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 THE JOURNAL OF SYMBOLIC LOGIC

 Volume 51, Number 2, June 1986

 ON THE NUMBER OF NONISOMORPHIC MODELS
 OF AN INFINITARY THEORY WHICH HAS

 THE INFINITARY ORDER PROPERTY.
 PART A

 RAMI GROSSBERG AND SAHARON SHELAH1

 Abstract. Let K and A be infinite cardinals such that K < A (we have new information

 for the case when K < A). Let T be a theory in LK+', of cardinality at most K, let
 (p(x, y) E LA+, Now define

 P,( T) = Minf{/*: If T satisfies (VP < ,*)(3M, J T)(3{1ii: i < PI} c M,1)

 (Vi~j < yl) i < i j- M,, k- (p E i, aj I

 then (3(p E LK+ j)(VX > K)(3Mx k T)(3{aj:i < x} ' IMxI)

 (Vi,j < x)[i < j Mx k (p ajajIi}.

 Our main concept in this paper is P*(i,K) = Sup{j*(A, T): T is a theory in LK+', of
 cardinality K at most, and (p(x,y) e LA+ O. This concept is interesting because of

 THEOREM 1. Let T c LK+ ,W of cardinality < K, and p(5(,Y) e LA,, If

 (VP8 < P1*(A, K))(3M,, k- T)(3 Idi: i < y})(Vlij < yl)[i < j <->M~, k- (p[a-i, dj]]

 then (VX > K)I(X, T) = 2x (where I(x, T) stands for the number of isomorphism types of models
 of T of cardinality X).

 Many years ago the second author proved that ,I*(A, K) < (2A)+ . Here we continue that
 work by proving

 THEOREM 2. y *(A, o) =A
 THEOREM 3. For every K < A we have P *(,. K) < ' +-
 For some K or A we have better bounds than in Theorem 3, and this is proved via a new two

 cardinal theorem.

 THEOREM 4. For every K < A, T c LK+ ,, and any set of formulas a - LA+ , such that a
 -LK++ , if T is (zl, j)-unstable for /1 satisfying pl*(AK) = ,u then T is A-unstable (i.e. for every

 X ? A, T is (zl, X)-unstable). Moreover, T is LK+ .-unstable.
 In the second part of the paper, we show that always in the applications it is possible to

 replace the function I(x, T) by the function IE(X, T), and we give an application of the
 theorems to Boolean powers.

 Received January 9, 1984; revised May 10, 1985.

 'We would like to thank the United States-Israel Binational Science Foundation for partially
 supporting this research. We are grateful to the referee for a very long and detailed referee report. The first
 author received support from Harvey Friedman, whom he thanks.
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 Contents

 ?1. Introduction.

 ?2. Proof of Theorem 1.2 in the case when A = K.
 ?3. Proof of Theorems 2 and 3 of the abstract.

 ?4. The two cardinal theorem and a better bound.
 ?5. Proof of Theorem 4 and its strengthenings.

 ?1. Introduction. In [Shl] Shelah proved

 THEOREM 1.1. Let T be a first order theory. If T has the order property (namely,

 there are a model M # T, a first orderformula o(x`, j) in the language of T. and there

 exist {da: i < co} IMl such that i < j M q- d,[ad1 j]-this is equivalent to saying
 that T is unstable), then for every cardinal X > I T1, I(X, T) = 2X.

 So the next natural question is: Can Theorem 1.1 be generalized to logics stronger
 than first order logic? Here is one generalization.

 THEOREM 1.2. Let K be a cardinal and T a theory in LK+ of cardinality at most K.

 Then there exists a cardinal y* (depending on the logic rather than the theory T) such
 that thefollowing implication is true:

 If T has the (LK + (,Co i*)-order property (namely, has a model M and a formula
 qp(x ,j) E LK+W and there exist {ai: i < M* c IMI such that i <j j M # [di 5j]),
 then (Vt > ITI)I(x, T) = 2X.

 In [Sh2] Shelah proved Theorem 1.2, and in addition he proved that ,u* ?< 1(2K)+.
 This theorem has found a number of applications in algebra of the following form:

 You have a class K of algebraic structures of a certain form (for example a class of

 certain groups) which is not axiomatizable in first order logic but has an

 axiomatization in an infinitary logic, for example in LK + c, and the question is:
 What is the number of nonisomorphic structures in K in a given uncountable car-

 dinality X?
 A way to answer those questions is by proving that K has the (LK+ CO5 ,U*(K, K))

 order property and applying Theorem 1.2.
 In fact we can point out two examples of that procedure (there are many more).

 There are two specific classes of groups for which group theorists asked questions of
 the form above and the questions were answered for the first time using Theorem 1.2.
 The two classes are universal locally finite groups (see Macintyre and Shelah
 [MSh]), and existentially closed groups (see Shelah and Ziegler [ShZ]). For another
 application to Boolean powers see Part B of the present paper.

 Instead of proving Theorem 1.2 directly, Shelah in [Sh2] proved a stronger
 theorem than Theorem 1.2. Using our notation from the Abstract this can be

 formulated as 1i*(X, K) < 1(2-)+. Namely in his theorem the given formula (p (which

 defines the order) is not necessarily from LK+W, but may be from LA+, for some A
 > K. The effort to deal with formulas not in LK+ CO was the origin of most of the
 difficulties in [Sh2], and we shall see similar difficulties in the next section when we

 attempt to prove Theorem 1.2 for formulas not from LK + c. This is a very natural
 strengthening of Theorem 1.2. In [Sh3] Shelah applied the stronger form for the first
 time to prove that if T is a first order theory with the dimensional order property
 then T has many models. The application is by concluding from the dimensional

 order property that there exists an infinitary formula in LA+,,O defining a long order
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 304 RAMI GROSSBERG AND SAHARON SHELAH

 as required by the theorem. In [Sh4a] Theorem 1.2 is used to show that the omitting

 type order property of a theory implies existence of the maximal number of models

 in powers greater than the cardinality of the theory.2

 Here we continue that work by improving the bound for 1i*(X, K) and for the case

 K = No we obtain the exact bound (namely, instead of an inequality we get an
 equality). We do not assume the reader is familiar with [Sh2]; our method of proof

 of the bounds is even simpler than that used by Shelah in [Sh2].
 First we prove the upper bound part of Theorem 1 in the Abstract. Namely,

 THEOREM 1.3. p*(X, )) < 2A+.
 Instead of proving this theorem directly, we first prove Theorem 1.2. The proof

 can be found in the next section, ?2. In ?3, using forcing and absoluteness, we reduce
 Theorem 1.3 to part of the proof of Theorem 1.2.

 What do we get for K : No? Well, we shall prove
 THEOREM 1.4. For every pair of cardinals K, A satisfying K < A we have

 9*(A, K) < -1(AK) + .
 In ?3, using forcing and absoluteness, we shall also deduce Theorem 1.4 from a

 part of the proof of Theorem 1.2.

 In ?4 we shall introduce another cardinal function, denoted by -(N, K). This
 function is natural to define if one is interested in the following two cardinal
 theorem:

 THEOREM 1.5. Let K ? A, and let T c LK+ o be a theory of cardinality < K. Assume
 that L(T) contains a unary predicate P and a binary predicate <P such that T F- <P
 linearly orders P. If there exists M k T such that (PM, <PM) is well ordered of order

 type < A' and 1I M1 ? j7(X, K), then (Vx ? K)3MX F T such that o.tp.(PMx, <Pax) is an
 ordinal < K' and M, has power X.

 REMARKS. (1) Let -t(X, K) be the first cardinal such that Theorem 1.5 holds (for
 more formal definitions see Definition 4.1(2) below). As we shall see,

 f(., K) ? M*(X, K). Why is Theorem 1.5 interesting and related to our main theme

 (which is investigation of the function It* (, K) and finding upper bounds for it)?
 Well, it is easy to show that always PM*(X, K) < f(X, K). This is done by expanding the
 theory T by enough set theory to enable one to talk about the rank of the formula
 defining the order; i.e. rank(p) is defined by induction on the structure of (P:

 rank(?) = 0 if p is atomic,

 rank(3xsp) = rank(-i p) = rank(p) + 1,

 rank(sp A /= Max{rank(p),rank()j} + 1,

 rank A (par = U rank(p).
 a <K a< K

 The predicate P is interpreted as the rank of tp, and since T contains enough set
 theory we can decode (p from P and we may assume that (p orders sequences of the
 same cardinality as the cardinality of the model.

 2Shelah has another sufficient condition for constructing many nonisomorphic models for a first order
 theory. Namely the conclusions of Theorem 1.1 holds when "T is unstable" is replaced by "T is not
 superstable". In this light it is natural to ask: Does there exist a natural generalization of Theorems 1 and
 2 from the Abstract (and the other results of this paper)? The answer is positive and will appear in [GSh4].
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 THE NUMBER OF NONISOMORPHIC MODELS 305

 (2) Only the fact that rank(p) <A' was used in (1) to conclude that
 iI*(x, K) < -t(X, K). Hence all our theorems are true when 5p(X, j-) is not necessarily
 from LA+,,; it is enough to assume that sp(xy-) E Lc and rank(p) < A'.

 (3) As almost always in Hanf number computations, while proving Theorem 1.5
 we prove a stronger theorem whose assumption is weaker. Instead of assuming
 existence of a model of power ? -t(X, K) it is enough to assume that for every ,u
 <ft(X, K) there exists a model of power ,i as in the statement of the theorem.

 In ?4 we shall introduce yet another function 3(., K), and give an upper bound to

 fK(A, K) by proving in Theorem 4.2 that -t(X, K) = n Computing bounds for b(X, K)
 for certain cases gives us improvements of Theorem 1.4. For example using -t(X, K)
 and b(X, K) we have the following finer bounds

 THEOREM 1.6. For every K < A:

 (1) If cf A = No then /I*(X, K) < 2(X))+.
 (2) If cf K = cf A = No then I* (X,K) < 2X(Ex<,Ax)+
 (3) If cf K = cf A = No then /I*(X, K) < 2(X< < IC <cPX)+
 (4) If A = (Ifl and K < 2k, for some a < wo1, then -t(X, K) < 2A+.
 In Part B we shall continue ?4 and also continue Theorem 1.6. Namely, we

 shall improve the bound obtained in Theorem 1.4; for details see the remark after
 Corollary 4.6. Another related subject is the stability spectrum theorem. In [Sh4,
 Chapter III, Theorem 5.15] Shelah solved the stability spectrum for first order
 theories. That is, he gave a complete characterization of the cardinals for which a

 first order theory T is stable. It is natural to try to solve the same problem for

 infinitary logics. Namely, given a theory T ' LK + c and a set of formulas A ' LK +,cI
 characterize the set of cardinals in which the theory T is stable in A. For theories
 which have large homogeneous models the problem is essentially solved (for
 cardinals ? -(21)+ it is completely solved) in [ShO], but here we are concentrating on
 the general problem.

 Since we want to keep our promise from a previous paragraph and not require
 familiarity with [Sh2], we repeat some definitions from that paper.

 DEFINITION 1.7. Let A be a set of formulas in LA+,co
 (0) LetM be a model, IA c M, and m < co. For a sequence of length m of

 elements b from M let

 (i) tp(b, A, M) = {((x, a-): a- E A, yo E A, Mk y [b, a-},
 (ii) Sm(A, M) = {tpA(b, A, M): b e mlMl}.
 (1) A model M is (A,) )-stable if for each A ' MI, m < co, IAI < %

 ISam(A)l < X.

 (2) A theory T LK+ ois (A, X)-stable if every model of T is (A, X)-stable.
 (3) A theory T LK+,,) is A-stable if there exists a cardinality X such that T is

 (A, X)-stable.

 (4) We say X E OdA(M) if there exist a formula 5p(X, j-) Ec A and a set {li: i < X}
 c M such that for every i, j < X

 i < jo-t Ml=- (p [a-i .aij

 (5) A theory T has the (A, X)-order property if there exists a model M #= T such
 that X E OdA(M).

 Shelah [Sh4, Theorem 11.2.13(2)] proved that if a first order theory T is unstable
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 306 RAMI GROSSBERG AND SAHARON SHELAH

 in a cardinal A satisfying Al'i = A then T is unstable (= for every cardinal X, T is

 unstable in Z). So it is natural to ask whether the direct generalization of the above is
 true for LK+ co. In [Sh2] he proved the following:

 THEOREM. Let T ' LK+,o, ITI < K, and let J A L +,,, for K < A. If T is (z,)-
 unstablefor b satisfying 11(`) = ,u (where M(i) is the Hanf number of the logic LA+ j),
 then T is A-stable.

 Notice that for the case K = o and A = 817 by the above theorem it is enough to

 check stability in yu satisfying M = gP", where p = (2n17)+. Below we shall improve
 this by proving that it is enough to check stability in j satisfying It = y`"
 Namely, we shall prove

 THEOREM 1.8. Let K < A, andletTcL K let A c c LA+,,, be such thatA D K+,I
 If T is (A, ,)-unstable for y satisfying y = ,PI*(AK), then T is A-unstable.

 Note that what we said in the above paragraph follows from Theorem 1.8 together
 with Theorem 1.3. Theorem 1.8 will be proved in ?5. We shall not prove Theorem 1.7
 directly; rather in ?5 we shall deduce it from the stronger theorem stated below.

 THEOREM 1.9. For every), ? K, T ' LK + o, and any set of formulas A LA*, , such
 that a D LK+ if T is (A, u)-unstable for ,u satisfying ,u<,*(1,K) = y and MI- , then
 T is A-unstable. Moreover, T is LK+ ,W-unstable.

 REMARK. As in Remark (2) after Theorem 1.5, also Theorem 1.9 can be

 strengthened to: A ' L_ at A ' LK+ co and (V~p E A)[rank((p) < A'].
 Let us return to the problem of the number of nonisomorphic models. Assume K

 is a class of algebraic structures all of the same similarity type. Frequently after
 proving (V8 > IL(K)l)I(x, K) = 2x, the next question is what about the function JE?

 DEFINITION 1. 10. Let K be as in the above paragraph and let X and Y be infinite
 cardinals. We denote by IE(X, K) ? yi the following statement: 3{Mj: i < u} such
 that

 (l) i < yu => II Mill = X and Mi E K, and
 (2) i =# j => there is no K-embedding from Mi into Mj.
 Clearly 0 < IE(X, K) < 2x. If the reader wants an example of the above procedure

 he is invited to read ?1 of Wilfrid Hodges [Ho]. In [GSh2] we shall prove

 THEOREM 1. I 1. Let T c LK+ of cardinality < K, and let (p(X, Y) e L K+, be
 quantifier free. If

 (VP8 < P1*(R, K))(3M, V- T)(3 Ia-i: i < yj})(Vi~j < l) [i < j <>M, Vt (p [a-i, dj]]

 then

 (V% > K)[[X is regular v (3y < x)[K < a < X A 28 = 2X]
 V (XHO = x > K0') V O 0 V] -+ IE(X, T) = 2x].

 This answers Hodges' question and all other similar questions simultaneously.

 NOTATION. a, /I, y, 6, , ij stand for ordinals; i, K, X ju stand for infinite cardinal
 numbers; M, N stand for models. All the above letters may be used with indices. up
 and / stand for formulas in a certain logic. Be careful: sometimes they are used as
 first order formulas and sometimes as formulas from an infinitary logic. L is a
 similarity type and also the collection of first order formulas in the similarity type L.
 Sent(L) is the collection of sentences in L. T and T1 are theories, sometimes first
 order theories, and in other cases infinitary. By L(T) we denote the similarity type
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 corresponding to the theory T. Let k, 1, m, n stand for natural numbers. Let T be a
 theory, F a set of types (in L(T), namely without parameters) and T1 an expansion of

 T (we shall always use expansions whose power is No I T ). Then we use the following
 notation:

 PC(T1, F, T) = {M [ L(T): M # T1, (Vp E F)M omits the type p}.

 We always assume that the members of PC(T1, F, T) are infinite and of cardinality

 greater than or equal to IT1 I. If T1 = T then instead of writing PC(T, F, T) we write
 EC(T, F). When working with a first order theory T we assume that ( is a K-
 saturated model of T (K- is bigger than the biggest cardinal which appears in our

 proofs); when we work with an expansion T1 of T, assume ( is a model of T1. The

 collection of all finite subsets of the set X is denoted by f<N0(X), and YJ(X) is the
 collection of subsets of power K. As usual, 22 = {f I f i 2}, and 2' = VI21. The
 cardinal I a is the acth successor of i, so for example A+ 1 = A, and if 6 = , then
 (-Ij` = N a Also '2 = {f I t - 2}, and 2' = 12 1.

 Prerequisites. We assume very little knowledge; the minimal knowledge is

 familiarity with the contents of the first three chapters in Chang and Keisler's book
 [CK], the very basic part of Keisler's [Kel] or Dickmann's [Di] books, and
 familiarity with the definition "T is stable in X". We assume only a little about forcing
 (forcing with K'-complete poset does not add subsets of cardinality K). When we
 shall use something not in the above minimal knowledge we state it explicitly (as a
 fact) and give an exact reference to it in the literature.

 The results of this paper were announced in [GShl] and [GSh3].

 ?2. Proof of Theorem 1.2 in the case when X = K. We shall prove that [u* as in the

 statement of the theorem exists and is the Hanf number of the logic LK+',,. So from
 now on we assume that ,* is a given cardinal and is equal to the Hanf number of the

 appropriate logic, and we prove in this section that ,* satisfies the statement of
 Theorem 1.2.

 We offer two different proofs of that theorem, depending on the taste of the
 reader. The first is more related to infinitary logic than the second one, in which we

 translate the problem into a problem about classes of models of a first order theory
 which omit a first order type (or a set of K types, which is an equivalent problem).

 Let us point out what is common to both of the proofs: Namely, how to conclude
 that the number of isomorphism types of models is maximal? In [Shl] Shelah
 proved Theorem 1.1 as we mentioned above. We shall rely here on his proof of
 Theorem 1.1 (not the statement of the theorem). So we shall quote below what we
 use, without proving it.

 Fact 2.1. Let T and T1 be first order theories such that T c T1, whose languages are

 L and L1 respectively. Suppose T1 has Skolem functions, and I TI = I T, I < K. Let there
 exist a) a linearly ordered set I such that III = K, b) a formula 9p(x, y-) with 1(y-) = m in

 LK+, (involving relation and function symbols from L only), and c) a model M'
 = EM'(I) such that M' 1= T1, and M' is the Skolem hull of {aI: i e I} under
 the functions of T1 when the did's are m-sequences and the main requirement

 i <, j Ml 1= (p ai, ail
 holds. Then for every x > K we have I(x, T) = 2x exemplified by a family
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 308 RAMI GROSSBERG AND SAHARON SHELAH

 {EM 1(I) [ L: i < 2X}, where {I': i < 2X} are linearly ordered sets of cardinality x such
 that EM'(Ih) t L is not isomorphic to EM'(Ij) t L for all i < j < 2X.

 2.1. REMARK. We can prove a theorem slightly stronger than Theorem 1 of the

 Abstract by changing the conclusion from (Vx> K)I(x, T) = 2x to
 (Vx ? (K + N1))I(x, T) = 2X.

 Namely, when K is uncountable we can find many models of power K. This
 improvement is done by replacing Fact 2.1 by an improvement, and its proof does

 not follow from [ShI] but is patterned on the proof of Theorem 3.3 in Chapter VIII

 of [Sh4]. But since the improvement of Fact 2.1 does not follow directly from

 Theorem VIII.3.3 as Fact 2.1 follows from [Shl], we prefer to formulate Theorem 1

 as it is.

 Now we shall state another fact we shall use. It is a very basic result in infinitary

 logic for L,(,,. (for the logic LK+,. it is the same). See [Kel, Theorem 19(ii) (the
 stretching theorem)], or for classes of models for first order theories omitting a given
 type see [CK, Theorem 3.3.1 1(e)].

 Fact 2.2. (1) Let T ' LK+ (J be a theory of cardinality at most K which has built-in

 Skolem functions. Suppose there exists a model M # T of LK+ (0 of cardinality K and
 let LT be a fragment of cardinality at most K containing T. Assume in addition that the

 model M has an infinite sequence of indiscernibles J. Then for every infinite ordered set

 I there exists a model N such that I is an infinite set of indiscernibles and (writing N for

 the Skolem hull of I) M-LT N.

 (2) Let T be a first order theory of cardinality at most K with built-in Skolem

 functions. If T has a model M which is the Skolem hull of J, then for every linearly
 ordered set I there is a model N, formed as the Skolem hull of I, such that N omits
 exactly the types realized or omitted by M.

 REMARK. Indeed, we can see immediately a variant of Fact 2.2 which we shall call

 Fact 2.2(A). In both cases J can be a set of m-sequences and N is generated by an

 indiscernible sequence of the same type.

 Now by combining Facts 2.1, 2.2(1) and 2.2(A) we can easily derive

 Conclusion 2.3. Let T be a theory in LK+ ,, and assume that there exists aformula

 p( X, Y) E LK+ '. for some K and T1 is an expansion of T by Skolem functions (in
 L(T1) K+ C)). If there exists a model M l= T1 with an infinite sequence of indiscernibles

 which is ordered by the formula (p(x, y), then I(x, T) = 2x for every x > K.
 Or the version for the first order theories is

 Conclusion 2.4. Let T be a first order theory of cardinality at most K, let (p(X, Y) be a
 first order formula in L(T), T1 : T an expansion of T of cardinality K by Skolem

 functions, and F a set of finitary types (i.e. with finitely many variables) with I Fl < K.
 If there exists M e PC(T1, F, T) with an infinite indiscernible sequence ordered by

 p(x, y), then I(X, PC(T, r, T)) = 2x for every X> T> I
 REMARK. If you are familiar with computations of Hanf numbers you can jump to

 the last theorem of the present section.

 Since the case when K = No is in some sense the most useful instance of our
 theorems, we shall present two proofs for this case (remember that u(No) = %). So
 it is enough to prove that the hypothesis of one of the last conclusions holds (or in
 other words to prove Theorem 1 from the Abstract).

 PROOF OF THE ASSUMPTION OF CONCLUSION 2.3. So we have a fixed countable T
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 THE NUMBER OF NONISOMORPHIC MODELS 309

 c:L 1 and (p(x, y) E L,,,,,o such that T has the ({p}, ,1)-order property. Without
 loss of generality we may assume that T has built-in Skolem functions. Our goal
 now is to construct a countable mod,-l M l= T which is the Skolem hull of an infinite
 indiscernible sequence ordered by the formula (p(x, y).

 Recall the basic way to construct models for L(11 namely the extended model
 existence theorem (see page 14 of [Ke I]):

 Fact. Let S be a consistency property, and F a countable set of sentences in the

 language L0o10. If s u 1 e} E S,for all s E S and / E F, then for ails E S the set s u F
 has a countable model.

 Let L* be the expansion of L obtained by adding two countable sets of constants

 D = {dn n < ()} and C = {cn: n < w}. Let Lo* be a countable fragment containing
 Tu {cp(x,y)}. Let

 F = {j(di1,..,dip) _ (dj1,. . ., djp): i1 < < ip < a,
 j, < .. <j j< o, (xj, ..., xP) c Lo*}

 u {-di = dj:ij < o, i #j}

 u {q(di,dj):i <j < o} u {1-n(dj,di):i <j < o}.
 Clearly if we show that T u F has a model then we are done, since its reduct to L

 will be as required (the interpretation of the constants {dn: n < w} is the sequence
 of indiscernibles we are seeking).

 To prove that T u F has a model we use the above Fact. Namely, it suffices to find

 a nonempty consistency property S (in L,*) such that

 (V/ e T u F)(Vs e S)[s u {ti} e S].
 We define:

 def

 S = {s = s(cl, ... .,cm,d, . ., dn) E N<(Sent(L?*)):
 only finitely many c's and d's appear in s, and

 (Va < oj 1)(3 M V- T)(3{aI : i < Da} I IM )(V i <.. < in <Da

 [< M, aia a aa > V- (3x, X. . Xx)sx mXdlX.. X dn]}

 We mean that the elements ai1,. . . , a (E M) are interpretations of the constants
 d1,. . . ,dn respectively.

 S is not empty since, by the definition of p*, {(3x)[x = x]} E S. Why is S a
 consistency property? Everything is easy to check except the condition

 if VO e s e S then (39] e 0)[s u {a9} e S].

 Denote s = s(ci,...,cm, dl,..., dn), and for all 9 E 0 let 9 = 9(c cm' dl,..., dj.
 Given a < w1 let /3 = a + n (which is < 1). By the definition of S there exist a

 model Me I= T and a sequence {aI: i < As} c IMfI such that for every i< < < in
 <nfl

 Mid= (3xi,...,xm)As(xi,... ,Xm,dl,. ..,dn)

 Since VOe c s we have for all i <. < in < At

 Mp l= V (3xI,. ,Xm)[As(xi, Xmdl,.,dn) A 9(Xi,...,Xm,dl,...,dn)].
 & e
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 310 RAMI GROSSBERG AND SAHARON SHELAH

 Namely, when A, {a= : i < 21p} we may define a function f: [Af]" -+ 0 such that i1
 < < in < -1, implies

 Ma 1= (3]X, * a Xm)[As(Xi, . . I Xm dl,..., dm)

 A f(ail,,. .., ain)(X, . .I* XM, dl,.., dn)].

 Using the Erdos-Rado partition theorem (Ph(x)+ - (X+)x+ 1), we have NO '
 Applying this to the function f, we get the existence of B_ C Af such that I Ba = a,
 and Ba is homogeneous for f. Namely there exist 19 E 0 such that for all i1 < < in

 E Ba we have f(ai1,... , aj) = 9. Now choose an elementary submodel Na of M,
 containing Ba such that Na, Ba and 9 exemplify that s u {91} e S.

 To finish the proof, it is enough to prove that

 (V cE T u F)(Vs E S)[s u 19} E S].

 According to the definition of 1' there are 5 possibilities (with respect to the location
 of 9).

 (i) If 19 E T, then s u {E} E S by the assumption of the theorem.
 (ii) If 9 belongs to the first union of r, i.e. if 9 is /(d1,,.. , di) _ (dj1, .., dip), let a

 < w1 be given. By the definition of S there exists Mat V T (for /3 = a + p) with a

 subset Af = {aI: i < 21p} exemplifying s E S. Define a function g: [A0] P - {0, 1} by
 g(ai1,...,aip) = 1 Mpk V/4a 1,. ..,aip]. Now apply the Erdos-Rado partition
 theorem as before and get a homogeneous set of cardinality la which exemplifies
 s u 19} C S.

 (iii) If 9 is m (di = di), then clearly s u {10} E S.

 (iv) If 9 = (p(di, di) (for i < j), again s u {19} E S by the assumption of the theorem
 (by the definition of u*, choose in stage a < wo1 the set {aO: <i a} ordered by the
 formula (p(x, y)).

 (v) If 9 = m (p(dj, di) (for i < ), proceed exactly as in (iv).
 Now to the first order version. First let us translate the problem from infinitary

 logic to a problem about classes of models of first order theories omitting a set of
 countable types.

 We use the following basic fact due to C. C. Chang [Ch]. For the L., version see
 [Kel, Theorem 14], or for LK,+ (, see [Di, Theorem 4.1.1] (which has the same proof
 as for the case of Ls1,04

 Fact 2.5. Let T c LK+ ,t be the theory of cardinality at most K, and let Lj be a
 fragment of LK+ (O containing T. There are two first order theories T* c T1 (T1 an
 expansion of T*) of cardinality K, L(T*) = L(T), and a set of first order types F (in
 L(T*)) of power K such that

 (1) Mod(T) = PC(T1, F, T*), and

 (2) for every formula /(x-) E L, there exists a first order formula 0*(x) e L(T1)
 such that T H- (Vx-)[\*(x-)- x-)].

 Converting to the situation in Conclusion 2.4 (for K = NO),' let T c La,, and
 p(x, y) E L as before. Let T*, T1 and F be as in Fact 2.5, when the fact is applied
 to a countable fragment LS, containing T u {I(p(x, y)}. By part (2) of the fact there

 3This is based on Morley's ideas in [Mol].
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 exists a first order formula (p*(x,y) E L(T1) such that

 T IlVxVy[(p*(x,y) (p(x,y)].

 Let T* be an expansion of T1 by adding built-in Skolem functions so that

 PC(T*, F, T) = PC(T1, F, T).
 Assume we have an enumeration of F by {pk: k < }. For every K < 0) let Pk

 - k(X) n < a)}. Let C = {Cn: n < w} be a set of new constant symbols. Without
 loss of generality we may assume L(T*) D C. Let {-cn: n < w} be an enumeration of
 all terms in L(T*), {en: n < w} an enumeration of L(T*).

 To prove what we want it is enough to show that there exists {fk: w) -+ | I K < WI
 such that the theory

 T* = T* u {mci = ci: i < j < a)}
 U {7I afk(f)(Zf(Cil, C - ). k, n < a, il < .... < il(n) < 0}

 U { (Cil v*** Cil(ln)) - n(Cjl v Cvjl(ffPn)):

 il < < il(n) < 0),jl < <Ji~1n < cf n < Wo}

 u {q*(ci,cj): i < j < w}

 is consistent.

 Let us fix {Mat T.: a < w1 } exemplifying the definition of p*. Namely each Ma
 has a subset {aJ: i < l} ordered by (p(xy).

 By Fact 2.5 we may assume that each Ma omits the types in the set F, and since we

 can expand every first order theory by Skolem functions, we may assume Ma # T1j.
 By the compactness theorem it is enough to prove by double induction on K < 0)

 and n < o that:
 (*)kn There are k(x),..., v I(X) E pk and an unbounded Fn C w)1 such that for a

 E Fk there exists Aa ' I MJ, ordered by 9p*(x, y) such that for every E F k:
 (i) if / is the yth element of F k then API >

 (ii) m < n and 1 < k imply that for every ail,... , ai,(rm) which is (p*-increasing [i.e.
 1 < k < j < l(ZQ) (pq[ak, aj]] we have

 Mp -t m ij-Qmai,,.** * ailJ)],

 (iii) M tm[ai *ail(m=)] m[aj,. * ajl(m)] for every m < n and every ai,
 < ...< ail(,j,) and aj, < ...< aj(, (both *increasing) in A.

 The proof of (*)kn is (as we said) by induction: for n = k = 0 it is trivial, and for the
 induction step it is by double application of the Erdos-Rado partition theorem (once

 to fulfill requirement (ii) and once to fulfill requirement (iii)). The choice of Uli is

 done by the pigeonhole principle (since IFkI = N1 and there are only countably
 many formulas). The verification is left as an exercise to the reader (hint: see
 Theorem 7.2.2 in [CK]).

 So we have finished the case when K = No.
 Now we give a proof to show that the hypothesis of Conclusion 2.4 holds for

 general K. Assume T C LK+ CO is a theory of cardinality K, Cp(x, y) E LK+ CO and T has
 the ({(}, II(K))-order property.

 Let us quote from the presentation in [Sh4] (if you want to know the credits you
 must consult [Di] or the historical appendix to [Sh4a]).
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 DEFINITION 2.6. For K ? No let 6(K) be an ordinal such that

 5(K) = Min{3: for every similarity type Lo with a binary relation <,
 every first order theory To, and every set F
 of finitary first order types in Lo of power < K,
 if there exists M E EC(TO, F) such that o.tp.(lMl, <M) 2 (
 then there exists N E EC(T0, F) such that o.tp.(I NJ, <N) is

 not well ordered}.

 By [Sh4, Theorem VII.5.5] (for historical credit see [Di]) we have
 Fact 2.7. (1) 6(K) < (2K)+.

 (2) 6(K) 2 K+.
 By the easy half of Theorem VII.5.4 from [Sh4] we have

 Fact 2.8. 4(K) ? T(K)-
 By Fact 2.5 let T1 and F be appropriate for a fragment (of power K) of LK+,

 containing T u {p(x,y)}, and let p*(x,y) E L(T1) be a first order formula such that

 T - bVxbVy(cp*(x, y)-(p(x, y))-

 As we indicated above, we shall prove ,u* <- (K); so assume for the sake of
 contradiction that ,I* > ,U(K) (by our notation we do not imply that ,* exists at all;
 ,* may be oo).

 Hence, by Fact 2.8, ,u* > 'I (K). Therefore by our assumption we have for every a

 < ((K) a model MaI= T and a sequence {ai:i < la} C IMal ordered by p(x,y).
 Hence, by Fact 2.5, Ma e PC(T1, F, T*). We may assume T* c T1 is an expansion of
 T7 by Skolem functions and Ma l= T*.

 To complete the proof of what we want, it is enough to prove the following: Given

 a set C = {C: a < K}, let F = {pi: i < K}, where pi = {Ij(x):j < K}. Let {-ci: i < K} be
 an enumeration of the terms in L(TP), and let {fi(x) i < K} = L(T*).

 There exist {fj: K -+ K Ij < K} such that the theory

 T* = T*u {u-(ci = cf):i <j < K}

 tJ- {afi i(~cl*Car) i, j < K, Ca1 < ..< CXI(i) < K}
 fj { i )(Ti( **,Calj5si - i(a4 '* l~(*

 cc, < .. < a0(400 < K, #1 < ... < Aw,) < K}
 U {(p*(Ci,Cj): i < j < K}

 is consistent.

 By the choice of {Ma: a < 6(K)} there exists a function (in the universe of set theory
 in which we are working at present) such that for a < ((K), F: la -+ (Ma, <p) is order
 preserving. Let G: (K) -+ {Ma: a < 6(K)} be such that G(a) = Ma. For every O(x/)
 e L(T*) (first order) let us define a formula in the language of set theory,

 -)def Xf
 t(y, X) = [y is an ordinal <(5(K) and G(y) f()].

 For every p e F in the variables x- let pZF(y; x-) = {t(y, x-): O(x-) e p}. Since, for
 every a < ((K), Ma l= T* and M. omits all types from F, our present universe of set
 theory omits all types from ZF =J { pZF: p e F}.

 Remember that from the Erdos-Rado theorem it follows that for all a satisfying a

 < 6(K) and every n < wo we have ( la+n)+ (; +a);2t
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 By the reflection principle (this is due to A. Levy; see Theorem 29(B) in [Je]) there

 exists an ordinal 4 such that the model < V:, e> reflects all sentences mentioned in the
 last paragraph.

 Let 9= <V:,e,T*,P, F, G,>EL(T*), where P is a unary relation symbol such

 that P = {i: i < (K)}. By the downward Lowenheim Skolem theorem there is a

 model 91 -< 9 of cardinality 16(K)I such that P"l = 6(K). Hence there exists a
 function H: 9 1 -* P1 such that H is one-to-one and onto. The function H induces a
 well-ordering of the universe of the model 9 1; namely, let

 def

 a <*b H(a)eH(b)
 Let 92 = <K31,H, <*> and T' = Th(92). Since 92 E EC(T",FZF) (notice that

 IT"I = IF ZFI = K) and (19321, <*) has order type 6(K), by Definition 2.6 there exists a
 model 933 1= T" which omits the set FZF and is not well-ordered by <*' Since H is

 order preserving, _p'3, > is not well-ordered; hence there exists a sequence {Ia
 e PB3: n < w} such that for every n < w, 933 [ an > Xn+ 1 + n + 1.

 Now to complete the proof of our theorem it is enough to prove that the theory

 T* is finitely satisfiable in 93. But T* holds, there exist functions {fj: K -* K Ij < K}
 satisfying the first two lines in the definition of T*, and the last line of the definition
 holds since, for each a < 6(K), G(a) I= T* omits F and has order of length F(a) (by

 <,p. The indiscernibility requirement follows by repeated application of the Erdds-
 Rado theorem (possible since {In: n < w} is descending). Namely, define by
 induction on n < o subsets Xn c IG(o)I such that IXI = tan, the elements of Xn
 form a <V-increasing sequence, and any two <<,-increasing n-tuples from Xn realize
 the same type. Also 933 1 Xn.

 THEOREM 2.9. Let K be an infinite cardinal. Then P*(K, K) = i(K) (i(K) is the Hanf
 number of the logic LK+ ,))

 PROOF. Clearly P*(K, K) < i(K). Why do we have P*(K, K) ? i(K)? Let L, T, p be
 respectively a similarity type, a theory in LK + 0(O and a formula, as in the definition of

 P*(K, K). Since for every i < Y(K)(3M, F T)(3 ]{h: i < y} c IMHI ordered in M, by A),
 we expand L(T) by a unary predicate D., and a function symbol F; then we add the

 axioms D., = { Y: (3 x)p(x, ji)}, p(x, y) linearly orders D,, and F is one-to-one from the
 universe into D,. By the definition of Hanf number the above expanded theory has a
 model in every cardinality, and the reducts of those models to L(T) exemplify what
 we wanted to prove.

 ?3. Proof of Theorems 2 and 3 from the Abstract.

 PROOF OF THEOREM 2. We prove here only the upper bound part, namely that

 P*(A, NO) < Th +. The lower bound will be considered in [GSh2].
 So K = So. Let T' L~o1, co and p(x, y) E L.+,,, be as in the statement of the

 theorem, and let T* be an expansion of T by Skolem functions. We concentrate on

 proving that * (A, NO) < ' +, and in [GSh2] we prove the exact bound. If A = No,
 then by the previous section clearly y*(No, No) <

 So from now on assume A > No.
 For the sake of contradiction assume * (AN) > '+. Define P = {fI(D

 E 'i0( ))f D -+ w}. Force with P; let VP be the extension of V after forcing with P.

 Obviously A is collapsed to NO; since P satisfies the A + -chain condition, ' v+ becomes
 'I.. in VP.
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 314 RAMI GROSSBERG AND SAHARON SHELAH

 Since A is a countable ordinal in VP, we have VP l= (p V(x- -) E Lvp,,,. By the above
 remark VP l= IC01 < (Ia )v. Combining the last two, we have

 (*)1~ ~~V VP I (Vlu < yU*(No, No))(]My, l= T*)(3{aj: i < y})

 (V i, < K)[i < j -- MF # ai, iaj]].
 Since V l= T* u {} c and T* is countable, we may assume that

 (*)2 vP { AT*, (p} E H(N1
 where H(N1) stands for the set of all sets which have transitive closure of power

 < No.
 By (*), and the definition of y*(No, NO),

 ( ) VP V- (3M l=- T*)(3 Ia-i: i < wj) c I Ml)
 [M is the Skolem hull of {ai: i < w} and i < j M l= p[ai, aj]].

 This property of the formula p is expressible by a bounded formula f of ZFC with

 T* as a parameter. Namely, there exists a formula O(x, y) in the language of set
 theory such that if T is a countable theory with Skolem functions and z is a formula
 in L(T), then

 O(T, T) X T has two free variables x-, y,
 T has a model M and there exists A = {an: n < w} C M such that

 M is the Skolem closure of A and n < K H -c T[-n,a-k]

 By (*)2 and (*)3 we have that

 VP V- (3T E- H(N J) [H(N 1) I=- 0 [T, T ]

 Now, by (*)2, A T* E H(N1)v by Levy's absoluteness theorem4 (see [Je, Theorem
 3.6, or, for the form we use, Exercise 14.18]) we have

 V 1= (]T e H(N1))[H(N1) I= t/[r, T*]]

 Here there exists a formula p'(x-, -) E L,, (in our ground model V) such that (*)
 holds for p' instead of p(x-, y). Apply Theorem 1.2 (for K = No) for T* and p'(x-,y).
 This completes the proof of Theorem 1.3.

 PROOF OF THEOREM 3. Let T c L,+ and p(PXj) E LA+,c be given as in the
 hypothesis of the theorem. Let us define a forcing notion

 = Iof I (3x E K,(A))P: x- K+ }

 As before, we have

 (*), V VF (VP1 < ,(AC)+)(3M, - T)(3{aIN: i < PI} c JM?,)[i < jo--- M~, V- p[Yj, j]],

 (*) VP 1= (VP < -I(2 1) + ) (3 My V- T) (3{aI d i < }C: I M8|
 [i < j >M#, [ p[ai, Yj]] A [c-(,-y)e Lo+j

 Since the properties of p (in (*)2) are expressible by a bounded formula f in the
 parameters T and K, by a suitable coding we can view (p as a subset of K.

 4Sometimes also called the Levy-Shoenfield absoluteness lemma.
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 To complete the proof of the theorem it is enough to show that all the subsets of K
 of VP exist already in the ground universe V (this will imply the existence of (p'(x, -)

 E LK+ co with the required properties, and an application of Theorem 1.2 will give
 what we want). But forcing with P does not add subsets of K since P is K + -complete.

 ?4. The two cardinal theorem and a better bound. We shall use a two cardinal
 theorem. Let us first state the necessary definitions to formulate it.

 DEFINITION 4. 1. Let T be a first order theory, I TI < K, and let F be a set of types,

 rI < K. Suppose {P, <, <'} c L(T) is such that P is a unary predicate, and < and
 <P are binary predicates such that

 T F- [" < P" linearly orders P A " < " is a linear order].

 (1) Let us define an ordinal

 6(i, K) = Min{3: If 3M E EC(T, F) such that o.tp.(PM, <PM) is an ordinal < +
 and o.tp.(IMI - Pm <M) 2 6,
 then ]N e EC(T, F) such that o.tp.(PN, <PN) is an
 ordinal < K+ and (INI _ pN, <N) is not well-ordered}.

 (2) Now define a cardinal

 -(X, K) = Min{t: If T satisfies (Vp < -)(]M3, E EC(TF)) such that
 O.tp.(PMg, <PMP) is an ordinal < A+ and IIMII1 ? y

 then (V% > K)(]M. e EC(T, F))[IIMxII ? x
 and o.tp.(PMx, < M%) is an ordinal < K +]}.

 This is important since there is a relation between b(X, K) and -(A, K) that is parallel
 to the relation between 6(K) and 1(K)-see the end of ?2, or [Sh4, Chapter VII, ?5].
 Namely, we have

 THEOREM 4.2. For every K and A, always -(A, K) < 25 A). (See Remark (6), below.)
 REMARK 4.2A. (1) In the definition of 3(X, K) we can replace ,o.tp.(PN, <N) is an

 ordinal less than K`" by requiring that (pN, <N) be well-ordered.
 (2) It is enough to say that < orders only part of the universe.
 (3) In the definition of ft we could add a predicate Q and speak of the power of the

 predicate Q instead of the power of the universe. This gives us a generalization of
 Morley's two cardinal theorem (see [Mol]). _

 (4) Instead of defining the functions ft and 6 with two parameters it is possible to
 define a stronger notion with three parameters (the new parameter is the power of
 the set of types F), as in [Sh4, Chapter VII, ?5].

 (5) Everything could be proved for PC classes, but since here we are interested in
 results for infinitary logic rather than in PC classes we decided to present our results
 here in the weaker (and less complicated) form.

 (6) By repeating an argument similar to that in Theorem 5.4 of Chapter VII in
 [Sh4] we can prove that f(A, K) ? (AxK), SO that P(QK) =

 Theorem 4.2 will be proved below, and it is important because it implies
 THEOREM 1.5. Let K < A, and let T c LK+ o be a theory of cardinality < K. Assume

 that L(T) contains a unary predicate P and a binary predicate <P such that T F- <P
 linearly orders P'. If there exists M l= T such that (pM, <PM) is well-ordered of order
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 316 RAMI GROSSBERG AND SAHARON SHELAH

 type < A + and IM ? -t(A, K), then

 (VX ? K)]MX # T such that o.tp.(PMx, <Pmx) is an ordinal <K+ and IIMxII ? X.

 REMARK 4.3A. In the proof of Theorem 1.6 we always get in addition that

 N pN < M r pM. Namely we prove a combination of Keisler's two cardinal
 theorem together with Morley's two cardinal theorem (see [Ke2] and [Mo2]).

 Using Remark (1) which appears after Theorem 1.5 in the Introduction, this gives

 us a way to find upper bounds for Y* (A, K).
 DEFINITIoN4.3.Let)A ? K. If CfK = No,then letK* = K;ifCfK > No,letK* = K'.

 We define

 COV(A,K) = Min {lYl:Y y<K(A)such that (VX eY<K(i))

 (3{), E- 9: I < a})UX C Wl}.

 THEOREM 4.4. b(A, K) exists. Moreover:

 (i) If K = No then b(A, NO) = i+. def
 (ii) If cf K > No then b(, K) ? , K)- X (cov(A K) + 2K) def(CVA ) '
 (iii) If cf K = No then b(A, K) < X(A, K) = (COV(A, K) + 2<K + o)+
 Hence by applying Theorem 4.4 to the result of Theorem 4.3 we shall have the

 upper bounds we are seeking. From now on we shall concentrate on the proof of
 Theorem 4.4

 PROOF. (i) is proved exactly as Theorem 2 in ?3.

 We prove cases (ii) and (iii) simultaneously. Assume there exists a model M E

 EC(T, F) such that o.tp.(PM, <PM) is an ordinal < A+, and o.tp.(lMI - pM, <M)
 > X(, K). Let us fix Y c &<K*'() as in Definition 4.3 exemplifying that COV(A,K)

 For a while we shall give the theory T, its language, and the set of types F a
 cosmetic treatment:

 (1) Expand L(T) by K individual constants {ci: i < K} and a unary predicate Qc.,
 such that QM = K and c"' = i. Extend the set F by the type q = {QJ(x) A x #0 ci:
 < K}. Clearly, our assumptions are still satisfied after these changes.

 (2) Add to L(T) No unary predicates {Q,: n < w} as follows. If cf K > No, let Q"m
 = Qm for all n < w. Otherwise (when cf K = NO) choose Qnm Qm QZm, IQ ml
 < K, such that QZCO = Un< w Qnm. Clearly we may add to T the axioms

 {(Vx)[Qn(x)- Qn+ (x) A Q.(x)]: n < wo}

 and we may assume F contains also the type {QJx) A - Qn(x): n < co}
 (3) We may expand L(T) so that T will have Skolem functions.

 (4) By adding K individual constants and No new relation symbols, we may
 assume that L(T) consists of a countable set of relation symbols Lo and a set of K
 individual constants {di: i < K} (see ?2). Let L = Lou {di: i < K}, and Mo = M r Lo.

 Fix {ai c M PM: i < X(A, K)} such that i < j = ai <M a;.
 By induction on n < wo define sets
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 such that ISI = X(Q, K). For Y e S, define sets

 {Wa E1 9: I, <}, {u< E Iy: I, m < n}

 such that the following conditions hold:

 (1) (Vi < X)(](a c- Sn)[aY(n -1) > i]-
 (2) If Nn is (the Skolem hull of a,) n pMo then N, c Ul<. W,1l (when a, is the

 sequence <aj(O),.. , a(n - 1)>).
 (3) ae Sn and 1, m < n " > W'1 = u.
 (4) O-CflC-Sn =

 pn(y0,..~in) -tp( aj, QZ ?U U u MO) = tp(ajp Qm u U um 1MO).
 l,m<n l,m<n

 (5) (V C- Qn U Ui,m<n Uml)(VZ(YO, . . - 'y_ C) e L(T))

 a-, #S c Sn => (VI < o,)[-r(aa,, c) W,,, l *t(a#, c) 6 ]]

 (6) n m,( Sn =>ap (.
 Why does the construction give what we want? Let A mO u Uml<ou .

 Clearly A c P and JAl = K.
 To define a model N, as in Definition 4.1 let

 P*(Yo,,, YnYn + 1 ) =(P(YO, Yn - 1 c- c A, n < w, (3k 2 n)cp(y,c E C Pk}

 By (6) and (4), p* is an infinitary consistent type; so choose b = {bn: n < oi} '1
 elements realizing it. Let N be the Skolem hull of b u A.

 Why is N E EC(T, F)? Let c E N. Since N is the Skolem closure of A u b, there
 exist a sequence of terms a, a sequence a- of elements from A, and a natural number n

 such that c = f(bo, . . ., bn 1, a-). By requirement (4) there exists in MO a sequence c'
 such that tp(c, 0, N) = tp(c', 0, MO), and hence the model N omits the types
 from F.

 By (1), (INt _ pN, <N) is not well-founded.
 So we have just to show that pN = A and (pND <PN) is well-ordered. For this it

 suffices to show that pN = A and that <pN, <PN> r A is an elementary submodel of
 <PM, < PM >

 Assume c E A and N F P(z(bi,... ., bi, c)), choosing n such that

 eQn u U Ujm, =(YO Yn -C)
 l,m<n

 By (5) there exists an 1(*) < co such that for all ae Sn, T(aj,5) E W<,,l(*). Let K
 > Max{n,l(*)}.

 By (3) and (6), for all e E Sk,

 z(acj )e Qn U U Um.
 l,m<k

 Hence by the definition of Pk there exists e E Qn U Ul,m<kUl such that {T(ak nI)
 - e} C Pk- Therefore z(b0, . . ,b 1, ) E A. So we have proved that pN C A.

 To finish we just have to show that <pN, <pN> < <PM, <EM>; and this follows
 since everything is an elementary submodel of W.

 The construction. For n = 0 there are no problems.
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 For n + 1, given a e Sn choose / E Sn such that f(n - 1) > a(n - 1). Let T(l) = /3(l)
 for 0 < I < n, and let T(n) = j. Clearly - E Sn+ 1. By the definition of 9 there exists

 {val e 9: 1 < wo} such that

 Skolem Hull(a- q P) ' U vjl.
 1<s0

 Let q. = tp(aj,Qn u Ulm<nUT,MO). If cf K > No, then always IQn u l,, <n I
 < K and by the definition of X(A, K) we have

 I{qa aC Sn: I < 2K < X(,K).

 Since X(A, K) is regular, there exists a set of sequences S such that S1I = X(A, K) and a, e- S = qa = q1. If cf K = No, then IQnI < K and u7 e S<K(A). Hence
 the number of distinct types is < 21o+<QnuUim<nUlI ? 2< < X( K).

 Again by the regularity of X(A5 K) we may choose S as above with ISI = X(A5 K)
 unbounded, such that a, ,B e S =- qj = q#. Finally let Pn + 1 = qa for a e S.

 For every term z, each sequence a 5 sn+ 1 and c-e Q u U um<nul let us define a
 function into '02 (= the infinite 0-1 sequences):

 < -r a-5 J> -+< -(aa,, > c- vj, oT ) -r c va, .. >.

 Since

 <{Kza-,c5>I:z a term c C Qnu U u74lm =x(A5K) > 2'0?
 (1,m <n

 there exists S* c S with IS*I = X(A5 K) such that for a-, /3 e 5* the statement of (5)
 holds.

 For a- 5 S* let Wa j = va, . Again take S** S 5* so that a- f3 X S W = W
 - umt for 1, m < n.

 PROOF OF THEOREM 4.2. This proof is similar to the proof for K uncountable in ?2
 (after Definition 2.6).

 So we have to compute cov(Q, K). In order to compute cov(L, K) it is better to
 introduce a generalization cov(a, K) in which A is replaced by an ordinal a. If 9
 c f<K*(a) as in Definition 4.3, we say 9 is an (a, K) cover. If 9 is an (a, K) cover such

 that cov(C, K) = 11, we say that 9 exemplifies cov(C, K).
 LEMMA 4.5. (0) cov (A K) < ALK.
 (1) a < /3 =- cov(ac, K) < COV(5, K).

 (2) cov(aC, K) = cov(bxl, 1K).
 (3) We can bound the value of cov(A, K) according to the following inequalities:
 (i) cov(A, A) = 1.
 (ii) K < A => cov(i,5K) < cov(,,5) + A+.
 (iii) If A is a limit cardinal and K < A, choose {JL: i < cf A} increasing unbounded in

 ), such that AO > K. Then

 cov(A, K)< H cov(AL K).
 i < cfA

 (iv) If K is a limit cardinal then the analog of (iii) holds.
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 (v) If cf A = No, where {i, < i: i: n > co} is increasing and unbounded in A, and 2A
 > K, then

 cov(l, K) < Z cov(l, Kn)
 n< co

 (vi) If cf K = No, where {Kn < K: n < co} is unbounded and increasing in K, then

 cov(l, K) < E cov(l, Kn).
 n<co

 (vii) If cf A = cf K = No and {ln: n < w} and {Kn: n < co} are unbounded and
 increasing in A and K respectively, then

 cov(L, K) < E COV(AK, Kn)-
 n,K < CO

 PROOF. (0) Obvious.

 (1) Let Y4K be a cover exemplifying cov(#,K). Then clearly YX,K= {x n rc: x
 e p,K} exemplifies what we want.

 (2) By (1), cov(I(I, K) < cov(OC, K). The inequality is proved as follows: Let f: -+Je
 be one-to-one and onto, and let Yg1aK be a cover such that cov(lXI, K) = Ibiza ,KI. It is
 easy to verify that YK f {-'(x): X E IaIK} is a cover. Hence cov(x, K) <
 cov(xla, K).

 (3) (i) is immediate.

 (ii) By (2), for every a such that A < ?a < A' we have cov(OC, K) = cov(Il, K) (i.e.
 cov(Q, K)). Fix a cover ?'4K exemplifying cov(ci, K). Let A + = ? <+ tA. Let x
 E f<K*(AQ); since A+ is regular and A+ > K ' there exists a < A such that x E
 f<K*(a). Hence, by the choice of . there exists {In EK n < co} such that x
 c U <~ co'Wn but RAXK ' A Hence A is a ()', K) cover, and

 COV( L, K) < I Y+,KI = U YLXK < IAKIA= COV(Q,K) + Ai
 x<A +

 (iii) For every i < cf A let 0P be a (A, K) cover. We claim that t? K = {UieS ss:si
 E _i, S c cf A, ISI < K *} is a (R. K) cover.

 (iv) Similar to (iii).

 (v) Let {Kn < K: n < wo} be increasing unbounded and let gn exemplify cov(L, K).
 def

 Clearly ?K = {xn: n < xo, Xn E On} is a cover as required, and

 cov(l, Kn) < I K I < Z InI = cov(, Kn)-
 n<co) "<co

 (vi) Similar to (v).

 Let {in < A, K K < K: n, k < w)} be increasing unbounded, and let Amkfl be a cover
 exemplifying COV(An, Kk). Clearly YJA,K = {Xk,n: k, n <), Xk,n e Akn} is a cover as
 required. Hence

 cov(l, K) < IyA,KI < E COV(Ak, Kun)
 n,k <a

 COROLLARY 4.6. Let K < A. Then we have the following bounds:
 (1) If cf A = No then COV(Q, K) < yj<1
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 320 RAMI GROSSBERG AND SAHARON SHELAH

 (2) If cf K = No then COV(, K) < EX< K i
 (3) If cf K = A = No then COV(A, K) < ZJL <A, X < K P

 (4) For c < W 1, K ? 1. if A = (-Ij + =:> 3(A, K) < A)+
 PROOF. (1), (2) and (3) follow from (v), (vi), and (vii) of Lemma 4.5 (respectively)

 using Lemma 4.5(0).

 (4) By induction on a: for a successor use (3)(ii); if a is a limit, use (3)(iv).
 In [GSh2] we shall deal with a more general notion of covering number, and

 there we shall prove that there are improved bounds also in other cases (e.g.

 -A K) < 2 + (2mK,) +

 Now we can prove

 THEOREM 1.6. For every K < A,

 (1) if cf A = No then P*(A,LK) < (E < +
 (2) if cf K = No then Y *Q(, K) < h(Ex<-,<AX)+,
 (3) if cf K = cf A = No then kL* (A, K) < Th(y< Ax<,,, 1X)+; and
 (4) if A' = (1.)` and K < 2, for some a < ? 1, then -(t, K) < A+.
 PROOF. Combine Corollary 4.6, Theorem 4.4, Theorem 4.2, Theorem 1.5 and the

 remark after the statement of Theorem 1.5 in the Introduction. (4) follows from the
 corresponding part of Corollary 4.6.

 ?5. Proof of Theorem 4 of the Abstract. As we said in the Introduction, we shall
 prove the following stronger theorem.

 THEOREM 1.9. For every A ? K, any T ' LK + O)and any set of formulas z LA +,.
 such that l -LK+ +,, if T is (l, ji)-unstable for j satisfying j < *(AK) = j and p = -
 then T is A-unstable.

 But instead of proving Theorem 1.9 directly we prefer to prove an even slightly
 stronger result:

 THEOREM 5.1. For every A > ?K and T c LK+,O) if T is (i,j)-unstable for u
 satisfying j = [<I1*(AK) and yJAI = j, then there exists y'(x,y-) e LK+,W such that T is

 (,y-)-unstable.
 By the proof of Theorem 2.1 in [Sh2] we have

 Fact 5.2. Let X be a given infinite cardinal. If M is ({c}, ,u)-unstable as witnessed by

 A = IMI (i.e. I? Al < S' )(A M)j) for j satisfying j = Ex*<x(px* + 22x`), then there
 exist {da-i: b: i<x} < A and {cj: i <x} c I such that for every i,j < x

 M l= cp [ci, aAj _ lcp obj] 4*i < j.

 PROOF OF THEOREM 5.1. Let ,, A c M, |Al < ,u < IIM|I, and let A exemplify the

 assumption. Fixing an enumeration of A, let zA = {y(x,j-1): i < IzAj}. Define a
 function

 g: Sj(A, M) -+ x S'Z(XJyi)}(A M)
 i<lII

 by letting

 g(p(x)) = < pP ? },p * * * , P rIP{il }, ... >

 when p p 9 = {p(x, a): a e A, p(x, a) e p(x)}. Clearly g is one-to-one. Hence there
 exists an io < IlA such that IS',io)(AM)I > p.
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 [Why? Well, it is easy cardinal arithmetic: Assume for the sake of contradiction

 that, for every i < IJl I, IS',}(A, M)I ? p. Then, using the fact that g is one-to-one, we
 have

 , = ,IAI 2 fH SI ,(A,M)I > IS'(A, M)I;
 i < I A I

 but this is a contradiction to the choice of A, A, M and i'.
 Since <8*(iK) = y we have P =Ex*<*(,K)(Px* + 22X*). Hence by Fact 4.1 there

 exist {d, bi: i < Y*(X, Kar)} c A and {cj: i < Y*(, K)j} C I MI such that for i,j < Y*(X, K)

 i < j .= M l= io [ci v a,] = pi,) [Ci ) b j]

 In the same way as Theorem 4.2 was deduced from Theorem 4.4, we have that

 3( c LK +,. (the collapse of 9pi) such that for every ordered set I there exists
 {as, bS, c,: s I} ' EM(I) such that (*) ~~~~~s <I t -::>EM(I ) F= 9 [cs a-t]-- [cs, bt].
 Let X be a given cardinal. We want to show that T is ({y}, %)-unstable. Choose Xi

 = Min{XI < X:2`1 > X}; let I = XI?2 and J - x1>2. By the choice of Xi, IlI = 2x1
 > X > IJI. There is a natural linear order on I the lexicographic order. We claim
 that M = EM(I) and A = {a-, bs: s E J} exemplify that T is ({(p}, Z)-unstable. This is
 so since, for t1, t2 E I,

 to1 t2 tpf?}(C I, A, AM) : tpkP1(ct2, A, AM).

 TWhy? Assume without loss of generality that t1 <I t2. Since J is dense in I, there
 exists s E J such that tI <Is <I t2. By (*),

 M= [(p[c1,d] p[c1,bS]1 A i[p[ct2,da] _ p [cS2, b ]

 Hence

 (p (X. ads) e tp{,,,(ctl, IA,5 M) - (p (x, bs) G tp,,,)(ct 1 A,5 M)

 and

 BX, ats) he tPlas(Ct2t A, M) n t(xg es) e tpr(Pa(Ct2rd A M)j

 By the last two lines together we are done.d
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