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Abstract. Using a finite support iteration of ccc forcings, we construct a
model of ℵ1 < add(N ) < cov(N ) < b < non(M) < cov(M) = c.

1. Introduction

How many (Lebesgue) null sets do you need to cover the real line? How many
points do you need to get a non-null set? What is the smallest number of null sets
that you need to get a union which is not null anymore? The answers to these
questions are the cardinals cov(N ), non(N ), add(N ), and similar definitions are
possible for other ideals, such as the ideal M of meager (=first category) sets, the
ideal of at most countable sets, or the ideal of σ-compact subsets of the irrationals.

The cardinal add(σ-compact) = non(σ-compact) is usually called b; it is the
smallest size of a family of functions from ω to ω which is not eventually bounded
by a single function. We define d := cov(σ-compact), and write cf(I) for the
smallest size of a basis of any ideal I.

Cichoń’s diagram (see [CKP85], [Fre84], [BJ95]) is the table of 12 cardinals shown
in Figure 1. The arrows show provable inequalities between these cardinals, such
as

ℵ1 = non(countable) ≤ add(N ) ≤ cov(N ) ≤ 2ℵ0 = cov(countable).

In addition to the inequalities indicated the dotted arrows represent add(M) =
min(b, cov(M)) and cf(M) = max(d, non(M)).

For any two of these cardinals, say x and y, the relation x ≤ y is provable in ZFC
if and only if this relation can be seen in the diagram. However, the question how
many of these cardinals can be different in a single ZFC-universe is still open.

Some models of partial answers to this question are constructed in [Mej13] and
[FGKS15]. In this paper, we will construct a model, so far unknown, where the
following strict inequalities hold:

ω1 < add(N ) < cov(N ) < b < non(M) < cov(M) = 2ℵ0 .

Moreover, the values of these cardinals can be quite arbitrary.
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Figure 1. Cichoń’s diagram

2. Informal overview

2.1. Increasing add(N ). Assume for simplicity that GCH holds. For any regular
uncountable cardinal κ there is a natural way to force add(N ) = κ, namely a finite

support iteration (Pα, Q̇α : α < κ) of length κ, where in each step α the forcing Q̇α

will be amoeba forcing A, which will add an amoeba real ηα; this real will code a
null set Nα that covers not only all reals from V Pα but even the union of all Borel
null sets whose code is in V Pα . The final model V Pκ will satisfy the following:

• (as κ is regular:) Every small (i.e.: of size < κ) family of (Borel) null sets
will be added before stage κ; hence its union will be covered by one of the
sets Nα. So add(N ) ≥ κ.

• The union of all Nα contains all reals and is in particular not of measure
zero; hence also add(N ) ≤ κ.

This model will of course also satisfy 2ℵ0 = κ. If we are given two regular
cardinals κan and κct (we write κan to indicate that this cardinal is intended to be
the additivity of null sets, and κct for the intended size of the continuum), then we
can construct a ccc poset P forcing

κan = add(N ) < 2ℵ0 = κct

as the finite support limit of a finite support iteration (Pα, Q̇α : α < κct) as follows:

• For each α < κct we choose a Pα-name Ẋα of a family of Borel measure
zero sets (or really: Borel codes of measure zero sets) of size < κan.

• We find a (name for a) transitive model Mα of a sufficient fragment of ZFC

of size < κan which is forced to include Ẋα.
We then let Q̇α be the Pα-name for AMα = A ∩Mα.
(So Q̇α is the Pα-name for amoeba forcing in some small model contain-

ing Ẋα, where “small” means of size < κan in V Pα .)
• The generic null set Nα added by Qα will cover the union of all measure
zero sets in Ẋα.

If we choose the sets Ẋα appropriately (using a bookkeeping argument), we can
ensure that in V Pκct every union of < κan null sets will be a null set; this shows
that add(N ) ≥ κan.
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THE LEFT SIDE OF CICHOŃ’S DIAGRAM 4027

The union of all null sets coded in the intermediate model V Pκan (equivalently,
the union

⋃
α<κan

Nα, where we view the Nα as given by Borel codes that are to be

interpreted in the final model V Pκct ) will be non-null in the final model,1 witnessing
add(N ) ≤ κan.

This method of using small subforcings (not necessarily complete) of classical
forcing notions is well known; see for example [JS90] and [Bre91].

2.2. Increasing cov(N ), b, non(M). In a similar way we could construct a model

where cov(N ) is large. The natural choice for an iterand Q̇α would be random
forcing.

If we want to get cov(N ) = κcn < κct = 2ℵ0 , we could use a finite support

iteration of length κct where each iterand Q̇α is the random forcing B from a small
transitive submodel of the intermediate model V Pα . Standard bookkeeping will
ensure that the resulting model satisfies cov(N ) ≥ κcn.

We can also ensure that the final model V Pκct will not contain any random reals
over the intermediate model V Pκcn ; thus we also have cov(N ) ≤ κcn.

Replacing random forcing with Hechler forcing D, we can get a model where the
cardinal b has an intermediate value.

Finally, there is a canonical forcing that will increase non(M), the forcing E

which adds an “eventually different real”. Since the properties of this forcing notion
will play a crucial role in our arguments, we give an explicit definition.

Definition 2.1. The elements of the forcing notion E are pairs p = (s, ϕ) = (sp, ϕp)
where s ∈ ω<ω and there is some w ∈ ω such that ϕ is a function ϕ : ω → [ω]≤w

satisfying s(i) /∈ ϕ(i) for all i ∈ dom(s). The minimal such w will be called the
width of ϕ, written wp = width(ϕ).

A function f : ω → ω is compatible with a condition (s, ϕ) if s is an initial
segment of f , and f(i) /∈ ϕ(i) holds for all i.

Our intention is that there will be a “generic” function g, such that each condition
p forces that g is compatible with p. Motivated by this intention, we define (s′, ϕ′) ≤
(s, ϕ) by

• s ⊆ s′.
• ∀i ∈ ω : ϕ(i) ⊆ ϕ′(i).

Letting ġ be the name for
⋃
{s : (s, ϕ) ∈ Ġ}, the following properties are easy to

check:

Remark 2.2. (1) (s, ϕ) indeed forces that ġ is compatible with (s, ϕ).
(2) If we change the definition by requiring ϕ to be defined on ω \ dom(s) only

(and adding the condition s′(i) /∈ ϕ(i) in the definition of ≤E), we get an
equivalent forcing notion which is moreover separative.

(3) Our forcing E is an inessential variant of the usual “eventually different”
forcing notion in [Mil81].

2.3. Putting things together. Assume again GCH, and let ℵ1 ≤ κan ≤ κcn ≤
κb ≤ κnm ≤ κct. We want to construct a ccc finite support iteration P such that P
forces

add(N ) = κan, cov(N ) = κcn, b = κb, non(M) = κnm, cov(M) = 2ℵ0 = κct.

1Another way to say this is that the reals in ωω ∩ V Pκan are not localized by a single slalom
from S(ω,H); see Example 3.4(4).
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A naive approach would use an iteration of length κct in which all iterands are
“small” versions of amoeba forcing, random forcing, Hechler forcing and eventually
different forcing. Here,

• “small amoeba” would mean: amoeba forcing from a transitive model of
size < κan,

• “small random” would mean: random forcing from a transitive model smaller
than κcn,

• “small Hechler” would mean: Hechler forcing from a transitive model smaller
than κb,

• “small eventually different” would mean: eventually different forcing from a
transitive model smaller than κnm.

If we use suitable bookkeeping, such an iteration will ensure that all the cardinals
considered are at least their desired value. For example, every small family F of
null sets (i.e., of Borel codes of null sets) will appear in an intermediate model,
and the bookkeeping strategy will ensure that F was considered at some stage α.
The amoeba null set added in stage α + 1 will cover all null sets coded in F .
Similar arguments work for the other cardinal characteristics. Moreover, we could
explicitly add Cohen reals cofinally, or use the fact that any finite support iteration
adds Cohen reals in every limit step, to conclude that cov(M) ≥ κct.

That is, the final model will satisfy

add(N ) ≥ κan, cov(N ) ≥ κcn, b ≥ κb, non(M) ≥ κnm, 2ℵ0 ≥ cov(M) ≥ κct.

Using well-known iteration theorems (see [JS90], [Bre91], [BJ95, Section 6], or the
summary of [Mej13, Section 2] reviewed in Section 3) we can conclude that

• the union of the family of null sets added in the first κan steps still is not a
null set in the final model,

• there is no random real over the model V Pκcn ,

• the reals from the model V Pκnm are still non-meager,

• the iteration does not add more than κct reals.

So we also get

add(N ) ≤ κan, cov(N ) ≤ κcn, non(M) ≤ κnm, 2ℵ0 ≤ κct.

However, it is not immediately obvious that the reals from the model V Pκb

stay an unbounded family, or more explicitly: that the eventually different forcing
does not add an upper bound to this family. Indeed, it is consistent that a small
subforcing of E (even one of the form E ∩M for some transitive model M) adds a
dominating real; see [Paw92].

The full forcing E, on the other hand, preserves unbounded families; see [Mil81].
A variant of this construction sketched above, where the full forcing E is used

rather than small subsets of E, would preserve the unboundedness of a κb-sized
family and hence guarantee b = κb, at the cost of raising the value of non(M) to
κct.

Another variant is described in [Mej13, Theorem 3]: An iteration of length κct ·
κnm (ordinal product) in which the full E forcings are used will yield a model of

add(N ) = κan, cov(N ) = κcn, b = κb, non(M) = cov(N ) = κnm, 2ℵ0 = κct.
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In this paper we want to additionally get non(M) = κnm < cov(M) = c = κct,
so it seems necessary to use small subforcings of E.

The main point in the following section is to ensure that we will preserve an
unbounded family of size κb in our iteration.

2.4. Ultrafilters help us decide. The actual construction that we will use will
be given in Section 6. It will be an iteration of length κct · κnm (ordinal product),
where in each coordinate a “small” forcing is added, as described above: an amoeba
forcing of size < κan, etc.

For notational convenience we will start in a ground model where we already
have an unbounded family F = {fi : i < κb}. Moreover, we will assume that every
subfamily of size κb is again unbounded.

To simplify the presentation in this section, we will consider an iteration adding
small E reals only. We will sketch how to construct such an iteration that does not
destroy the unboundedness of F . Adding other “small” forcings to the iteration
will not be a problem, as all these forcings will be smaller than κb; only the small E
forcing notions may be of size ≥ κb. A detailed proof is given in Main Lemma 4.6.

Now assume that our iteration (Pα, Q̇α : α < δ) has finite support limit Pδ, and
that there is a Pδ-name ġ of a function which bounds all fi. We can find a family
of conditions (pi : i < κb) and natural number mi such that

pi � ∀n ≥ mi : fi(n) ≤ ġ(n).

By thinning out our family we may assume that all mi are equal, and for notational
simplicity we will moreover assume they are all 0.

Moreover, we may assume that the pi form a Δ-system satisfying a few extra
uniformity conditions (i.e., they behave quite uniformly on the root).

We now choose a countable subset i0 < i1 < · · · of κb and some 	 such that
fik(	) ≥ k for all k (this is possible, as otherwise our family (fi)i<κb

would be
bounded). Again assume without loss of generality 	 = 0, and ik = k for all k.

We now have a countable Δ-system of conditions 〈pk〉k<ω in Pδ, where pk �
ġ(0) ≥ fk(0) for all k.

If we can now find a Pδ-name Ḋδ of a non-principal ultrafilter and a condition q
such that

q �Pδ
{k : pk ∈ Ġδ} ∈ Ḋδ,

then we have our desired contradiction, as already the empty condition forces that
the set {k : pk ∈ Ġδ} is finite, and in fact fk(0) is bounded by the number ġ(0) for
any k in this set.

To get this ultrafilter Ḋδ at the end of the proof, we need some preparations
when we set up the iteration. The name Ḋδ will of course depend on the countable
sequence 〈pk〉k<ω, but not very much; we will partition the set of all such sequences
into a small family (Λε : ε < κnm) of sets, and for each element Λε of this small
family we will define a name for an ultrafilter that will work for all countable Δ-
systems (coded) in Λε.

2.5. Ultrafilter limits in E.

Definition 2.3. Let D be an ultrafilter on ω.
For each sequence Ā = 〈Ak〉k<ω of subsets of ω we define limD Ā ⊆ ω by taking

the pointwise limit of the characteristic functions, or in other words:

n ∈ limD Ā ⇔ {k : n ∈ Ak} ∈ D.
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If ϕ̄ = 〈ϕk〉k<ω is a sequence of slaloms (i.e., each ϕk is a function from ω to
[ω]<ω), then we define ψ := limD ϕ̄ as the function with domain ω satisfying

ψ(n) = limD〈ϕk(n)〉k<ω.

In general the ultrafilter limit of a sequence of slaloms may contain infinite sets.
However, the following fact gives a sufficient condition for bounding the size of the
sets in the ultrafilter limit.

Fact 2.4. If Ā = 〈Ak〉k<ω is a sequence of subsets of ω, b ∈ ω, and all Ak satisfy
|Ak| ≤ b, then also limD Ā will have cardinality at most b.

Similarly, if ϕ̄ = 〈ϕk〉k<ω is a sequence of slaloms with the property that there is
a number b with |ϕk(n)| ≤ b for all k, n, then also limD ϕ̄ will be a slalom consisting
of sets of size ≤ b.

Definition 2.5. Let s ∈ ω<ω, w < ω, D be a non-principal ultrafilter on ω and p̄ =
〈pk〉k<ω a sequence of conditions in E where pk = (s, ϕk) for some slalom ϕk of width
≤ w. limD p̄, the D-limit of p̄ in E, is defined as the condition (s, limD〈ϕk〉k<ω).

To explain the connection between a sequence p̄ = 〈pk〉k<ω and its ultrafilter
limit, we point out the following fact. A stronger version will be proved in Claim 5.3.

Fact 2.6. Let M be a small transitive model of a large enough fragment of ZFC.
Let D be an ultrafilter with D ∩M ∈ M , let Q = E∩M , s ∈ ω<ω and let m∗ < ω.

Let ϕ̄ = 〈ϕk〉k<ω be a sequence of slaloms of width bounded by m∗ and assume
ϕ̄ ∈ M and (s, ϕk) ∈ E for all k < ω.

Then the D-limit q of the sequence p̄ = 〈pk〉k<ω = 〈(s, ϕk)〉k<ω satisfies

• q ∈ E ∩M .
• q forces in Q that the set {k < ω : pk ∈ Ġ} is infinite.

Proof. It is clear that q ∈ E. Since M contains both the sequence p̄ and the set
D ∩M , we can compute limD p̄ in M , hence q ∈ M .

Now assume that some q′ ≤ q forces that {k < ω : pk ∈ Ġ} is bounded by some
k∗, so q′ is incompatible with all pk, k > k∗.

For each i ∈ dom(sq
′
) we have sq

′
(i) /∈ ϕq(i), so the set Bi := {k < ω : sq

′
(i) /∈

ϕk(i)} is in D. Let k ∈
⋂

i∈dom(sq′) Bi be larger than k∗. Then q′ and pk are

compatible. �

3. Background on preservation properties

For the reader’s convenience, we recall the preservation properties summarized
in [Mej13, Sect. 2] which will be applied in the proof of the Main Theorem 6.1.
These preservation properties were developed for FS (finite support) iterations of
ccc posets by Judah and Shelah [JS90], with improvements by Brendle [Bre91].
These are summarized and generalized in [Gol93] and in [BJ95, Sect. 6.4 and 6.5].

Context 3.1. Fix an increasing sequence 〈�n〉n<ω of 2-place closed relations (in
the topological sense) in ωω such that, for any n < ω and g ∈ ωω, (�n)

g =
{f ∈ ωω : f �n g} is (closed) nwd (nowhere dense).

Put �=
⋃

n<ω �n. Therefore, for every g ∈ ωω, (�)g is an Fσ meager set.
For f, g ∈ ωω, say that g �-dominates f if f � g. A family F ⊆ ωω is a

�-unbounded if no function in ωω �-dominates all the members of F . Associate
with this notion the cardinal b�, which is the least size of a �-unbounded family.
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THE LEFT SIDE OF CICHOŃ’S DIAGRAM 4031

Dually, say that C ⊆ ωω is a �-dominating family if any real in ωω is �-dominated
by some member of C. The cardinal d� is the least size of a �-dominating family.

Given a set Y , say that a real f ∈ ωω is �-unbounded over Y if f � g for every
g ∈ Y ∩ ωω.

It is clear that b� ≤ non(M) and cov(M) ≤ d�.
Context 3.1 is defined for ωω for simplicity, but in general, the same notions apply

by changing the space for the domain or the codomain of � to another uncountable
Polish space of the form of a product of at most countable discrete spaces (or even
the real line R or the unit interval [0, 1]). Moreover, the codomain can even be
restricted to a Borel subset of such a space (see Example 3.4 (4)).

From now on, fix θ an uncountable regular cardinal.

Definition 3.2 (Judah and Shelah [JS90], [BJ95, Def. 6.4.4]). A forcing notion P

is θ-�-good if the following property holds:2 For any P-name ḣ for a real in ωω,
there exists a non-empty Y ⊆ ωω (in the ground model) of size < θ such that, for

any f ∈ ωω �-unbounded over Y , � f � ḣ.
Say that P is �-good if it is ℵ1-�-good.

This is a standard property associated to preserve b� small and d� large through
forcing extensions that have the property. A family F ⊆ ωω is θ-�-unbounded if,
for any X ⊆ ωω of size < θ, there exists an f ∈ F which is �-unbounded over X. It
is clear that, if F is such a family, then b� ≤ |F | and θ ≤ d�. On the other hand,
θ-�-good posets preserve, in any generic extension, θ-�-unbounded families of the
ground model and, if λ ≥ θ is a cardinal and d� ≥ λ in the ground model, then
this inequality is also preserved in any generic extension (see, e.g., [BJ95, Lemma
6.4.8]). It is also known (from [JS90]; see also [Bre91, Lemma 8]) that the property
of Definition 3.2 is preserved under FS iterations of θ-cc posets. Also, for posets
P � Q, if Q is θ-�-good, then so is P.

Lemma 3.3 ([Mej13, Lemma 4]). Any poset of size < θ is θ-�-good. In particular,
Cohen forcing is �-good.

Example 3.4. (1) Preserving non-meager sets: For f, g ∈ ωω and n < ω, define
f �n g iff ∀k≥n(f(k) = g(k)), so f � g iff f and g are eventually different,
that is, ∀∞k<ω(f(k) = g(k)). Recall form [BJ95, Thm. 2.4.1 and 2.4.7] that
b� = non(M) and d� = cov(M).

(2) Preserving unbounded families: For f, g ∈ ωω, define f ≤∗
n g iff

∀k≥n(f(k) ≤ g(k)), so f ≤∗ g iff ∀∞k∈ω(f(k) ≤ g(k)). Clearly, b = b≤∗ and
d = d≤∗ . Miller [Mil81] proved that E is ≤∗-good. Random forcing B is also
≤∗-good because it is ωω-bounding. But, as discussed in Section 2, subforcings
of both may add dominating reals.

(3) Preserving null-covering families: Let 〈Ik〉k<ω be the interval partition of ω
such that |Ik| = 2k+1 for all k < ω. For n < ω and f, g ∈ 2ω define f �n

g ⇔ ∀k≥n(f �Ik = g�Ik), so f � g ⇔ ∀∞k<ω(f �Ik = g�Ik). Clearly, (�)g is a
co-null Fσ meager set. This relation is related to the covering-uniformity of
measure because cov(N ) ≤ b� and d� ≤ non(N ) (see [Mej13, Lemma 7]).

It is known from [Bre91, Lemma 1∗] that, given an infinite cardinal ν < θ,
every ν-centered forcing notion is θ-�-good.

2[BJ95, Def. 6.4.4] has a different formulation, which is equivalent to our formulation for θ-cc
posets (recall that θ is uncountable regular). See [Mej13, Lemma 2] for details.
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(4) Preserving “union of null sets is non-null”: Fix H := {idk+1 : k < ω} (where
idk+1(i) = ik+1) and let

S(ω,H) = {ψ : ω → [ω]<ω : ∃h∈H∀i<ω(|ψ(i)| ≤ h(i))}.
For n < ω, x ∈ ωω and a slalom ψ ∈ S(ω,H), put x ∈∗

n ψ iff ∀k≥n(x(k) ∈
ψ(k)), so x ∈∗ ψ iff ∀∞k<ω(x(k) ∈ ψ(k)). By Bartoszyński’s characterization
[BJ95, Thm. 2.3.9] applied to id and to a function g that dominates all the
functions in H, add(N ) = b∈∗ and cf(N ) = d∈∗ .

Judah and Shelah [JS90] proved that, given an infinite cardinal ν < θ, every
ν-centered forcing notion is θ-∈∗-good. Moreover, as a consequence of results
of Kamburelis [Kam89], any subalgebra3 of B is ∈∗-good.

For a relation � as in Context 3.1, the following practical results present facts
about adding Cohen reals that form �-unbounded families.

Lemma 3.5. Let 〈Pα〉α≤θ be a �-increasing sequence of ccc posets where Pθ =
limdirα<θPα. Assume that Pα+1 adds a Cohen real ċα over V Pα for all α < θ.
Then, Pθ forces that {ċα : α < θ} is a θ-�-unbounded family.

Corollary 3.6. Let δ ≥ θ be an ordinal and Pδ = 〈Pα, Q̇α〉α<δ an FS iteration of
non-trivial ccc θ-�-good posets. Then, Pδ forces

(a) b� ≤ θ and
(b) d� ≥ |δ|.

Proof. By Lemma 3.5 (recall that FS iterations of non-trivial ccc posets add Cohen
reals at limit stages), for any ν ∈ [θ, |δ|] regular, Pν adds a ν-�-unbounded family
of size ν (of Cohen reals), which is preserved to be ν-�-unbounded in V Pδ because
the iterands are θ-�-good and ccc. Therefore, Pδ forces b� ≤ ν ≤ d� for any
regular ν ∈ [θ, |δ|], so b� ≤ θ and |δ| ≤ d�. �

4. Iteration candidates

Fix, in this section, an uncountable regular cardinal κb (which represents the
size of an unbounded family we want to preserve).

For our main result (Theorem 6.1), as described in the introduction, we may use
an FS iteration alternating between small ccc posets and subposets of E and find
an iteration where we can preserve an unbounded family of a desired size (κb). We
describe, in general, such iterations as follows.

Definition 4.1. An iteration candidate q consists of

(i) an ordinal δq (the length of the iteration) partitioned into two sets Sq and
Cq (the first set represents the coordinates where a subforcing of E is used,
while the second set corresponds to the coordinates where small ccc posets
are used),

(ii) ordinals 〈Qq,α〉α∈Cq
less that κb (the domains of the small ccc posets),

(iii) an FS iteration 〈Pq,α, Q̇q,α〉α<δq and a sequence 〈P′
q,α〉α∈Sq

such that

• for α ∈ Sq, P
′
q,α � Pq,α and Q̇q,α is a P′

q,α-name for EV P
′
α and

• for α ∈ Cq, Q̇q,α is a Pq,α-name of a ccc poset whose domain is Qq,α.

3Here, B is seen as the complete Boolean algebra of Borel sets (in 2ω) modulo the null ideal.
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The subindex q may be omitted when it is obvious from the context.
For each α ≤ δ, consider the set P∗

q,α = P∗
α of conditions p ∈ Pα that satisfy:

• if ξ ∈ supp(p) ∩ C, then p(ξ) is an ordinal in Qα (not just a name),
• if ξ ∈ supp(p) ∩ S, then p(ξ) is of the form (s, ϕ̇) where s ∈ ω<ω (not
just a name), ϕ̇ is a P′

ξ-name of a slalom (not just a Pξ-name of a slalom

in V P′
ξ) and width(ϕ̇) is decided, that is, there is an n < ω such that

�P′
ξ
n = width(ϕ̇).

It is easy to prove (by induction on α) that P∗
α is dense in Pα.

For α ≤ δq, q�α denotes the iteration q restricted up to α, so δq�α = α. Clearly,
q�α is an iteration candidate.

The beginning of the proof of Main Lemma 4.6 shows a typical argument with
a Δ-system to prove that an iteration candidate preserves an unbounded family
of size κb (as sketched in Subsection 2.4). Therefore, in order to extend Miller’s
compactness argument [Mil81] to FS iterations, we start by coding the relevant
elements of countable Δ-systems of iteration candidates by stem sequences, as it is
described below.

Definition 4.2. Let α∗ be an ordinal. A stem sequence x ∈ SSα∗ (of a countable
Δ-system) consists of

(i) a countable set of ordinals wx ⊆ α∗ ∪ κb (where the relevant information of
the coded Δ-system lives),

(ii) a natural number l∗x (the size of the support of the conditions in the coded
Δ-system) partitioned into two sets vx,S and vx,C (the first set indicates the
position of coordinates where a subforcing of E is used, while the second set
corresponds to the positions where small ccc posets are used),

(iii) a subset vx of l∗x (the set of positions of the coordinates of the root of the
Δ-system),

(iv) a subset {αx,k,l : k < ω, l < l∗x} of wx ∩ α∗ satisfying: 〈{αx,k,l : l < l∗x}〉k<ω

is a Δ-system with root Δx = {α∗
x,l : l ∈ vx} where, for l ∈ vx and k < ω,

αx,k,l = α∗
x,l; moreover, {αx,k,l : l < l∗} is an increasing enumeration for each

k < ω and 〈αx,k,l : k < ω〉 is increasing4 for each l ∈ l∗x � vx,
(v) ordinals 〈γx,k,l : k < ω, l ∈ vx,C〉 (the sequence of ordinals used at the l-th

position of the k-th condition of the Δ-system) and 〈γ∗
x,l : l ∈ vx ∩ vx,C〉 in

κb ∩ wx such that γx,k,l = γ∗
x,l for all l ∈ vx ∩ vx,C and k < ω (that is, the

ordinals used at the positions of the root are the same for all k),
(vi) a sequence 〈s∗x,l : l ∈ vx,S〉 of objects from ω<ω (the sequence of stems used

at the l-th position of a condition, which is the same for all the conditions in
the Δ-system) and

(vii) a sequence n̄∗
x = 〈n∗

x,l : l ∈ vx,S〉 of natural numbers (the sequences of widths

of slaloms at the l-th position of a condition in the Δ-system).

When there is no place for confusion, we may omit the subindex x for the objects
of a stem sequence.

The role of wx is only important in Remark 6.3 where a more difficult argument
(that may work for other problems) for a result weaker than Main Theorem 6.1 is
summarized.

4This is only needed for the proof of Claim 5.5.
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If q is an iteration candidate of length δ, then every sufficiently uniform countable
Δ-system p̄ = 〈pk〉k<ω from P∗

δ will define a stem sequence. But not every stem
sequence is realized by some sequence of conditions from P∗

δ . In the next definition
we give a sufficient condition for a stem sequence to be realized by an iteration,
and we explain how this stem sequence gives partial information about a sequence
of conditions.

Definition 4.3. A stem sequence x ∈ SSα∗ (as in Definition 4.2) is legal for an
iteration candidate q (as in Definition 4.1) if the following hold for each k < ω and
l < l∗ such that αk,l < δ = δq:

(i) αk,l ∈ C iff l ∈ vC .
(ii) If l ∈ vC , then γk,l < Qαk,l

.

In this case, define P∞
q,x the set of sequences 〈pk〉k<ω of conditions in P∗

δ such that

• supp(pk) = {αk,l : l < l∗} ∩ δ,
• if ξ = αk,l ∈ supp(pk) ∩ C, then pk(ξ) = γk,l and
• if ξ = αk,l ∈ supp(pk) ∩ S, then pk(ξ) = (s∗l , ϕ̇k,l) where ˙ϕk,l is a P′

ξ-name
of a slalom of width n∗

l .

Note that 〈supp(pk)〉k<ω forms a Δ-system.
Here, P∞

q,x is the set of countable Δ-systems that match the stem sequence x.
If x is legal for q and α ≤ δ, then x is legal for q�α and, for any 〈pk〉k<ω ∈ P∞

q,x,
we also have 〈pk�α〉k<ω ∈ P∞

q�α,x.

Note that a stem sequence has full information about the conditions it represents
only on the set C where we use the small forcings. On the set S, the stem sequence
only knows the stems of conditions in E but not the slaloms.

The main idea of preserving unbounded families in E is that, given a sequence
of conditions 〈pk〉k<ω in E that agree in the stems and in the width of the slaloms,
it is possible to construct a limit q of the sequence such that q forces that infinitely
many pk belong to the generic set (see Fact 2.6). This limit can be found by an
ultrafilter limit on the slaloms from an ultrafilter D in the ground model. Moreover,
there is an ultrafilter in the extension that contains D as well as all sets of the form
Ap̄ := {k < ω : pk ∈ G} (G is the E-generic filter) for such a sequence p̄ = 〈pk〉k<ω

with limit q in G. To extend this argument to an iteration candidate, we define a
kind of ultrafilter limit of a countable Δ-system that matches a given stem sequence.

Definition 4.4. Let q be an iteration candidate and x ∈ SSα∗ a legal stem sequence
for q. Say that D = 〈Ḋα〉α≤δ solves x (with respect to q) if the following holds for
each α ≤ δ:

(1) Ḋα is a Pα-name for a non-principal ultrafilter on ω.

(2) For α ∈ S, �α Ḋα ∩ P(ω)V
P
′
α ∈ V P′

α .

(3) α < β ≤ δ implies �β Ḋα ⊆ Ḋβ .

(4) If α contains Δx ∩ δ and p̄ = 〈pk〉k<ω ∈ P∞
q,x, then q �α {k < ω : pk�α ∈ Ġα} ∈

Ḋα where q = limD�α p̄, the D�α-limit of p̄ (where D�α = 〈Ḋξ〉ξ<α), is defined
as
(i) supp(q) = Δx ∩ δ,
(ii) if ξ = α∗

l ∈ supp(q) ∩ C, then q(ξ) = γ∗
l and
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(iii) if ξ = α∗
l ∈ supp(q)∩S, then q(ξ) = (s∗l , ψ̇l) where ψ̇l is a Pξ-name of the

Ḋξ-limit of 〈ϕ̇k,l〉k<ω (here, pk(ξ) = (s∗l , ϕ̇k,l) for each k < ω).
As each ϕ̇k,l is a P′

ξ-name (because pk ∈ P∗
δ) of width n∗

l , by (2), Pξ forces

ψ̇l ∈ V P′
ξ of width ≤ n∗

l and q(ξ) ∈ E ∩ V P′
ξ . Therefore, q is a condition in Pα.

Moreover, q does not depend on α (as long as α contains Δx ∩ δ), so we can
just call q the D-limit of p̄.

Say that q is a nice iteration candidate if any x ∈ SSδ (with δ = δq) legal for q
can be solved by some D.

Remark 4.5. In (4)(iii) of Definition 4.4, if ϕ̇k,l were just a Pξ-name of a slalom in

V P′
ξ for each k < ω, we would not be able to guarantee that 〈ϕ̇k,l : k < ω〉 is a

sequence in V P′
ξ , so the ultrafilter limit ψl and q(ξ) may not be in V P′

ξ .
On the other hand, in (4), q ∈ Pα but it may not be a condition in P∗

α because,

in (iii), ψ̇l may not be a P′
ξ-name. However, for the nice iteration candidate con-

structed in Theorem 6.1, there is a P′
α-name of Ḋα ∩ V P′

α for each α ∈ S, which
guarantees that, in (4), q ∈ P∗

α.

Main Lemma 4.6. Let B ⊆ ωω in the ground model that satisfies

(∗) |B| ≥ κb and ∀g∈ωω (|{f ∈ B : f ≤∗ g}| < κb).

Then, any nice iteration candidate forces that B satisfies (∗) in the generic exten-
sion.

Proof. Let q be a nice iteration candidate as in Definitions 4.1 and 4.4. Towards
a contradiction, let p ∈ Pδ and ġ be a Pδ-name for a real such that p forces that
{f ∈ B : f ≤∗ ġ} has size at least κb. By recursion on η < κb, find fη ∈ B, mη < ω
and pη ≤ p in P∗

δ such that fη = fξ for ξ < η and pη �δ ∀m≥mη
(fη(m) ≤ ġ(m)).

Let uη = supp(pη). By the Δ-system lemma, we can find K ∈ [κb]
κb such that

{uη : η ∈ K} forms a Δ-system. Moreover, we may assume:

(a) There is an m∗ such that mη = m∗ for all η ∈ K.
(b) There is an l∗ such that uη = {αη,l : l < l∗} (increasing enumeration) for all

η ∈ K.
(c) There is a v ⊆ l∗ such that the root of the Δ-system is {αη,l : l ∈ v} for any

η ∈ K.
(d) For each l < l∗ with l /∈ v, 〈αη,l〉η∈K is increasing.
(e) There is a vS ⊆ l∗ such that supp(pη) ∩ S = {αη,l : l ∈ vS} for all η ∈ K.
(f) For each l ∈ v � vS there is an ordinal γ∗

l such that pη(αη,l) = γ∗
l for all

η ∈ K. (Why? Recall that the forcing notions Q̇α with α ∈ C live on sets Qα

of cardinality < κb.)
(g) For each l ∈ vS there is an s∗l ∈ ω<ω and an n∗

l < ω such that p(αη,l) is of the
form (s∗l , ϕ̇η,l) for all η ∈ K, where ˙ϕη,l is a P′

αη,l
-name for a slalom of width

n∗
l .

In the ground model, we can find an increasing sequence 〈ηk〉k<ω in K and an
m ≥ m∗ such that 〈fηk

(m) : k < ω〉 is increasing. This is because there is m ≥ m∗

and infinitely many a ∈ ω such that {η ∈ K : fη(m) = a} has size κb (if this were
not the case, then there is a K ′ ∈ [K]κb such that {fη : η ∈ K ′} is bounded, which
contradicts the hypothesis).

Now it is easy to find a legal stem sequence x ∈ SSδ for q such that p̄ :=
〈pηk

〉k<ω ∈ P∞
q,x, so there is some D = 〈Ḋα〉α≤δ solving x (as in Definition 4.4).

Licensed to Tech Univ Wien. Prepared on Thu May  3 03:40:17 EDT 2018 for download from IP 128.131.237.128.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use

Sh:1066



4036 MARTIN GOLDSTERN, DIEGO A. MEJÍA, AND SAHARON SHELAH

Let q = limD�δ p̄ ∈ Pδ, so

q �δ {k < ω : pηk
∈ Ġ} ∈ Ḋδ,

which implies that q � ∃∞k<ω(fηk
(m) ≤ ġ(m)). This last fact contradicts that

〈fηk
(m) : k < ω〉 is increasing. �

5. A method to construct nice iteration candidates

In a very general setting, we show how to construct nice iteration candidates.
We then apply this method to build the iteration for our main result.

For a nice iteration candidate, any legal stem sequence has to be solved by some
sequence of names of ultrafilters. But recall from Definition 4.4(2) that we want all

witnesses Dα to be in V P′
α , and in practice this will be a model of size ≤ κnm (the

value we want to force for non(M)). So we want to have as few such sequences of
names of ultrafilters as possible, i.e., each sequence should solve many legal stem
sequences. For this purpose, we use the following classical result of Engelking and
Kar�lowicz, which essentially says that a product of at most 2χ discrete spaces of
size χ has a dense set of size χ in an appropriate box topology (in our applications,
χ is between κb and κnm).

Theorem 5.1 (Engelking and Kar�lowicz [EK65]; see also [AY08]). Assume χ<θ =
χ, δ < (2χ)+ is an ordinal and 〈Aα〉α<δ a sequence of sets of size ≤ χ. Then

there is a set {hε : ε < χ} ⊆
∏

α<δ Aα such that, for any x ∈
∏<θ

α<δ Aα :=⋃
E∈[δ]<θ

∏
α∈E Aα, there is an ε < χ such that x ⊆ hε. Moreover,

∏<θ
α<δ Aα can be

partitioned into sets 〈L∗
ε 〉ε<χ such that

(i) if x ∈ L∗
ε , then x ⊆ hε and

(ii) for all x, y ∈ L∗
ε , domx and domy have the same order type and the order-

preserving isomorphism g : domx → domy is the identity on domx ∩ domy.

When 2χ = χ+, we additionally have

(ii’) for all x, y ∈ L∗
ε , domx and domy have the same order type and domx∩domy

is an initial segment of both domx and domy.

Fix κb as in Section 4. Assume κb ≤ χ = χℵ0 , δ < (2χ)+ is an ordinal and
δ = S ∪ C a disjoint union. For each α < δ let Aα = ω<ω × ω if α ∈ S, otherwise,
Aα = κb. Let {hε : ε < χ} and 〈L∗

ε 〉ε<χ be as in Theorem 5.1 applied to θ = ℵ1.
Therefore, we can partition SSδ into the sets 〈Λε〉ε<χ such that x ∈ Λε iff zx ∈ L∗

ε ,
where domzx = {αx,k,l : k < ω, l < l∗x} and, for k < ω and l < l∗x, if l ∈ vx,S , then
zx(αx,k,l) = (s∗x,l, n

∗
x,l), otherwise, zx(αx,k,l) = γx,k,l when l ∈ vx,C .

Here, hε is seen as a guardrail for the countable Δ-systems that matches a stem
sequence in Λε. All conditions following the same guardrail will be compatible
with each other. This is because, for an iteration candidate of length δ where S
corresponds to the coordinates where subforcings of E are used, if 〈pk〉k<ω is a
Δ-system that matches x ∈ Λε, the function hε describes the behavior of each pk,
that is, if ζ ∈ supp pk � S, pk(ζ) = hε(ζ) and, if ζ ∈ S ∩ supp pk, then hε(ζ) tells
the stem and the width of the slalom corresponding to pk(ζ). All this information
depends only on ε (and the coordinate ζ) and all the Δ-systems matching stem
sequences in Λε are described by the same information.

We show a way to construct, inductively, a nice iteration candidate q with δq = δ,
Sq = S and Cq = C by using the guardrails 〈hε : ε < χ〉. Furthermore, we find
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〈Ḋε
α : ε < χ, α ≤ δ〉 such that, for each ε < χ, Dε

δ := 〈Ḋε
α〉α≤δ solves all the legal

stem sequences of Λε.

Induction basis. When δ = 0, choose an arbitrary non-principal ultrafilter Dε
0

for each ε < χ.

Lemma 5.2 (Successor step). Assume δ = α + 1. Let q�α be a nice iteration

candidate of length α with Sq�α = S ∩ α and let 〈Ḋε
ξ : ε < χ, ξ ≤ α〉 be such that,

for each ε < χ, Dε
α solves all x ∈ SSα ∩ Λε that are legal for q�α. Let q be an

iteration candidate of length δ that extends q�α such that the following conditions
hold:

(i) α ∈ Sq iff α ∈ S.

(ii) In the case α ∈ S, Pα forces Ḋε
α ∩ V P′

α ∈ V P′
α for all ε < χ.

Then, there are Pα+1-names 〈Ḋε
α+1 : ε < χ〉 such that, for each ε < χ, Dε

α+1 =

Dε
α̂〈Ḋε

α+1〉 solves all x ∈ SSα+1 ∩ Λε that are legal for q.

Proof. It is enough to prove the following.

Claim 5.3. Pα+1 forces that, for any ε < χ, the family

Ḋε
α ∪

{
Ȧp̄ : p̄ ∈ P∞

q,x, x ∈ Λε ∩ SSα+1 legal, limDε
α
p̄ ∈ Ġ

}
(where Ȧp̄ := {k < ω : pk ∈ Ġ} for any p̄ = 〈pk〉k<ω) has the finite intersection
property.

Proof. In the case α ∈ C, it is enough to prove that, if x ∈ Λε ∩ SSα+1 is legal for
q, 〈pk〉k<ω ∈ P∞

q,x and q is its Dε
α-limit, then q forces (with respect to Pα+1) that

{k < ω : pk ∈ Ġ} ∈ Ḋε
α. We may assume that α ∈ supp q (if not, supp pk ⊆ α for

all k < ω and the claim is straightforward), so pk(α) = q(α) = hε(α) for all k < ω.

On the other hand, q�α forces that {k < ω : pk�α ∈ Ġ} ∈ Ḋε
α (because q�α is the

Dε
α�α-limit of 〈pk�α〉k<ω), so the conclusion is clear.
Now, assume that α ∈ S. Let i∗ < ω, xi ∈ Λε ∩ SSα+1 legal for q for i < i∗,

〈pi,k〉k<ω ∈ P∞
q,xi , qi = limDε

α
pi,k, a Pα-name ȧ of a set in Ḋε

α, a fixed k∗ < ω and a

condition r ∈ Pα+1 stronger than qi for each i < i∗. We find an r′ ≤ r in Pα+1 and

a k > k∗ such that r′ forces that k ∈ ȧ and pi,k ∈ Ġ for all i < i∗. We may assume

that r�α forces ȧ ⊆
⋂

i<i∗{k < ω : pi,k�α ∈ Ġ} ∈ Ḋε
α. Without loss of generality, we

assume that α ∈ supp(qi) for all i < i∗, so, if hε(α) = (s, n), then pi,k(α) = (s, ϕ̇i,k)

for some P′
α-name of a slalom ϕ̇i,k of width n and qi(α) = (s, ψ̇i) where ψ̇i is a

Pα-name of the Ḋε
α-limit of 〈ϕ̇i,k〉k<ω (which is forced to be in V P′

α by (ii)). Let Gα

be Pα-generic over V with r�α ∈ Gα. In Vα = V [Gα], let r(α) = (t, ψ′) ∈ E ∩ V P′
α ,

which is stronger than qi(α) = (s, ψi) for all i < i∗. As t(j) /∈ ψi(j) for any j < |t|,
then the set ai = {k < ω : ∀j<|t|(t(j) /∈ ϕi,k(j))} ∈ Dε

α. So choose k > k∗ in
a ∩

⋂
i<i∗ ai and let r′(α) = (t, ψ′′) where ψ′′(j) = ψ′(j) ∪

⋃
i<i∗ ϕi,k(j) for all

j < ω. Clearly, r′(α) is stronger than r(α) and than pi,k(α) for all i < i∗. Back in
V , let r′�α ≤ r�α in Pα forcing the above statement, so r′ = r′�α ∪ {(α, r′(α))} is
as desired. �

Choose Ḋε
α+1 a Pα+1-name of an ultrafilter containing the set of the claim. �

Lemma 5.4 (Limit step). Assume δ is a limit ordinal, q is an iteration candidate

of length δ and 〈Ḋε
α : ε < χ, α < δ〉 a sequence of Pδ-names such that, for each

α < δ and ε < χ, Dε
α solves all x ∈ SSα ∩ Λε that are legal for q�α. Then, there
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are Pδ-names 〈Ḋε
δ : ε < χ〉 such that, for each ε < χ, Dε

δ = Dε
<δ̂〈Ḋε

δ〉 solves all

x ∈ SSδ ∩ Λε that are legal for q (here, Dε
<δ = 〈Ḋε

α〉α<δ).

Proof. If δ has uncountable cofinality, let Ḋε
δ be a Pδ-name of

⋃
ξ<δ Ḋ

ε
ξ. So assume

that δ has countable cofinality.

Claim 5.5. Pδ forces that, for any ε < χ, the family⋃
α<δ

Ḋε
α ∪

{
Ȧp̄ : p̄ ∈ P∞

q,x, x ∈ Λε ∩ SSδ legal, limDε
<δ

p̄ ∈ Ġ
}

has the finite intersection property.

Proof. Let {xi : i < i∗} be a finite subset of Λε ∩ SSδ of legal stem sequences for
q, 〈pi,k〉k<ω ∈ P∞

q,xi for each i < i∗, qi = limDε
<δ

pi,k and ȧ a Pδ-name of a set in⋃
α<δ Ḋ

ε
α. Let p ∈ Pδ be a condition stronger than qi for all i < i∗ and let k∗ < ω

be arbitrary. We want to find p∗ ≤ p and k > k∗ such that p∗ is stronger than pi,k
for all i < i∗ and forces k ∈ ȧ.

As in the notation of Definition 4.2, for each i < i∗ let wi = wxi l∗i = l∗xi , vi,S =
vxi,S and so on. For the non-trivial case, we assume that supl<l∗i ,k<ω{αi,k,l} = δ.

For i < i∗, l ∈ vi,S and k < ω, pi,k(αi,k,l) = (s∗i,l, ϕ̇i,k,l) where ϕ̇i,k,l is a P′
αi,k,l

-name
of a slalom of width n∗

i,l.

By strengthening p, find α < δ that contains supp p ∪
⋃

i<i∗ supp qi and such

that p forces that ȧ ∈ Ḋε
α, so, without loss of generality, ȧ can be assumed to be a

Pα-name. Even more, α < δ can be found so that, for any i < i∗ and l < l∗i , if there
is some k < ω such that αi,k,l ≥ α, then supk<ω{αi,k,l} = δ. For each i < i∗, let
ui = {l < l∗i : supk<ω{αi,k,l} = δ} (note that this is an interval of the form [l′i, l

∗
i )

where l′i is above vi).
By hypothesis, find p′ ≤ p in Pα and k > k∗ such that p′ is stronger than pi,k�α

for all i < i∗ and forces k ∈ ȧ. Moreover, k can be found so that5 αi,k,l > α for
any i < i∗ and l ∈ ui. Thus, because E is σ-centered and each zxi ⊆ hε, there
is a condition p∗ ≤ p′ in Pδ stronger than pi,k for all i < i∗. Indeed, supp p∗ =
supp p′ ∪

⋃
i<i∗ supp pi,k, p

∗(ζ) = p′(ζ) for ζ ∈ supp p′, p∗(ζ) = pi,k(ζ) = hε(ζ)

for ζ ∈ supp pi,k ∩ vi,C � α and p∗(ζ) = (sζ , ψ̇ζ) for ζ ∈
(⋃

i<i∗ supp pi,k ∩ vi,S
)
�

α where hε(ζ) = (sζ , nζ) and ψ̇ζ is a P′
ζ -name of the slalom given by ψ̇(j) =⋃

{ϕ̇i,k,l(j) : αi,k,l = ζ, l < l∗i , i < i∗}. The condition p∗ is as desired because, if
ζ = αi,k,l = αi′,k,l′ , when ζ ∈ C, then pi,k(ζ) = pi′,k(ζ) = hε(ζ) and, when ζ ∈ S,
pi,k(ζ) = (s∗i,l, ϕ̇i,k,l), pi′,k(ζ) = (s∗i′,l′ , ϕ̇i′,k,l′) and s∗i,l = s∗i′,l′ = sζ . �

Choose Ḋε
δ a Pδ-name of an ultrafilter that contains the set of the previous

claim. �

Remark 5.6. In Lemma 5.2, if all the Ḋε
α (ε < χ) are (forced to be) equal to some

ultrafilter Ḋα, then Claim 5.3 can be similarly proven without fixing ε, that is, Pα+1

forces that Ḋα ∪
{
Ȧp̄ : p̄ ∈ P∞

q,x, x ∈ SSα+1 legal, limDε
α
p̄ ∈ Ġ

}
has the finite

intersection property. Nevertheless, in Lemma 5.4 when δ is a limit of countable
cofinality, the corresponding statement for Claim 5.5 may not be true when all the
Ḋε

α are the same for each α < δ so, at that point, it becomes necessary to have
different sequences of names of ultrafilters for each ε < χ and Theorem 5.1 must

5This is the only place where we need 〈αi,k,l : k < ω〉 increasing.

Licensed to Tech Univ Wien. Prepared on Thu May  3 03:40:17 EDT 2018 for download from IP 128.131.237.128.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use

Sh:1066



THE LEFT SIDE OF CICHOŃ’S DIAGRAM 4039

be used to have as few sequences as possible (each one with respect to a guardrail
hβ).

For instance, let δ = ω and ε, ε′ < χ such that hε and hε′ are incompatible
everywhere, that is, for each m < ω, if Am = κb, then �m hε(m) ⊥Q̇m

hε′(m)

and, when Am = ω<ω × ω, the first coordinates of both hε(m) and hε′(m) are
incompatible. If x ∈ Δε ∩ SSω and x′ ∈ Δε′ ∩ SSω are legal for q such that
l∗x = l∗x′ = 1 and αx,k,0 = αx′,k,0 = k, if 〈pk〉k<ω ∈ P∞

q,x and 〈p′k〉k<ω ∈ P∞
q,x′ ,

then limDε
<ω

pk = limDε′
<ω

p′k is the trivial condition and it is clear that Pω forces

{k < ω : pk ∈ Ġ} ∩ {k < ω : p′k ∈ Ġ} = ∅.

6. Proof of the main result

To prove our main result, we construct a nice iteration candidate with the book-
keeping arguments described in Subsection 2.3. Thanks to Main Lemma 4.6, we
can guarantee that b is the value we want in the extension.

Main Theorem 6.1. Let κan ≤ κcn ≤ κb ≤ κnm = κℵ0
nm be regular uncountable

cardinals and κct = κ<κnm
ct ≤ 2χ where κb ≤ χ = χℵ0 ≤ κnm < κct. Assume that

there is a family of reals in ωω of size κb such that all its bounded subsets have size
< κb (so (∗) of Lemma 4.6 is satisfied by that family). Then, there is a ccc poset
that forces

add(N ) = κan ≤ cov(N ) = κcn ≤ b = κb ≤ non(M) = κnm < cov(M) = c = κct.

Note that, assuming GCH, if κan ≤ κcn ≤ κb ≤ κnm are regular uncountable
cardinals and κct > κnm is a cardinal of cofinality ≥ κnm, it is not hard to construct
a model, by forcing, that satisfies the hypothesis of the theorem with χ = κb. For
instance, adding κb-many Cohen reals gives such a family of size κb that satisfies
(∗) of Lemma 4.6.

Proof. We construct a nice iteration candidate q of length δq = κct · κnm (ordinal
product) that forces our desired statement. Let κct = S′ ∪C ′ be a partition where
both S′ and C ′ have size κct and also let C ′ = C ′

0∪C ′
1∪C ′

2∪C ′
3 be a partition where

each C ′
i has size κct. Let S = Sq =

⋃
β<κnm

(κct ·β+S′), Ci =
⋃

β<κnm
(κct ·β+C ′

i)
for i < 4 and C = Cq = C0 ∪ C1 ∪ C2 ∪ C3.

We construct q by recursion using the method in Section 5. The induction basis
and the limit step are clear by Lemma 5.4, so we only have to describe what we
do in the successor step in such a way that Lemma 5.2 can be applied. Assume we
have constructed our iteration up to α < κct · κnm and that 〈Ḋε

ξ : ε < χ, ξ ≤ α〉 is
as in Lemma 5.2. Clearly, α is of the form κct · β + ζ for some (unique) β < κnm

and ζ < κct. Consider:

(i) {Ȧβ,ξ : ξ ∈ C ′
0} lists the Pκct·β-names of all ccc posets whose domain is an

ordinal < κan.
(ii) {Ḃβ,ξ : ξ ∈ C ′

1} lists the Pκct·β-names of all subalgebras of random forcing

BV
Pκct·β of size < κcn.

(iii) {Ḋβ,ξ : ξ ∈ C ′
2} lists the Pκct·β-names of all σ-centered subforcings of Hechler

forcing DV
Pκct·β of size < κb.

(iv) {Ḟ β
ξ : ξ ∈ S′} lists the Pκct·β-names for all sets of size < κnm of slaloms of

finite width in V Pκct·β .
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If α ∈ C, let

Q̇α =

⎧⎪⎪⎨
⎪⎪⎩

Ȧβ,ζ if ζ ∈ C ′
0,

Ḃβ,ζ if ζ ∈ C ′
1,

Ḋβ,ζ if ζ ∈ C ′
2,

Ċ (Cohen forcing) if ζ ∈ C ′
3.

If α ∈ S, we need to construct P′
α and we want6 it to have size ≤ κnm. Given

ε < χ and ȧ a (nice) Pα-name of a subset of ω, choose a maximal antichain Aε
ȧ that

decides either ȧ ∈ Ḋε
α or ω � ȧ ∈ Ḋε

α. Therefore, by closing under this and other

simpler operations, we can find P′
α � Pα of size ≤ κnm such that Ḟζ is a P′

α-name
and, for any ε < χ and a (nice) P′

α-name ȧ of a subset of ω, Aε
ȧ ⊆ P′

α (because

κℵ0
nm = κnm), which implies that there is a P′

α-name of Ḋε
α ∩ V P′

α . Let Q̇α = EV P
′
α ,

which adds a real that evades eventually all the slaloms from Ḟζ . It is clear that
Lemma 5.2 applies, which finishes the construction.

From the results already proved or cited, it is easy to check that Pδ forces κan ≤
add(N ), κcn ≤ cov(N ), κb ≤ b and κnm ≤ non(M). The relations add(N ) ≤ κan

and cov(N ) ≤ κcn in the extension are consequences of Corollary 3.6(a) applied
to the pairs (θ,�) = (κan,∈∗) (see Example 3.4(4)) and (θ,�) = (κcn,�) (see
Example 3.4(3)), respectively. The crucial inequality b ≤ κb is a consequence of
Main Lemma 4.6. Besides, non(M) ≤ κnm holds in the extension because of the
κnm-cofinal many Cohen reals added along the iteration. It is also clear that c ≤ κct

is forced.
Finally, by Corollary 3.6(b) applied to the pair (θ,�) = (κnm

+,�) (see Example
3.4(1)), cov(M) = d� ≥ κct. �

Remark 6.2. If we further assume that χ < κnm and μℵ0 < κnm for all μ < κnm,
then we can similarly construct a nice iteration candidate of length κct forcing the
same as in Main Theorem 6.1. In the argument of this, for α ∈ S, we can construct
P′
α of size < κnm, so we can force non(M) ≤ κnm by Corollary 3.6(a) applied to

(θ,�) = (κnm,�). However, this is less general because κnm is not allowed to be a
successor of a cardinal with countable cofinality.

Remark 6.3. A similar proof of Main Theorem 6.1 can be performed using bounded
versions of E to ease the compactness arguments, but it has the disadvantage that
we are restricted to 2χ = χ+ = κct and χ = κnm. The argument is similar but
much more difficult; we point out the differences with the presented argument.

(1) Fix b : ω → ω a fast increasing function with b(0) > 0. Let Eb be the poset
whose conditions are pairs (s, ϕ) where s is a finite sequence below b and ϕ is
a slalom of width at most |s|. The order is similar to E. Like E, this poset
adds an eventually different real (below b) and does not add dominating reals
(moreover, it is ≤∗-good), however, it is not σ-centered.

(2) In all the arguments, everything related to E should be respectively modified
to the context of Eb.

6See Remark 6.2, which explains why we only require |P′
α| ≤ κnm rather than the strict

inequality that the reader might have expected.
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(3) In Definition 4.2, we additionally have to include Borel functions that code the
names of slaloms corresponding to the coordinates of subforcings of Eb of the
conditions of the countable Δ-system that is coded (here, wx and wx ∩ κb of
Definition 4.2 play a role). In this case, those codes should be called blueprints.
Moreover, n∗

l ≤ |s∗l | for all l < l∗.
(4) 2χ = χ+ is assumed since we need (ii’) of Theorem 5.1 in this case. Guardrails

hβ should also talk about the Borel functions included in the blueprints of Λε

(by further assuming c = κb in the ground model), so the last part of the proof
of Claim 5.5 could be argued.

(5) In the construction of the iteration for the main result, we have to guarantee
that the used subforcings of Eb don’t add random reals nor destroy a witness of
add(N ) that we want to preserve, that is, that they are both κan-∈∗-good and
κcn-�-good. For this, a notion of (π, ρ)-linkedness, defined in [KO14], justifies
the desired preservation (for κan-∈∗-goodness, see [BM14, Section 5]).

7. Questions

Question 7.1. Is there a model of ℵ1 < add(N ) < cov(N ) < b < non(M) <
cov(M) < c or just a model of b < non(M) < cov(M) < c?

A ZFC model of ℵ1 < add(N ) = non(M) < cov(M) = cf(N ) < c was con-
structed in [Mej13, Thm. 11] by a matrix iteration (a technique to construct
FS iterations in a non-trivial way). The difficulty to answer Question 7.1 lies
in the fact that there are no known easy FS iteration constructions that force
non(M) < cov(M) < c.

Question 7.2. Is there a model of ℵ1 < add(N ) < b < cov(N ) < non(M) <
cov(M) < c or just a model of b < cov(N ) < non(M)?

As pointed out by Judah and Shelah [JS93] (see also [Paw92]), subalgebras of
random forcing may add dominating reals, so there are similar difficulties as those
described in Section 2 for subforcings of E. It seems that sophisticated techniques
as in [She00] may help to deal with this problem.
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