CONSISTENCY OF “THE IDEAL OF NULL RESTRICTED TO SOME A IS κ–COMPLETE NOT κ^+–COMPLETE, κ WEAKLY INACCESSIBLE AND $\text{cov}(\text{meager}) = \aleph_1$”

SAHARON SHELAH

In this note we give an answer to the following question of Grinblat (Moti Gitik asked about it in the Oberwolfach meeting:

Grinblat’s Question 1. Is it consistent that

(**) for some set X, $\text{cov}(\text{Null } \uparrow X) = \lambda$ is a weakly inaccessible cardinal (so X not null of course) while $\text{cov}(\text{Meager})$ is small, say it is \aleph_1.

A. THE FORCING:

Starting with a universe \mathbf{V} and a cardinal λ of cofinality $> \aleph_0$, regular for simplicity (otherwise the only difference is that J consists of “bounded subsets”), in fact weakly inaccessible for Grinblat’s question.

Let $\mathbb{P} = \mathbb{P}_\lambda$ be the result of FS iteration $\langle \mathbb{P}_i, \mathbb{Q}_i : i < \lambda \rangle$ with \mathbb{Q}_i being the random real forcing, and \mathbb{Q}_{2i+1} being the Cohen forcing notion. Let \mathbb{R} be a \mathbb{P}–name for the forcing notion adding \aleph_1 random reals (i.e., forcing with the measure algebra of Borel subsets of $^{\omega_1}/2$ of positive Lebesgue measure).

We claim that $\mathbf{V}_2 = \mathbf{V}^{\mathbb{P} \times \mathbb{R}}$ is as required.

Let $\mathbf{V}_1 = \mathbf{V}^\mathbb{P}$.

As the whole forcing satisfies the ccc, no cardinal is collapsed etc

B. WHY $\text{cov}(\text{Meager}) = \aleph_1$?

As forcing by \mathbb{R} does it (well known).

C.

Let η_i be the \mathbb{Q}_i–generic real for $i < \lambda$. Clearly they are pairwise distinct. Let

$X \overset{\text{def}}{=} \{ \eta_i : i < \lambda \}$.

This is a set of cardinality λ. Let J be the ideal of subsets of X of cardinality $< \lambda$ (it is a λ–complete ideal on X).

It is enough to prove

(*) J is equal to the ideal of null subsets of X.

C1.

Now, for every $\alpha < \lambda$ the set $\{ \eta_i : i < \alpha \}$ is null in \mathbf{V}_2. Why? Because $\eta_{2^\alpha + 1}$ is Cohen over $\mathbf{V}_2^{2^{\omega_1}}$ the universe to which the above set belongs and is an inner model of \mathbf{V}_2.

This is enough to show that every member of J is null.

The research of the second author was partially supported by the Israel Science Foundation.

Publication E52.
C2.

For the other direction, let Y be a $\mathbb{P} \ast \mathbb{R}$ name of an unbounded subset of λ. We shall prove that

$$\{\eta_{2i} : i \in Y\}$$

is forced to be non-null (this clearly suffices).

Let p be a condition in $\mathbb{P} \ast \mathbb{R}$ forcing the inverse, so for some $\mathbb{P} \ast \mathbb{R}$-name Z of a null Borel subset of \mathbb{R}, we have

$$p \downarrow \{\eta_{2i} : i \in Y\} \subseteq Z$$

We can find $\alpha < \lambda$ such that, in $V^{P_{\alpha}}$, Z becomes an $\mathbb{R}^{V_{\alpha}}$-name and p is a member of $\mathbb{R}^{V_{\alpha}}$.

Now for every i, if $\alpha < 2i < \lambda$ then η_{2i} is random over $V^{P_{\alpha}}$. Hence, by the Fubini theorem (i.e., random reals commute), it is also random over $(V^{P_{\alpha}})^{\mathbb{R}^{V_{\alpha}}}$. Consequently it does not belongs to Z, so we are done.

Institute of Mathematics, The Hebrew University of Jerusalem, 91904 Jerusalem, Israel, and Department of Mathematics, Rutgers University, New Brunswick, NJ 08854, USA

E-mail address: shelah@math.huji.ac.il

URL: http://www.math.rutgers.edu/~shelah