Sh:1038
- Shelah, S., & Spinas, O. (2015). Mad spectra. J. Symb. Log., 80(3), 901–916. arXiv: 1402.5616 DOI: 10.1017/jsl.2015.9 MR: 3395354
-
Abstract:
The mad spectrum is the set of all cardinalities of infinite maximal almost disjoint families on \omega. We treat the problem to characterize those sets \mathcal A which, in some forcing extension of the universe, can be the mad spectrum. We solve this problem to some extent. What remains open is the possible values of min({\mathcal A}) and max({\mathcal A}). - Version 2015-01-29_11 (18p) published version (16p)
Bib entry
@article{Sh:1038, author = {Shelah, Saharon and Spinas, Otmar}, title = {{Mad spectra}}, journal = {J. Symb. Log.}, fjournal = {The Journal of Symbolic Logic}, volume = {80}, number = {3}, year = {2015}, pages = {901--916}, issn = {0022-4812}, mrnumber = {3395354}, mrclass = {03E35 (03E17)}, doi = {10.1017/jsl.2015.9}, note = {\href{https://arxiv.org/abs/1402.5616}{arXiv: 1402.5616}}, arxiv_number = {1402.5616} }