Publications with T. Jech

All publications by Thomas J. Jech and S. Shelah


You can select other lists here.
Click the Sh:-number to get to the papers' detail page (which may include pdf's of the paper).
Can't find an Sh:-number (in particular, an "F-number")? You can try your luck here.
number title
Sh:378 Jech, T. J., & Shelah, S. (1989). A note on canonical functions. Israel J. Math., 68(3), 376–380. arXiv: math/9201239 DOI: 10.1007/BF02764992 MR: 1039481
Sh:383 Jech, T. J., & Shelah, S. (1993). Full reflection of stationary sets at regular cardinals. Amer. J. Math., 115(2), 435–453. arXiv: math/9204218 DOI: 10.2307/2374864 MR: 1216437
Sh:385 Jech, T. J., & Shelah, S. (1991). On a conjecture of Tarski on products of cardinals. Proc. Amer. Math. Soc., 112(4), 1117–1124. arXiv: math/9201247 DOI: 10.2307/2048662 MR: 1070525
Sh:387 Jech, T. J., & Shelah, S. (1990). Full reflection of stationary sets below \aleph_\omega. J. Symbolic Logic, 55(2), 822–830. arXiv: math/9201242 DOI: 10.2307/2274667 MR: 1056391
Sh:392 Jech, T. J., & Shelah, S. (1991). A partition theorem for pairs of finite sets. J. Amer. Math. Soc., 4(4), 647–656. arXiv: math/9201248 DOI: 10.2307/2939283 MR: 1122043
Sh:476 Jech, T. J., & Shelah, S. (1996). Possible PCF algebras. J. Symbolic Logic, 61(1), 313–317. arXiv: math/9412208 DOI: 10.2307/2275613 MR: 1380692
Sh:565 Jech, T. J., & Shelah, S. (1996). On countably closed complete Boolean algebras. J. Symbolic Logic, 61(4), 1380–1386. arXiv: math/9502203 DOI: 10.2307/2275822 MR: 1456113
Sh:566 Jech, T. J., & Shelah, S. (1996). A complete Boolean algebra that has no proper atomless complete subalgebra. J. Algebra, 182(3), 748–755. arXiv: math/9501206 DOI: 10.1006/jabr.1996.0199 MR: 1398120
Sh:671 Jech, T. J., & Shelah, S. (2000). On reflection of stationary sets in \mathcal P_\kappa\lambda. Trans. Amer. Math. Soc., 352(6), 2507–2515. arXiv: math/9801078 DOI: 10.1090/S0002-9947-99-02448-4 MR: 1650097
Sh:694 Jech, T. J., & Shelah, S. (2001). Simple complete Boolean algebras. Proc. Amer. Math. Soc., 129(2), 543–549. arXiv: math/0406438 DOI: 10.1090/S0002-9939-00-05566-0 MR: 1707521