i,, 
C) P /=  {a~. • Iwit. 1 ~ V}, in 
D) U' = {a~. " lw~l~  X i} 

where )i  are defined such that I IX//D ~ X. and for every finite .A, 
{i:X i <_ Xi(A)} E D. 

Now the followir, g hold 

(*) For  every finite A ~7 :.l T), n < ~ there is m = re(A, ~) < co such 
that the set o=" i's for which the following holds belongs to D: 

(**) For every A-n-indiscernible set w~., twO. I > m, there is a A-,v- 

indiscernible set w), w~ c w~, c p i  

Let us prove it. |n part B) it is tri,qal, tn the other parts Thas  not the 

l:c.p., so in p~rt A) it follows from [ 131 Th. 5.5C, in pzrt C) from 5.5B, 
and in part D~ from the proof  of  Th. 5.5A in I13] .  N o t c e  that except 
in D) (**) holds for every i. 

Now clearly (**) is equivalent to a first-order sentence in L' = 
L u {~} u {P}. Let N' = (i\~ ~,v./~v t = [i(3!i" Ei, pi)/D. Clearly N' is 

1 -saturated. 
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lib' (*) clearly tile sentences corresponding to (**) arc satisfied by N'. 

Remember  we say it suffices to prove that {c i : i < oo} can be ex tended  

in N to an indiscernible set o f  cardinali ty X. As {c i : i < a.~} is an mdiscer- 
n i n e  set, for  every 3~ n it is a A-n-indisc~ m i n e  set. Hence every finite 

subset o f  

t> =: { ~r" ~: ~'l : i < ~O } ~ J { ¢ .X ,'~ ( 'V } Z ) ( : [12{ t "} , 

IAI<  N O. n < co} t,~ {P(.v)} 

is satisfies in N', hence p is satisfied in .V, say by h. As for every ,5, n, 
,\7' D eaa~(b), clearly ,.,, = {a a INI :N' h t ~ h} is an indiscernible set, 

and of  course { Q : i <  ~o} < w. As :\" ~ F I h ] ,  and Iwt > t {~ i : i<  co}l = 

S 0, clearly iwt ~ ,k ( the check for each part is easy). So we prove the 
theorem, 

It wilt be more sat isfactory it" in 4.11), ~. = X*. (This holds i fMi  = M L ,  
For  tllis it suffices to prove 

('~mh,cnn'c A. Let el, <} = (~. <)l/I). (< - the natural  order  on ordinals.) 

For  a '~ .1, let tat = I{b ~ , t:b < a}t. Stlppose a n c .t for tt < o0. la.  I = 

la o I. ; t )w, there is a E J, a .<i_" a .  and [al = iaal. 

Theo lem 4.2. Let M bc a X-compact model o f  T, I TI _<.. Ill, N = MI/D. 
I f  N is (2 tt!)~-conwact, then N is ?t~/D-satutvtc,,l. 

Remarks 1t This affirms conjecture  41) o~" Keisler [6 ] ,  p. 41, "',hich 

sa3:s that  ~,~ is X-saturated. 

2) For  countable  T, this theorem follows from Theorems 3.1, a. ~C. 

3) t tere the p roof  works also t\~r ~ I -complete uhraf i l ter  D. 

Proof. As N is (2t/~Y-compact, by 3. t, T has not  the f.c.p. Hence T ~s 

stable ([ 13], Th. 3.8A). A s N  is (2u~Y-compact, III _<_ ITI, clearly every 

infinite indiscernible set can be ex teqded to one w!th cardinal i ty  

( 2 I V .  By [ 13], 5.1(~ and 5.11 ( remembering that  by [ 13] Th, 4.1A 

T has r.ot the independence p). It suffices to prove that:  
If  W 1 is an indiscernible set in .Y, lI¢l I ~ (2~z~) *, then there is an in- 

discernible set W 2 . I I¢ l n W? I ~ S o -  1 t~ 2 t >_ Xl/D. 
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Let {a k :k  < (2Ill) ÷ } C 1¢ I . Now the following s ta tement  will be 

proved later. 
(*) there is an infinite w c (2~I~)" such that  for every i E 1, {a,~, 1i1 " k c  w} 

is an indiscernible set in M. 
We can assume X > I TI, as otherwise the, conclusio)~ of  the theorem 

is trivial. For  every i ~ I let pi be a maximal  indiscernible set {a t [it " 
k E w} c pi c IMI. As J t  is ;k-compact, ,'k > i TI, clearly ~t~') > ),, Let 

= . + = + X/1). Now Ibr every (N, pN)  ;I(M, Pi)/D. Clearly IPI IIIPiI /D > I ,  

finite A C L(T), n < w.  the s t a tement  "'P is a A-n-indiscernible se~'" is 

e lementary,  hence P is an indiscernible set. So P c bUl. {a t "k E w}  c P. 

hence IP n W 1 I_>_ I{a k :k  ~ w}I >_ S 0. So P satisfies the conditior~s lbr 

W 2 . Hence we should prove only  (*). 
As T i s  s~able, by [13] .  Th. 2.13, IB)~  2 ]` implies IS(B)! ~ (2 I ) ~ r  = 

2 )II. It is also clear that  for B i c bill, IBil ~ 2 '); for every i E 1: 
tHi~I S(Bi)t = Hi~ ! IS(Bill <_ ( 2~' )i! = 21t, 

Define fo- k <- III ÷, sets w k c (2']') ' by induct ion '  

l ) w  0 ={ } , w ~  = U w t f o r a l i m i t t ) ¢ d i n : d S .  
i<8  

2) Let wc~ be defined Tbe:t t\vr every ! < (2 r ) .  there is a uifique 

k E w~+ 1 such t h a t  for  every i ~ L a~. [ i l ,  a~[i] ~ealizes the same type  
in M over {a][i] : / c  w~}. 

Clearly for every k, lw;. t ~ 2 ~, Choose % < (2t~) ", a0 6 w~i ~. For  
every a < f i r .  let k a be the ordinal such that  for every ~. E L %0 [i], 

ak, ~ [i] realizes the same .ype over {aft/] :] ~ w,~} and k~ 6 w,÷~. Clearly 

for every i. c~ <_ t3 < ~[ < ~I7, a~:,~[i] . a~. [i1 realizes the sam:  type in ,U 

over {a,t : 1 < a}% 
By [ 13], Th. 5.17, for every i, there is l(i) < itI" sucl ~, tt-,at {ak,~ [i] ' 

l ( i )  <- ~ < II1*} is an indiscernible set. Let i 0 = su~.~ l(i). w -- {k~ l o ~ 

a < I I t * ) .  Clearly this is tb? w required in (*}. 

Remark.  We ca~1 in fact fin,I such w of  cardinali ty (2~¢)" 

Theorem 4.3. U T is ,:ountabh, superstable, and has not  the f.c.p., (t-~)!~ 

there is T l , T c T l , I Til = 2 ~e such that PC(T, ,  T) is categorical hz 
eveo,  cardin,Tlitj' >- 2 s°. Moreover erery mode l  in PC(T 1 , T) o f  cardi- 

nality > ~o it saturated. 
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Remark. PC( iF l , T) is the class of reducts to L(T) o f  models o f  T l . Note 

that by Theorem 4,8, and b,, [131 Section 0 G.7, G.10: the theorem is 
the best possible. 

Proof.  Let M t~- a countable  model o f  t'. We expand ,.11 to M l by ado ing 

names for all the possible relations and fmlct ions over IMi (i.e. M I is a 

complete  model) .  Let L, 1 be the language o f  M l , and '/'l the theory  o f  

M! (i.e. the set o f  sentences from L l that  ;1i 1 satisfied). Clearly T l 
contains  its Skolem functions.  

Let N t be any uncountab le  model  o f  T 1 , and let N be the reduc t  o f  
N 1 to L(T). It sul'fices to prove that  A; is saturated (as by Moriey and 

Vaught  [ 1 8] ,  every two saturated models o f  the same t e mp l e  te theory,  

which are o f  the same cardinali ty are isomo~7dlic). So let p be any l- 
type over N, Ipl < tINii, and it suffices to p:'ove that p is realized in N. 

Let lh be any extension of/., to a compk ;.e type over INI, and let 
ve(.v, ~*)c l.~ be such lhat  Deg{¢(x. a)} : D e g / ~ .  (see [13] ,  Def. 6.3, 

l c m m a  ~.2A, 6.2B). Eel :3II = {ai:i < co}. and te, c i, i <  co be individual 
. N l  constants  in LI such that  G !ll = a i. Cleariy there i~a ° ~3 tN 1 I, a 0 ~ ~i 

for i < c,~. t)efine A ~ {b "v: [a. a ° l  • b" a funct ion symbol  in Lt} . Clearly 
the submodel  .,N*~. o f  N 1 , IN~I = A, is a,,, e lementary submodel  i f N  1 (by 
the def in i t ion o f  T, and Tarsk i -Vat lgh t  Tes,). Lee N* be the reduct  o f  

. \ [  ¢o L(Ft.  Clearly N* is an e lementary  sub.model of . \ ' .  We ~ha[l show 
t lOW 

{*) N[  is s i -compact ,  hence V* is S t -saturated. 
So let q be a countable  type x , - V *  o ' e r .  1 • and we should prove it is rea- 

lized in ~:* k e t q  ={Vi~.v.a{~ a l , . ) ' i <  w}. 
I" . . . . .  t' 

< A ~br some 1~'~, c L , ,  a~ -- t-3~.~l~/, n 0 I. So by subst i tu t ing As every a/ , 

we get q .-- {q,i(x. a~ a°): i  < co}. Remember ing  I,,1fl = { a i i  < co}, c~ tl = 

a i, 3I I is complete:  it is clear that  the~e is a funct ion symbol  G in L t 
such that  for every a n , b, b ° from IMP, ~7'~ ~ ~a,,, ~;-, b 0 } realizes 

{q,i(x, lg, t, ° ) : i < m } for the max imf l  possible m _<_ n. Clearly for every 

t /  

t ~  t n • 1 I -  

~!I I ~ (VZ-)(V.V) t v ,'~ ~i ,', (3 .v)  A , l , /(x. z) -~ 
i= 0 i= 0 

n--I 

A , . I , i ( C O .  ' z ~ --, 1 
i= 0 " ~ ~ 
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As a ° =g c~v/* for i < co, clearly G +v* (a ° , +/, a ° ) realizes q. So we prove t * ~. 

AsN*  is Nl-sa tura ted;  by [13] ,  6,8A, O.8D, we can find B c' ,\'+, 

IBI = N o such tha t  p t  IB is fixed 1[ 131, Def. 6.5t ,  and we can define 

b i 6 N* for i < ~ ,  such tha :  b i re,++liTe~ P l I ( B  U { b / : / <  i}). By the deft- 
nit ion o f  a fixed type we c.m define b i, co < i < ¢c- ++ ¢o = ¢o2 sud l  that 

h t realizes over INI ~J {h i : j  < i} a type Pi. P~ c: Pi, Degl',t = Deg?b, By 
[13] ,Th+ 6,12A, {b i : i <  ¢02} is an it~discernible set over B. By 113t 

Th. 4, ! T has no t  the independence p. So ¢~(.v. c ) ~  Pt  implies ~ O [ b  i, c] 

for ¢0 < +/< ¢02. So {i < ¢o2: N 0 [b i, c]} is infinite, so by 113],  r h .  5.9, 
{i  < 602 : D -] 0 [b i, {]} is finite,  so {i < ~ : N -7 0 [b i./+]} is finite. So if 

W is an indiscernible set in N. b i 6 11' to t  i <: ¢a), then 0(.v. ct ~> p~ implies 

{b 6 W :N  ~-30(b .  c~} is finite, So clearly it suffices to p~ove thal 

{b i :i < co} can be ex tended  in N (not  \+l } to an indiscernible set o f  car- 
dinali ty IINll. {Because then all but  N t++,1 + S n elements  o f  the set wi!l 
realize p.)  

Let S be a family o f  subsets o f  Ltli such that 

1) ISI = S O 
2) every finite subset of  tM: belongs to S+ 
3) If  W is a finite ~-n-indiscernib!e subset o f  3I, (A a finite subset o f  t. t ~+ 

and W can be ex tended  t o  a n  infinite 2X+mindiscernible set in :11. the:, 

there is such extension v hich belongs to S. 

- ' ~ - ' + f  I ++++ ; L e t s  += {Wi i <  o0 ~ , and not ing 31~ = { a i : i <  ~} l e t ~  = t~ai~+i,. : 
a i 6 Wi}. P all = {a] : lt~l = ~i0}, where 6,  P belongs to [.~ and let F ~  lq 

be such tha t  for every a ~ P+q t +'~q (+v. a]~ is a funt  lion from W i on to  
IMI; and w e  write  x ~ y itzstead o f ~ ( x ,  y)+ Clearly for every finite 
,5 c L(T), n < co, there is a formula ~a , , ( x )  in kt saying that  {v :y ~ x} 
is a A-n-indiscernible set. Let 

q = {¢a.n(.v):Zx,£ L I T L n  < ¢o, IAI< ~+} ~_) 

<~ {!, i 6 x : i <  co} u {P¢x)}.  

It suffices to prove tha t  q is consistent  over N~. Because as ,\:~ is S l" 

compact ,  q is realized, by some element  !~ 6 N{', l tence W = { c 6 N 1 + 

N l ~ c E b} is an indiscernible set (as ,¥~ i= v0~j~(b), N{' is an e l e m e n t a l ,  

submodel  o f N  t ). Cieariy b~ c: h' f o r / <  ~,~,. Also th'I = ~!Nil as N 1 ~ P [ b ]  
[nei'le' b~NI (X, h)} + 
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Now in order  t(~ prove that q is consis tent  over .\zl ~ it suffices to prove  

lhat every finite st~bseI o f  it is co::sistent.  By [13 ] ,  Lemma 5. !C instead 

o f  a finite n u m b e r  ofea . ,~(x} we can take one. So it suffices to prove  the 
consis tency o f  

q' ~ {t'(.v), ea,,,(.v}} u {hi c v : i <  , ,  < ~o}. 

By [ 1 31 Lemma 5.5(" for  every finite A, n there is :" = r(A, n) < w 
such that :  if m ~ r, {b 0 . . . . .  bin} is a A-n-indiscernible set in M, then  

there is an infinite A-n-indiscernible set in M which ex tends  ~b 0 . . . . .  b m }. 
So tbr r _>_ r(A,  n) 

M l I=(VX')(VV 0 ...)',.) [ (  A .vi:~ I ' iA CA,,,(.\') a A l ' i~ .v )  ~ 
*<j i<_r 

\ i_<r 

Tiffs clearly implies the consis tency o f  q'.  as {b i :i < co} is an indis- 

cernible set (in I,(T)} and for every c I ,.. % c ,V 1 there  is ~ ~ N 1 such 
h' 

that,\'~ i=(Vx)( 5(~c~ V .v=ci) 
i = 1 

The  fol lowing theorems  have similar proot~, so we omit  them.  

T h e o r e m  4.4. A)  I f  T is c ~tmtable, w i t hou f  dte f.c.p.,  ~md stable in ~o 

(i,e. ~otallv t.~).scc~Mental) thc.~t there is T 1 , T c 7" 1 , I T  1 ] = ~ 0 ,  such  

that PC(T 1 , T~ is ~ategorical ill eveo'  X ~- ~ O" at~d every m o d e l  o f i t  is 

saturated. 

B) I f  T has the Lc.p..  is colmtable  atld stable in ~o, ~" " 2~° then 

there is T 1 . T c T I , 17 t = X sttch that PC(T 1 , ?~, is cat~gorical in ~k and 

every mode l  o.i" it ¢d cardinalit.v ~ is saturated. 

T h e o r e m  4.5. I f  T is cotmtable  and  superstable, the;,, the,'e is T 1 , T c T 1 , 

!T  t t = 2 s°  such that  PC(T l , T ) i s  categorical in 2 s°,  am;  eveo'  m o d e l  

o f  it o f  cardinaliLv 2 sO is saturated. 

R e m a r k  We use the fol lowing fact:  i l 'M 1 is a comple t e  model ,  which 

expands  (w, <}, ,'V l is an uncoun t ab l e  model  o f  the t h eo ry  o f M  1 , 
a E  INII, t { b E N  l : b < a } l ~  ~0 t h e ~ l i { b ~ N  1 : b < a } l > _  2 s0 .  
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Theorem 4.6.  Let M be a model o f  a countable and superstable thee.r.:' 
T , N = M I I G ,  I!Nil > ~0,  "~'¢ M. Then 
A) N is ~11 -saturated. 

B) I f  T has not  the f.c.p., t1.¢ is k-compact tt~e?) N is ~iDtG-compact. 
C) I f  (J, <> = < ~,  <>ID I G, a ~~d ]br no s ~ J. ~ o ~ ) {b ~ J : (J, < > P: l, < 

a}l < ~, then N is X-satt, rated 

Theorem 4.7.  A) Let M b,, a countabh' mo~h'l ~ f  a stable thec;ry T 

whteh has the f,c.p., and A c L(T) be finite. Let p be a A-1-type over  
N = MID IG which is omit ted by N. but every q c p. lq] < Ipl is realized 
by N; and Ip I is regular. Then there is 

s E ¢ w +  I,<)IDIG such that l p l = l { t : ( w + i , < > ~ ) ! G ~ t < s } l  

Remark. 1) This theorem is a converse to Theorem 3.2. 
2) For  uncoun tab le  M, we should replace w+ 1 by ,'k+ I. ~ = ~iM il. 

Pr,~.of. By [ 13] Th. 5.9A there are finite A I . '~1 such that: 
(*) If  ~o(x, .v) C A, {a i :i  < c~} is a A 1 "~I -indi .cernible set in N then lbr  

ever), b f rom N ei ther  1{3 < a :A' ~ ¢[a i !~]}t < t~ 1 or 
I { i<  (x:N ~ - l ~ [ a  i .  b]}l.-~ n 1. 

By [i  3 ] ,  Th. 5 .10 there are finite A~, n 2 such that 
(**)  (i) every A2-n2-indiscernible set is a Al "nt-indiscernible set. 

112 ~ n I . 

(it) if W i is a Ai-n,-indiscernible set in N. t = 1, " and IW I ~ )1', , t ~ n ,  . 

d im(W 2 , A  2 , n  2 N ) ~ o  thendim(l t '  l . ~ l , n l . N ) ? ? :  
d im(W 2 , A 2, n 2, N)  ([ 13! ,  Def. 5.4 define dim). 

Similarly we can define finite A 3 , n 3 which will relate to A~, n 2 jus t  
as A z , n 2 ,'elate to Ax~, i I  ! . 

Now let p = {~i(x, h i)  :i < Ipl}. (So for every i. ¢i(x, -~7! belongs to A. 
or  is the negation o f  a formula from A.) For  ever); ] < ipt let p/= 
{~oi(x, d i ) : i  < j}. By our  assumpt ion  each pj is realized by some b] e ~\t 
As ipl is regular, by [ t 3 ] ,  Th. 5.8 there is w c Ipl, I w t =  lpl such that  
W 1 = {by :j  ~ w} is A3-n 3-indiscernible set (hence  al:~o A2-n 2- and 
A l-n l-ind~scernible set). Clearly dim(W 1 , &l ,  h i ,  ~\B ~ Ip[ t et us prove 
that the equality holds. Otherwise  thetv i,,: W~. W 1 c W I, t itet I > Ipl and 
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tt q is also ~1-Jt~ - indiscernible .  N o w  ¢ i (x ,  a i) <- p implies  i < / < Ipl =~ 

N ~ ¢ i i h u  di] ,  h e n c e  l{b <-7-_ W t : ~  ~ i [b ,  di]} l ~_ '" 0 h e n c e  I{b E W 1 : 

¢i[b,  ~7]} 12  S o.  h e n c e  by  (* )  I{b ~ W I : N  D-q@i[b. ai]} I < n I . So 

the n u m b e r  oe  b ~. It pl wh ich  do  no t  real ize p is ~ ~z i Ipl < [ W 11, so p is 

real ized m N. C o n t r a d i c t i o n .  So  d im (I~,' l , ~ 1 ,  u l ,  N)  = tpl .  

Le t  us c h o o s e  in M roB' c o u n t a b l e  set t ~'u = {a i : i  < w},  and de f ine  an 

o r d e r  re la t ion  <,~¢ = {(a i , a/ )  :; < ,i} (we  wr i te  .~" < y ins tead < (x, .v)). 

We also de f ine  a re la t ion  0 -it such  tha t :  if  {c I . . . . .  on3 } is a A2-n2- indis-  

ce rn ib l e  set in M, d~en {c ~ M : ( c .  c:  . . . . .  c,,3 ) ~ Q:~t} is a m a x i m a l  &2- 

n2- ind i sce rn ib le  set in M, and  i: inc ludes  c~ . . . . .  c,, 3 . L e t  us de f i ne  

also a f u n c t i o n / ~  such tha : :  f o r  eve ry  c 1 . . . . .  c,~ ~ M, let  I9 = {c ~ 1li" 

(c, c I , ] . . ,  cn~) ~ QM} : n o w  I tl't = r <  6o implies  t;:~t(c! . . . . .  on3 ) = at+ 1 

and  I lt'! > s" 0 impl ies  t:'~1 (c I . . . . .  c,,~ [I ---- a , .  ~,Fe also de f ine  t t  M such  

thai  if/ ':~t (c 1 . . . . .  c,~ 3 } = dr+ t , t l M ( . F ,  C! . . . . .  Cn3 } will be a o n e - t o - o n e  

f i tnc l ion  f rom  {a i :i < r} o n t o  {c c M :(c,  ,~ . . . . .  c,,3 > ~ QM} ; and  i f  

F3t (ct  . . . . .  G,:, I = a,~,, I P  t (x .  c t . . . . .  c,~ 3 ~ will be a o n e - t o - o n e  f u n c t i o n  

f r o m { a i : i <  w } o n t o { c ~ M : ( c , c  I . . . . .  {. )~.Q.$t}.  Le t  

, . Q . t l  '~ ) (M . . . .  ,V I = ( N .  pV <~V,l,:V - v = pM < M  F M Q M , H  M)I  DIG 

Let  us c h o o s e  n 3 d i f l \ ' r en t  e l e n w n t  o f  t91 ( c  INI) - c 1 . . . . .  cn3. Le t  

W, = {c E !;Vii ::V 1 ~ Q[c ,  c I . . . . .  on3 ]}.  Clear ly  t1' 2 is a m a x i m a l  A 2- 
n , - i n d i s c e r n i b l e  set ,  hence  d i m ( W ; .  A~. n~,  N)  = IW/I .  L e t  

a -= F ~'I [c 1 . . . . .  en~ ] ,  and X = i{b ~ P ' q  :AT 1 ~ b < a l l .  Clear ly ,  (usi~lg 

i t )  IW2I = ~. It is also c lear  t ha t  -"l . . . . .  c,, 3 E W2, hence  II~t 1 n W2I ~ n  3. 

As tt' 1 is Ai -u i - ind i sce rmole  set fo r  i = 1, 2, 3. 

(i)  Ipl = t l t t  1 I ~ d in l (B '  1 , tt 3 , ~ 3 .  N)  < d im(W I , A 1 , tt I , N )  = Ipl 

As  [ W ~'~ It,'~ 1 >_. n 3, and  lt'~ is inf in i te ,  by  the  d e f i n i t i o n  o f  A 3 n 3 . 

(ii) I W 2 =  d im (W 2 , A , .  n2 ,  N)  ~ d h n ( W 1 ,  A 3 . n3 ,  N )  

Hence  It' 2 is inf in i te .  As t!f  I n W~I > _ .  n~. >- '2 ,  by  (**) .  

(iii~ d im(W l , A l , t11,7V) ~ d im(W 2 , A 2 , n 2 , N).  

By (i), OiL ( i i i ) , l p l  = d im(W t .  & l ,  ; l l ,  N )  = IW 2t = X. So  we p rove  

the  t h e o r e m :  Ipl = k R e m a r k :  We cou ld  c h o o s e  pM = IMI. 
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Conjecture 4B. The theorem holds also if  Ipl is singular. 

Theorem 4.8. Suppose T is stable and has the f c .p .  Let ~ ~ ~ T~! + ~,~. 
~a = 2~°'  and T c T 1. Then in PC(T 1, T) there are at lea: ~ ~:~ ;~: ram- 
isomorphic models W ~" cardinal!O, ~e,. 

Proof.  Fol lows immedia te ly  from Theo rems  3, I, 4 ,& (and 4, 1A if ~;~ is 

singular) depending  on the following. 
F o r s ~  P, where  P c J ,  < order  J ,  def ine  lsr = l{t :(J, <~ ~ t < s}l 

SP((J. <,  P ) )  = {Isl :s ~ P, Isl is infinite and regular, or  is: = 2s°} .  
Let  K be ~ set o f  regular cardinals >_ 2 s ° ,  and may be ziso 2 "~'° : and 

assume there is a greatest  cardinal in K, and let P be a set o f  ll~,Hur;tl 
numbers.  Theft there are L D, G such that 

K =SP((a~ ,< ,P) I IG) ,  ~OrDIG = m a x { A : X ~ _ K } .  

Theorem 4.9. I f  T is not <l x-minim J ,  then it is not ~ ~'minimat for 
every 11 >- min(2~rL ,X;. 

Remark. If  T is countable ,  stable anal with the f,c.p., T is ,,~x-minimal 
iff  ; < 2 ~°. 

Proof.  If/~ >- ;k, the conclusion fol lows by Lemma 3.5. So we can assume 
~ p ->_ 2;r~; and b? the same lemma it suffices to prove the theorem 

for the case/a = 2 Ir~. So le~ ~ > ia = 2 ~r'. T is <~,-n~inimal but  no t  <ix- 

minimal. 

As T is not  <Ix-minimal, hv Keisler [0l  there is an (~0 .  X)~regular 
ultrafi l ter  P over  X, such that  for every mc~,tel N o f  7", .\;./D is not  X'- 
compact .  Let M be a X*-saturated model  o f  T: {!~ : k < X} c D a tamily 
of  sets. the intersect ion o f  any infinite subt2~mily o f  it is e m p t y  

Suppose  first ,tlX/D is not  1Tl '-compact.  Tl~en there is A c tMa/D~, 
IA[<_ I TI, such that MX/D omit  a type  over A. %%:ithout loss o f  general- 

ity there is eq c X x h, such that for every a ~ .1. eq(a)  D eq and cq has 
t Tt equivalence classes. Let G be the filter over X x X geuevated by eq. 
Then also M~ IG is not  t Tt ' -compact .  and clea-ly for some filter D 1 over 
tTI, M~ IG is i somorphic  to 3I~T~/D~ ; so T is not  "-d~r~minimal hence no t  

<lu-minimal. 
Assume now MX/D is I. t -saturated.  By [ 1.~ ] 5 i6.  there is an iadis- 
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cernibte set If = {a,: :n < co} in MX/D, dim(W. 31) g X. Withotlt loss of  
generality there is an equivalence relation eq < X x X with <_ I T! equiv- 
alence classes such that eq(a n ) D eq for n < w. Let G be the filter over 
X X ,X generated by eq, Clearly :1@ IG is an elementary submodel of  
MX/D (Ke;ster [9] ) and It t c :11~ tG, It is also cle-~r that for some ultra- 
filter D! o~er tTi, M))I(;, N = Mir~/I)l are isomorphic. As al is ,'C-satu- 
rated, X > 2 ~'r~, ii suffices It) prove ,.1I}) I(; is not (2 Ir~)'-saturated. ~,!- it 

was, by Lemma 4.2 it will be X*-saturated, hence X ) dim(W, MX/D) >- 
dim(It', ,I/~tG) ) X ÷. Contradiction. 

Now we shall try to deduce some results on <]. 

Theorem 4.10. A) Let 7" lw countable, l" is ~ m i n i m a l  i f f  T has not  the 

f.c.p. 
B) For X "" 2 s°. i" is <ix-minimal U.Tt T has not the f.c.p, 

( ') / f  S O < X < 2 s°  < 2 x, T is -d x-minimal if./" T is s:able. 
D) I f  N O < X < 2 ~°. then (t" T is stabh,, it is ~x-mipimal ,  and ,:./'it is <Ix" 

minimal  it has not  the stri('t ord¢'r p. 

Proof. A, B) Follow from 
C) Follows from 4.1 A, 
D) Follcws from 4.1A, 

4.1A and from 3, I with product  o f  ultrafilters. 
B and from 3.3 with product  of uitrafilters. 
B and from 4.4 with product o f  ultrafilters. 

Theorem 4. I I. There is a non-<l-minimal or ~-mc~vimal countable theo- 
ry ~: (l~!i there is a mm-go,M ultra filter D, such that X = FI ni/D >_ N o 
implies ,X > 1[I ((F G.C.H taits, there is such D'~. 

Proof. If  there is no such D, by 4. l every T with the f.c.p, is <]-maxinlaI; 
so by 4, 10A ,every countable theory is either <0-minimal or <l-maximal. 
If there is such D, every stable countable 7" with the f.c.p, is not  4 -  
minimal (by 4.1A) nor <Jmtaximal (by 4.1). By [13] Th. 3.9A or 
Keisler [61, p. 44, 45 there is such r. 
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§ 5. Saturation of Ultralimits 

For every M and D, there is an elementary embedding of M into 
M I / D - a  -~ fa /D where J~U) = a for every i ~ I. Hence we can look at 
Mt/D as an elementary extension of  M; and can repeat extending the 

models by taking ultrapowers and at limit stages take union. So we get 
an increasing elementary extension of  mc×icts, which are ultralimits of  
M. For simplicity, all the ultrapowers will be with the same ultrafilter 
D. This notion was defined aud investigated in Kochen [ I 11, Keisler 

[91 §5. 
Let us make the definition more precise. 

5.1. Definition. UL(M, D, a) will be defined by induction cn a, such 
that for t8 < ~, UL(M, D, {3) is an elementar~ submodel of  ULCII. t), a), 

1) f o r a  = 0, UL(M, D, a) = M 

2) fm 0~ a limit ordinal, UI_(M. D, a) = U ULO/. D. ~) 

3) for ~ = 3+ 1, UL(M, D. a)  will be isomorplnc to UL(.1L D. 3)t:D, 
and the isomorphism/:~ takes each f~/D ~ ULCtl, L). 31 to 
a E UL(3!, D,/3) c UL(M, D, a ) ( f a  is defined [ y fa t i )  = a). 

Notation: At most of  tt'.' time M and D are fixed, we let 1I~ = 
UL(M, D, cO and F~ th- isomorphism mentioned in 3). We assume also 

M is a model of  T. 
Clearly we can assume that for every a, ~. UL(M, D. a+/3) = 

UL(M~, D, 3). 
We shall try here to f,,,ld how compact  the ultralin',its are, by proper- 

ties of  the oridnal, the uitrafilter and the the theory of  the model. As 
M,,+t is isomorphic to Mr!D,  we shall restrict ourselves to 31,s for limit 

ordinals 8. 
The following theorem is welt known. 

T~ e~')rem 5. t .  I f  the cQf'natity o f  6. of(6), is ta. and jbr  every X < ~. D i.~ 

(~0,  M-red,tar, then M 8 is la-COml:aCt 

Proof. Let p be a type over M,s of  cardinality </a. 111,,11 clearly p is a 

type over M a for some 3 < 8. As D is (~o,  !pl ~reguk:r, p is realized in 
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lla+~ (see, e.g. Keisler [6 ] ,  Sec. I). he~ce p is realized in M~. So every 
type over Mz o f  cardinal i ty </1 is realized in M~ • hence 3i~ is /s-compact .  

T h e o r e l n  " * ~.,.. I f  7' is unstable,  ~ = c f (~)  t/]_~'~! Ms is no t  la ~ compact .  

Proof. As men t ioned  in Sect ion 1,31 t should be ~ l - c o m p a c t  ( r e m e m b e r  
we deal only  with ~ l - incomple te  ultrafilters). As T is unstabie,  by [ 13],  
Th. 2.13, (1), (3); there is a formula  ~o(x, .v) and sequences d 0, E 0 . . . .  , 
h ~ . . . .  f rom M 1 (all o f  the length o f f )  ~uch that:  

for every m < o.~, {~(x. ~-i,~)if (,; ?m):n < co} 

~s consistent  over M~. 

Ascf ' ,~ )= /a ,  l e t6  = U a k. where  k < l <  /a implies 1 < ~ :  < ~ / .  
x-<~, 

We shall now define by induct ion  on k sequence c~ x" st'eh that  

1 ) h t E M ~ + I ,  h ,t ~i,Mak , 

2) {'1¢(x. d ~ ) : n  < o~} u {~p(x, d~')} is not  realized by any e ' e m e n t  o f  
Mc~., 

3) for every m < co, p~Z = { ~o(x, d,, )if ~,, ~ m). n < w } U { ~o (x, k- t ) : /<  k} 
is ,'o:~sistent (over Mo~. + 1 ). 

If we shall s,.wceed in defining the ffX,s then clearly by 3) p = 

{ "q ¢(.¥, d), ~ "n < w} u {¢(x, a l l ) : /<  ~} is consis tent  (over M~ ), because 
m every finite subset o f p  is a subtype  ol Px • On the o the r  hand i f p  is 

realized in M~, then it is realized in M~ for some/3 < 6, so there is 
k < cf(fi)~/3 < c~ k < 6. Hence p is realized in Mak, cont rad ic t ion  to 2). 
Hence p i:~ a consistent  type overM~,  which ?I~ omits,  and Ipl = b~ 0 + 
ta </a*. So M~ is not /z*-compact .  

it remains only  to define ak. assuming at for  l < ,~c has been defined.  
As D is s l - incomplete  there are I,, ~ D, I,~+t c I n, i o = L fl I,, = ~. 

n < t o  
Let us define h~_ M r ~ O :  if i ~ 1,, - In+l, then a[ i]  = a,,, so d =  <,7[i] • 
i ~ I ) /D,  and a~ = F~.(E).  Let us check  condi t ions  1 ), 2 *, 3) are satisfied. 

Clearly a t  e M ~ +  1 . Now for any  n < w, {i ~ I : a [ i ]  = tin} = I n - 
In÷ ~ q~ D hence c~ ~ ~ M ~ .  So 1 ) is satisfied. 
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For proving 2) suppose c ~ M~. realizes q = { q ¢(.x', d n ) : n < ~ } u  
{~o(x, aX)}. Then 

that is 

{i:Mo~ ~¢[F-~(c ) [ i ] ,~ i [ i l  1} ~ D 

{i:Mo~. ~s0l , - ,a l i l ]}  ~ / ) ,  

Hence for some i, M ~  ~ ~ ' [c .a  {i] ], and ,-z l i] = ,:~,, lbr some n. But 
as Mak+l elementarily extend M,u: . M,~.~ ~ ¢[c.  ~i[il 1. So c does not 
realize q, contradiction, hence 2) holds. Part 3~ has ~,~ .~imilar p roo f  So 
we finish the definition and the proof. 

5.2. Definition. Let/z(D) be the first ca:dinal # such that D is/a-descen- 
dingly complete, that is,/a is the first cardinality such that t~ ~7: /), 
k < l ~ 1 1 c l  k , implies fl I k :# O(equivalently fl t~ ~i~).  

k<U k'--u 

Notice i fD  is (R 0. ~1 reg, flar. then ~: </a(D~: also ,u(D) < l l i ' .  Note 
also that $ffD) should be re,~xflar. 

• Theorem 5.3. I.fla <L:_- la(D), l~ % cf(6t ~IU.'~ M~ ~.~ l~-compact. 

Remark. I don' t  know whether this is known. 

Proof. Let p be a type ove  Ms, [pl </J .  and w ~ d~all prove that p is 
realized in M~, and so prove tile theorem. 

As ipl</a<_ cf(6), p isa type over M,~ for some ~ < 8. Let 1p~ = ~ .  
We shall prove by induction on 3' % ,3, that 

(*) e~,ery subtype o f p  of  cardinality <,', ~ is realized " ~' ..... I1t  , . i c ~ + ~ +  1 . 

As/3 < ,'¢ = lpt < # < cf(6), a + ~ + 1 < 8,, hence by provin~ this we 
shall prove that !~ is realized in M~. 

Suppose we have proved (*) for every "t'~ < 7- Hence ever) subtype 
o f p  of  cardinality < ~ v  is realized in :1!~+~. (remember every model is 
tC0-compact, hence ever3, finite subtype o f p  is realized in 31, ). Let q 
be any subtype o f p  o f  cardinality ~ .  q := {¢~ (x, d k ) :k  < ~'r}" and we 
shoudl prove q is realized in Ma+~+ ! . By tl~c induction hypothesis for 
every k < ~v,  there i sc  k G M,+v which reatize {~,~l~x~ h , , ) l <  k}. As 
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~ ,  < tpl < p < ~(1)) there is a decreasing sequence I k,  k < N, r, I k ~ D 
f) I~ = 0, and 10 = t. Let us define c ~ (3I~+y+ ~ :  )QD: 

k<~.~ 
i f i ~  13 I i -  I¢ then c l i l  --" c~_ (clearly c is well defined).  N o w  clearly 

l<k  

I:'~ ~ (c'~ (:~ ,'ll~+~,t reali;~e q. as lk~r every k < s 

{ i :3 ! .~  > ¢ [ c l i ] , a k l }  D { i ' i c  N l j - - l l ,  l >  k}=Ik+ 1 ~ D  
j < l  

So q is realized in M,~+.~+ 1 • so p is realized in M~. 

5.3. Definit ion. A model  3,' s t rongly omits  a type  p (over it) if no sub- 
typc  o f p  of  cardinali ty I!,1 is realized in N. 

Lemma 5.4. A) I f  3l strongly otnits p lpl = ta(l)), Hzetz also M 1 strongly 
Off,itS p, 

B) I f31 a strong(v omi ts  p, tpl = I~(I)), a < fl t(le]~ Mso 31~ strongly 
0 . . . .  5 [,, 

( ')  in A), B) i~zstcad cV" Ipl = tt(D), it , 'lq/u'es to assume that there 

arc m~ l k c~ l) for k < 1pi, k < l :~ ll c t k, I3 lk = O; amt ipl is 
rcgldar, k <ipl 

Proof.  We shall prove A), as B), C) have similar proofs.  

Suppose  A) fails, so c I ~ M l realize q c p. !ql = Ipl. Let c 1 
q = {v% (.v, at  ) k  < lql}. So c!early for every k < Iql = Ipl 

= F o (c) ,  

{i'~" E t. M ;~ ~ x [ c [ i l , d k  l} ~ D 

it is also clea + that for every i E l 

q ¢  ) = {¢k (x, 6~ ): M ~ s0 k [ c [ i l .  5~. ]} 

is a sub type  o f  q, hence of  p, whicL is realized in M; hence Iq(i)l < Ipl. 
As ll~l = ,u(D~ is re~fiar,  for  every i c~ t there is a b o u n d  k(i)  <. Ipf to 

{ k : M ~ ~ .  [ c[ i ] ,  ak ] }. Let, for l < !p t, Ii = { i : k(i) i-'_ l}. Clearly I l, 
i < lql is a decreasing sequence,  and by the def ini t ion o f  k(i), fl 1 l = O. 

t< tpl 
In addi t ion each/, ,  ~ D a s / / =  { i : k(i) .>_ l } -~ { i :M t = ~o/[ c [ i ] ,  a! ] } E D. 

So we ge ~, a cont rad ic t ion  to the def ini t ion o f g ( D ) .  
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Theorem 5.5. I f  T is unstable, 6 .>- la(D), then M,s is not  g(DY-c~mpact.  
Moreover th ere is a O'pe over Muti) ~ of" ca;'c'~fn,~lity ~ ( [~ ) ~ @ ic h .11~, 
strongly omits.  

Proof.  As it is s i m i l a r  t o  5.2 ,  ~ " . .  / w e  o m i l  i t .  

Conchtsion 5,6. If  T is unstable,  k~ = rain(eft6)  St(I))L !hen .1I~ is maxi- 

maPy ta-compact. 

Proof.  ~mraediate by 5.2, 5.3. and 5.5. 

5.4. Definit ion. T satisfies ( C , X )  if: there are an increasing sequence  o f  
sets A~:, /c <_ X; a type  p ~ S(A x) ([ 13 ], sec. 1 ) such that for every 

k < X there is a formula ~0,- (x, ik. ) and a infinite-indiscernible set over 
A~ ([ 13] ,  Def. 5.2), {a~., :n -< w} such that ~ . o .  a~,,l E .-l~:,l. and 

5.5. Definit ion. ~(T) is the first cardinali ly e; such th;ll F does no~ .,atis- 

fy (C * ~). 

Remark. (C* ~,) was def ined and i twestigated in [ 14]. By 1141, Tit. 4 .4  
for  stable T, and ~ > ~t"~. T is stable in k iff X = "" X ~ 

Theorew 5 ; .7 . / fK(T)  > / . t  = min[~(OL c~'(6~1 T ;.s stable, ti~5,, ~ ,11~ .,s 

maximally la-compaet 

Proof.  By Theorem 5.3, :!1~ is /a-compact ,  so we should prove only that  
M a is not  ts*-',-ompact. By hypothes i s  T satisfies (C*ta),  so there  :are A~. 

k <_ p, p E S(Ax) ,  •k (.x', Yx-), and ~km, k < p, n < w" such that 

k < l =~ A k C .41: {d~.., :n < co} is an md~sc~rmt~le set over 

A k '  ¢l~-.0' d~:.l E A t ÷  I :rod "] Ck(.v. ak.o), ~e~.(.v, ~g.t ) ~- P. 

Clearly it suffices to prove the theorem for the case L = LtT)  is the 
minimal language containing all the formulas  ~ t (x .  v t ): so ILl ~ p. 

C h o o s e e  k < 6  f o r k < c f ( ~ ) s u c h t h a t 6 =  U ~t" 
k < d(~ t 

Let us define: a funct ion  H is e lementary  if for eyeD' s~ ,5 L. a 1 .. . . .  a n 
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and let 

~=¢l,q . . . . .  a,, I i f f  .~=¢[tt(a~ } . . . . .  I I ( a , , ) l  

t l ( ( a  t , a~} ) = ( ! t (a  t 1, t, (a,~ 

Now we define by induct ion an increasing scqt, ence of  elementar5 

funcliolls t t t  and ordinals i3/,: ~ c'5 for k % ,u such that:  

1 ) the domain  o f  I1 k is U Range(alo~al,1 ) 
l<k  

2)  the range o f  It^. is included in M ~  , dx >-- % 

3} if k < l < / a ,  then ~ < ¢{; < a. and for every c ~ 31a~ :, 

,;ll,s ~ ¢~, [c, ttt+ I (at, o )l =:~ soz to. ltz+ I (at, 1 )1 , 

Fo~ k ~: 0, i t  k will be the void 
For a limit ordinal i .q~. = U 

~. < ;, because/a < cl\~'~)l. ~'+' 
S~:"pose t"~, q ~, are defined,  k 

We first show: 

funct ion.  ~0 = % 
I ! , .  &. = m a x ( % ,  U 

l<k  

</a, and we shall define Hk+ 1 . ilk+l" 

(*) there is/3 < 6 such that  we ,:'m extend I t  k to an e lementary  func- 

t ion H* from Dora H t  u U  1" Range ilk. . : n < co } into M~. 

If/a = S O , tl, is is trt~e, as for ,,v cry N. N / / D  is ~ 1 -compact ,  so 13 =/3~ +1  
wilt suffice. So assume/a 2- s 0. W.." define now by induct ion  on n an in- 

creasing sequence o f  funct ions  11" from Dom HktoU {Range dk. m : m < n} 

into M~. If  we have defined EP. and cannot  define ttn+ 1 , this means Ma 
is not  ta ' -compact [as it omits  

{ ~e(;x\ F(~!}):so e L. i: c Dora H " .  D ~0la~,,, ~:]} ] 

and so the conclusion of  tile theorem holds. So we can assume t t n  is 

defined for every n and let H* = U t t  '~. Clearly H* is ala e l emen ta ry  

funct ion,  with the approFriate  domain  into 318 . As/~ is regular (as p(D), 

c f ( 6 )  are regular) ta > S 0, H* is into ,*ll e for some/3 < 8. 
So we proved (*). 
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Define ~+~ = max(~, ~:  ). Let 1, 6 O, I ,  3 / , , 1 ,  l0 = L fl 1~ = 0 

(they e~ist as D is b~ -incomplete). Define tt~+~ (it~.o~i~: ~ ~ 31:k.l as 
Fak(6), where Y~ Makt/D is defined as follows: i f i  ~ l,, -o 1,+~. ~]i1 = 
H*(ak,n'ak, n+ 1 ). It is easy tO veril): Hi+ ~ , ~3t, ~ satisfies the bqduct[on 
conditions. 

Now 

p = { ~o~ .... H~+~ (at.o)) -~ q ¢~- (x,  t i ~ q  (ax+ ~ D: k < is} 

is a consistent type over ~ ,  and it is strongly omitted by M ~ .  As 
Bu <- 6, by Lemma 5.4, also M a omits the t~ pc, so M is not g -compact. 

It is natural to conjecture that if ~:(T) G/~.~./~ = min[~(D), cf(c~)], and, 
a , /3<  6 =~ a + ~ <  8, t h e n M  6 is UL(N 0, D, 6)-saturated (UL(N 0` l), 6 ) -  
the cardinality of  UL(M, D, 8) for every countable M} [ tl~is would ge- 
neralize 4. IA] .  But this is not true. 1" may be superstable [~(7~. = ~o ] 
or even simple [Def. 2) and 3! or 1I I will omit strongly a type of car- 
dinality is(D). However 

Theorem 5.8. Suppose  ~:(T) % m i n [ , ( D k  cf(6)] ,  D is ( x e .  t Tl }-reguh~r 
ultral~ltz'r; ~. [3 < 6 =~ a + ¢~ < 6. Then :1I s is X-saturated. where 

~. = UL(~ 0, D, 6). 

Remark.  1) For ev ,ry 61 there are 82, 8: 81 = 8 2 + ~ i : a , ¢ 3 < 6 - - - - a +  
t3< 6, and UL(M, D, t ;  ) = UL(M82. D, 6~ ). So the restriction on ,~ is 
natural. 

2) Clearly X > i T[. so it suffices to prove Ma is X-compact. 

Proof. Let p be a type over,,l!~, It;! < k. We should prove p is realized 
in M a. Let q be any extension o f p  in S(tM~t). 

Notice thai if IBI < K(T) ~ cf(6). 9 c M,~, then for some a < 6, 
B c M~. Hence by She!ah [ 19] there ~s a < 8 s.t. for every ¢ = ¢tx.  y )  
L, Rank~(qt~o) = Rank:  [(,TIMa)f~0] (sec [13],  Dell 2.4.2.5, and Yh. 
2.13, p l~,o is the maximal ~-type contained in p, plA - the maximal type 
overA contained inp) .  So by [ 13], 2.5B: there is a set B c M~. tBI~ 7-. 
such that for every ~,, Rank,. (q l¢) = Rank¢[(qiB)l~] .  Now we can de- 

fine a n for n < ¢o such that: 
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I}a,, realizesqt(B u { a , ,  :m < n}) 

2) if 8 > w,  a n ~ "V~+,,+I 

As D is {S 0, I TI }-~egular, this is possible, As in the p r o o f  o f  4.1, and 

in [ I '~ ,~ l ,  5 .1 (~ ,  it 1;ottows Ihai: 

i f ¢ ( x ,  li) <~ q, the~ {n < co: ~ -7 ¢(a,, ,  b)} is finite, 

and { a .  :n < co } is an indiscernible set over  B. 

Suppose  for  a m o m e n t  8 > ~,. Let  P = {an :n < w} c M~+~ (as 

< 8, co < 5: c~ + w < 8). Le~ 011~./at ) = Ut.t(M~,+~, P), D, 8)  ( remem- 

ber i~ = a. + w + (~). Clearly t ~s ex tends  P and i~ an indiscernible set over  

~. So ~,(x, t;) E p implies ~'(.x', b)  ~ q implies {c:a E U ,  ~ --t ~0(a, b)} is 

finite. So all excep t  Ipl .  s 0 < X members  o f P  s realize p. As IP  s I = 

UL~,S o. 1), 8) = X, the lheorem follows and we remain only  wi th  the 

case 8 = co: and we can def ine the a,, 's simulta~leously in M,~+I and the 

p, r o o f  g,.~cs in file same way. 
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