ON MODEL COMPLETION OF T_{aut}

E34

Saharon Shelah
Institute of Mathematics
The Hebrew University
Jerusalem, Israel
Rutgers University
Mathematics Department
New Brunswick, NJ USA

Partially supported by the Israel Science Foundation
I would like to thank Alice Leonhardt for the beautiful typing.
First Typed - 03/Jan/31
Latest Revision - 03/July/22

Typeset by \LaTeX
2 SAHARON SHELAH

Annotated Content

§0 Introduction

§1

[We characterize stable T for which the model completion of T_{aut} is stable (i.e., every completion is).]

§2

[We prove that “some completion is stable” is different and characterize it.]

§3

[We prove that if T is stable, T_{aut} has a model completion, T_* is an unstable complete of T_{aut}^mc, then T_* satisfies NSOP$_3$. Moreover, simplicity is preserved.]
ON MODEL COMPLETION OF T_{aut}

§0 Introduction

On the subject, history and background see [BlSh 759]. For a complete first order T they dealt with the existence of the model completion T_{aut} of $T \cup \{\sigma \text{ is an automorphism (for } \tau_T\}$.

We may ask:

0.1 Question: If T is stable and T_{aut} has model completion $T_{\text{mc}}^{\text{aut}}$, when is (every) completion of $T_{\text{mc}}^{\text{aut}}$ stable?

We answer in 1.6 (observation 1.7 deals with some obvious things).

Section 1 raises some question which we discuss below (assuming T stable, $T_{\text{mc}}^{\text{aut}}$ exists) some of which are answered below.

0.2 Question: 1) Can we in Claim 1.6 below replace “every completion of $T_{\text{mc}}^{\text{aut}}$ is stable” by “some completion of $T_{\text{mc}}^{\text{aut}}$ is stable”?

2) The “unstable” in 1.6 clause (a) can be replaced by “having the independence property”; but can $T_{\text{mc}}^{\text{aut}}$ be completed to a theory with the strict order property? The SOP$_n$’s?

3) What occurs if $T_{\text{mc}}^{\text{aut}}$ does not exist, can we still say something?

4) Point out that (a)($(\equiv (b))$ of 1.6 holds (for some stable T for which $T_{\text{mc}}^{\text{aut}}$ exists) and fails for others.

5) Show for stable T with $T_{\text{mc}}^{\text{aut}}$, that no completion T_\ast of T_{aut} has the explicit ncp (which means that for some first order $E(\bar{x}, \bar{y}, \bar{z})$, for every n for some $\bar{c} \subseteq \mathcal{C}, E(\bar{x}, \bar{y}, \bar{c})$ is an equivalent relation which has $\geq n$, $< \aleph_0$ equivalence classes); a stronger version is

6) For such T, T_\ast can T_\ast have obstructions (see §4)?

7) What if we use σ_1, σ_2? What about $\sigma_1, \ldots, \sigma_n$? What about pairwise commuting $\sigma_1, \ldots, \sigma_n$? This is like $(T_{\text{aut}})_{\text{aut}}$ for $n = 2$.

8) Is there unstable T such that T_{aut} has model completion? (A conjecture stating that had been the starting point of Kikyo Shelah [KkSh 748]).

0.3 Discussion: We prove that:

(A) on 0.2(1), for some T (stable with $T_{\text{mc}}^{\text{aut}}$ existing), some completion of $T_{\text{mc}}^{\text{aut}}$ are stable and some are not (still we may wonder on a general characterization, see 2.7 below)

(B) we shall show that for no such T is any completion of $T_{\text{mc}}^{\text{aut}}$ with the strict order property and even have NSOP$_3$, see 3.1

(C) we can look at the class of existentially closed models of T_{aut} (see [ShUs 789] and references there); the results are similar.

Note
0.4 Observation. [Here?]

(α) for $T = \text{theory of equality, } T_{\text{aut}}$ has a model completion and all completions of $T_{\text{aut}}^{\text{mc}}$ are stable

(β) for T from 2.1, some completions of $T_{\text{aut}}^{\text{mc}}$ are stable and some are not

(γ) for $T = \text{Th}(M \upharpoonright \{E, F_1, F_2, Q\}), M$ from 2.1, we get that all the completions of $T_{\text{aut}}^{\text{mc}}$ are unstable.

I think

0.5 Question: What about getting (in §3) that

(a) $T_{\text{aut}}^{\text{mc}}$ is simple in §3?

(b) even if T is just simple, $T_{\text{aut}}^{\text{mc}} \models \text{NSOP}_3$

(c) non elementary class (true).

See below.
§1 ON THE STABILITY OF MODEL COMPLETION
FOR $T_{\text{aut}} (= T + \sigma$ AN AUTOMORPHISM)

1.1 Hypothesis. 1) T is first order complete and for notational simplicity every formula is equivalent to a relation and τ_T having only predicates.
2) \mathcal{C} is the monster model of T.

1.2 Definition. 1) T_{aut} is $T \cup \{\sigma$ is an automorphism (for τ_T)\}, so σ is a new unary function symbol that is $T_{\text{aut}} = T \cup \{(\forall x_0, \ldots, x_{n-1})[R(x_0, \ldots, x_{n-1}) \equiv R(\sigma(x_0), \ldots, \sigma(x_{n-1}))] : R$ an n-place predicate of $\tau_T\}$.
2) T_{mc}^aut is the model completion, if it exists.
3) Let T_* denote any completion of T_{mc}^aut and σ_* or σ^{N+} is an automorphism.
4) A completion T_* of T_{mc}^aut is cute if it has a model N^+ such that for some $M^+ \subseteq N^+$ we have $\sigma^{N+} = \text{id}_{N^+}$.

1.3 Definition. For T as in 0.2 let:
1) $K_{\text{aut}}(T) =$ the class of models of T_{aut}.
2) $K_{\text{ec}}^\text{aut}(T) =$ the class of e.c. models of T_{aut}.
3) $K_*(T)$ is a subclass of $K_{\text{ec}}^\text{aut}(T)$ such that $M \equiv N \in K_* \Rightarrow M \in K_*$ and if $M \subseteq N$ are from K_{ec}^aut then $M \in K_* \Leftrightarrow N \in K_*$; there are $\leq 2^{|T|}$ such classes.
4) K_* is cute, etc.
5) \mathcal{C}_{aut} is a monster model for K_{ec}^aut, i.e., a member of K_{ec}^aut which is $\bar{\kappa}$-saturated of cardinality $\bar{\kappa}$; it is unique if $K_{\text{aut}}(T)$ has the JEP.
6) A class K_* is stable\,\footnote{this is for classes as above, for general non first order classes this does not fit} if for some $\lambda < \bar{\kappa}$ there is no model $M \in K_*, m < \omega, \bar{a}_i \in mM, i < \lambda$ and q.f. formula $\varphi(\bar{x}, \bar{y})$ which order $\{\bar{a}_i : i < \lambda\}$.
7) K_* is simple if there is a q.f. formula $\varphi(\bar{x}, \bar{y})$ and m such that for every λ, κ we can find $M \in K_*, \bar{a}_\eta \in f^(\bar{y})M$ for $\eta \in ^\kappa \lambda$, $\bar{b}_\nu \in f^g(\bar{x})M$ for $\nu \in ^\kappa \lambda$ such that:
 \begin{enumerate}
 \item[(i)] $M \models \varphi(\bar{b}_\eta, \bar{a}_\eta | ^\alpha) \text{ for } \alpha < \kappa, \eta \in ^\kappa \lambda$
 \item[(ii)] no sequence in m realizes $\geq m$ of the formulas $\langle \varphi(\bar{x}, \bar{a})_{\eta \cdot <1} : i < \lambda\rangle$.
 \end{enumerate}

On such models see [Sh 54], [xx], [xx].

1.4 Fact: If T_{mc}^aut exists then $K_{\text{aut}}^\text{ec}(T)$ is the class of its models.

1.5 Claim. In the claims below we can replace ‘T has model completion’ by dealing with the class $K_{\text{aut}}^\text{ec}(T)$, and replace T^* is a model completion by dealing with K_*.

On such models see [Sh 54], [xx], [xx].
1.6 Claim. Let T be stable, $T_{\text{aut}}^{\text{mc}}$ exists. The $(a) \iff (b)$ where

(a) $T_{\text{aut}}^{\text{mc}}$ is stable (i.e., every completion is stable)

(b) if $M_0 \prec M_\ell \prec \mathcal{C}$ for $\ell = 1, 2$ and $M_1 \bigcup M_2$ then in \mathcal{C}^{eq}, $\text{acl}_{\mathcal{C}^{\text{eq}}}(M_1 \cup M_2) = \text{dcl}_{\mathcal{C}^{\text{eq}}}(M_1 \cup M_2)$

(c) $T_{\text{aut}}^{\text{mc}}$ is dependent (i.e., every completion does not have the independence property).

Proof. $(b) \Rightarrow (a)$

We work in \mathcal{C}^{eq} and use observation 1.7 below. Suppose $\mathcal{C}_* = (\mathcal{C}, \sigma_*)$ is an expansion of \mathcal{C}^{eq} to a model of $T_{\text{aut}}^{\text{mc}}$ and let σ_*^{eq} be the unique extension of σ_* to an automorphism of \mathcal{C}^{eq}. Let $\lambda = |T|$, $M^+ \prec (\mathcal{C}^{\text{eq}}, \sigma_*^{\text{eq}}), |M^+| = \lambda$ (note $|T| \geq \aleph_0$ here (by 1.1(1))).

Now for every $p \in \mathcal{S}(M^+, \mathcal{C}_*)$ let $a_p \in \mathcal{C}$ realize p in (\mathcal{C}, σ_*) and let M^+_p, N^+_p be such that

$$M^+_p \prec M^+, |M^+_p| = |T| + \aleph_0$$

$$M^+_p \prec N^+_p \prec \mathcal{C}_*, |N^+_p| = |T|$$

$$a_p \in N^+_p$$

$$N^+_p \upharpoonright \tau_T \bigcup M^+_p \upharpoonright \tau_T.$$

Let $A_p = \text{acl}_{\mathcal{C}^{\text{eq}}}(|N^+_p| \cup |M^+_p|)$. We define a two-place relation E on $\mathcal{S}(M^+, \mathcal{C}_*)$ as follows:

\circ pEq iff $M^+_p = M^+_q$ and there is an isomorphism f from N^+_p onto N^+_q which is the identity on M^+_p and satisfying $f_p(a_p) = a_q$.

Clearly

\circ_0 E is an equivalence relation on $\mathcal{S}(M^+, \mathcal{C}_*)$

\circ_1 $|\mathcal{S}(M^+, \mathcal{C}_*)/E| \leq |T|$.
Hence it is enough to prove that
\[\otimes_2 pE_q \Rightarrow p = q. \]

Proof of \(\otimes_2 \). Let \(f \) witness \(pE_q \).

Let \(f^+ : A_p = \text{dcl}_{C^{eq}}(\{ |N_p^+| \cup |M^+| \}) \rightarrow A_q \) extends \(f \cup \text{id}_M \) and be an elementary mapping (in \(C^{eq} \)); by non forking calculus it exists and is unique. Obviously it commutes with \(\sigma_* \). Also \(A_p \) (and \(A_q \)) are algebraically closed sets in \(C^{eq} \) by our hypothesis (that is, clause (b)) applied to \(|M_p^+|, |N_p^+|, |M^+| \) hence by 1.7(4), 1.8(4) below, \(f^+ \) can be extended to an automorphism of \(C^{eq} \). So by properties of model completion (and the obvious 1.8(1) below) we are done.

\(\neg(b) \Rightarrow \neg(a) \):

Let \(M_0, M_1, M_2 \) form a counterexample to \((b) \). So let \(e \in \text{acl}_{C^{eq}}(M_1 \cup M_2) \) hence we can find \(a \in \omega > (M_1), b \in \omega > (M_2) \) and \(n < \omega, \varphi(x, b, a) \) such that

\(\otimes(i) \ C^{eq} \models \varphi[e, b, a] \)

\((ii) \ \models (\exists \bar{n} x) \varphi(x, b, a) \)

\((iii) \ n \ \text{minimal under } (i) + (ii) \).

We know \(\varphi(x, b, a) \vdash \text{tp}(e, M_1 \cup M_2) \) and let \(\{ e_0, \ldots, e_{n-1} \} \) list \(\varphi(C^{eq}, b, a) \).

Let \(\bar{e} = \langle e_0, \ldots, e_{n-1} \rangle \). Possibly increasing \(a, b \) for some formula \(\psi = \psi(\bar{x}, b, a) \) with \(\bar{x} = \langle x_\ell : \ell < n \rangle \) we have \(\models \psi(\bar{e}, \bar{b}, \bar{a}) \) and \(\psi(\bar{x}, b, a) \vdash \text{tp}(\bar{e}, M_1 \cup M_2) \).

So we can find \(f \) such that

\(\otimes f \) is an elementary mapping in \(C \)

\[\text{Dom}(f) = M_1 \cup M_2 \cup \bar{e} \]

\[f \upharpoonright (M_1 \cup M_2) \text{ is the identity} \]

\[f(e_0) \neq e_0 \] (but of course \(f \) permutes \(\{ e_\ell : \ell < n - 1 \} \)).

Let \(f(\bar{e}) = \bar{e}'. \) Let \(\bar{e}_0 = \bar{e}, \bar{e}_1 = f(\bar{e}) \).

We can find a sequence of \(C^{eq} \)-elementary mapping \(\langle g_i : i < |T|^+ \rangle \) such that

\[\text{Dom}(g_i) = \text{acl}_{C^{eq}}(M_1 \cup M_2) \]

\[g_i \upharpoonright M_2^{eq} = \text{id} \]

\[\bigcup \{ \text{Rang}(g_i) : i < |T|^+ \}. \]

Now
\[\text{if } k < \omega, i_0 < \ldots < i_{k-1} < \omega \text{ and } \eta \in {}^2 \]

\[p_\eta = \text{tp}(g_{i_0}(\bar{e}_{\eta(0)})^{g_{i_1}(\bar{e}_{\eta(1)})} \ldots g_{i_{k-1}}(\bar{e}_{\eta(k)}), \bigcup_{i < \lvert T \rvert} \text{Rang}(g_i)) \text{ does not depend on } \eta. \]

[Why? By induction on \(k \), hence by transitivity of equality it is enough to prove \(p_\eta = p_\nu \) when \(1 = \lvert \{ \xi : \eta(\xi) \neq \nu(\xi) \} \rvert \).

By an indiscernible sequence = indiscernible set (= symmetry of nonforking, etc.) without loss of generality \(\eta(0) \neq \nu(0) \). As \(\text{Rang}(\bar{e}_0) = \text{Rang}(\bar{e}) \), without loss of generality \(\bigwedge_{\ell < k-1} \eta(1 + \ell) = 0 = \nu(1 + \ell) \). Lastly, \(\text{tp}(\bigcup_{i > 0} \text{Rang}(g_i), \text{Rang}(g_0)) \) is finitely satisfiable in \(M_2 \) so by the choice of \(\psi \) we are done.]

Now for any \(\eta \in (\lvert T \rvert^+)^2 \) we define the function \(h_\eta \):

\[\text{Dom}(h_\eta) = M_2^{eq} \cup \bigcup \{ g''_i(M_1^{eq}) : i < \lvert T \rvert^+ \} \cup \{ g_i(\bar{e}) : i < \lvert T \rvert^+ \} \]

\[h_\eta \upharpoonright M_2^{eq} = \text{identity} \]

\[h_\eta \upharpoonright g''_i(M_1^{eq}) = \text{identity} \]

\[h_\eta(g_i(\bar{e})) = \begin{cases}
 g_i(\bar{e}) = g_i(\bar{e}_0) & \text{if } \eta(i) = 0 \\
 g_i(\bar{e}_1) & \text{if } \eta(i) = 1
\end{cases} \]

We can find \(M_3, M_4, \sigma \) such that

\[\bigcup \{ g_i(M_1) : i < \lvert T \rvert^+ \} \subseteq M_3 < M_4 < C \]

\[M_2 \sqcup M_4 \]

\[M_4 \text{ is saturated of cardinality } > \| M_3 \| \]

\[\sigma \in \text{Aut}(M_4), \sigma \upharpoonright M_3 = \text{identity} \]

\((M_4, \sigma) \) is a model of \(T_{\text{aut}}^{\text{inc}}. \)

Now for every \(\eta \in (\lvert T \rvert^+)^2 \) we can find \((M_5^{\eta}, \sigma) \models T_{\text{aut}} \) such that \((M_4, \sigma) \subseteq (M_5, \sigma) \) and \(\bar{b}_\eta \) realizing \(\text{tp}_{\text{eq}}(\bar{b}, M_0, C) \) such that
ON MODEL COMPLETION OF T_{aut} E34

\[\eta(i) = 0 \iff (\exists \bar{x})(\psi(\bar{x}, \bar{b}, g_i(\bar{a})) \land \sigma(\bar{x}) = x). \]

So \(\{(\exists \bar{x})(\psi(\bar{x}, \bar{y}, g_i(\bar{a})) : i < |T|^+) \) is an independent set of formulas in \((M_4, \sigma)\) hence \(T_{\text{mc}}^{\text{aut}}\) is unstable.

\[(a) \Rightarrow (d): \]

Trivial.

\[\neg(b) \Rightarrow \neg(c): \]

Included in the proof of \(\neg(b) \Rightarrow \neg(a)\). \(\square_{1.6}\)

1.7 Observation. Assume \(T_{\text{mc}}^{\text{aut}}\) exists, \(T_\ast\) any completion of it.
1) If \(\mathfrak{C}\) is a saturated model of \(T\) of cardinality \(\kappa = \kappa^{<\kappa}\), can be expanded to a model \(\mathfrak{C}_\ast\) of \(T_\ast\).
2) If \(M \models T, \sigma \in \text{Aut}(M)\), let \(\sigma^\text{eq}\) be the natural extension of \(\sigma\) to an automorphism of \(M^\text{eq}\), then (it exists and is unique) \((M^\text{eq}, \sigma^\text{eq}) \models (T^\text{eq})_{\text{aut}}\).
3) \((T^\text{eq})_{\text{aut}}\) has a model completion \(T\) and there is a natural one to one correspondence between the completions of the model completions of \((T^\text{eq})_{\text{aut}}\) and \(\{T_{\ast*} : T_{\ast}\) a model completion of \(T_{\text{mc}}^{\text{aut}}\}\) any one of the former is essentially bi-interpretable with the corresponding one of the latter (but we have the elements not in any \(P_{E(\bar{x}, \bar{y})}\)).
4) Let \(\mathfrak{C}_\ast = (\mathfrak{C}, \sigma_\ast)\) be a \(\kappa\)-saturated model of \(T_\ast\) expanding \(\mathfrak{C}\). If \(A_\ell \subseteq \mathfrak{C}^\text{eq}, A_\ell = \text{acl}_{\mathfrak{C}^\text{eq}}(A_\ell), A_\ell\) closed under \(\sigma_\ast, f\) is an \(\mathfrak{C}^\text{eq}\)-elementary mapping from \(A_1\) onto \(A_2\) commuting with \(\sigma\) then \(f\) can be extended to an automorphism of \((\mathfrak{C}^\text{eq})_{\text{aut}}\) (it is \(\mathfrak{C}^\text{eq}\) expanded by \(\sigma\) naturally extended to \(\sigma^+\)).

1.8 Observation. 1) \(M\) is a model of \(T, \sigma_\ast \in \text{Aut}(M) \iff (M, \sigma_\ast)\) is a model of \(T_{\text{aut}}\).
2) If \(M \prec \mathfrak{C}\) and \((M, \sigma_\ast)\) as a model of \(T_{\text{aut}}\) then for one and only one \(\sigma^\text{eq}_\ast \in \text{Aut}(M^\text{eq})\) extend \(\sigma_\ast\).
3) If \(M \prec \mathfrak{C}, \sigma^\text{eq}_\ast \in \text{Aut}(M^\text{eq})\) then \(\sigma^\text{eq}_\ast \upharpoonright M \in \text{Aut}(M)\).
4) If \(A_\ell \subseteq \mathfrak{C}^\text{eq}\) and \(A_0 = \text{acl}_{\mathfrak{C}^\text{eq}}(A_0)\) and \(f_\ell\) is an \(\mathfrak{C}^\text{eq}\)-elementary mapping from \(A_\ell\) onto \(A_\ell\) for \(\ell = 0, 1, 2\) and \(f_0 \subseteq f_1, f_0 \subseteq f_2\) then for some automorphism \(F\) of \(\mathfrak{C}^\text{eq}\) \(F \upharpoonright A_0 = \text{id}_{A_0}\) and \(f_2 \cup Ff_1F^{-1}\) is an elementary mapping in \(\mathfrak{C}^\text{eq}\) (hence can be extended to an automorphism of \(\mathfrak{C}^\text{eq}\); if \(A_1 \bigcup\bigcup A_2\) then without loss of generality \(F \upharpoonright (A_1 \cup A_2) = \text{id}_{A_1 \cup A_2}\)).
2.1 Example: There is T such that:

(a) T is as in 1.1, stable $T_{\text{mc aut}}$ exists. Moreover T is superstable, countable $I(8_\alpha, T) \leq 2^{\lfloor \alpha \rfloor}$ for $\alpha \geq 2^{\aleph_0}$ (hence NDOP, NOTOP, shallow with small depths, with $\leq 2^{\aleph_0}$ dimensions)

(b) $T_{\text{mc aut}}$ exist

(c) some completions of $T_{\text{mc aut}}$ are stable and some are not.

Proof. Let us define M, I

$|M|$ is $\{(\eta, k, n, \ell) : k, n < \omega, \ell < 2$ and $\eta \in \omega^2\}$ and $k = n \Rightarrow \ell = 0$

E_n^M, a two-place relation is $\{(\eta_1, k_1, n_1, \ell_1), (\eta_2, k_2, n_2, \ell_2) \in |M| \times |M| : \eta_1 \upharpoonright n = \eta_2 \upharpoonright n\}$

E^M, a two-place relation is $\{(\eta_1, k_1, n_1, \ell_1), (\eta_2, k_2, n_2, \ell_2) \in |M| \times |M| : \eta_1 = \eta_2\}$

Q^M, a one-place relation is $\{(\eta, k, n, \ell) \in |M| : k = n\}$

F^M_1, a one-place relation is: $F^M_1(\eta, k, n, \ell) = (\eta, k, k, 0)$

F^M_2, a one-place relation is: $F^M_2(\eta, k, n, \ell) = (\eta, n, n, 0)$

Let $T = \text{Th}(M)$. Clearly it satisfies (a):

\[\text{\dag} \]

$T_{\text{mc aut}}$ exists.

[Why? Check that there are no obstructions.]

\[\text{\dag} \]

$T_{\text{mc aut}}$ has an unstable completion.

[Why? By 1.6, or more specifically, see below.]

We shall now prove

\[\text{\dag} \]

for T_* a completion of $T_{\text{mc aut}}, T_*$ is unstable if:

for some $M^+ \models T_*$, for some $a \in M^+$ we have $\bigwedge_n aE_n(\sigma^{M^+}(a))$ or just

$(\exists m) \bigwedge_{n<\omega} aE_n((\sigma^{M^+})^m(a))$, i.e., for some $m^* \in [1, \omega)$ we have $\bigwedge_n aE_na_{M^+}$

where $a_0 = a, a_{\ell+1} = \sigma^{M^+}(a_{\ell})$ for $\ell < \omega$.

Let $m^*, a, (a_\ell : \ell < \omega)$ be as above. We define N a model of T_*: let $|N|$, the universe of N be

$|M^+| \cup \{(m, k, n, \ell) : m < m^*, k, n < \omega, \ell < 2, k = n \Rightarrow \ell = 0\}$

we assume no incidental identification.
ON MODEL COMPLETION OF T_{aut} E34

$E_n^N : \begin{cases}
E_n^N \text{ is an equivalence relation} \\
E_n^N \upharpoonright |M^+| = E_n^M \\
every (m,k,n,\ell) \in |N|\downarrow |M^+| \text{ is } E_n \text{-equivalent to } a_m
\end{cases}$

$\begin{cases}
E^N \text{ is an equivalence relation} \\
E^N \upharpoonright |M^+| = E^N \\
\{(m,k,n,\ell) \in |N|\downarrow |M^+| : k, n < \omega, \ell < 2, k = n \Rightarrow \ell = 0\} \\
is an E^N \text{-equivalence class (for each } m < m^*) \\
Q^N = Q^N \cup \{(m,k,k,0) : k < \omega\} \\
\end{cases}$

$F_1^N \text{ extends } F_1^{M^+}, F_1^N((m,k,n,\ell)) = (m,k,k)$

$F_2^N \text{ extends } F^{M^+}, F_2^N((m,k,n,\ell)) = (m,n,n)$.

Easily

$\Box_1 M^+ \upharpoonright \tau_T \prec N$.

Now we define an automorphism σ^+ of N:

$\Box_2 \sigma^+ \upharpoonright |M^+| = \sigma^{M^+}$

\Box_3 if $m_1, m_2 < m^*, m_2 = m_1 + 1 \mod m^*$ then

$\sigma(m_1, n, k, \ell)$ is:

$(m_2, n, k, 1 - \ell)$ if $m_1 = m^* - 1 \& n < k$

(m_2, n, k, ℓ) otherwise.

Easy to check that $\sigma^+ \in \text{Aut}(N)$, so $(N, \sigma) \supseteq M^+$ is a model of T_{aut}. As $T_{\text{aut}}^{\text{mc}}$ exists and $M^+ \models T_{\text{aut}}^{\text{mc}}$ there is a model $N^+ \models T_{\text{aut}}^{\text{mc}}$ such that $M^+ \prec M^+, (N, \sigma) \subseteq N^+$.

Let

$\varphi(x, y) = Q(x) \& Q(y) \& xEy \& (\exists z)(F_1(z) \& F_2(z) = y \& (\sigma^{m^+}(z) \neq z))$

This is a first order formula in $L(\tau_{\text{Th}(M^+)}) = L(\tau_{T_{\text{aut}}})$ and $N^+ \models \varphi[b_n, b_k]$ iff $n < \omega$ where $b_n = (0, n, n, 0) \in N \subseteq N^+$, so this formula has the order property in $\text{Th}(N^+) = \text{Th}(M^+)$. So $\text{Th}(M^+)$ is unstable as required in \Box_2^+.
\(\iff \) if \(T \) is a completion of \(T_{\text{mc}}^{\text{aut}} \) not satisfying the demand in \(\iff^+ \) then \(T \) is stable.

[Why? As any model \(M^+ \) of \(T, \sigma^M \) acts as a permutation of \(|M^+|/E^{M^+} \) which has no fix point and even no finite cycle. Now reflect.]

\(\iff \) there is a completion \(T \) of \(T_{\text{mc}}^{\text{aut}} \) which is stable.

Why? Let \(f \) be a permutation of \(\omega^2 \) such that

\begin{enumerate}
 \item \(\eta, \nu \in \omega^2 \land \eta \upharpoonright n = \nu \upharpoonright n \Rightarrow f(\eta) \upharpoonright n = f(\nu) \upharpoonright n \)
 \item for every \(m < \omega \geq 2 \) for some \(n < \omega \) we have if \(\eta \in \omega^2 \) then \(\eta, f^m(\eta) \) are not \(E_n \)-equivalent.
\end{enumerate}

Easy to construct (or use \(\prod_{n<\omega} (n+1) \) instead \(\omega^2 \) and define \(M^+ \), a \(\tau_{T_{\text{aut}}} \)-expansion of \(M \) by defining

\[\sigma^{M^+}(\langle \eta, k, n, \ell \rangle) = (f(\eta), k, n, \ell). \]

So if \(M^+ \models N^+ \models T_{\text{mc}}^{\text{aut}} \) then \(T \) is \(\text{Th}(N^+) \) fail the demand in \(\iff^+ \) hence by \(\iff \) it is stable as required (and it is uniquely determined by \(M^+ \), really just the action on \(\text{acl}_{C^\text{eq}}(\emptyset) \), suffice. So \(\iff \) holds. \(\square_{2.1} \)

2.2 Discussion
It seems reasonable that we can characterize when this occurs thus answering fully 0.1; see below.

A closely related example is

2.3 Claim. There is \(T \) such that:

\begin{enumerate}
 \item \(T \) is stable (complete countable first order theory) and has elimination of quantifiers for simplicity
 \item \(T \) is superstable and small, i.e., with countable \(D(T) \)
 \item \(T_{\text{aut}} \) has no model completion
 \item some \(T_{\text{aut}}(M^+) \) has a model completion where
\end{enumerate}

2.4 Definition. 1) For a model \(M^+ = (M, \sigma^M) \) of \(T_{\text{Aut}} \) let \(T_{\text{aut}}(M^+) = T_{\text{aut}} \cup \text{Th}(M, c)_{c \in M} \cup \{ \sigma(c_1) = c_2 : \sigma^M(c_1) = c_1 \} \).

2.5 Remark. Actually we can use any completion of \(T_{\text{aut}} \cup \text{(the action of \(\sigma \) on \(\text{acl}_{C^\text{eq}}(\emptyset, C_T) \) (i.e., on the \(E \)-equivalence classes for each \(n \))} \).
Proof. Define M

(a) $\tau_M = \{E_n, P_n : n < \omega\} \cup \{E, E_4\}$

(b) $|M| = \{(\eta, k, n, \ell) : \eta \in \omega^2, k < \omega, n < \omega, \ell < 2\}$

(c) $E_n^M = \{(\eta_1, k_1, n_1, \ell_1), (\eta_2, k_2, n_2, \ell_2) \in |M| \times |M| : \eta_1 \equiv n = n_2 \equiv n\}$

(d) $E^M = \{(\eta_1, k_1, n_1, \ell_1), (\eta_2, k_2, n_2, \ell_2) \in |M| \times |M| : \eta_1 = \eta_2 \text{ and } k_1 = k_2\}$

(e) $E^*_M = \{((\eta_1, k_1, n_1, \ell_1), (\eta_2, k_2, n_2, \ell_2)) \in |M| \times |M| : \eta_1 = \eta_2, k_1 = k_2, n_1 = n_2\}$

(f) $P_n^M = \{(\eta, k, n, \ell) \in |M| : n = m\}$.

We choose σ^M such that $\sigma(\eta, k, n, \ell) = (\eta', k, n, \ell)$ and (η, η') are as in the proof of 2.1.

Remark. If we let $(d)'$ be as in 2.8 below we add $\sigma =$ the identity then $(a) + (c) + (d)'$ is impossibly by [BlSh 759].

Actually the case σ is the identity on some M is the real one because

2.6 Claim. For any first order complete T_1 (with τ_{T_1}, a set of predicates for simplicity) there is T such that:

(a) T is first order complete

(b) if $a \in M, M \models T$ then we can interpret T_1 in (M, a)

(c) $\tau_T \setminus \tau_{T_1}$, countable

(d) some $T_{\text{aut}}(M^+)$ has a model completion.

Proof. As in 2.3 without $E_4, P_n(n < \omega)$ in any E^M-equivalence class we “plant” a model of T_1.

2.7 Claim. Let T_* be a completion of T_{aut}^mc.

The following are equivalent:

Condition (a): T_* is stable.

Condition (b): If T is stable and $(\alpha) + (\beta) + (\gamma)$ below holds, then (\ast) below holds where

\[
\begin{align*}
(\alpha) \quad M_0^+ < M_1^+ < M_3^+ \text{ for } \ell = 1, 2, M_0 \models T_*, M_\ell \models T_{\text{aut}} \text{ for } \ell = 1, 2, 3 \text{ and } M_3 \\
(\beta) \quad M_\ell = M_\ell \upharpoonright \tau_T \text{ and } M_1 \bigcup_{M_0} M_2 \text{ without loss of generality } M_3 < \mathcal{C} = \mathcal{C}_T
\end{align*}
\]
(γ) if f is an elementary mapping from $\acl_{\mathcal{E}_{\mathcal{E}}}(M_1 \cup M_2)$ onto itself extending $\sigma^{M_1} \cup \sigma^{M_2}$

(∗) there is an elementary mapping h from $\acl_{\mathcal{E}_{\mathcal{E}}}(M_1 \cup M_2)$ onto itself such that $h \upharpoonright (M_1 \cup M_2) = \text{identity}_{M_1 \cup M_2}$ and $hf h^{-1} = \sigma^{M_3} \upharpoonright \acl_{\mathcal{E}_{\mathcal{E}}}(M_1 \cup M_2)$.

Proof. $(b) \Rightarrow (a)$:
As in the proof of 1.6.

$\neg (b) \Rightarrow \neg (a)$:
We can use compactness to replace $\neg (b)$ by a finite failure, and continue as in the proof of 1.6.

2.8 Remark. We can make $\neg (b)$ more explicit as in the proof of 2.7.
As by [KkSh 748], if T_{mc}^aut exists, then T fails the strict order property. It seems reasonable to ask if any T_{mc}^aut, which exists, can have the strict order property. As we understand the stable case, it seems reasonable to deal with it. In fact, more turn out to hold.

3.1 Claim. [T as in 1.1.] If T is stable, any completion T_* of T_{mc}^aut satisfies NSOP_3 (see [Sh 500, §2] and [ShUs 789]).

Proof. 1) Clause (a):

Let T_* be completion of T_{mc}^aut and $\varphi(x, y)(\ell g(x) = \ell g(y) = n^* < \omega)$ a first order formula in $L(\tau_T)$ and for some $M \models T_*$ we have $M \models \varphi(a_n, a_m)_n^{m(n<m)}$. Hence we can find an E.M.-template Φ such that $\tau_\Phi \supseteq \tau_T = \tau_T \cup \{\sigma\}$ and for linear orders $I \subseteq J$, $\text{EM}(I, \Phi) < \text{EM}(J, \Phi) \neq T_*$, with skeleton $\langle a_t : t \in J \rangle$ such that $\text{EM}(J, \Phi) \models \varphi[a_s, a_t]^{[s<t]}$ for $s, t \in J$ (so $a_t \in \text{EM}(\{t\}, \Phi)$ (see, e.g., [Sh:c, VII] or [Sh:e, III]). Now (recalling that $\text{EM}_T(I, \Phi) = \text{EM}(I, \Phi) \upharpoonright \tau_j$) without loss of generality

- if $I_1, I_2 \subseteq J, I_0 = I_1 \cap I_2$ and if $t \in I_1 \setminus I_0$ then there is $s \in I_0$ such that $s < t$ & $[s, t] \cap I_0 \subseteq I_0$ or $t < s$ & $[t, s] \cap I_2 \subseteq I_0$ then $\text{tp}_{\tau_T}(\text{EM}_{\tau_T}(I_1, \Phi), \text{EM}_{\tau_T}(I_2, \Phi))$ is f.s. (finitely satisfiable) in $\text{EM}_{\tau_T}(I_0, \Phi)$

[Why? Let $I \times \mathbb{Z}$ be ordered lexicographically, choose Φ' such that $\text{EM}(I, \Phi') = \text{EM}(I \times \mathbb{Z}, \Phi)$, with skeleton $\bar{a}_t = \bar{a}_{(t,0)}$; can look at [Sh 394].]

For $u \subseteq \{0, 1, 2\}$ let $M_u^2 = \text{EM}(u, \Phi)$ and if $|u| = |v|$ both subsets of $\{0, 1, 2\}$ let $f_{v, u}$ be the canonical isomorphism from M_u onto M_v. Let $M_u^1 = M_u^2 \upharpoonright \tau_T$, $M_u^0 = M_u^2 \upharpoonot \tau_T$. Let N be such that $M_{\{0,1,2\}}^0 < N$, N is $\|M_{\{0,1,2\}}^0\|^{+}$-saturated

- in N, $\bigcup_{M_{\{0\}}^0, M_{\{1\}}^0, M_{\{2\}}^0} M_{\emptyset}^0$

[Why? By @1 and nonforking calculus.]

Let $g_0 =: f_{\{0\}, \{2\}} \cup f_{\{2\}, \{0\}}$

- g_0 is an elementary mapping (inside N)

[Why? Nonforking calculus.]

Let g_1 be an elementary mapping inside N extending g_0 with domain $M_{\{0,2\}}^0$.

Let $M_{\{0,2\}}^{0,*} = g(M_{\{0,1\}}^0)$.

\[\text{ON MODEL COMPLETION OF } T_{\text{AUT}} \text{ E34} 15\]
Let $M^{1,*}_{\{0,2\}}$ be an expansion of $M^{0,*}_{\{0,2\}}$ by an automorphism $\sigma^{M^{1,*}_{\{0,2\}}}$ such that g_1 is an isomorphism from $M^{1}_{\{0,2\}}$ onto $M^{1,*}_{\{0,2\}}$, clearly exists.

As N is a model of the stable theory T without loss of generality $tp_{L^\ast(\tau)}([M^{1,*}_{\{0,2\}}], |M^0_{\{0,1,2\}}|)$ does not fork over $|M^0_{\{0\}}| \cup |M^0_{\{2\}}|$. Now the point is that

\[
\exists h = \sigma^{M^{1}_{\{0,1\}} \cup \sigma^{M^{1,*}_{\{0,2\}}} \cup \sigma^{M_{\{1,2\}}}} is a permutation of $|M^{1,*}_{\{0,1\}}| \cup |M^1_{\{0,1\}}| \cup |M^1_{\{1,2\}}|$

and is an elementary mapping.

[Why? Let $B_0 = |M^0_{\{0\}}| \cup |M^0_{\{2\}}|$, $B_1 = |M^0_{\{0,1\}}| \cup |M^0_{\{2,2\}}|$. By [Sh:c, XII], the pair (B_0, B_1) satisfies the T.V. condition inside N (i.e., if $\varphi(x, y) \in L(\tau_T)$, $N \models \varphi[\bar{a}, \bar{b}]$, $\bar{a} \subseteq B_1, \bar{b} \subseteq B_0$ then for some $\bar{a}' \subseteq B_0, N \models \varphi[\bar{a}', \bar{b}]$. Moreover, we can allow $\bar{b} \subseteq |M^{0,*}_{\{0,2\}}|$ then this follows.]

So for some $N', N < N' \models T$ and there is an automorphism h' of N' extending h and we can extend (N', h') to a model (N'', h'') of T_*. By this model clearly

\[
(N'', h'') \models \varphi[\bar{a}_0, a_1] \text{ using } M^1_{\{0,1\}}
\]

\[
(N'', h'') \models \varphi[\bar{a}_1, \bar{a}_2] \text{ using } M^1_{\{1,2\}}
\]

\[
(N'', h'') \models \varphi[\bar{a}_2, \bar{a}_0] \text{ using } M^{1,*}_{\{0,2\}} \text{ and}
\]

g_1 being an isomorphism from $M^{1}_{\{0,2\}}$ onto $M^{1,*}_{\{0,2\}}$.

This is enough to show $T_* \models \text{NDOP}_3$.

3.2 Claim. T is stable or just simple then any T_* (assuming it exists, K_* in general) is simple.

Proof. We write it for K_*. Choose $\kappa = \text{cf}(\kappa) > |T|$ and μ a strong limit singular cardinal of cofinality κ. Let $\langle \lambda_i : i < \kappa \rangle$ be increasing with limit μ, $\lambda_0 > \kappa, \lambda_\kappa = \mu$. $\langle s M^+_i : i < \kappa \rangle$ is an increasing sequence of elementary submodels of \mathcal{E}_{K_*} (check notation), $\|s M^+_i\| = 2^{\lambda_i}, s M^+_i$ is λ^+_i-homo universal (in $K_{\text{aut}}^\text{ec}(T)$), $M^+ = \cup \{s M^+_i : i < \kappa\}$. Let $\langle p^+_i : i < \mu^+ \rangle$ be a sequence of existential types in $L(\tau \cup \{\sigma\})$ each of cardinality $\leq \kappa$ with domain $\subseteq M$, and we shall prove that for some $\alpha < \beta < \mu^+, p^+_\alpha \cup p^+_\beta$ is realized in \mathcal{E}_{K_*}, this suffices.
For each $\alpha < \mu^+$, we can find $a_\alpha \in \mathfrak{C}_{K^*}$ realizing p_i and $N_{3,\alpha}^+ < \mathfrak{C}_{K^*}$ of cardinality κ to which a_i belongs and $N_{2,\alpha}^+ = N_{3,\alpha}^+ \cap M^+ < M^+$ and $\text{tp}_{\mathfrak{C}}(\langle |N_{3,\alpha}^+|, |M^+| \rangle)$ does not fork over $|N_{2,\alpha}^+|$. Let $N_{1,\alpha}^+ < N_{3,\alpha}^+$ be of cardinality $|T|$ such that $a_i \in N_{1,\alpha}^+$, $\text{tp}_{\mathfrak{C}}(\langle |N_{1,\alpha}^+|, |M^+| \rangle)$ does not fork over $|N_{0,i}^+|$ where $N_{0,i}^+ = N_{1,i}^+ \cap M^+ < M^+$. Without loss of generality $\alpha < \mu^+ \Rightarrow N_{0,\alpha}^+ = N_0^+$ and for every $\alpha, \beta < \mu^+$ there is an isomorphism $h_{\beta,\alpha}$ from $N_{3,\alpha}^+$ onto $N_{3,\beta}^+$ mapping $a_\alpha, N_{1,\alpha}^+, N_{2,\alpha}^+$ to $a_\beta, N_{1,\beta}^+, N_{2,\beta}^+$ respectively and $h_{\beta,\alpha} \mid N_0^+ = \text{id}_{N_0^+}$. Moreover, without loss of generality for some well ordering $<^*$ all $h_{\beta,\alpha}$ are order preserving.

Let $\kappa > \bar{\kappa}$, \mathfrak{B} be an elementary submodel of $(\mathcal{H}(\chi), \in)$ of cardinality 2^κ such that $T, \kappa, \mu, \mathfrak{C}, \mathfrak{C}_{K^*}, M^+, \langle N_i^+ : i < \mu^+ \rangle$ belongs and such that $[\mathfrak{B}] \leq \kappa \subseteq \mathfrak{B}$. Now choose $\alpha(2) \in \mu^+ \setminus \mathfrak{B}$, and let $M_0^+ = N_{1,\alpha}^+ \upharpoonright \mathfrak{B}$. Clearly $M_0^+ < M^+$ and there is $\alpha(1) \in \mu^+ \cap \mathfrak{B}$ such that $h_{\alpha(1),\alpha(2)}$ is the identity on M_0^+. [FILL?]
REFERENCES.

