Publications

Publications (co)authored by S. Shelah


Click the Sh:-number to get to the papers' detail page (which may include pdf's of the paper).
Can't find an Sh:-number (in particular, an "F-number")? You can try your luck here.

The books by S. Shelah

  1. Sh:a
    Shelah, S. (1978). Classification theory and the number of nonisomorphic models, Vol. 92, North-Holland Publishing Co., Amsterdam-New York, p. xvi+544. MR: 513226
    See [Sh:c]
  2. Sh:b
    Shelah, S. (1982). Proper forcing, Vol. 940, Springer-Verlag, Berlin-New York, p. xxix+496. MR: 675955
  3. Sh:c
    Shelah, S. (1990). Classification theory and the number of nonisomorphic models, 2nd edn, Vol. 92, North-Holland Publishing Co., Amsterdam, p. xxxiv+705. MR: 1083551
    Revised edition of [Sh:a]
  4. Sh:d
    Shelah, S. (1986). Around classification theory of models, Vol. 1182, Springer-Verlag, Berlin, p. viii+279. DOI: 10.1007/BFb0098503 MR: 850051
    Contains [Sh:171], [Sh:197], [Sh:212], [Sh:228], [Sh:229], [Sh:232], [Sh:233], [Sh:234], [Sh:237a], [Sh:237b], [Sh:237c], [Sh:237d], [Sh:237e], [Sh:247], [Sh:E8]
  5. Sh:e
    Shelah, S. Non-structure theory, Oxford University Press. To appear.
    Contains [Sh:309], [Sh:331], [Sh:363], [Sh:384], [Sh:482], [Sh:511], [Sh:E58], [Sh:E59], [Sh:E60], [Sh:E61], [Sh:E62], [Sh:E63]
  6. Sh:f
    Shelah, S. (1998). Proper and improper forcing, 2nd edn, Springer-Verlag, Berlin, p. xlviii+1020. DOI: 10.1007/978-3-662-12831-2 MR: 1623206
    See [Sh:253], [Sh:263]
  7. Sh:g
    Shelah, S. (1994). Cardinal arithmetic, Vol. 29, The Clarendon Press, Oxford University Press, New York, p. xxxii+481. MR: 1318912
    Contains [Sh:282a], [Sh:333], [Sh:345a], [Sh:345b], [Sh:355], [Sh:365], [Sh:371], [Sh:380], [Sh:386], [Sh:400]. See [Sh:E12]
  8. Sh:h
    Shelah, S. (2009). Classification theory for abstract elementary classes, Vol. 18, College Publications, London, p. vi+813. MR: 2643267
    Contains [Sh:88r], [Sh:300x], [Sh:600], [Sh:705], [Sh:734], [Sh:E53]. See [Sh:E54]
  9. Sh:i
    Shelah, S. (2009). Classification theory for abstract elementary classes. Vol. 2, Vol. 20, College Publications, London, p. iii+694. MR: 2649290
    Contains [Sh:300a], [Sh:300b], [Sh:300c], [Sh:300d], [Sh:300e], [Sh:300f], [Sh:300g], [Sh:300z], [Sh:838], [Sh:E46]

Research articles (co)authored by S. Shelah published in peer reviewed journals.

  1. Sh:1
    Shelah, S. (1969). Stable theories. Israel J. Math., 7, 187–202. DOI: 10.1007/BF02787611 MR: 0253889
  2. Sh:2
    Shelah, S. (1969). Note on a min-max problem of Leo Moser. J. Combinatorial Theory, 6, 298–300. MR: 241312
  3. Sh:3
    Shelah, S. Finite diagrams stable in power. Ann. Math. Logic, 2(1), 69–118. DOI: 10.1016/0003-4843(70)90007-0 MR: 0285374
  4. Sh:4
    Shelah, S. (1970). On theories T categorical in |T|. J. Symbolic Logic, 35, 73–82. DOI: 10.2307/2271158 MR: 0282818
  5. Sh:5
    Shelah, S. (1970). On languages with non-homogeneous strings of quantifiers. Israel J. Math., 8, 75–79. DOI: 10.1007/BF02771553 MR: 0262064
  6. Sh:6
    Shelah, S. (1970). A note on Hanf numbers. Pacific J. Math., 34, 541–545. http://projecteuclid.org/euclid.pjm/1102976446 MR: 0268033
  7. Sh:7
    Shelah, S. (1970). On the cardinality of ultraproduct of finite sets. J. Symbolic Logic, 35, 83–84. DOI: 10.2307/2271159 MR: 0325388
  8. Sh:8
    Shelah, S. (1971). Two cardinal compactness. Israel J. Math., 9, 193–198. DOI: 10.1007/BF02771584 MR: 0302437
  9. Sh:9
    Shelah, S. Remark to “local definability theory” of Reyes. Ann. Math. Logic, 2(4), 441–447. DOI: 10.1016/0003-4843(71)90004-0 MR: 0282822
  10. Sh:10
    Shelah, S. (1971). Stability, the f.c.p., and superstability; model theoretic properties of formulas in first order theory. Ann. Math. Logic, 3(3), 271–362. DOI: 10.1016/0003-4843(71)90015-5 MR: 0317926
  11. Sh:11
    Shelah, S. (1971). On the number of non-almost isomorphic models of T in a power. Pacific J. Math., 36, 811–818. http://projecteuclid.org/euclid.pjm/1102970932 MR: 0285375
  12. Sh:12
    Shelah, S. (1971). The number of non-isomorphic models of an unstable first-order theory. Israel J. Math., 9, 473–487. DOI: 10.1007/BF02771463 MR: 0278926
  13. Sh:13
    Shelah, S. (1971). Every two elementarily equivalent models have isomorphic ultrapowers. Israel J. Math., 10, 224–233. DOI: 10.1007/BF02771574 MR: 0297554
  14. Sh:14
    Shelah, S. (1972). Saturation of ultrapowers and Keisler’s order. Ann. Math. Logic, 4, 75–114. DOI: 10.1016/0003-4843(72)90012-5 MR: 0294113
  15. Sh:15
    Shelah, S. (1972). Uniqueness and characterization of prime models over sets for totally transcendental first-order theories. J. Symbolic Logic, 37, 107–113. DOI: 10.2307/2272553 MR: 0316239
  16. Sh:16
    Shelah, S. (1972). A combinatorial problem; stability and order for models and theories in infinitary languages. Pacific J. Math., 41, 247–261. http://projecteuclid.org/euclid.pjm/1102968432 MR: 0307903
  17. Sh:17
    Shelah, S. (1972). For what filters is every reduced product saturated? Israel J. Math., 12, 23–31. DOI: 10.1007/BF02764810 MR: 0304157
  18. Sh:18
    Shelah, S. (1972). On models with power-like orderings. J. Symbolic Logic, 37, 247–267. DOI: 10.2307/2272971 MR: 0446955
  19. Sh:19
    Erdős, P., & Shelah, S. (1972). Separability properties of almost-disjoint families of sets. Israel J. Math., 12, 207–214. DOI: 10.1007/BF02764666 MR: 0319770
  20. Sh:20
    Schmerl, J. H., & Shelah, S. (1972). On power-like models for hyperinaccessible cardinals. J. Symbolic Logic, 37, 531–537. DOI: 10.2307/2272739 MR: 0317925
  21. Sh:21
    Erdős, P., & Shelah, S. (1972). On problems of Moser and Hanson. In Graph theory and applications (Proc. Conf., Western Michigan Univ., Kalamazoo, Mich., 1972; dedicated to the memory of J. W. T. Youngs), Vol. 303, Springer, Berlin, pp. 75–79. MR: 0337646
  22. Sh:22
    Shelah, S. (1972). A note on model complete models and generic models. Proc. Amer. Math. Soc., 34, 509–514. DOI: 10.2307/2038398 MR: 294114
  23. Sh:23
    Galvin, F., & Shelah, S. (1973). Some counterexamples in the partition calculus. J. Combinatorial Theory Ser. A, 15, 167–174. DOI: 10.1016/s0097-3165(73)80004-4 MR: 0329900
  24. Sh:24
    Shelah, S. (1973). First order theory of permutation groups. Israel J. Math., 14, 149–162; errata, ibid.15 (1973), 437–441. DOI: 10.1007/BF02762670 MR: 0416909
    See [Sh:25]
  25. Sh:26
    Shelah, S. (1973). Notes on combinatorial set theory. Israel J. Math., 14, 262–277. DOI: 10.1007/BF02764885 MR: 0327522
  26. Sh:27
    Moran, G., & Shelah, S. (1973). Size direction games over the real line. III. Israel J. Math., 14, 442–449. DOI: 10.1007/BF02764720 MR: 0321551
  27. Sh:28
    Shelah, S. (1973). There are just four second-order quantifiers. Israel J. Math., 15, 282–300. DOI: 10.1007/BF02787572 MR: 0335237
  28. Sh:29
    Shelah, S. (1974). A substitute for Hall’s theorem for families with infinite sets. J. Combinatorial Theory Ser. A, 16, 199–208. DOI: 10.1016/0097-3165(74)90044-2 MR: 0332497
  29. Sh:30
    McKenzie, R. N., & Shelah, S. (1974). The cardinals of simple models for universal theories. In Proceedings of the Tarski Symposium, Vol. XXV, Amer. Math. Soc., Providence, R.I., pp. 53–74. MR: 0360261
  30. Sh:31
    Shelah, S. (1974). Categoricity of uncountable theories. In Proceedings of the Tarski Symposium, Vol. XXV, Amer. Math. Soc., Providence, R.I., pp. 187–203. MR: 0373874
  31. Sh:32
    Erdős, P., Hajnal, A., & Shelah, S. (1974). On some general properties of chromatic numbers. In Topics in topology (Proc. Colloq., Keszthely, 1972), Vol. 8, North-Holland, Amsterdam, pp. 243–255. MR: 0357194
  32. Sh:33
    Shelah, S. (1974). The Hanf number of omitting complete types. Pacific J. Math., 50, 163–168. http://projecteuclid.org/euclid.pjm/1102913702 MR: 0363877
  33. Sh:34
    Shelah, S. (1973). Weak definability in infinitary languages. J. Symbolic Logic, 38, 399–404. DOI: 10.2307/2273033 MR: 0369027
  34. Sh:35
    Milner, E. C., & Shelah, S. (1974). Sufficiency conditions for the existence of transversals. Canadian J. Math., 26, 948–961. DOI: 10.4153/CJM-1974-089-8 MR: 373907
  35. Sh:36
    Shelah, S. (1977). Remarks on cardinal invariants in topology. General Topology and Appl., 7(3), 251–259. MR: 0482614
  36. Sh:37
    Shelah, S. (1975). A two-cardinal theorem. Proc. Amer. Math. Soc., 48, 207–213. DOI: 10.2307/2040719 MR: 357105
  37. Sh:38
    Shelah, S. (1975). Graphs with prescribed asymmetry and minimal number of edges. In Infinite and finite sets (Colloq., Keszthely, 1973; dedicated to P. Erdős on his 60th birthday), Vol. III, Vol. 10, North-Holland, Amsterdam, pp. 1241–1256. MR: 0371727
  38. Sh:39
    Shelah, S. (1973). Differentially closed fields. Israel J. Math., 16, 314–328. DOI: 10.1007/BF02756711 MR: 0344116
  39. Sh:40
    Shelah, S. (1975). Notes on partition calculus. In Infinite and finite sets (Colloq., Keszthely, 1973; dedicated to P. Erdős on his 60th birthday), Vol. III, Vol. 10, North-Holland, Amsterdam, pp. 1257–1276. MR: 0406798
  40. Sh:41
    Milner, E. C., & Shelah, S. (1975). Some theorems on transversals. In Infinite and finite sets (Colloq., Keszthely, 1973; dedicated to P. Erdős on his 60th birthday), Vol III, Vol. 10, North Holland, Amsterdam, pp. 1115–1126. MR: 0376358
  41. Sh:42
    Shelah, S. (1975). The monadic theory of order. Ann. Of Math. (2), 102(3), 379–419. arXiv: 2305.00968 DOI: 10.2307/1971037 MR: 0491120
  42. Sh:43
    Shelah, S. (1975). Generalized quantifiers and compact logic. Trans. Amer. Math. Soc., 204, 342–364. DOI: 10.2307/1997362 MR: 376334
  43. Sh:44
    Shelah, S. (1974). Infinite abelian groups, Whitehead problem and some constructions. Israel J. Math., 18, 243–256. DOI: 10.1007/BF02757281 MR: 0357114
  44. Sh:45
    Shelah, S. (1975). Existence of rigid-like families of abelian p-groups. In Model theory and algebra (A memorial tribute to Abraham Robinson), Vol. 498, Springer, Berlin, pp. 384–402. MR: 0412299
  45. Sh:46
    Shelah, S. (1975). Colouring without triangles and partition relation. Israel J. Math., 20, 1–12. DOI: 10.1007/BF02756751 MR: 0427073
  46. Sh:47
    Makowsky, J. A., Shelah, S., & Stavi, J. (1976). \Delta-logics and generalized quantifiers. Ann. Math. Logic, 10(2), 155–192. DOI: 10.1016/0003-4843(76)90021-8 MR: 0457146
  47. Sh:48
    Shelah, S. (1975). Categoricity in \aleph_1 of sentences in L_{\omega_1,\omega}(Q). Israel J. Math., 20(2), 127–148. DOI: 10.1007/BF02757882 MR: 0379177
  48. Sh:49
    Shelah, S. (1976). A two-cardinal theorem and a combinatorial theorem. Proc. Amer. Math. Soc., 62(1), 134–136 (1977). DOI: 10.2307/2041962 MR: 434800
  49. Sh:50
    Shelah, S. (1976). Decomposing uncountable squares to countably many chains. J. Combinatorial Theory Ser. A, 21(1), 110–114. DOI: 10.1016/0097-3165(76)90053-4 MR: 0409196
  50. Sh:51
    Shelah, S. (1975). Why there are many nonisomorphic models for unsuperstable theories. In Proceedings of the International Congress of Mathematicians (Vancouver, B. C., 1974), Vol. 1, Canad. Math. Congress, Montreal, Que., pp. 259–263. MR: 0422015
  51. Sh:52
    Shelah, S. (1975). A compactness theorem for singular cardinals, free algebras, Whitehead problem and transversals. Israel J. Math., 21(4), 319–349. DOI: 10.1007/BF02757993 MR: 0389579
  52. Sh:53
    Litman, A., & Shelah, S. (1977). Models with few isomorphic expansions. Israel J. Math., 28(4), 331–338. DOI: 10.1007/BF02760639 MR: 0469741
  53. Sh:54
    Shelah, S. (1975). The lazy model-theoretician’s guide to stability. Logique et Analyse (N.S.), 18(71-72), 241–308. MR: 0539969
    See [Sh:54a]
  54. Sh:55
    Macintyre, A. J., & Shelah, S. (1976). Uncountable universal locally finite groups. J. Algebra, 43(1), 168–175. DOI: 10.1016/0021-8693(76)90150-2 MR: 0439625
  55. Sh:56
    Shelah, S. (1976). Refuting Ehrenfeucht conjecture on rigid models. Israel J. Math., 25(3-4), 273–286. DOI: 10.1007/BF02757005 MR: 0485326
  56. Sh:57
    Amit, R., & Shelah, S. (1976). The complete finitely axiomatized theories of order are dense. Israel J. Math., 23(3-4), 200–208. DOI: 10.1007/BF02761800 MR: 0485315
  57. Sh:58
    Shelah, S. (1977). Decidability of a portion of the predicate calculus. Israel J. Math., 28(1-2), 32–44. DOI: 10.1007/BF02759780 MR: 0505410
  58. Sh:59
    Hiller, H. L., & Shelah, S. (1977). Singular cohomology in L. Israel J. Math., 26(3–4), 313–319. DOI: 10.1007/BF03007650 MR: 0444469
  59. Sh:60
    Hodges, W., Lachlan, A. H., & Shelah, S. (1977). Possible orderings of an indiscernible sequence. Bull. London Math. Soc., 9(2), 212–215. DOI: 10.1112/blms/9.2.212 MR: 0476525
  60. Sh:61
    Shelah, S. (1976). Interpreting set theory in the endomorphism semi-group of afree algebra or in a category. Ann. Sci. Univ. Clermont, (60 Math. No. 13), 1–29. MR: 0505511
  61. Sh:62
    Makowsky, J. A., & Shelah, S. (1979). The theorems of Beth and Craig in abstract model theory. I. The abstract setting. Trans. Amer. Math. Soc., 256, 215–239. DOI: 10.2307/1998109 MR: 546916
  62. Sh:63
    Shelah, S., & Stern, J. (1978). The Hanf number of the first order theory of Banach spaces. Trans. Amer. Math. Soc., 244, 147–171. DOI: 10.2307/1997892 MR: 506613
  63. Sh:64
    Shelah, S. (1977). Whitehead groups may be not free, even assuming CH. I. Israel J. Math., 28(3), 193–204. DOI: 10.1007/BF02759809 MR: 0469757
  64. Sh:65
    Devlin, K. J., & Shelah, S. (1978). A weak version of \diamondsuit which follows from 2^{\aleph_0}<2^{\aleph_1}. Israel J. Math., 29(2-3), 239–247. DOI: 10.1007/BF02762012 MR: 0469756
  65. Sh:66
    Shelah, S. (1978). End extensions and numbers of countable models. J. Symbolic Logic, 43(3), 550–562. DOI: 10.2307/2273531 MR: 503792
  66. Sh:67
    Shelah, S. (1978). On the number of minimal models. J. Symbolic Logic, 43(3), 475–480. DOI: 10.2307/2273522 MR: 0491148
  67. Sh:68
    Shelah, S. (1978). Jonsson algebras in successor cardinals. Israel J. Math., 30(1-2), 57–64. DOI: 10.1007/BF02760829 MR: 0505434
  68. Sh:69
    Shelah, S. (1980). On a problem of Kurosh, Jónsson groups, and applications. In Word problems, II (Conf. on Decision Problems in Algebra, Oxford, 1976), Vol. 95, North-Holland, Amsterdam-New York, pp. 373–394. MR: 579953
  69. Sh:70
    Gurevich, Y., & Shelah, S. (1979). Modest theory of short chains. II. J. Symbolic Logic, 44(4), 491–502. DOI: 10.2307/2273288 MR: 550378
  70. Sh:71
    Shelah, S. (1980). A note on cardinal exponentiation. J. Symbolic Logic, 45(1), 56–66. DOI: 10.2307/2273354 MR: 560225
  71. Sh:72
    Shelah, S. (1978). Models with second-order properties. I. Boolean algebras with no definable automorphisms. Ann. Math. Logic, 14(1), 57–72. DOI: 10.1016/0003-4843(78)90008-6 MR: 501097
  72. Sh:73
    Shelah, S. (1978). Models with second-order properties. II. Trees with no undefined branches. Ann. Math. Logic, 14(1), 73–87. DOI: 10.1016/0003-4843(78)90009-8 MR: 501098
  73. Sh:74
    Shelah, S. (1978). Appendix to: “Models with second-order properties. II. Trees with no undefined branches” (Ann. Math. Logic 14 (1978), no. 1, 73–87). Ann. Math. Logic, 14, 223–226. DOI: 10.1016/0003-4843(78)90017-7 MR: 506531
    See [Sh:E28]
  74. Sh:75
    Shelah, S. (1978). A Banach space with few operators. Israel J. Math., 30(1-2), 181–191. DOI: 10.1007/BF02760838 MR: 508262
  75. Sh:76
    Shelah, S. (1980). Independence of strong partition relation for small cardinals, and the free-subset problem. J. Symbolic Logic, 45(3), 505–509. DOI: 10.2307/2273418 MR: 583369
  76. Sh:77
    Shelah, S. (1977). Existentially-closed groups in \aleph_1 with special properties. Bull. Soc. Math. Grèce (N.S.), 18(1), 17–27. MR: 528419
  77. Sh:78
    Shelah, S. (1979). Hanf number of omitting type for simple first-order theories. J. Symbolic Logic, 44(3), 319–324. DOI: 10.2307/2273125 MR: 540663
  78. Sh:79
    Shelah, S. (1979). On uniqueness of prime models. J. Symbolic Logic, 44(2), 215–220. DOI: 10.2307/2273729 MR: 534571
  79. Sh:80
    Shelah, S. (1978). A weak generalization of MA to higher cardinals. Israel J. Math., 30(4), 297–306. DOI: 10.1007/BF02761994 MR: 0505492
  80. Sh:81
    Abraham, U., Devlin, K. J., & Shelah, S. (1978). The consistency with CH of some consequences of Martin’s axiom plus 2^{\aleph_0}>\aleph_1. Israel J. Math., 31(1), 19–33. DOI: 10.1007/BF02761378 MR: 0505488
  81. Sh:82
    Shelah, S. (1981). Models with second order properties. III. Omitting types for L(Q). Arch. Math. Logik Grundlag., 21(1-2), 1–11. DOI: 10.1007/BF02011630 MR: 625527
  82. Sh:83
    Giorgetta, D., & Shelah, S. (1984). Existentially closed structures in the power of the continuum. Ann. Pure Appl. Logic, 26(2), 123–148. DOI: 10.1016/0168-0072(84)90013-7 MR: 739576
  83. Sh:84
    Rubin, M., & Shelah, S. (1980). On the elementary equivalence of automorphism groups of Boolean algebras; downward Skolem-Löwenheim theorems and compactness of related quantifiers. J. Symbolic Logic, 45(2), 265–283. DOI: 10.2307/2273187 MR: 569397
  84. Sh:85
    Devlin, K. J., & Shelah, S. (1979). A note on the normal Moore space conjecture. Canadian J. Math., 31(2), 241–251. DOI: 10.4153/CJM-1979-025-8 MR: 528801
  85. Sh:86
    Devlin, K. J., & Shelah, S. (1979). Souslin properties and tree topologies. Proc. London Math. Soc. (3), 39(2), 237–252. DOI: 10.1112/plms/s3-39.2.237 MR: 548979
  86. Sh:87a
    Shelah, S. (1983). Classification theory for nonelementary classes. I. The number of uncountable models of \psi \in L_{\omega_1,\omega }. Part A. Israel J. Math., 46(3), 212–240. DOI: 10.1007/BF02761954 MR: 733351
  87. Sh:87b
    Shelah, S. (1983). Classification theory for nonelementary classes. I. The number of uncountable models of \psi \in L_{\omega_1,\omega }. Part B. Israel J. Math., 46(4), 241–273. DOI: 10.1007/BF02762887 MR: 730343
  88. Sh:88
    Shelah, S. (1987). Classification of nonelementary classes. II. Abstract elementary classes. In Classification theory (Chicago, IL, 1985), Vol. 1292, Springer, Berlin, pp. 419–497. DOI: 10.1007/BFb0082243 MR: 1033034
    Contains [Sh:88a]
  89. Sh:89
    Shelah, S. (1979). Boolean algebras with few endomorphisms. Proc. Amer. Math. Soc., 74(1), 135–142. DOI: 10.2307/2042119 MR: 521887
  90. Sh:90
    Shelah, S. (1977). Remarks on \lambda-collectionwise Hausdorff spaces. Topology Proc., 2(2), 583–592 (1978). MR: 540629
  91. Sh:91
    Hiller, H. L., Huber, M. K., & Shelah, S. (1978). The structure of \mathrm{Ext}(A, \mathbf Z) and V=L. Math. Z., 162(1), 39–50. DOI: 10.1007/BF01437821 MR: 0492007
  92. Sh:92
    Shelah, S. (1980). Remarks on Boolean algebras. Algebra Universalis, 11(1), 77–89. DOI: 10.1007/BF02483083 MR: 593014
  93. Sh:93
    Shelah, S. (1980). Simple unstable theories. Ann. Math. Logic, 19(3), 177–203. DOI: 10.1016/0003-4843(80)90009-1 MR: 595012
  94. Sh:94
    Shelah, S. (1979). Weakly compact cardinals: a combinatorial proof. J. Symbolic Logic, 44(4), 559–562. DOI: 10.2307/2273294 MR: 550384
  95. Sh:95
    Shelah, S. (1981). Canonization theorems and applications. J. Symbolic Logic, 46(2), 345–353. DOI: 10.2307/2273626 MR: 613287
  96. Sh:96
    Shelah, S., & Ziegler, M. (1979). Algebraically closed groups of large cardinality. J. Symbolic Logic, 44(4), 522–532. DOI: 10.2307/2273291 MR: 550381
  97. Sh:97
    Rudin, M. E., & Shelah, S. (1978). Unordered types of ultrafilters. Topology Proc., 3(1), 199–204 (1979). MR: 540490
  98. Sh:98
    Shelah, S. (1980). Whitehead groups may not be free, even assuming CH. II. Israel J. Math., 35(4), 257–285. DOI: 10.1007/BF02760652 MR: 594332
  99. Sh:99
    Harrington, L. A., & Shelah, S. (1985). Some exact equiconsistency results in set theory. Notre Dame J. Formal Logic, 26(2), 178–188. DOI: 10.1305/ndjfl/1093870823 MR: 783595
  100. Sh:100
    Shelah, S. (1980). Independence results. J. Symbolic Logic, 45(3), 563–573. DOI: 10.2307/2273423 MR: 583374
  101. Sh:101
    Makowsky, J. A., & Shelah, S. (1981). The theorems of Beth and Craig in abstract model theory. II. Compact logics. Arch. Math. Logik Grundlag., 21(1-2), 13–35. DOI: 10.1007/BF02011631 MR: 625528
  102. Sh:102
    Abraham, U., & Shelah, S. (1982). Forcing with stable posets. J. Symbolic Logic, 47(1), 37–42. DOI: 10.2307/2273379 MR: 644751
  103. Sh:103
    Fremlin, D. H., & Shelah, S. (1979). On partitions of the real line. Israel J. Math., 32(4), 299–304. DOI: 10.1007/BF02760459 MR: 571084
  104. Sh:104
    Laver, R. J., & Shelah, S. (1981). The \aleph_2-Souslin hypothesis. Trans. Amer. Math. Soc., 264(2), 411–417. DOI: 10.2307/1998547 MR: 603771
  105. Sh:105
    Shelah, S. (1979). On uncountable abelian groups. Israel J. Math., 32(4), 311–330. DOI: 10.1007/BF02760461 MR: 571086
  106. Sh:106
    Abraham, U., & Shelah, S. (1981). Martin’s axiom does not imply that every two \aleph_1-dense sets of reals are isomorphic. Israel J. Math., 38(1-2), 161–176. DOI: 10.1007/BF02761858 MR: 599485
  107. Sh:107
    Shelah, S. (1983). Models with second order properties. IV. A general method and eliminating diamonds. Ann. Pure Appl. Logic, 25(2), 183–212. DOI: 10.1016/0168-0072(83)90013-1 MR: 725733
  108. Sh:108
    Shelah, S. (1979). On successors of singular cardinals. In Logic Colloquium ’78 (Mons, 1978), Vol. 97, North-Holland, Amsterdam-New York, pp. 357–380. MR: 567680
  109. Sh:109
    Hodges, W., & Shelah, S. (1981). Infinite games and reduced products. Ann. Math. Logic, 20(1), 77–108. DOI: 10.1016/0003-4843(81)90012-7 MR: 611395
  110. Sh:110
    Shelah, S. (1982). Better quasi-orders for uncountable cardinals. Israel J. Math., 42(3), 177–226. DOI: 10.1007/BF02802723 MR: 687127
  111. Sh:111
    Shelah, S. (1986). On power of singular cardinals. Notre Dame J. Formal Logic, 27(2), 263–299. DOI: 10.1305/ndjfl/1093636617 MR: 842153
  112. Sh:112
    Shelah, S., & Stanley, L. J. (1982). S-forcing. I. A “black-box” theorem for morasses, with applications to super-Souslin trees. Israel J. Math., 43(3), 185–224. DOI: 10.1007/BF02761942 MR: 689979
  113. Sh:113
    Shelah, S. (1990). The theorems of Beth and Craig in abstract model theory. III. \Delta-logics and infinitary logics. Israel J. Math., 69(2), 193–213. DOI: 10.1007/BF02937304 MR: 1045373
  114. Sh:114
    Abraham, U., & Shelah, S. (1985). Isomorphism types of Aronszajn trees. Israel J. Math., 50(1-2), 75–113. DOI: 10.1007/BF02761119 MR: 788070
  115. Sh:115
    Cherlin, G. L., & Shelah, S. (1980). Superstable fields and groups. Ann. Math. Logic, 18(3), 227–270. DOI: 10.1016/0003-4843(80)90006-6 MR: 585519
  116. Sh:116
    Makowsky, J. A., & Shelah, S. (1983). Positive results in abstract model theory: a theory of compact logics. Ann. Pure Appl. Logic, 25(3), 263–299. DOI: 10.1016/0168-0072(83)90021-0 MR: 730857
  117. Sh:117
    Rubin, M., & Shelah, S. (1987). Combinatorial problems on trees: partitions, \Delta-systems and large free subtrees. Ann. Pure Appl. Logic, 33(1), 43–81. DOI: 10.1016/0168-0072(87)90075-3 MR: 870686
  118. Sh:118
    Rubin, M., & Shelah, S. (1983). On the expressibility hierarchy of Magidor-Malitz quantifiers. J. Symbolic Logic, 48(3), 542–557. DOI: 10.2307/2273445 MR: 716614
  119. Sh:119
    Shelah, S. (1981). Iterated forcing and changing cofinalities. Israel J. Math., 40(1), 1–32. DOI: 10.1007/BF02761815 MR: 636904
  120. Sh:120
    Shelah, S. (1981). Free limits of forcing and more on Aronszajn trees. Israel J. Math., 38(4), 315–334. DOI: 10.1007/BF02762777 MR: 617678
  121. Sh:121
    Magidor, M., Shelah, S., & Stavi, J. (1983). On the standard part of nonstandard models of set theory. J. Symbolic Logic, 48(1), 33–38. DOI: 10.2307/2273317 MR: 693245
  122. Sh:122
    Shelah, S. (1981). On Fleissner’s diamond. Notre Dame J. Formal Logic, 22(1), 29–35. http://projecteuclid.org/euclid.ndjfl/1093883337 MR: 603754
  123. Sh:123
    Gurevich, Y., & Shelah, S. (1982). Monadic theory of order and topology in ZFC. Ann. Math. Logic, 23(2-3), 179–198 (1983). DOI: 10.1016/0003-4843(82)90004-3 MR: 701125
  124. Sh:124
    Shelah, S. (1981). \aleph_\omega may have a strong partition relation. Israel J. Math., 38(4), 283–288. DOI: 10.1007/BF02762774 MR: 617675
  125. Sh:125
    Shelah, S. (1981). The consistency of \mathrm{Ext}(G,\,\mathbf Z)=\mathbf Q. Israel J. Math., 39(1-2), 74–82. DOI: 10.1007/BF02762854 MR: 617291
  126. Sh:126
    Shelah, S. (1981). On saturation for a predicate. Notre Dame J. Formal Logic, 22(3), 239–248. http://projecteuclid.org/euclid.ndjfl/1093883458 MR: 614121
  127. Sh:127
    Shelah, S. (1981). On uncountable Boolean algebras with no uncountable pairwise comparable or incomparable sets of elements. Notre Dame J. Formal Logic, 22(4), 301–308. http://projecteuclid.org/euclid.ndjfl/1093883511 MR: 622361
  128. Sh:128
    Shelah, S. (1985). Uncountable constructions for B.A., e.c. groups and Banach spaces. Israel J. Math., 51(4), 273–297. DOI: 10.1007/BF02764721 MR: 804487
  129. Sh:129
    Shelah, S. (1981). On the number of nonisomorphic models of cardinality \lambda L_{\infty \lambda }-equivalent to a fixed model. Notre Dame J. Formal Logic, 22(1), 5–10. http://projecteuclid.org/euclid.ndjfl/1093883334 MR: 603751
  130. Sh:130
    Pillay, A., & Shelah, S. (1985). Classification theory over a predicate. I. Notre Dame J. Formal Logic, 26(4), 361–376. DOI: 10.1305/ndjfl/1093870929 MR: 799506
  131. Sh:131
    Shelah, S. (1982). The spectrum problem. I. \aleph_\varepsilon-saturated models, the main gap. Israel J. Math., 43(4), 324–356. DOI: 10.1007/BF02761237 MR: 693353
  132. Sh:132
    Shelah, S. (1982). The spectrum problem. II. Totally transcendental and infinite depth. Israel J. Math., 43(4), 357–364. DOI: 10.1007/BF02761238 MR: 693354
  133. Sh:133
    Shelah, S. (1982). On the number of nonisomorphic models in L_{\infty,\kappa } when \kappa is weakly compact. Notre Dame J. Formal Logic, 23(1), 21–26. http://projecteuclid.org/euclid.ndjfl/1093883562 MR: 634740
  134. Sh:134
    Gabbay, D. M., Pnueli, A., Shelah, S., & Stavi, J. (1980). On the Temporal Analysis of Fairness. In Proceedings of the 7th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, Association Comp. Machinery, NY, pp. 163–173. DOI: 10.1145/567446.567462
  135. Sh:135
    Glass, A. M. W., Gurevich, Y., Holland, W. C., & Shelah, S. (1981). Rigid homogeneous chains. Math. Proc. Cambridge Philos. Soc., 89(1), 7–17. DOI: 10.1017/S0305004100057881 MR: 591966
  136. Sh:136
    Shelah, S. (1983). Constructions of many complicated uncountable structures and Boolean algebras. Israel J. Math., 45(2-3), 100–146. DOI: 10.1007/BF02774012 MR: 719115
  137. Sh:137
    Shelah, S. (1983). The singular cardinals problem: independence results. In Surveys in set theory, Vol. 87, Cambridge Univ. Press, Cambridge, pp. 116–134. DOI: 10.1017/CBO9780511758867.004 MR: 823777
  138. Sh:138
    Sageev, G., & Shelah, S. (1985). On the structure of \mathrm{Ext}(A,\mathbf Z) in ZFC^+. J. Symbolic Logic, 50(2), 302–315. DOI: 10.2307/2274216 MR: 793108
  139. Sh:139
    Shelah, S. (1983). On the number of nonconjugate subgroups. Algebra Universalis, 16(2), 131–146. DOI: 10.1007/BF01191760 MR: 692252
  140. Sh:140
    Shelah, S. (1981). On endo-rigid, strongly \aleph_1-free abelian groups in \aleph_1. Israel J. Math., 40(3-4), 291–295 (1982). DOI: 10.1007/BF02761369 MR: 654584
  141. Sh:141
    Gurevich, Y., Magidor, M., & Shelah, S. (1983). The monadic theory of \omega_2. J. Symbolic Logic, 48(2), 387–398. DOI: 10.2307/2273556 MR: 704093
  142. Sh:142
    Baldwin, J. T., & Shelah, S. (1983). The structure of saturated free algebras. Algebra Universalis, 17(2), 191–199. DOI: 10.1007/BF01194528 MR: 726272
  143. Sh:143
    Gurevich, Y., & Shelah, S. (1984). The monadic theory and the “next world”. Israel J. Math., 49(1-3), 55–68. DOI: 10.1007/BF02760646 MR: 788265
  144. Sh:144
    Magidor, M., Shelah, S., & Stavi, J. (1984). Countably decomposable admissible sets. Ann. Pure Appl. Logic, 26(3), 287–361. DOI: 10.1016/0168-0072(84)90006-X MR: 747687
  145. Sh:145
    Eklof, P. C., Mekler, A. H., & Shelah, S. (1984). Almost disjoint abelian groups. Israel J. Math., 49(1-3), 34–54. DOI: 10.1007/BF02760645 MR: 788264
  146. Sh:146
    Abraham, U., & Shelah, S. (1983). Forcing closed unbounded sets. J. Symbolic Logic, 48(3), 643–657. DOI: 10.2307/2273456 MR: 716625
  147. Sh:147
    Harrington, L. A., & Shelah, S. (1982). The undecidability of the recursively enumerable degrees. Bull. Amer. Math. Soc. (N.S.), 6(1), 79–80. DOI: 10.1090/S0273-0979-1982-14970-9 MR: 634436
  148. Sh:148
    Sageev, G., & Shelah, S. (1981). Weak compactness and the structure of \mathrm{Ext}(A,\,\mathbf Z). In Abelian group theory (Oberwolfach, 1981), Vol. 874, Springer, Berlin-New York, pp. 87–92. MR: 645920
  149. Sh:149
    Friedman, S.-D., & Shelah, S. (1983). Tall \alpha-recursive structures. Proc. Amer. Math. Soc., 88(4), 672–678. DOI: 10.2307/2045460 MR: 702297
  150. Sh:150
    Kaufmann, M., & Shelah, S. (1986). The Hanf number of stationary logic. Notre Dame J. Formal Logic, 27(1), 111–123. DOI: 10.1305/ndjfl/1093636530 MR: 819653
  151. Sh:151
    Gurevich, Y., & Shelah, S. (1983). Interpreting second-order logic in the monadic theory of order. J. Symbolic Logic, 48(3), 816–828. DOI: 10.2307/2273475 MR: 716644
  152. Sh:152
    Harrington, L. A., & Shelah, S. (1982). Counting equivalence classes for co-\kappa-Souslin equivalence relations. In Logic Colloquium ’80 (Prague, 1980), Vol. 108, North-Holland, Amsterdam-New York, pp. 147–152. MR: 673790
  153. Sh:153
    Abraham, U., Rubin, M., & Shelah, S. (1985). On the consistency of some partition theorems for continuous colorings, and the structure of \aleph_1-dense real order types. Ann. Pure Appl. Logic, 29(2), 123–206. DOI: 10.1016/0168-0072(84)90024-1 MR: 801036
  154. Sh:154
    Shelah, S., & Stanley, L. J. (1982). Generalized Martin’s axiom and Souslin’s hypothesis for higher cardinals. Israel J. Math., 43(3), 225–236. DOI: 10.1007/BF02761943 MR: 689980
    See [Sh:154a]
  155. Sh:155
    Shelah, S. (1986). The spectrum problem. III. Universal theories. Israel J. Math., 55(2), 229–256. DOI: 10.1007/BF02801997 MR: 868182
  156. Sh:156
    Baldwin, J. T., & Shelah, S. (1985). Second-order quantifiers and the complexity of theories. Notre Dame J. Formal Logic, 26(3), 229–303. DOI: 10.1305/ndjfl/1093870870 MR: 796638
  157. Sh:157
    Lachlan, A. H., & Shelah, S. (1984). Stable structures homogeneous for a finite binary language. Israel J. Math., 49(1-3), 155–180. DOI: 10.1007/BF02760648 MR: 788267
  158. Sh:158
    Harrington, L. A., Makkai, M., & Shelah, S. (1984). A proof of Vaught’s conjecture for \omega-stable theories. Israel J. Math., 49(1-3), 259–280. DOI: 10.1007/BF02760651 MR: 788270
  159. Sh:159
    Shelah, S., & Woodin, W. H. (1984). Forcing the failure of CH by adding a real. J. Symbolic Logic, 49(4), 1185–1189. DOI: 10.2307/2274270 MR: 771786
  160. Sh:160
    Hodges, W., & Shelah, S. (1986). Naturality and definability. I. J. London Math. Soc. (2), 33(1), 1–12. DOI: 10.1112/jlms/s2-33.1.1 MR: 829382
  161. Sh:161
    Shelah, S. (1985). Incompactness in regular cardinals. Notre Dame J. Formal Logic, 26(3), 195–228. DOI: 10.1305/ndjfl/1093870869 MR: 796637
  162. Sh:162
    Hart, B. T., Laflamme, C., & Shelah, S. (1993). Models with second order properties. V. A general principle. Ann. Pure Appl. Logic, 64(2), 169–194. arXiv: math/9311211 DOI: 10.1016/0168-0072(93)90033-A MR: 1241253
  163. Sh:163
    Gurevich, Y., & Shelah, S. (1985). To the decision problem for branching time logic. In Foundations of logic and linguistics (Salzburg, 1983), Plenum, New York, pp. 181–198. MR: 797952
  164. Sh:164
    Jarden, M., & Shelah, S. (1983). Pseudo-algebraically closed fields over rational function fields. Proc. Amer. Math. Soc., 87(2), 223–228. DOI: 10.2307/2043693 MR: 681825
  165. Sh:165
    Shelah, S., & Weiss, B. (1982). Measurable recurrence and quasi-invariant measures. Israel J. Math., 43(2), 154–160. DOI: 10.1007/BF02761726 MR: 689974
  166. Sh:166
    Mekler, A. H., & Shelah, S. (1985). Stationary logic and its friends. I. Notre Dame J. Formal Logic, 26(2), 129–138. DOI: 10.1305/ndjfl/1093870821 MR: 783593
  167. Sh:167
    Shelah, S., & Stanley, L. J. (1986). S-forcing. IIa. Adding diamonds and more applications: coding sets, Arhangelskiı̆’s problem and {\mathcal L}[Q^{<\omega}_1,Q^1_2]. Israel J. Math., 56(1), 1–65. With an appendix by John P. Burgess DOI: 10.1007/BF02776239 MR: 879913
  168. Sh:168
    Gurevich, Y., & Shelah, S. (1989). On the strength of the interpretation method. J. Symbolic Logic, 54(2), 305–323. DOI: 10.2307/2274850 MR: 997869
  169. Sh:169
    Eklof, P. C., Mekler, A. H., & Shelah, S. (1987). On strongly nonreflexive groups. Israel J. Math., 59(3), 283–298. DOI: 10.1007/BF02774142 MR: 920497
  170. Sh:170
    Shelah, S. (1984). On logical sentences in PA. In Logic colloquium ’82 (Florence, 1982), Vol. 112, North-Holland, Amsterdam, pp. 145–160. DOI: 10.1016/S0049-237X(08)71815-9 MR: 762109
  171. Sh:172
    Shelah, S. (1984). A combinatorial principle and endomorphism rings. I. On p-groups. Israel J. Math., 49(1-3), 239–257. DOI: 10.1007/BF02760650 MR: 788269
  172. Sh:173
    Aharoni, R., Nash-Williams, C. S. J. A., & Shelah, S. (1984). Marriage in infinite societies. In Progress in graph theory (Waterloo, Ont., 1982), Academic Press, Toronto, ON, pp. 71–79. MR: 776791
  173. Sh:174
    Grossberg, R. P., & Shelah, S. (1983). On universal locally finite groups. Israel J. Math., 44(4), 289–302. DOI: 10.1007/BF02761988 MR: 710234
  174. Sh:175
    Shelah, S. (1984). On universal graphs without instances of CH. Ann. Pure Appl. Logic, 26(1), 75–87. DOI: 10.1016/0168-0072(84)90042-3 MR: 739914
  175. Sh:175a
    Shelah, S. (1990). Universal graphs without instances of CH: revisited. Israel J. Math., 70(1), 69–81. DOI: 10.1007/BF02807219 MR: 1057268
  176. Sh:176
    Shelah, S. (1984). Can you take Solovay’s inaccessible away? Israel J. Math., 48(1), 1–47. DOI: 10.1007/BF02760522 MR: 768264
  177. Sh:177
    Shelah, S. (1984). More on proper forcing. J. Symbolic Logic, 49(4), 1034–1038. DOI: 10.2307/2274259 MR: 771775
  178. Sh:178
    Gurevich, Y., & Shelah, S. (1983). Random models and the Gödel case of the decision problem. J. Symbolic Logic, 48(4), 1120–1124 (1984). DOI: 10.2307/2273674 MR: 727799
  179. Sh:179
    Shelah, S., & Steinhorn, C. I. (1986). On the nonaxiomatizability of some logics by finitely many schemas. Notre Dame J. Formal Logic, 27(1), 1–11. DOI: 10.1305/ndjfl/1093636517 MR: 819640
  180. Sh:180
    Shelah, S., & Steinhorn, C. I. (1990). The nonaxiomatizability of L(Q^2_{\aleph_1}) by finitely many schemata. Notre Dame J. Formal Logic, 31(1), 1–13. DOI: 10.1305/ndjfl/1093635328 MR: 1043787
  181. Sh:181
    Kaufmann, M., & Shelah, S. (1984). A nonconservativity result on global choice. Ann. Pure Appl. Logic, 27(3), 209–214. DOI: 10.1016/0168-0072(84)90026-5 MR: 765590
  182. Sh:182
    Abraham, U., & Shelah, S. (1986). On the intersection of closed unbounded sets. J. Symbolic Logic, 51(1), 180–189. DOI: 10.2307/2273954 MR: 830084
  183. Sh:183
    Gurevich, Y., & Shelah, S. (1983). Rabin’s uniformization problem. J. Symbolic Logic, 48(4), 1105–1119 (1984). DOI: 10.2307/2273673 MR: 727798
  184. Sh:184
    Goldfarb, W. D., Gurevich, Y., & Shelah, S. (1984). A decidable subclass of the minimal Gödel class with identity. J. Symbolic Logic, 49(4), 1253–1261. DOI: 10.2307/2274275 MR: 771791
  185. Sh:185
    Shelah, S. (1983). Lifting problem of the measure algebra. Israel J. Math., 45(1), 90–96. DOI: 10.1007/BF02760673 MR: 710248
  186. Sh:186
    Shelah, S. (1984). Diamonds, uniformization. J. Symbolic Logic, 49(4), 1022–1033. DOI: 10.2307/2274258 MR: 771774
  187. Sh:187
    Mekler, A. H., & Shelah, S. (1986). Stationary logic and its friends. II. Notre Dame J. Formal Logic, 27(1), 39–50. DOI: 10.1305/ndjfl/1093636521 MR: 819644
  188. Sh:188
    Shelah, S. (1984). A pair of nonisomorphic \equiv_{\infty \lambda } models of power \lambda for \lambda singular with \lambda ^\omega =\lambda. Notre Dame J. Formal Logic, 25(2), 97–104. DOI: 10.1305/ndjfl/1093870570 MR: 733596
  189. Sh:189
    Shelah, S. (1985). On the possible number \mathrm{no}(M) = the number of nonisomorphic models L_{\infty,\lambda}-equivalent to M of power \lambda, for \lambda singular. Notre Dame J. Formal Logic, 26(1), 36–50. DOI: 10.1305/ndjfl/1093870759 MR: 766665
  190. Sh:190
    Göbel, R., & Shelah, S. (1985). Semirigid classes of cotorsion-free abelian groups. J. Algebra, 93(1), 136–150. DOI: 10.1016/0021-8693(85)90178-4 MR: 780487
  191. Sh:191
    Gitik, M., & Shelah, S. (1984). On the \mathbb I-condition. Israel J. Math., 48(2-3), 148–158. DOI: 10.1007/BF02761160 MR: 770697
  192. Sh:192
    Shelah, S. (1987). Uncountable groups have many nonconjugate subgroups. Ann. Pure Appl. Logic, 36(2), 153–206. DOI: 10.1016/0168-0072(87)90016-9 MR: 911580
  193. Sh:193
    Lehmann, D. J., & Shelah, S. (1982). Reasoning with time and chance. Inform. And Control, 53(3), 165–198. DOI: 10.1016/S0019-9958(82)91022-1 MR: 715529
  194. Sh:194
    Aharoni, R., Nash-Williams, C. S. J. A., & Shelah, S. (1983). A general criterion for the existence of transversals. Proc. London Math. Soc. (3), 47(1), 43–68. DOI: 10.1112/plms/s3-47.1.43 MR: 698927
  195. Sh:195
    Droste, M., & Shelah, S. (1985). A construction of all normal subgroup lattices of 2-transitive automorphism groups of linearly ordered sets. Israel J. Math., 51(3), 223–261. DOI: 10.1007/BF02772666 MR: 804485
  196. Sh:196
    Aharoni, R., Nash-Williams, C. S. J. A., & Shelah, S. (1984). Another form of a criterion for the existence of transversals. J. London Math. Soc. (2), 29(2), 193–203. DOI: 10.1112/jlms/s2-29.2.193 MR: 744087
  197. Sh:198
    Levinski, J.-P., Magidor, M., & Shelah, S. (1990). Chang’s conjecture for \aleph_\omega. Israel J. Math., 69(2), 161–172. DOI: 10.1007/BF02937302 MR: 1045371
  198. Sh:199
    Shelah, S. (1985). Remarks in abstract model theory. Ann. Pure Appl. Logic, 29(3), 255–288. DOI: 10.1016/0168-0072(85)90002-8 MR: 808815
  199. Sh:200
    Shelah, S. (1985). Classification of first order theories which have a structure theorem. Bull. Amer. Math. Soc. (N.S.), 12(2), 227–232. DOI: 10.1090/S0273-0979-1985-15354-6 MR: 776474
  200. Sh:201
    Kaufmann, M., & Shelah, S. (1985). On random models of finite power and monadic logic. Discrete Math., 54(3), 285–293. DOI: 10.1016/0012-365X(85)90112-8 MR: 790589
  201. Sh:202
    Shelah, S. (1984). On co-\kappa-Souslin relations. Israel J. Math., 47(2-3), 139–153. DOI: 10.1007/BF02760513 MR: 738165
  202. Sh:203
    Ben-David, S., & Shelah, S. (1986). Souslin trees and successors of singular cardinals. Ann. Pure Appl. Logic, 30(3), 207–217. DOI: 10.1016/0168-0072(86)90020-5 MR: 836425
  203. Sh:204
    Magidor, M., & Shelah, S. (1994). When does almost free imply free? (For groups, transversals, etc.). J. Amer. Math. Soc., 7(4), 769–830. DOI: 10.2307/2152733 MR: 1249391
  204. Sh:205
    Shelah, S. (1985). Monadic logic and Löwenheim numbers. Ann. Pure Appl. Logic, 28(2), 203–216. DOI: 10.1016/0168-0072(85)90026-0 MR: 779162
  205. Sh:206
    Shelah, S. (1988). Decomposing topological spaces into two rigid homeomorphic subspaces. Israel J. Math., 63(2), 183–211. DOI: 10.1007/BF02765038 MR: 968538
  206. Sh:207
    Shelah, S. (1984). On cardinal invariants of the continuum. In Axiomatic set theory (Boulder, Colo., 1983), Vol. 31, Amer. Math. Soc., Providence, RI, pp. 183–207. DOI: 10.1090/conm/031/763901 MR: 763901
  207. Sh:208
    Shelah, S. (1985). More on the weak diamond. Ann. Pure Appl. Logic, 28(3), 315–318. DOI: 10.1016/0168-0072(85)90019-3 MR: 790390
  208. Sh:209
    Shelah, S., & Todorčević, S. (1986). A note on small Baire spaces. Canad. J. Math., 38(3), 659–665. DOI: 10.4153/CJM-1986-033-8 MR: 845670
  209. Sh:210
    Bonnet, R., & Shelah, S. (1985). Narrow Boolean algebras. Ann. Pure Appl. Logic, 28(1), 1–12. DOI: 10.1016/0168-0072(85)90028-4 MR: 776283
  210. Sh:211
    Shelah, S. (1992). The Hanf numbers of stationary logic. II. Comparison with other logics. Notre Dame J. Formal Logic, 33(1), 1–12. arXiv: math/9201243 DOI: 10.1305/ndjfl/1093636007 MR: 1149955
  211. Sh:213
    Denenberg, L., Gurevich, Y., & Shelah, S. (1986). Definability by constant-depth polynomial-size circuits. Inform. And Control, 70(2-3), 216–240. DOI: 10.1016/S0019-9958(86)80006-7 MR: 859107
  212. Sh:214
    Mekler, A. H., & Shelah, S. (1986). \omega-elongations and Crawley’s problem. Pacific J. Math., 121(1), 121–132. http://projecteuclid.org/euclid.pjm/1102702803 MR: 815039
  213. Sh:214a
    Mekler, A. H., & Shelah, S. (1986). The solution to Crawley’s problem. Pacific J. Math., 121(1), 133–134. http://projecteuclid.org/euclid.pjm/1102702804 MR: 815040
  214. Sh:215
    Harrington, L. A., Marker, D. E., & Shelah, S. (1988). Borel orderings. Trans. Amer. Math. Soc., 310(1), 293–302. DOI: 10.2307/2001122 MR: 965754
  215. Sh:216
    Holland, W. C., Mekler, A. H., & Shelah, S. (1985). Lawless order. Order, 1(4), 383–397. DOI: 10.1007/BF00582744 MR: 787550
  216. Sh:216a
    Holland, W. C., Mekler, A. H., & Shelah, S. (1986). Total orders whose carried groups satisfy no laws. In Algebra and order (Luminy-Marseille, 1984), Vol. 14, Heldermann, Berlin, pp. 29–33. MR: 891446
  217. Sh:218
    Shelah, S. (1985). On measure and category. Israel J. Math., 52(1-2), 110–114. DOI: 10.1007/BF02776084 MR: 815606
  218. Sh:219
    Göbel, R., & Shelah, S. (1985). Modules over arbitrary domains. Math. Z., 188(3), 325–337. DOI: 10.1007/BF01159179 MR: 771988
  219. Sh:220
    Shelah, S. (1987). Existence of many L_{\infty,\lambda}-equivalent, nonisomorphic models of T of power \lambda. Ann. Pure Appl. Logic, 34(3), 291–310. DOI: 10.1016/0168-0072(87)90005-4 MR: 899084
  220. Sh:221
    Abraham, U., Shelah, S., & Solovay, R. M. (1987). Squares with diamonds and Souslin trees with special squares. Fund. Math., 127(2), 133–162. DOI: 10.4064/fm-127-2-133-162 MR: 882623
  221. Sh:222
    Grossberg, R. P., & Shelah, S. (1986). On the number of nonisomorphic models of an infinitary theory which has the infinitary order property. I. J. Symbolic Logic, 51(2), 302–322. DOI: 10.2307/2274053 MR: 840407
  222. Sh:223
    Droste, M., & Shelah, S. (1987). On the universality of systems of words in permutation groups. Pacific J. Math., 127(2), 321–328. http://projecteuclid.org/euclid.pjm/1102699565 MR: 881762
  223. Sh:224
    Göbel, R., & Shelah, S. (1986). Modules over arbitrary domains. II. Fund. Math., 126(3), 217–243. DOI: 10.4064/fm-126-3-217-243 MR: 882431
  224. Sh:225
    Shelah, S. (1987). On the number of strongly \aleph_\epsilon-saturated models of power \lambda. Ann. Pure Appl. Logic, 36(3), 279–287. DOI: 10.1016/0168-0072(87)90020-0 MR: 915901
    See [Sh:225a]
  225. Sh:225a
    Shelah, S. (1988). Number of strongly \aleph_\epsilon saturated models—an addition. Ann. Pure Appl. Logic, 40(1), 89–91. DOI: 10.1016/0168-0072(88)90041-3 MR: 965589
    improvement of [Sh:225]
  226. Sh:226
    Foreman, M. D., Magidor, M., & Shelah, S. (1986). 0^\sharp and some forcing principles. J. Symbolic Logic, 51(1), 39–46. DOI: 10.2307/2273940 MR: 830070
  227. Sh:227
    Shelah, S. (1984). A combinatorial theorem and endomorphism rings of abelian groups. II. In Abelian groups and modules (Udine, 1984), Vol. 287, Springer, Vienna, pp. 37–86. DOI: 10.1007/978-3-7091-2814-5_3 MR: 789808
  228. Sh:230
    Gurevich, Y., & Shelah, S. (1985). The decision problem for branching time logic. J. Symbolic Logic, 50(3), 668–681. DOI: 10.2307/2274321 MR: 805676
  229. Sh:231
    Juhász, I., & Shelah, S. (1986). How large can a hereditarily separable or hereditarily Lindelöf space be? Israel J. Math., 53(3), 355–364. DOI: 10.1007/BF02786567 MR: 852486
  230. Sh:235
    Shelah, S., & Soifer, A. (1986). Two problems on \aleph_0-indecomposable abelian groups. J. Algebra, 99(2), 359–369. DOI: 10.1016/0021-8693(86)90033-5 MR: 837550
  231. Sh:236
    Ben-David, S., & Shelah, S. (1986). Nonspecial Aronszajn trees on \aleph_{\omega+1}. Israel J. Math., 53(1), 93–96. DOI: 10.1007/BF02772672 MR: 861900
  232. Sh:238
    Grossberg, R. P., & Shelah, S. (1986). A nonstructure theorem for an infinitary theory which has the unsuperstability property. Illinois J. Math., 30(2), 364–390. http://projecteuclid.org/euclid.ijm/1256044645 MR: 840135
  233. Sh:239
    Shelah, S., & Soifer, A. (1986). Countable \aleph_0-indecomposable mixed abelian groups of finite torsion-free rank. J. Algebra, 100(2), 421–429. DOI: 10.1016/0021-8693(86)90085-2 MR: 840585
  234. Sh:240
    Foreman, M. D., Magidor, M., & Shelah, S. (1988). Martin’s maximum, saturated ideals, and nonregular ultrafilters. I. Ann. Of Math. (2), 127(1), 1–47. DOI: 10.2307/1971415 MR: 924672
    See [Sh:240a]
  235. Sh:241
    Shelah, S., & Woodin, W. H. (1990). Large cardinals imply that every reasonably definable set of reals is Lebesgue measurable. Israel J. Math., 70(3), 381–394. DOI: 10.1007/BF02801471 MR: 1074499
  236. Sh:242
    Blass, A. R., & Shelah, S. (1987). There may be simple P_{\aleph_1}- and P_{\aleph_2}-points and the Rudin-Keisler ordering may be downward directed. Ann. Pure Appl. Logic, 33(3), 213–243. DOI: 10.1016/0168-0072(87)90082-0 MR: 879489
  237. Sh:243
    Gurevich, Y., & Shelah, S. (1987). Expected computation time for Hamiltonian path problem. SIAM J. Comput., 16(3), 486–502. DOI: 10.1137/0216034 MR: 889404
  238. Sh:244a
    Gurevich, Y., & Shelah, S. (1986). Fixed-point extensions of first-order logic. Ann. Pure Appl. Logic, 32(3), 265–280. DOI: 10.1016/0168-0072(86)90055-2 MR: 865992
    See [Sh:244]
  239. Sh:245
    Compton, K. J., Henson, C. W., & Shelah, S. (1987). Nonconvergence, undecidability, and intractability in asymptotic problems. Ann. Pure Appl. Logic, 36(3), 207–224. DOI: 10.1016/0168-0072(87)90017-0 MR: 915898
  240. Sh:246
    Shelah, S. (1991). On a problem in cylindric algebra. In Algebraic logic (Budapest, 1988), Vol. 54, North-Holland, Amsterdam, pp. 645–664. MR: 1153444
  241. Sh:249
    Hajnal, A., Juhász, I., & Shelah, S. (1986). Splitting strongly almost disjoint families. Trans. Amer. Math. Soc., 295(1), 369–387. DOI: 10.2307/2000161 MR: 831204
  242. Sh:250
    Shelah, S. (1988). Some notes on iterated forcing with 2^{\aleph_0}>\aleph_2. Notre Dame J. Formal Logic, 29(1), 1–17. DOI: 10.1305/ndjfl/1093637766 MR: 932690
  243. Sh:251
    Mekler, A. H., & Shelah, S. (1987). When \kappa-free implies strongly \kappa-free. In Abelian group theory (Oberwolfach, 1985), Gordon; Breach, New York, pp. 137–148. MR: 1011309
  244. Sh:252
    Foreman, M. D., Magidor, M., & Shelah, S. (1988). Martin’s maximum, saturated ideals and nonregular ultrafilters. II. Ann. Of Math. (2), 127(3), 521–545. DOI: 10.2307/2007004 MR: 942519
  245. Sh:253
    Shelah, S. (1987). Iterated forcing and normal ideals on \omega_1. Israel J. Math., 60(3), 345–380. DOI: 10.1007/BF02780398 MR: 937796
    initial version of Ch. XIII of [Sh:f]
  246. Sh:254
    Baumgartner, J. E., & Shelah, S. (1987). Remarks on superatomic Boolean algebras. Ann. Pure Appl. Logic, 33(2), 109–129. DOI: 10.1016/0168-0072(87)90077-7 MR: 874021
  247. Sh:255
    Eklof, P. C., & Shelah, S. (1987). On groups A such that A\oplus \mathbf Z^n\cong A. In Abelian group theory (Oberwolfach, 1985), Gordon; Breach, New York, pp. 149–163. MR: 1011310
  248. Sh:256
    Shelah, S. (1987). More on powers of singular cardinals. Israel J. Math., 59(3), 299–326. DOI: 10.1007/BF02774143 MR: 920498
  249. Sh:257
    Blass, A. R., & Shelah, S. (1989). Ultrafilters with small generating sets. Israel J. Math., 65(3), 259–271. DOI: 10.1007/BF02764864 MR: 1005010
  250. Sh:258
    Shelah, S., & Stanley, L. J. (1987). A theorem and some consistency results in partition calculus. Ann. Pure Appl. Logic, 36(2), 119–152. DOI: 10.1016/0168-0072(87)90015-7 MR: 911579
  251. Sh:260
    Shelah, S., & Steprāns, J. (1987). Extraspecial p-groups. Ann. Pure Appl. Logic, 34(1), 87–97. DOI: 10.1016/0168-0072(87)90041-8 MR: 887554
  252. Sh:261
    Shelah, S. (1988). A graph which embeds all small graphs on any large set of vertices. Ann. Pure Appl. Logic, 38(2), 171–183. DOI: 10.1016/0168-0072(88)90052-8 MR: 938374
  253. Sh:262
    Shelah, S. (1989). The number of pairwise non-elementarily-embeddable models. J. Symbolic Logic, 54(4), 1431–1455. DOI: 10.2307/2274824 MR: 1026608
  254. Sh:263
    Shelah, S. (1987). Semiproper forcing axiom implies Martin maximum but not PFA^+. J. Symbolic Logic, 52(2), 360–367. DOI: 10.2307/2274385 MR: 890443
    represented in Ch. XVII of [Sh:f]
  255. Sh:264
    Shelah, S., & Steprāns, J. (1988). A Banach space on which there are few operators. Proc. Amer. Math. Soc., 104(1), 101–105. DOI: 10.2307/2047469 MR: 958051
  256. Sh:265
    Dugas, M. H., Fay, T. H., & Shelah, S. (1987). Singly cogenerated annihilator classes. J. Algebra, 109(1), 127–137. DOI: 10.1016/0021-8693(87)90168-2 MR: 898341
  257. Sh:266
    Shelah, S. (2019). Compactness in singular cardinals revisited. Sarajevo J. Math., 15(28)(2), 201–208. arXiv: 1401.3175 DOI: 10.5644/sjm MR: 4069744
  258. Sh:267
    Fleissner, W. G., & Shelah, S. (1989). Collectionwise Hausdorff: incompactness at singulars. Topology Appl., 31(2), 101–107. DOI: 10.1016/0166-8641(89)90074-6 MR: 994403
  259. Sh:268
    Hajnal, A., Kanamori, A., & Shelah, S. (1987). Regressive partition relations for infinite cardinals. Trans. Amer. Math. Soc., 299(1), 145–154. DOI: 10.2307/2000486 MR: 869404
  260. Sh:269
    Shelah, S. (1989). “Gap 1” two-cardinal principles and the omitting types theorem for \mathcal L (Q). Israel J. Math., 65(2), 133–152. DOI: 10.1007/BF02764857 MR: 998667
  261. Sh:270
    Shelah, S. (1989). Baire irresolvable spaces and lifting for a layered ideal. Topology Appl., 33(3), 217–221. DOI: 10.1016/0166-8641(89)90102-8 MR: 1026923
  262. Sh:271
    Hodges, W., & Shelah, S. (1991). There are reasonably nice logics. J. Symbolic Logic, 56(1), 300–322. DOI: 10.2307/2274921 MR: 1131747
  263. Sh:272
    Shelah, S. (1987). On almost categorical theories. In Classification theory (Chicago, IL, 1985), Vol. 1292, Springer, Berlin, pp. 498–500. DOI: 10.1007/BFb0082244 MR: 1033035
  264. Sh:273
    Shelah, S. (1988). Can the fundamental (homotopy) group of a space be the rationals? Proc. Amer. Math. Soc., 103(2), 627–632. DOI: 10.2307/2047190 MR: 943095
  265. Sh:274
    Mekler, A. H., & Shelah, S. (1989). Uniformization principles. J. Symbolic Logic, 54(2), 441–459. DOI: 10.2307/2274859 MR: 997878
  266. Sh:275
    Mekler, A. H., & Shelah, S. (1989). L_{\infty\omega}-free algebras. Algebra Universalis, 26(3), 351–366. DOI: 10.1007/BF01211842 MR: 1044855
  267. Sh:276
    Shelah, S. (1988). Was Sierpiński right? I. Israel J. Math., 62(3), 355–380. DOI: 10.1007/BF02783304 MR: 955139
  268. Sh:277
    Gurevich, Y., & Shelah, S. (1989). Nearly linear time. In Logic at Botik ’89 (Pereslavl-Zalesskiy, 1989), Vol. 363, Springer, Berlin, pp. 108–118. DOI: 10.1007/3-540-51237-3_10 MR: 1030571
  269. Sh:278
    Chatzidakis, Z. M., Cherlin, G. L., Shelah, S., Srour, G., & Wood, C. (1987). Orthogonality of types in separably closed fields. In Classification theory (Chicago, IL, 1985), Vol. 1292, Springer, Berlin, pp. 72–88. DOI: 10.1007/BFb0082232 MR: 1033023
  270. Sh:279
    Shelah, S., & Stanley, L. J. (1988). Weakly compact cardinals and nonspecial Aronszajn trees. Proc. Amer. Math. Soc., 104(3), 887–897. DOI: 10.2307/2046812 MR: 964870
  271. Sh:280
    Shelah, S. (1990). Strong negative partition above the continuum. J. Symbolic Logic, 55(1), 21–31. DOI: 10.2307/2274951 MR: 1043541
  272. Sh:281
    Drezner, Z., & Shelah, S. (1987). On the complexity of the Elzinga-Hearn algorithm for the 1-center problem. Math. Oper. Res., 12(2), 255–261. DOI: 10.1287/moor.12.2.255 MR: 888974
  273. Sh:282
    Shelah, S. (1988). Successors of singulars, cofinalities of reduced products of cardinals and productivity of chain conditions. Israel J. Math., 62(2), 213–256. DOI: 10.1007/BF02787123 MR: 947823
  274. Sh:283
    Shelah, S. (1987). On reconstructing separable reduced p-groups with a given socle. Israel J. Math., 60(2), 146–166. DOI: 10.1007/BF02790788 MR: 931873
  275. Sh:284a
    Shelah, S. (1988). Notes on monadic logic. Part A. Monadic theory of the real line. Israel J. Math., 63(3), 335–352. DOI: 10.1007/BF02778038 MR: 969946
  276. Sh:284b
    Shelah, S. (1990). Notes on monadic logic. Part B: Complexity of linear orders in ZFC. Israel J. Math., 69(1), 94–116. DOI: 10.1007/BF02764732 MR: 1046176
  277. Sh:284c
    Shelah, S. (1990). More on monadic logic. Part C. Monadically interpreting in stable unsuperstable \mathcal T and the monadic theory of {}^\omega\lambda. Israel J. Math., 70(3), 353–364. DOI: 10.1007/BF02801469 MR: 1074497
  278. Sh:284d
    Shelah, S. (1989). More on monadic logic. Part D: A note on addition of theories. Israel J. Math., 68(3), 302–306. DOI: 10.1007/BF02764986 MR: 1039475
  279. Sh:285
    Makkai, M., & Shelah, S. (1990). Categoricity of theories in L_{\kappa\omega}, with \kappa a compact cardinal. Ann. Pure Appl. Logic, 47(1), 41–97. DOI: 10.1016/0168-0072(90)90016-U MR: 1050561
  280. Sh:286
    Judah, H. I., & Shelah, S. (1988). Q-sets do not necessarily have strong measure zero. Proc. Amer. Math. Soc., 102(3), 681–683. DOI: 10.2307/2047245 MR: 929002
  281. Sh:287
    Blass, A. R., & Shelah, S. (1989). Near coherence of filters. III. A simplified consistency proof. Notre Dame J. Formal Logic, 30(4), 530–538. DOI: 10.1305/ndjfl/1093635236 MR: 1036674
  282. Sh:288
    Shelah, S. (1992). Strong partition relations below the power set: consistency; was Sierpiński right? II. In Sets, graphs and numbers (Budapest, 1991), Vol. 60, North-Holland, Amsterdam, pp. 637–668. arXiv: math/9201244 MR: 1218224
  283. Sh:289
    Shelah, S. (1989). Consistency of positive partition theorems for graphs and models. In Set theory and its applications (Toronto, ON, 1987), Vol. 1401, Springer, Berlin, pp. 167–193. DOI: 10.1007/BFb0097339 MR: 1031773
  284. Sh:290
    Biró, B., & Shelah, S. (1988). Isomorphic but not lower base-isomorphic cylindric set algebras. J. Symbolic Logic, 53(3), 846–853. DOI: 10.2307/2274576 MR: 961003
  285. Sh:291
    Mekler, A. H., Nelson, E. M., & Shelah, S. (1993). A variety with solvable, but not uniformly solvable, word problem. Proc. London Math. Soc. (3), 66(2), 225–256. arXiv: math/9301203 DOI: 10.1112/plms/s3-66.2.225 MR: 1199065
  286. Sh:292
    Judah, H. I., & Shelah, S. (1988). Souslin forcing. J. Symbolic Logic, 53(4), 1188–1207. DOI: 10.2307/2274613 MR: 973109
  287. Sh:293
    Shelah, S., & Stanley, L. J. (1993). More consistency results in partition calculus. Israel J. Math., 81(1-2), 97–110. DOI: 10.1007/BF02761299 MR: 1231180
  288. Sh:294
    Shelah, S., & Stanley, L. J. (1992). Coding and reshaping when there are no sharps. In Set theory of the continuum (Berkeley, CA, 1989), Vol. 26, Springer, New York, pp. 407–416. arXiv: math/9201249 DOI: 10.1007/978-1-4613-9754-0_21 MR: 1233827
  289. Sh:296
    Shelah, S., & Steprāns, J. (1989). Nontrivial homeomorphisms of \beta \mathbf N\setminus \mathbf N without the continuum hypothesis. Fund. Math., 132(2), 135–141. DOI: 10.4064/fm-132-2-135-141 MR: 1002627
  290. Sh:297
    Hodkinson, I. M., & Shelah, S. (1993). A construction of many uncountable rings using SFP domains and Aronszajn trees. Proc. London Math. Soc. (3), 67(3), 449–492. DOI: 10.1112/plms/s3-67.3.449 MR: 1238042
  291. Sh:298
    Eklof, P. C., & Shelah, S. (1987). A calculation of injective dimension over valuation domains. Rend. Sem. Mat. Univ. Padova, 78, 279–284. http://www.numdam.org/item?id=RSMUP_1987__78__279_0 MR: 934519
  292. Sh:299
    Shelah, S. (1987). Taxonomy of universal and other classes. In Proceedings of the International Congress of Mathematicians (Berkeley, Calif., 1986), Vol. 1, Amer. Math. Soc., Providence, RI, pp. 154–162. MR: 934221
  293. Sh:300
    Shelah, S. (1987). Universal classes. In Classification theory (Chicago, IL, 1985), Vol. 1292, Springer, Berlin, pp. 264–418. DOI: 10.1007/BFb0082242 MR: 1033033
  294. Sh:301
    Hodges, W., & Shelah, S. (2019). Naturality and definability II. Cubo, 21(3), 9–27. arXiv: math/0102060 DOI: 10.4067/s0719-06462019000300009 MR: 4077584
  295. Sh:302
    Grossberg, R. P., & Shelah, S. (1989). On the structure of \mathrm{Ext}_p(G,\mathbf Z). J. Algebra, 121(1), 117–128. DOI: 10.1016/0021-8693(89)90088-4 MR: 992319
  296. Sh:302a
    Grossberg, R. P., & Shelah, S. (1998). On cardinalities in quotients of inverse limits of groups. Math. Japon., 47(2), 189–197. arXiv: math/9911225 MR: 1615081
  297. Sh:303
    Komjáth, P., & Shelah, S. (1988). Forcing constructions for uncountably chromatic graphs. J. Symbolic Logic, 53(3), 696–707. DOI: 10.2307/2274566 MR: 960993
  298. Sh:304
    Shelah, S., & Spencer, J. H. (1988). Zero-one laws for sparse random graphs. J. Amer. Math. Soc., 1(1), 97–115. DOI: 10.2307/1990968 MR: 924703
  299. Sh:305
    Shelah, S., & Thomas, S. (1989). Subgroups of small index in infinite symmetric groups. II. J. Symbolic Logic, 54(1), 95–99. DOI: 10.2307/2275018 MR: 987325
  300. Sh:306
    Mekler, A. H., & Shelah, S. (1990). Determining abelian p-groups from their n-socles. Comm. Algebra, 18(2), 287–307. DOI: 10.1080/00927879008823915 MR: 1047311
  301. Sh:307
    Buechler, S., & Shelah, S. (1989). On the existence of regular types. Ann. Pure Appl. Logic, 45(3), 277–308. DOI: 10.1016/0168-0072(89)90039-0 MR: 1032833
  302. Sh:308
    Judah, H. I., & Shelah, S. (1990). The Kunen-Miller chart (Lebesgue measure, the Baire property, Laver reals and preservation theorems for forcing). J. Symbolic Logic, 55(3), 909–927. DOI: 10.2307/2274464 MR: 1071305
  303. Sh:310
    Gitik, M., & Shelah, S. (1999). Cardinal preserving ideals. J. Symbolic Logic, 64(4), 1527–1551. arXiv: math/9605234 DOI: 10.2307/2586794 MR: 1780068
  304. Sh:312
    Shelah, S. (2017). Existentially closed locally finite groups (Sh312). In Beyond first order model theory, CRC Press, Boca Raton, FL, pp. 221–298. arXiv: 1102.5578 MR: 3729328
  305. Sh:313
    Mekler, A. H., & Shelah, S. (1988). Diamond and \lambda-systems. Fund. Math., 131(1), 45–51. DOI: 10.4064/fm-131-1-45-51 MR: 970913
  306. Sh:314
    Mekler, A. H., Rosłanowski, A., & Shelah, S. (1999). On the p-rank of Ext. Israel J. Math., 112, 327–356. arXiv: math/9806165 DOI: 10.1007/BF02773487 MR: 1714978
  307. Sh:315
    Shelah, S., & Steprāns, J. (1988). PFA implies all automorphisms are trivial. Proc. Amer. Math. Soc., 104(4), 1220–1225. DOI: 10.2307/2047617 MR: 935111
  308. Sh:316
    Fuchs, L., & Shelah, S. (1989). Kaplansky’s problem on valuation rings. Proc. Amer. Math. Soc., 105(1), 25–30. DOI: 10.2307/2046728 MR: 929431
  309. Sh:317
    Becker, T., Fuchs, L., & Shelah, S. (1989). Whitehead modules over domains. Forum Math., 1(1), 53–68. DOI: 10.1515/form.1989.1.53 MR: 978975
  310. Sh:318
    Macpherson, D., Mekler, A. H., & Shelah, S. (1991). The number of infinite substructures. Math. Proc. Cambridge Philos. Soc., 109(1), 193–209. DOI: 10.1017/S0305004100069668 MR: 1075131
  311. Sh:319
    Judah, H. I., & Shelah, S. (1989). Martin’s axioms, measurability and equiconsistency results. J. Symbolic Logic, 54(1), 78–94. DOI: 10.2307/2275017 MR: 987324
  312. Sh:320
    Juhász, I., Shelah, S., & Soukup, L. (1988). More on countably compact, locally countable spaces. Israel J. Math., 62(3), 302–310. DOI: 10.1007/BF02783299 MR: 955134
  313. Sh:321
    Judah, H. I., & Shelah, S. (1989). \Delta^1_2-sets of reals. Ann. Pure Appl. Logic, 42(3), 207–223. DOI: 10.1016/0168-0072(89)90016-X MR: 998607
  314. Sh:323
    Hart, B. T., & Shelah, S. (1990). Categoricity over P for first order T or categoricity for \phi\in\mathcal L_{\omega_1\omega} can stop at \aleph_k while holding for \aleph_0,\cdots,\aleph_{k-1}. Israel J. Math., 70(2), 219–235. arXiv: math/9201240 DOI: 10.1007/BF02807869 MR: 1070267
  315. Sh:324
    Magidor, M., & Shelah, S. (1996). The tree property at successors of singular cardinals. Arch. Math. Logic, 35(5-6), 385–404. arXiv: math/9501220 DOI: 10.1007/s001530050052 MR: 1420265
  316. Sh:325
    Dugas, M. H., & Shelah, S. (1989). E-transitive groups in L. In Abelian group theory (Perth, 1987), Vol. 87, Amer. Math. Soc., Providence, RI, pp. 191–199. DOI: 10.1090/conm/087/995276 MR: 995276
  317. Sh:326
    Shelah, S. (1992). Vive la différence. I. Nonisomorphism of ultrapowers of countable models. In Set theory of the continuum (Berkeley, CA, 1989), Vol. 26, Springer, New York, pp. 357–405. arXiv: math/9201245 DOI: 10.1007/978-1-4613-9754-0_20 MR: 1233826
    See [Sh:326a]
  318. Sh:327
    Shelah, S. (1991). Strong negative partition relations below the continuum. Acta Math. Hungar., 58(1-2), 95–100. DOI: 10.1007/BF01903551 MR: 1152830
  319. Sh:328
    Shelah, S., & Thomas, S. (1988). Implausible subgroups of infinite symmetric groups. Bull. London Math. Soc., 20(4), 313–318. DOI: 10.1112/blms/20.4.313 MR: 940283
  320. Sh:329
    Shelah, S. (1988). Primitive recursive bounds for van der Waerden numbers. J. Amer. Math. Soc., 1(3), 683–697. DOI: 10.2307/1990952 MR: 929498
  321. Sh:330
    Baldwin, J. T., & Shelah, S. (1990). The primal framework. I. Ann. Pure Appl. Logic, 46(3), 235–264. arXiv: math/9201241 DOI: 10.1016/0168-0072(90)90005-M MR: 1049388
  322. Sh:332
    Gurevich, Y., & Shelah, S. (1988). Nondeterministic Linear Tasks May Require Substantially Nonlinear Deterministic Time in the Case of Sublinear Work Space. In Proceedings of the Twentieth Annual ACM Symposium on Theory of Computing, New York, NY, USA: ACM, pp. 281–289. DOI: 10.1145/62212.62239
  323. Sh:332a
    Gurevich, Y., & Shelah, S. (1990). Nondeterministic linear-time tasks may require substantially nonlinear deterministic time in the case of sublinear work space. J. Assoc. Comput. Mach., 37(3), 674–687. DOI: 10.1145/79147.214070 MR: 1072274
  324. Sh:334
    Hrushovski, E., & Shelah, S. (1991). Stability and omitting types. Israel J. Math., 74(2-3), 289–321. DOI: 10.1007/BF02775793 MR: 1135241
  325. Sh:335
    Judah, H. I., & Shelah, S. (1989). MA(\sigma-centered): Cohen reals, strong measure zero sets and strongly meager sets. Israel J. Math., 68(1), 1–17. DOI: 10.1007/BF02764965 MR: 1035877
  326. Sh:336
    Judah, H. I., & Shelah, S. (1991). Q-sets, Sierpiński sets, and rapid filters. Proc. Amer. Math. Soc., 111(3), 821–832. DOI: 10.2307/2048420 MR: 1045594
  327. Sh:337
    Judah, H. I., & Shelah, S. (1993). \boldsymbol{\Delta}^1_3-sets of reals. J. Symbolic Logic, 58(1), 72–80. DOI: 10.2307/2275325 MR: 1217177
  328. Sh:338
    Judah, H. I., & Shelah, S. (1991). Forcing minimal degree of constructibility. J. Symbolic Logic, 56(3), 769–782. DOI: 10.2307/2275046 MR: 1129141
  329. Sh:339
    Judah, H. I., Shelah, S., & Woodin, W. H. (1990). The Borel conjecture. Ann. Pure Appl. Logic, 50(3), 255–269. NB: A correction of the third section has appeared in 8.3.B of [Bartoszyński, Judah: Set theory. ISBN 1-56881-044-X] DOI: 10.1016/0168-0072(90)90058-A MR: 1086456
  330. Sh:340
    Shelah, S., & Stanley, L. J. (1995). A combinatorial forcing for coding the universe by a real when there are no sharps. J. Symbolic Logic, 60(1), 1–35. arXiv: math/9311204 DOI: 10.2307/2275507 MR: 1324499
  331. Sh:341
    Juhász, I., & Shelah, S. (1989). \pi (X)=\delta(X) for compact X. Topology Appl., 32(3), 289–294. NB: Proof in local case is a mistake DOI: 10.1016/0166-8641(89)90035-7 MR: 1007107
  332. Sh:342
    Hrushovski, E., & Shelah, S. (1989). A dichotomy theorem for regular types. Ann. Pure Appl. Logic, 45(2), 157–169. DOI: 10.1016/0168-0072(89)90059-6 MR: 1044122
  333. Sh:343
    Gurevich, Y., & Shelah, S. (1989). Time polynomial in input or output. J. Symbolic Logic, 54(3), 1083–1088. DOI: 10.2307/2274767 MR: 1011194
  334. Sh:344
    Gitik, M., & Shelah, S. (1989). On certain indestructibility of strong cardinals and a question of Hajnal. Arch. Math. Logic, 28(1), 35–42. DOI: 10.1007/BF01624081 MR: 987765
  335. Sh:345
    Shelah, S. (1990). Products of regular cardinals and cardinal invariants of products of Boolean algebras. Israel J. Math., 70(2), 129–187. DOI: 10.1007/BF02807866 MR: 1070264
  336. Sh:346
    Komjáth, P., & Shelah, S. (1996). On Taylor’s problem. Acta Math. Hungar., 70(3), 217–225. arXiv: math/9402213 DOI: 10.1007/BF02188208 MR: 1374388
  337. Sh:347
    Shelah, S. (1990). Incompactness for chromatic numbers of graphs. In A tribute to Paul Erdős, Cambridge Univ. Press, Cambridge, pp. 361–371. MR: 1117029
  338. Sh:348
    Bartoszyński, T., Judah, H. I., & Shelah, S. (1989). The cofinality of cardinal invariants related to measure and category. J. Symbolic Logic, 54(3), 719–726. DOI: 10.2307/2274736 MR: 1011163
  339. Sh:349
    Shelah, S. (1989). A consistent counterexample in the theory of collectionwise Hausdorff spaces. Israel J. Math., 65(2), 219–224. DOI: 10.1007/BF02764862 MR: 998672
  340. Sh:350
    Dror Farjoun, E., Orr, K. E., & Shelah, S. (1989). Bousfield localization as an algebraic closure of groups. Israel J. Math., 66(1-3), 143–153. DOI: 10.1007/BF02765889 MR: 1017158
  341. Sh:351
    Shelah, S. (1991). Reflecting stationary sets and successors of singular cardinals. Arch. Math. Logic, 31(1), 25–53. DOI: 10.1007/BF01370693 MR: 1126352
  342. Sh:352
    Eklof, P. C., Fuchs, L., & Shelah, S. (1990). Baer modules over domains. Trans. Amer. Math. Soc., 322(2), 547–560. DOI: 10.2307/2001714 MR: 974514
  343. Sh:353
    Shelah, S., & Steprāns, J. (1994). Homogeneous almost disjoint families. Algebra Universalis, 31(2), 196–203. DOI: 10.1007/BF01236517 MR: 1259349
  344. Sh:354
    Perles, M. A., & Shelah, S. (1990). A closed (n+1)-convex set in \mathbf R^2 is a union of n^6 convex sets. Israel J. Math., 70(3), 305–312. DOI: 10.1007/BF02801466 MR: 1074494
  345. Sh:356
    Milner, E. C., & Shelah, S. (1990). Graphs with no unfriendly partitions. In A tribute to Paul Erdős, Cambridge Univ. Press, Cambridge, pp. 373–384. DOI: 10.1017/cbo9780511983917.031 MR: 1117030
  346. Sh:357
    Gitik, M., & Shelah, S. (1989). Forcings with ideals and simple forcing notions. Israel J. Math., 68(2), 129–160. DOI: 10.1007/BF02772658 MR: 1035887
  347. Sh:358
    Judah, H. I., & Shelah, S. (1990). Around random algebra. Arch. Math. Logic, 30(3), 129–138. DOI: 10.1007/BF01621466 MR: 1080233
  348. Sh:359
    Bonnet, R., & Shelah, S. (1993). On HCO spaces. An uncountable compact T_2 space, different from \aleph_1+1, which is homeomorphic to each of its uncountable closed subspaces. Israel J. Math., 84(3), 289–332. DOI: 10.1007/BF02760945 MR: 1244672
  349. Sh:360
    Baldwin, J. T., & Shelah, S. (1991). The primal framework. II. Smoothness. Ann. Pure Appl. Logic, 55(1), 1–34. arXiv: math/9201246 DOI: 10.1016/0168-0072(91)90095-4 MR: 1134914
    See [Sh:360a]
  350. Sh:361
    Shelah, S., & Thomas, S. (1989). Homogeneity of infinite permutation groups. Arch. Math. Logic, 28(2), 143–147. DOI: 10.1007/BF01633987 MR: 996316
  351. Sh:362
    Kolman, O., & Shelah, S. (1996). Categoricity of theories in L_{\kappa\omega}, when \kappa is a measurable cardinal. I. Fund. Math., 151(3), 209–240. arXiv: math/9602216 MR: 1424575
  352. Sh:364
    Juhász, I., & Shelah, S. (1992). On partitioning the triples of a topological space. Topology Appl., 44(1-3), 203–208. DOI: 10.1016/0166-8641(92)90095-H MR: 1173259
  353. Sh:366
    Mekler, A. H., & Shelah, S. (1995). Almost free algebras. Israel J. Math., 89(1-3), 237–259. arXiv: math/9408213 DOI: 10.1007/BF02808203 MR: 1324464
  354. Sh:367
    Mekler, A. H., & Shelah, S. (1989). The consistency strength of “every stationary set reflects”. Israel J. Math., 67(3), 353–366. DOI: 10.1007/BF02764953 MR: 1029909
  355. Sh:368
    Bartoszyński, T., Judah, H. I., & Shelah, S. (1993). The Cichoń diagram. J. Symbolic Logic, 58(2), 401–423. arXiv: math/9905122 DOI: 10.2307/2275212 MR: 1233917
  356. Sh:369
    Goldstern, M., Judah, H. I., & Shelah, S. (1991). A regular topological space having no closed subsets of cardinality \aleph_2. Proc. Amer. Math. Soc., 111(4), 1151–1159. DOI: 10.2307/2048582 MR: 1052572
  357. Sh:370
    Shelah, S., & Soukup, L. (1994). On the number of nonisomorphic subgraphs. Israel J. Math., 86(1-3), 349–371. arXiv: math/9401210 DOI: 10.1007/BF02773686 MR: 1276143
  358. Sh:372
    Judah, H. I., Miller, A. W., & Shelah, S. (1992). Sacks forcing, Laver forcing, and Martin’s axiom. Arch. Math. Logic, 31(3), 145–161. DOI: 10.1007/BF01269943 MR: 1147737
  359. Sh:373
    Judah, H. I., Rosłanowski, A., & Shelah, S. (1994). Examples for Souslin forcing. Fund. Math., 144(1), 23–42. arXiv: math/9310224 DOI: 10.4064/fm-144-1-23-42 MR: 1271476
  360. Sh:374
    Judah, H. I., & Shelah, S. (1993). Adding dominating reals with the random algebra. Proc. Amer. Math. Soc., 119(1), 267–273. DOI: 10.2307/2159852 MR: 1152278
  361. Sh:375
    Mekler, A. H., & Shelah, S. (1993). Some compact logics—results in ZFC. Ann. Of Math. (2), 137(2), 221–248. arXiv: math/9301204 DOI: 10.2307/2946538 MR: 1207207
  362. Sh:376
    Shelah, S., & Soukup, L. (1995). Some remarks on a problem of J. D. Monk. Period. Math. Hungar., 30(2), 155–163. DOI: 10.1007/BF01876630 MR: 1326777
  363. Sh:377
    Shelah, S., Tuuri, H., & Väänänen, J. A. (1993). On the number of automorphisms of uncountable models. J. Symbolic Logic, 58(4), 1402–1418. arXiv: math/9301205 DOI: 10.2307/2275150 MR: 1253929
  364. Sh:378
    Jech, T. J., & Shelah, S. (1989). A note on canonical functions. Israel J. Math., 68(3), 376–380. arXiv: math/9201239 DOI: 10.1007/BF02764992 MR: 1039481
  365. Sh:379
    Eklof, P. C., & Shelah, S. (1991). On Whitehead modules. J. Algebra, 142(2), 492–510. DOI: 10.1016/0021-8693(91)90321-X MR: 1127077
  366. Sh:381
    Shelah, S. (1991). Kaplansky test problem for R-modules. Israel J. Math., 74(1), 91–127. DOI: 10.1007/BF02777818 MR: 1135231
  367. Sh:382
    Shelah, S., & Spencer, J. H. (1994). Can you feel the double jump? Random Structures Algorithms, 5(1), 191–204. arXiv: math/9401211 DOI: 10.1002/rsa.3240050118 MR: 1248186
  368. Sh:383
    Jech, T. J., & Shelah, S. (1993). Full reflection of stationary sets at regular cardinals. Amer. J. Math., 115(2), 435–453. arXiv: math/9204218 DOI: 10.2307/2374864 MR: 1216437
  369. Sh:385
    Jech, T. J., & Shelah, S. (1991). On a conjecture of Tarski on products of cardinals. Proc. Amer. Math. Soc., 112(4), 1117–1124. arXiv: math/9201247 DOI: 10.2307/2048662 MR: 1070525
  370. Sh:387
    Jech, T. J., & Shelah, S. (1990). Full reflection of stationary sets below \aleph_\omega. J. Symbolic Logic, 55(2), 822–830. arXiv: math/9201242 DOI: 10.2307/2274667 MR: 1056391
  371. Sh:388
    Goldstern, M., & Shelah, S. (1990). Ramsey ultrafilters and the reaping number—Con(\mathfrak r<\mathfrak u). Ann. Pure Appl. Logic, 49(2), 121–142. DOI: 10.1016/0168-0072(90)90063-8 MR: 1077075
  372. Sh:389
    Shelah, S., & Soukup, L. (1993). The existence of large \omega_1-homogeneous but not \omega-homogeneous permutation groups is consistent with ZFC+GCH. J. London Math. Soc. (2), 48(2), 193–203. DOI: 10.1112/jlms/s2-48.2.193 MR: 1231709
  373. Sh:390
    Kanamori, A., & Shelah, S. (1995). Complete quotient Boolean algebras. Trans. Amer. Math. Soc., 347(6), 1963–1979. arXiv: math/9401212 DOI: 10.2307/2154916 MR: 1282888
  374. Sh:391
    Hodges, W., Hodkinson, I. M., Lascar, D., & Shelah, S. (1993). The small index property for \omega-stable \omega-categorical structures and for the random graph. J. London Math. Soc. (2), 48(2), 204–218. DOI: 10.1112/jlms/s2-48.2.204 MR: 1231710
  375. Sh:392
    Jech, T. J., & Shelah, S. (1991). A partition theorem for pairs of finite sets. J. Amer. Math. Soc., 4(4), 647–656. arXiv: math/9201248 DOI: 10.2307/2939283 MR: 1122043
  376. Sh:393
    Baldwin, J. T., & Shelah, S. (1995). Abstract classes with few models have “homogeneous-universal” models. J. Symbolic Logic, 60(1), 246–265. arXiv: math/9502231 DOI: 10.2307/2275520 MR: 1324512
  377. Sh:394
    Shelah, S. (1999). Categoricity for abstract classes with amalgamation. Ann. Pure Appl. Logic, 98(1-3), 261–294. arXiv: math/9809197 DOI: 10.1016/S0168-0072(98)00016-5 MR: 1696853
  378. Sh:396
    Frankiewicz, R., Shelah, S., & Zbierski, P. (1993). On closed P-sets with ccc in the space \omega^*. J. Symbolic Logic, 58(4), 1171–1176. arXiv: math/9303207 DOI: 10.2307/2275135 MR: 1253914
  379. Sh:397
    Shelah, S. (1992). Factor = quotient, uncountable Boolean algebras, number of endomorphism and width. Math. Japon., 37(2), 385–400. arXiv: math/9201250 MR: 1159041
  380. Sh:398
    Mekler, A. H., & Shelah, S. (1993). The canary tree. Canad. Math. Bull., 36(2), 209–215. arXiv: math/9308210 DOI: 10.4153/CMB-1993-030-6 MR: 1222536
  381. Sh:399
    Goldstern, M., Judah, H. I., & Shelah, S. (1991). Saturated families. Proc. Amer. Math. Soc., 111(4), 1095–1104. DOI: 10.2307/2048577 MR: 1052573
  382. Sh:400a
    Shelah, S. (1992). Cardinal arithmetic for skeptics. Bull. Amer. Math. Soc. (N.S.), 26(2), 197–210. arXiv: math/9201251 DOI: 10.1090/S0273-0979-1992-00261-6 MR: 1112424
  383. Sh:401
    Shelah, S. (2004). Characterizing an \aleph_\epsilon-saturated model of superstable NDOP theories by its \mathbb L_{\infty,\aleph_\epsilon}-theory. Israel J. Math., 140, 61–111. arXiv: math/9609215 DOI: 10.1007/BF02786627 MR: 2054839
  384. Sh:402
    Shelah, S. (1999). Borel Whitehead groups. Math. Japon., 50(1), 121–130. arXiv: math/9809198 MR: 1710476
  385. Sh:403
    Abraham, U., & Shelah, S. (1993). A \Delta^2_2 well-order of the reals and incompactness of L(Q^\mathrm{MM}). Ann. Pure Appl. Logic, 59(1), 1–32. arXiv: math/9812115 DOI: 10.1016/0168-0072(93)90228-6 MR: 1197203
  386. Sh:404
    Givant, S. R., & Shelah, S. (1994). Universal theories categorical in power and \kappa-generated models. Ann. Pure Appl. Logic, 69(1), 27–51. arXiv: math/9401213 DOI: 10.1016/0168-0072(94)90018-3 MR: 1301605
  387. Sh:405
    Shelah, S. (1994). Vive la différence. II. The Ax-Kochen isomorphism theorem. Israel J. Math., 85(1-3), 351–390. arXiv: math/9304207 DOI: 10.1007/BF02758648 MR: 1264351
  388. Sh:406
    Fremlin, D. H., & Shelah, S. (1993). Pointwise compact and stable sets of measurable functions. J. Symbolic Logic, 58(2), 435–455. arXiv: math/9209218 DOI: 10.2307/2275214 MR: 1233919
    See [Sh:406a]
  389. Sh:407
    Shelah, S. (1992). CON(\mathfrak u>\mathfrak i). Arch. Math. Logic, 31(6), 433–443. DOI: 10.1007/BF01277485 MR: 1175937
  390. Sh:408
    Kojman, M., Perles, M. A., & Shelah, S. (1990). Sets in a Euclidean space which are not a countable union of convex subsets. Israel J. Math., 70(3), 313–342. DOI: 10.1007/BF02801467 MR: 1074495
  391. Sh:409
    Kojman, M., & Shelah, S. (1992). Nonexistence of universal orders in many cardinals. J. Symbolic Logic, 57(3), 875–891. arXiv: math/9209201 DOI: 10.2307/2275437 MR: 1187454
  392. Sh:410
    Shelah, S. (1993). More on cardinal arithmetic. Arch. Math. Logic, 32(6), 399–428. arXiv: math/0406550 DOI: 10.1007/BF01270465 MR: 1245523
  393. Sh:411
    Lifsches, S., & Shelah, S. (1992). The monadic theory of (\omega_2,<) may be complicated. Arch. Math. Logic, 31(3), 207–213. DOI: 10.1007/BF01269949 MR: 1147743
  394. Sh:412
    Gitik, M., & Shelah, S. (1993). More on simple forcing notions and forcings with ideals. Ann. Pure Appl. Logic, 59(3), 219–238. DOI: 10.1016/0168-0072(93)90094-T MR: 1213273
  395. Sh:413
    Shelah, S. (2003). More Jonsson algebras. Arch. Math. Logic, 42(1), 1–44. arXiv: math/9809199 DOI: 10.1007/s001530100119 MR: 1953112
  396. Sh:414
    Komjáth, P., & Shelah, S. (1993). A consistent edge partition theorem for infinite graphs. Acta Math. Hungar., 61(1-2), 115–120. DOI: 10.1007/BF01872104 MR: 1200965
  397. Sh:415
    Koppelberg, S., & Shelah, S. (1995). Densities of ultraproducts of Boolean algebras. Canad. J. Math., 47(1), 132–145. arXiv: math/9404226 DOI: 10.4153/CJM-1995-007-0 MR: 1319693
  398. Sh:416
    Mekler, A. H., Shelah, S., & Väänänen, J. A. (1993). The Ehrenfeucht-Fraïssé-game of length \omega_1. Trans. Amer. Math. Soc., 339(2), 567–580. arXiv: math/9305204 DOI: 10.2307/2154287 MR: 1191613
  399. Sh:417
    Mekler, A. H., Shelah, S., & Spinas, O. (1996). The essentially free spectrum of a variety. Israel J. Math., 93, 1–8. arXiv: math/9411234 DOI: 10.1007/BF02761091 MR: 1380631
  400. Sh:418
    Mekler, A. H., & Shelah, S. (1993). Every coseparable group may be free. Israel J. Math., 81(1-2), 161–178. arXiv: math/9305205 DOI: 10.1007/BF02761303 MR: 1231184
  401. Sh:419
    Shelah, S., & Stanley, L. J. (2000). Filters, Cohen sets and consistent extensions of the Erdős-Dushnik-Miller theorem. J. Symbolic Logic, 65(1), 259–271. arXiv: math/9709228 DOI: 10.2307/2586535 MR: 1782118
  402. Sh:420
    Shelah, S. (1993). Advances in cardinal arithmetic. In Finite and infinite combinatorics in sets and logic (Banff, AB, 1991), Vol. 411, Kluwer Acad. Publ., Dordrecht, pp. 355–383. arXiv: 0708.1979 MR: 1261217
  403. Sh:422
    Eklof, P. C., & Shelah, S. (1993). On a conjecture regarding nonstandard uniserial modules. Trans. Amer. Math. Soc., 340(1), 337–351. arXiv: math/9308211 DOI: 10.2307/2154560 MR: 1159192
  404. Sh:424
    Shelah, S. (1993). On CH + 2^{\aleph_1}\to(\alpha)^2_2 for \alpha<\omega_2. In Logic Colloquium ’90 (Helsinki, 1990), Vol. 2, Springer, Berlin, pp. 281–289. arXiv: math/9308212 MR: 1279847
  405. Sh:425
    Shelah, S., & Stanley, L. J. (1995). The combinatorics of combinatorial coding by a real. J. Symbolic Logic, 60(1), 36–57. arXiv: math/9402214 DOI: 10.2307/2275508 MR: 1324500
  406. Sh:426
    Eklof, P. C., Mekler, A. H., & Shelah, S. (1993). On coherent systems of projections for \aleph_1-separable groups. Comm. Algebra, 21(1), 343–353. arXiv: math/9308213 DOI: 10.1080/00927879208824564 MR: 1194564
  407. Sh:427
    Shelah, S., & Steprāns, J. (1994). Somewhere trivial autohomeomorphisms. J. London Math. Soc. (2), 49(3), 569–580. arXiv: math/9308214 DOI: 10.1112/jlms/49.3.569 MR: 1271551
  408. Sh:428
    Hyttinen, T., Shelah, S., & Tuuri, H. (1993). Remarks on strong nonstructure theorems. Notre Dame J. Formal Logic, 34(2), 157–168. DOI: 10.1305/ndjfl/1093634649 MR: 1231281
  409. Sh:429
    Shelah, S. (1991). Multi-dimensionality. Israel J. Math., 74(2-3), 281–288. DOI: 10.1007/BF02775792 MR: 1135240
  410. Sh:430
    Shelah, S. (1996). Further cardinal arithmetic. Israel J. Math., 95, 61–114. arXiv: math/9610226 DOI: 10.1007/BF02761035 MR: 1418289
  411. Sh:431
    Komjáth, P., & Shelah, S. (1994). A note on a set-mapping problem of Hajnal and Máté. Period. Math. Hungar., 28(1), 39–42. DOI: 10.1007/BF01876368 MR: 1310757
  412. Sh:432
    Shelah, S., & Spencer, J. H. (1994). Random sparse unary predicates. Random Structures Algorithms, 5(3), 375–394. arXiv: math/9401214 DOI: 10.1002/rsa.3240050302 MR: 1277609
  413. Sh:433
    Magidor, M., & Shelah, S. (1998). Length of Boolean algebras and ultraproducts. Math. Japon., 48(2), 301–307. arXiv: math/9805145 MR: 1674385
  414. Sh:434
    Bartoszyński, T., Goldstern, M., Judah, H. I., & Shelah, S. (1993). All meager filters may be null. Proc. Amer. Math. Soc., 117(2), 515–521. arXiv: math/9301206 DOI: 10.2307/2159190 MR: 1111433
  415. Sh:435
    Shelah, S., & Łuczak, T. (1995). Convergence in homogeneous random graphs. Random Structures Algorithms, 6(4), 371–391. arXiv: math/9501221 DOI: 10.1002/rsa.3240060402 MR: 1368840
  416. Sh:436
    Bartoszyński, T., & Shelah, S. (1992). Intersection of <2^{\aleph_0} ultrafilters may have measure zero. Arch. Math. Logic, 31(4), 221–226. arXiv: math/9904068 DOI: 10.1007/BF01794979 MR: 1155033
  417. Sh:437
    Burke, M. R., & Shelah, S. (1992). Linear liftings for noncomplete probability spaces. Israel J. Math., 79(2-3), 289–296. arXiv: math/9201252 DOI: 10.1007/BF02808221 MR: 1248919
  418. Sh:438
    Goldstern, M., Judah, H. I., & Shelah, S. (1993). Strong measure zero sets without Cohen reals. J. Symbolic Logic, 58(4), 1323–1341. arXiv: math/9306214 DOI: 10.2307/2275146 MR: 1253925
  419. Sh:439
    Bartoszyński, T., & Shelah, S. (1992). Closed measure zero sets. Ann. Pure Appl. Logic, 58(2), 93–110. arXiv: math/9905123 DOI: 10.1016/0168-0072(92)90001-G MR: 1186905
  420. Sh:440
    Comfort, W. W., Kato, A., & Shelah, S. (1993). Topological partition relations of the form \omega^\ast\to(Y)^1_2. In Papers on general topology and applications (Madison, WI, 1991), Vol. 704, New York Acad. Sci., New York, pp. 70–79. arXiv: math/9305206 DOI: 10.1111/j.1749-6632.1993.tb52510.x MR: 1277844
  421. Sh:441
    Eklof, P. C., Mekler, A. H., & Shelah, S. (1992). Uniformization and the diversity of Whitehead groups. Israel J. Math., 80(3), 301–321. arXiv: math/9204219 DOI: 10.1007/BF02808073 MR: 1202574
  422. Sh:442
    Eklof, P. C., Mekler, A. H., & Shelah, S. (1994). Hereditarily separable groups and monochromatic uniformization. Israel J. Math., 88(1-3), 213–235. arXiv: math/0406552 DOI: 10.1007/BF02937512 MR: 1303496
  423. Sh:443
    Diestel, R., Shelah, S., & Steprāns, J. (1994). Dominating functions and graphs. J. London Math. Soc. (2), 49(1), 16–24. arXiv: math/9308215 DOI: 10.1112/jlms/49.1.16 MR: 1253008
  424. Sh:444
    Huck, A., Niedermeyer, F., & Shelah, S. (1994). Large \kappa-preserving sets in infinite graphs. J. Graph Theory, 18(4), 413–426. DOI: 10.1002/jgt.3190180411 MR: 1277518
  425. Sh:445
    Shelah, S. (1995). Every null-additive set is meager-additive. Israel J. Math., 89(1-3), 357–376. arXiv: math/9406228 DOI: 10.1007/BF02808209 MR: 1324470
  426. Sh:447
    Kojman, M., & Shelah, S. (1992). The universality spectrum of stable unsuperstable theories. Ann. Pure Appl. Logic, 58(1), 57–72. arXiv: math/9201253 DOI: 10.1016/0168-0072(92)90034-W MR: 1169786
  427. Sh:448
    Goldstern, M., & Shelah, S. (1993). Many simple cardinal invariants. Arch. Math. Logic, 32(3), 203–221. arXiv: math/9205208 DOI: 10.1007/BF01375552 MR: 1201650
  428. Sh:449
    Kojman, M., & Shelah, S. (1993). \mu-complete Souslin trees on \mu^+. Arch. Math. Logic, 32(3), 195–201. arXiv: math/9306215 DOI: 10.1007/BF01375551 MR: 1201649
  429. Sh:450
    Melles, G., & Shelah, S. (1994). A saturated model of an unsuperstable theory of cardinality greater than its theory has the small index property. Proc. London Math. Soc. (3), 69(3), 449–463. arXiv: math/9308216 DOI: 10.1112/plms/s3-69.3.449 MR: 1289859
  430. Sh:451
    Lascar, D., & Shelah, S. (1993). Uncountable saturated structures have the small index property. Bull. London Math. Soc., 25(2), 125–131. DOI: 10.1112/blms/25.2.125 MR: 1204064
  431. Sh:452
    Melles, G., & Shelah, S. (1994). \mathrm{Aut}(M) has a large dense free subgroup for saturated M. Bull. London Math. Soc., 26(4), 339–344. arXiv: math/9304201 DOI: 10.1112/blms/26.4.339 MR: 1302066
  432. Sh:453
    Mekler, A. H., Schipperus, R. J., Shelah, S., & Truss, J. K. (1993). The random graph and automorphisms of the rational world. Bull. London Math. Soc., 25(4), 343–346. DOI: 10.1112/blms/25.4.343 MR: 1222726
  433. Sh:454
    Shelah, S. (1993). Number of open sets for a topology with a countable basis. Israel J. Math., 83(3), 369–374. arXiv: math/9308217 DOI: 10.1007/BF02784064 MR: 1239070
  434. Sh:454a
    Shelah, S. (1994). Cardinalities of topologies with small base. Ann. Pure Appl. Logic, 68(1), 95–113. arXiv: math/9403219 DOI: 10.1016/0168-0072(94)90049-3 MR: 1278551
  435. Sh:455
    Kojman, M., & Shelah, S. (1995). Universal abelian groups. Israel J. Math., 92(1-3), 113–124. arXiv: math/9409207 DOI: 10.1007/BF02762072 MR: 1357747
  436. Sh:456
    Shelah, S. (1996). Universal in (<\lambda)-stable abelian group. Math. Japon., 44(1), 1–9. arXiv: math/9509225 MR: 1402794
  437. Sh:457
    Shelah, S. (1993). The universality spectrum: consistency for more classes. In Combinatorics, Paul Erdős is eighty, Vol. 1, János Bolyai Math. Soc., Budapest, pp. 403–420. arXiv: math/9412229 MR: 1249724
  438. Sh:458
    Abraham, U., & Shelah, S. (1996). Martin’s axiom and \Delta^2_1 well-ordering of the reals. Arch. Math. Logic, 35(5-6), 287–298. arXiv: math/9408214 DOI: 10.1007/s001530050046 MR: 1420259
  439. Sh:459
    Baumgartner, J. E., Shelah, S., & Thomas, S. (1993). Maximal subgroups of infinite symmetric groups. Notre Dame J. Formal Logic, 34(1), 1–11. DOI: 10.1305/ndjfl/1093634559 MR: 1213842
  440. Sh:460
    Shelah, S. (2000). The generalized continuum hypothesis revisited. Israel J. Math., 116, 285–321. arXiv: math/9809200 DOI: 10.1007/BF02773223 MR: 1759410
  441. Sh:461
    Eklof, P. C., & Shelah, S. (1993). Explicitly nonstandard uniserial modules. J. Pure Appl. Algebra, 86(1), 35–50. arXiv: math/9301207 DOI: 10.1016/0022-4049(93)90151-I MR: 1213152
  442. Sh:462
    Shelah, S. (1997). \sigma-entangled linear orders and narrowness of products of Boolean algebras. Fund. Math., 153(3), 199–275. arXiv: math/9609216 DOI: 10.4064/fm-153-3-199-275 MR: 1467577
  443. Sh:463
    Shelah, S. (1996). On the very weak 0-1 law for random graphs with orders. J. Logic Comput., 6(1), 137–159. arXiv: math/9507221 DOI: 10.1093/logcom/6.1.137 MR: 1376723
  444. Sh:464
    Baldwin, J. T., Laskowski, M. C., & Shelah, S. (1993). Forcing isomorphism. J. Symbolic Logic, 58(4), 1291–1301. arXiv: math/9301208 DOI: 10.2307/2275144 MR: 1253923
  445. Sh:465
    Shelah, S., & Steprāns, J. (1993). Maximal chains in ^\omega\omega and ultrapowers of the integers. Arch. Math. Logic, 32(5), 305–319. arXiv: math/9204205 DOI: 10.1007/BF01409965 MR: 1223393
    See [Sh:465a]
  446. Sh:466
    Jin, R., & Shelah, S. (1993). A model in which there are Jech-Kunen trees but there are no Kurepa trees. Israel J. Math., 84(1-2), 1–16. arXiv: math/9308218 DOI: 10.1007/BF02761687 MR: 1244655
  447. Sh:467
    Shelah, S. (2002). Zero-one laws for graphs with edge probabilities decaying with distance. I. Fund. Math., 175(3), 195–239. arXiv: math/9606226 DOI: 10.4064/fm175-3-1 MR: 1969657
  448. Sh:468
    Shelah, S., & Spinas, O. (1996). Gross spaces. Trans. Amer. Math. Soc., 348(10), 4257–4277. arXiv: math/9510215 DOI: 10.1090/S0002-9947-96-01658-3 MR: 1357403
  449. Sh:469
    Jin, R., & Shelah, S. (1992). Planting Kurepa trees and killing Jech-Kunen trees in a model by using one inaccessible cardinal. Fund. Math., 141(3), 287–296. arXiv: math/9211214 DOI: 10.4064/fm-141-3-287-296 MR: 1199241
  450. Sh:470
    Rosłanowski, A., & Shelah, S. (1999). Norms on possibilities. I. Forcing with trees and creatures. Mem. Amer. Math. Soc., 141(671), xii+167. arXiv: math/9807172 DOI: 10.1090/memo/0671 MR: 1613600
  451. Sh:471
    Lifsches, S., & Shelah, S. (1997). Peano arithmetic may not be interpretable in the monadic theory of linear orders. J. Symbolic Logic, 62(3), 848–872. arXiv: math/9308219 DOI: 10.2307/2275575 MR: 1472126
  452. Sh:472
    Shelah, S. (2001). Categoricity of theories in L_{\kappa^\ast,\omega}, when \kappa^\ast is a measurable cardinal. II. Fund. Math., 170(1-2), 165–196. arXiv: math/9604241 DOI: 10.4064/fm170-1-10 MR: 1881375
  453. Sh:473
    Shelah, S. (1995). Possibly every real function is continuous on a non-meagre set. Publ. Inst. Math. (Beograd) (N.S.), 57(71), 47–60. arXiv: math/9511220 MR: 1387353
  454. Sh:474
    Hyttinen, T., & Shelah, S. (1994). Constructing strongly equivalent nonisomorphic models for unsuperstable theories. Part A. J. Symbolic Logic, 59(3), 984–996. arXiv: math/0406587 DOI: 10.2307/2275922 MR: 1295983
  455. Sh:475
    Rosłanowski, A., & Shelah, S. (1996). More forcing notions imply diamond. Arch. Math. Logic, 35(5-6), 299–313. arXiv: math/9408215 DOI: 10.1007/s001530050047 MR: 1420260
  456. Sh:476
    Jech, T. J., & Shelah, S. (1996). Possible PCF algebras. J. Symbolic Logic, 61(1), 313–317. arXiv: math/9412208 DOI: 10.2307/2275613 MR: 1380692
  457. Sh:477
    Brendle, J., Judah, H. I., & Shelah, S. (1992). Combinatorial properties of Hechler forcing. Ann. Pure Appl. Logic, 58(3), 185–199. arXiv: math/9211202 DOI: 10.1016/0168-0072(92)90027-W MR: 1191940
  458. Sh:478
    Judah, H. I., & Shelah, S. (1994). Killing Luzin and Sierpiński sets. Proc. Amer. Math. Soc., 120(3), 917–920. arXiv: math/9401215 DOI: 10.2307/2160487 MR: 1164145
  459. Sh:479
    Shelah, S. (1996). On Monk’s questions. Fund. Math., 151(1), 1–19. arXiv: math/9601218 MR: 1405517
  460. Sh:480
    Shelah, S. (1994). How special are Cohen and random forcings, i.e. Boolean algebras of the family of subsets of reals modulo meagre or null. Israel J. Math., 88(1-3), 159–174. arXiv: math/9303208 DOI: 10.1007/BF02937509 MR: 1303493
  461. Sh:481
    Shelah, S. (1996). Was Sierpiński right? III. Can continuum-c.c. times c.c.c. be continuum-c.c.? Ann. Pure Appl. Logic, 78(1-3), 259–269. arXiv: math/9509226 DOI: 10.1016/0168-0072(95)00036-4 MR: 1395402
  462. Sh:483
    Louveau, A., Shelah, S., & Veličković, B. (1993). Borel partitions of infinite subtrees of a perfect tree. Ann. Pure Appl. Logic, 63(3), 271–281. arXiv: math/9301209 DOI: 10.1016/0168-0072(93)90151-3 MR: 1237234
  463. Sh:484
    Liu, K., & Shelah, S. (1997). Cofinalities of elementary substructures of structures on \aleph_\omega. Israel J. Math., 99, 189–205. arXiv: math/9604242 DOI: 10.1007/BF02760682 MR: 1469093
  464. Sh:485
    Abraham, U., & Shelah, S. (2002). Coding with ladders a well ordering of the reals. J. Symbolic Logic, 67(2), 579–597. arXiv: math/0104195 DOI: 10.2178/jsl/1190150099 MR: 1905156
  465. Sh:487
    Goldstern, M., Repický, M., Shelah, S., & Spinas, O. (1995). On tree ideals. Proc. Amer. Math. Soc., 123(5), 1573–1581. arXiv: math/9311212 DOI: 10.2307/2161150 MR: 1233972
  466. Sh:488
    Halbeisen, L. J., & Shelah, S. (1994). Consequences of arithmetic for set theory. J. Symbolic Logic, 59(1), 30–40. arXiv: math/9308220 DOI: 10.2307/2275247 MR: 1264961
  467. Sh:489
    Laskowski, M. C., & Shelah, S. (1993). On the existence of atomic models. J. Symbolic Logic, 58(4), 1189–1194. arXiv: math/9301210 DOI: 10.2307/2275137 MR: 1253916
  468. Sh:490
    Bartoszyński, T., Rosłanowski, A., & Shelah, S. (1996). Adding one random real. J. Symbolic Logic, 61(1), 80–90. arXiv: math/9406229 DOI: 10.2307/2275599 MR: 1380678
  469. Sh:491
    Gilchrist, M., & Shelah, S. (1996). Identities on cardinals less than \aleph_\omega. J. Symbolic Logic, 61(3), 780–787. arXiv: math/9505215 DOI: 10.2307/2275784 MR: 1412509
  470. Sh:492
    Komjáth, P., & Shelah, S. (1995). Universal graphs without large cliques. J. Combin. Theory Ser. B, 63(1), 125–135. arXiv: math/9308221 DOI: 10.1006/jctb.1995.1008 MR: 1309360
  471. Sh:493
    Jin, R., & Shelah, S. (1994). The strength of the isomorphism property. J. Symbolic Logic, 59(1), 292–301. arXiv: math/9401216 DOI: 10.2307/2275266 MR: 1264980
  472. Sh:494
    Shelah, S., & Spinas, O. (2000). The distributivity numbers of \mathcal P(\omega)/\mathrm{fin} and its square. Trans. Amer. Math. Soc., 352(5), 2023–2047. arXiv: math/9606227 DOI: 10.1090/S0002-9947-99-02270-9 MR: 1751223
  473. Sh:495
    Apter, A. W., & Shelah, S. (1997). On the strong equality between supercompactness and strong compactness. Trans. Amer. Math. Soc., 349(1), 103–128. arXiv: math/9502232 DOI: 10.1090/S0002-9947-97-01531-6 MR: 1333385
  474. Sh:496
    Apter, A. W., & Shelah, S. (1997). Menas’ result is best possible. Trans. Amer. Math. Soc., 349(5), 2007–2034. arXiv: math/9512226 DOI: 10.1090/S0002-9947-97-01691-7 MR: 1370634
  475. Sh:497
    Shelah, S. (1997). Set theory without choice: not everything on cofinality is possible. Arch. Math. Logic, 36(2), 81–125. arXiv: math/9512227 DOI: 10.1007/s001530050057 MR: 1462202
  476. Sh:498
    Jin, R., & Shelah, S. (1994). Essential Kurepa trees versus essential Jech-Kunen trees. Ann. Pure Appl. Logic, 69(1), 107–131. arXiv: math/9401217 DOI: 10.1016/0168-0072(94)90021-3 MR: 1301608
  477. Sh:499
    Kojman, M., & Shelah, S. (1995). Homogeneous families and their automorphism groups. J. London Math. Soc. (2), 52(2), 303–317. arXiv: math/9409205 DOI: 10.1112/jlms/52.2.303 MR: 1356144
  478. Sh:500
    Shelah, S. (1996). Toward classifying unstable theories. Ann. Pure Appl. Logic, 80(3), 229–255. arXiv: math/9508205 DOI: 10.1016/0168-0072(95)00066-6 MR: 1402297
  479. Sh:501
    Rosłanowski, A., & Shelah, S. (1996). Localizations of infinite subsets of \omega. Arch. Math. Logic, 35(5-6), 315–339. arXiv: math/9506222 DOI: 10.1007/s001530050048 MR: 1420261
  480. Sh:502
    Komjáth, P., & Shelah, S. (1993). On uniformly antisymmetric functions. Real Anal. Exchange, 19(1), 218–225. arXiv: math/9308222 MR: 1268847
  481. Sh:503
    Shelah, S. (1994). The number of independent elements in the product of interval Boolean algebras. Math. Japon., 39(1), 1–5. arXiv: math/9312212 MR: 1261328
  482. Sh:504
    Koppelberg, S., & Shelah, S. (1996). Subalgebras of Cohen algebras need not be Cohen. In Logic: from foundations to applications (Staffordshire, 1993), Oxford Univ. Press, New York, pp. 261–275. arXiv: math/9610227 MR: 1428008
  483. Sh:505
    Eklof, P. C., & Shelah, S. (1994). A combinatorial principle equivalent to the existence of non-free Whitehead groups. In Abelian group theory and related topics (Oberwolfach, 1993), Vol. 171, Amer. Math. Soc., Providence, RI, pp. 79–98. arXiv: math/9403220 DOI: 10.1090/conm/171/01765 MR: 1293134
  484. Sh:506
    Shelah, S. (1997). The pcf theorem revisited. In The mathematics of Paul Erdős, II, Vol. 14, Springer, Berlin, pp. 420–459. arXiv: math/9502233 DOI: 10.1007/978-3-642-60406-5_36 MR: 1425231
  485. Sh:507
    Goldstern, M., & Shelah, S. (1995). The bounded proper forcing axiom. J. Symbolic Logic, 60(1), 58–73. arXiv: math/9501222 DOI: 10.2307/2275509 MR: 1324501
  486. Sh:508
    Rosłanowski, A., & Shelah, S. (1997). Simple forcing notions and forcing axioms. J. Symbolic Logic, 62(4), 1297–1314. arXiv: math/9606228 DOI: 10.2307/2275644 MR: 1617945
  487. Sh:509
    Shelah, S. (2008). Vive la différence. III. Israel J. Math., 166, 61–96. arXiv: math/0112237 DOI: 10.1007/s11856-008-1020-3 MR: 2430425
  488. Sh:510
    Shelah, S., & Steprāns, J. (1994). Decomposing Baire class 1 functions into continuous functions. Fund. Math., 145(2), 171–180. arXiv: math/9401218 MR: 1297403
  489. Sh:512
    Balcerzak, M., Rosłanowski, A., & Shelah, S. (1998). Ideals without ccc. J. Symbolic Logic, 63(1), 128–148. arXiv: math/9610219 DOI: 10.2307/2586592 MR: 1610790
  490. Sh:513
    Shelah, S. (2002). PCF and infinite free subsets in an algebra. Arch. Math. Logic, 41(4), 321–359. arXiv: math/9807177 DOI: 10.1007/s001530100101 MR: 1906504
  491. Sh:514
    Magidor, M., & Shelah, S. (1994). \mathrm{Bext}^2(G,T) can be nontrivial, even assuming GCH. In Abelian group theory and related topics (Oberwolfach, 1993), Vol. 171, Amer. Math. Soc., Providence, RI, pp. 287–294. arXiv: math/9405214 DOI: 10.1090/conm/171/01778 MR: 1293148
  492. Sh:515
    Shelah, S. (1997). A finite partition theorem with double exponential bound. In The mathematics of Paul Erdős, II, Vol. 14, Springer, Berlin, pp. 240–246. arXiv: math/9502234 DOI: 10.1007/978-3-642-60406-5_21 MR: 1425218
  493. Sh:516
    Komjáth, P., & Shelah, S. (1996). Coloring finite subsets of uncountable sets. Proc. Amer. Math. Soc., 124(11), 3501–3505. arXiv: math/9505216 DOI: 10.1090/S0002-9939-96-03450-8 MR: 1342032
  494. Sh:517
    Shelah, S. (2005). Zero-one laws for graphs with edge probabilities decaying with distance. II. Fund. Math., 185(3), 211–245. arXiv: math/0404239 DOI: 10.4064/fm185-3-2 MR: 2161404
  495. Sh:518
    Laskowski, M. C., & Shelah, S. (1996). Forcing isomorphism. II. J. Symbolic Logic, 61(4), 1305–1320. arXiv: math/0011169 DOI: 10.2307/2275818 MR: 1456109
  496. Sh:519
    Göbel, R., & Shelah, S. (1995). On the existence of rigid \aleph_1-free abelian groups of cardinality \aleph_1. In Abelian groups and modules (Padova, 1994), Vol. 343, Kluwer Acad. Publ., Dordrecht, pp. 227–237. arXiv: math/0104194 MR: 1378201
  497. Sh:520
    Eklof, P. C., Foreman, M. D., & Shelah, S. (1995). On invariants for \omega_1-separable groups. Trans. Amer. Math. Soc., 347(11), 4385–4402. arXiv: math/9501223 DOI: 10.2307/2155042 MR: 1316849
  498. Sh:521
    Shelah, S. (1996). If there is an exactly \lambda-free abelian group then there is an exactly \lambda-separable one in \lambda. J. Symbolic Logic, 61(4), 1261–1278. arXiv: math/9503226 DOI: 10.2307/2275815 MR: 1456106
  499. Sh:522
    Shelah, S. (1999). Borel sets with large squares. Fund. Math., 159(1), 1–50. arXiv: math/9802134 MR: 1669643
  500. Sh:523
    Shelah, S. (1997). Existence of almost free abelian groups and reflection of stationary set. Math. Japon., 45(1), 1–14. arXiv: math/9606229 MR: 1434949
  501. Sh:524
    Shelah, S., & Thomas, S. (1997). The cofinality spectrum of the infinite symmetric group. J. Symbolic Logic, 62(3), 902–916. arXiv: math/9412230 DOI: 10.2307/2275578 MR: 1472129
  502. Sh:525
    Gurevich, Y., Immerman, N., & Shelah, S. (1994). McColm’s conjecture [positive elementary inductions]. In Proceedings Ninth Annual IEEE Symposium on Logic in Computer Science, IEEE Computer Society Press, pp. 10–19. arXiv: math/9411235 DOI: 10.1109/LICS.1994.316091
  503. Sh:526
    Gurevich, Y., & Shelah, S. (1996). On finite rigid structures. J. Symbolic Logic, 61(2), 549–562. arXiv: math/9411236 DOI: 10.2307/2275675 MR: 1394614
  504. Sh:527
    Lifsches, S., & Shelah, S. (1999). Random graphs in the monadic theory of order. Arch. Math. Logic, 38(4-5), 273–312. arXiv: math/9701219 DOI: 10.1007/s001530050129 MR: 1697962
  505. Sh:528
    Baldwin, J. T., & Shelah, S. (1997). Randomness and semigenericity. Trans. Amer. Math. Soc., 349(4), 1359–1376. arXiv: math/9607226 DOI: 10.1090/S0002-9947-97-01869-2 MR: 1407480
  506. Sh:529
    Hyttinen, T., & Shelah, S. (1995). Constructing strongly equivalent nonisomorphic models for unsuperstable theories. Part B. J. Symbolic Logic, 60(4), 1260–1272. arXiv: math/9202205 DOI: 10.2307/2275887 MR: 1367209
  507. Sh:530
    Cummings, J., & Shelah, S. (1995). A model in which every Boolean algebra has many subalgebras. J. Symbolic Logic, 60(3), 992–1004. arXiv: math/9509227 DOI: 10.2307/2275769 MR: 1349006
  508. Sh:531
    Shelah, S., & Spinas, O. (1998). The distributivity numbers of finite products of {\mathcal P}(\omega)/\mathrm{fin}. Fund. Math., 158(1), 81–93. arXiv: math/9801151 MR: 1641157
  509. Sh:533
    Blass, A. R., Gurevich, Y., & Shelah, S. (1999). Choiceless polynomial time. Ann. Pure Appl. Logic, 100(1-3), 141–187. arXiv: math/9705225 DOI: 10.1016/S0168-0072(99)00005-6 MR: 1711992
    See [Sh:533a]
  510. Sh:534
    Rosłanowski, A., & Shelah, S. (1998). Cardinal invariants of ultraproducts of Boolean algebras. Fund. Math., 155(2), 101–151. arXiv: math/9703218 MR: 1606511
  511. Sh:535
    Eisworth, T., & Shelah, S. (2005). Successors of singular cardinals and coloring theorems. I. Arch. Math. Logic, 44(5), 597–618. arXiv: math/9808138 DOI: 10.1007/s00153-004-0258-7 MR: 2210148
  512. Sh:536
    Gurevich, Y., & Shelah, S. (2003). Spectra of Monadic Second-Order Formulas with One Unary Function. In 18th Annual IEEE Symposium of Logic in Computer Science, 2003. Proceedings., pp. 291–300. arXiv: math/0404150 DOI: 10.1109/LICS.2003.1210069
  513. Sh:537
    Abraham, U., & Shelah, S. (2001). Lusin sequences under CH and under Martin’s axiom. Fund. Math., 169(2), 97–103. arXiv: math/9807178 DOI: 10.4064/fm169-2-1 MR: 1852375
  514. Sh:539
    Lifsches, S., & Shelah, S. (1996). Uniformization, choice functions and well orders in the class of trees. J. Symbolic Logic, 61(4), 1206–1227. arXiv: math/9404227 DOI: 10.2307/2275812 MR: 1456103
  515. Sh:540
    Brendle, J., & Shelah, S. (1996). Evasion and prediction. II. J. London Math. Soc. (2), 53(1), 19–27. arXiv: math/9407207 DOI: 10.1112/jlms/53.1.19 MR: 1362683
  516. Sh:541
    Cummings, J., & Shelah, S. (1995). Cardinal invariants above the continuum. Ann. Pure Appl. Logic, 75(3), 251–268. arXiv: math/9509228 DOI: 10.1016/0168-0072(95)00003-Y MR: 1355135
  517. Sh:542
    Shelah, S. (1996). Large normal ideals concentrating on a fixed small cardinality. Arch. Math. Logic, 35(5-6), 341–347. arXiv: math/9406219 DOI: 10.1007/s001530050049 MR: 1420262
  518. Sh:543
    Fuchino, S., Shelah, S., & Soukup, L. (1994). On a theorem of Shapiro. Math. Japon., 40(2), 199–206. arXiv: math/9405215 MR: 1297233
  519. Sh:544
    Fuchino, S., Shelah, S., & Soukup, L. (1997). Sticks and clubs. Ann. Pure Appl. Logic, 90(1-3), 57–77. arXiv: math/9804153 DOI: 10.1016/S0168-0072(97)00030-4 MR: 1489304
  520. Sh:545
    Džamonja, M., & Shelah, S. (1996). Saturated filters at successors of singular, weak reflection and yet another weak club principle. Ann. Pure Appl. Logic, 79(3), 289–316. arXiv: math/9601219 DOI: 10.1016/0168-0072(95)00040-2 MR: 1395679
  521. Sh:546
    Shelah, S. (2000). Was Sierpiński right? IV. J. Symbolic Logic, 65(3), 1031–1054. arXiv: math/9712282 DOI: 10.2307/2586687 MR: 1791363
  522. Sh:547
    Göbel, R., & Shelah, S. (1998). Endomorphism rings of modules whose cardinality is cofinal to omega. In Abelian groups, module theory, and topology (Padua, 1997), Vol. 201, Dekker, New York, pp. 235–248. arXiv: math/0011186 MR: 1651170
  523. Sh:548
    Shelah, S. (1996). Very weak zero one law for random graphs with order and random binary functions. Random Structures Algorithms, 9(4), 351–358. arXiv: math/9606230 DOI: 10.1002/(SICI)1098-2418(199612)9:4<351::AID-RSA1>3.3.CO;2-D MR: 1605415
  524. Sh:549
    Fuchino, S., Koppelberg, S., & Shelah, S. (1996). Partial orderings with the weak Freese-Nation property. Ann. Pure Appl. Logic, 80(1), 35–54. arXiv: math/9508220 DOI: 10.1016/0168-0072(95)00047-X MR: 1395682
  525. Sh:551
    Shelah, S. (1996). In the random graph G(n,p), p=n^{-a}: if \psi has probability O(n^{-\epsilon}) for every \epsilon>0 then it has probability O(e^{-n^\epsilon}) for some \epsilon>0. Ann. Pure Appl. Logic, 82(1), 97–102. arXiv: math/9512228 DOI: 10.1016/0168-0072(95)00071-2 MR: 1416640
  526. Sh:552
    Shelah, S. (1997). Non-existence of universals for classes like reduced torsion free abelian groups under embeddings which are not necessarily pure. In Advances in algebra and model theory (Essen, 1994; Dresden, 1995), Vol. 9, Gordon; Breach, Amsterdam, pp. 229–286. arXiv: math/9609217 MR: 1683540
  527. Sh:553
    Shafir, O., & Shelah, S. (2000). More on entangled orders. J. Symbolic Logic, 65(4), 1823–1832. arXiv: math/9711220 DOI: 10.2307/2695077 MR: 1812182
  528. Sh:554
    Goldstern, M., & Shelah, S. (1997). A partial order where all monotone maps are definable. Fund. Math., 152(3), 255–265. arXiv: math/9707202 DOI: 10.4064/fm-152-3-255-265 MR: 1444716
  529. Sh:556
    Fuchino, S., Koppelberg, S., & Shelah, S. (1996). A game on partial orderings. Topology Appl., 74(1-3), 141–148. arXiv: math/9505212 DOI: 10.1016/S0166-8641(96)00051-X MR: 1425933
  530. Sh:557
    Niedermeyer, F., Shelah, S., & Steffens, K. (2006). The f-factor problem for graphs and the hereditary property. Arch. Math. Logic, 45(6), 665–672. arXiv: math/0404179 DOI: 10.1007/s00153-006-0009-z MR: 2252248
  531. Sh:558
    Geschke, S., & Shelah, S. (2008). The number of openly generated Boolean algebras. J. Symbolic Logic, 73(1), 151–164. arXiv: math/0702600 DOI: 10.2178/jsl/1208358746 MR: 2387936
  532. Sh:559
    Eklof, P. C., & Shelah, S. (1996). New nonfree Whitehead groups by coloring. In Abelian groups and modules (Colorado Springs, CO, 1995), Vol. 182, Dekker, New York, pp. 15–22. MR: 1415620
    See [Sh:559a]
  533. Sh:560
    Laskowski, M. C., & Shelah, S. (2001). The Karp complexity of unstable classes. Arch. Math. Logic, 40(2), 69–88. arXiv: math/0011167 DOI: 10.1007/s001530000047 MR: 1816478
  534. Sh:561
    Shelah, S., & Zapletal, J. (1997). Embeddings of Cohen algebras. Adv. Math., 126(2), 93–118. arXiv: math/9502230 DOI: 10.1006/aima.1996.1597 MR: 1442306
  535. Sh:562
    Džamonja, M., & Shelah, S. (1995). On squares, outside guessing of clubs and I_{<f}[\lambda]. Fund. Math., 148(2), 165–198. arXiv: math/9510216 DOI: 10.4064/fm-148-2-165-198 MR: 1360144
  536. Sh:563
    Jin, R., & Shelah, S. (1997). Can a small forcing create Kurepa trees. Ann. Pure Appl. Logic, 85(1), 47–68. arXiv: math/9504220 DOI: 10.1016/S0168-0072(96)00018-8 MR: 1443275
  537. Sh:564
    Shelah, S. (1996). Finite canonization. Comment. Math. Univ. Carolin., 37(3), 445–456. arXiv: math/9509229 MR: 1426909
  538. Sh:565
    Jech, T. J., & Shelah, S. (1996). On countably closed complete Boolean algebras. J. Symbolic Logic, 61(4), 1380–1386. arXiv: math/9502203 DOI: 10.2307/2275822 MR: 1456113
  539. Sh:566
    Jech, T. J., & Shelah, S. (1996). A complete Boolean algebra that has no proper atomless complete subalgebra. J. Algebra, 182(3), 748–755. arXiv: math/9501206 DOI: 10.1006/jabr.1996.0199 MR: 1398120
  540. Sh:567
    Baldwin, J. T., & Shelah, S. (1998). DOP and FCP in generic structures. J. Symbolic Logic, 63(2), 427–438. arXiv: math/9607228 DOI: 10.2307/2586841 MR: 1625876
  541. Sh:568
    Göbel, R., & Shelah, S. (2001). Some nasty reflexive groups. Math. Z., 237(3), 547–559. arXiv: math/0003164 DOI: 10.1007/PL00004879 MR: 1845337
  542. Sh:569
    Shami, Z., & Shelah, S. (1999). Rigid \aleph_\epsilon-saturated models of superstable theories. Fund. Math., 162(1), 37–46. arXiv: math/9908158 MR: 1734816
  543. Sh:570
    Baldwin, J. T., Grossberg, R. P., & Shelah, S. (1999). Transfering saturation, the finite cover property, and stability. J. Symbolic Logic, 64(2), 678–684. arXiv: math/9511205 DOI: 10.2307/2586492 MR: 1777778
  544. Sh:571
    Cummings, J., Džamonja, M., & Shelah, S. (1995). A consistency result on weak reflection. Fund. Math., 148(1), 91–100. arXiv: math/9504221 DOI: 10.4064/fm-148-1-91-100 MR: 1354940
  545. Sh:572
    Shelah, S. (1997). Colouring and non-productivity of \aleph_2-c.c. Ann. Pure Appl. Logic, 84(2), 153–174. arXiv: math/9609218 DOI: 10.1016/S0168-0072(96)00020-6 MR: 1437644
  546. Sh:573
    Lifsches, S., & Shelah, S. (1998). Uniformization and Skolem functions in the class of trees. J. Symbolic Logic, 63(1), 103–127. arXiv: math/9412231 DOI: 10.2307/2586591 MR: 1610786
  547. Sh:574
    Džamonja, M., & Shelah, S. (1999). Similar but not the same: various versions of \clubsuit do not coincide. J. Symbolic Logic, 64(1), 180–198. arXiv: math/9710215 DOI: 10.2307/2586758 MR: 1683902
  548. Sh:575
    Shelah, S. (2000). Cellularity of free products of Boolean algebras (or topologies). Fund. Math., 166(1-2), 153–208. arXiv: math/9508221 MR: 1804709
  549. Sh:576
    Shelah, S. (2001). Categoricity of an abstract elementary class in two successive cardinals. Israel J. Math., 126, 29–128. arXiv: math/9805146 DOI: 10.1007/BF02784150 MR: 1882033
  550. Sh:577
    Gitik, M., & Shelah, S. (1997). Less saturated ideals. Proc. Amer. Math. Soc., 125(5), 1523–1530. arXiv: math/9503203 DOI: 10.1090/S0002-9939-97-03702-7 MR: 1363421
  551. Sh:578
    Milner, E. C., & Shelah, S. (1998). A tree-arrowing graph. In Set theory (Curaçao, 1995; Barcelona, 1996), Kluwer Acad. Publ., Dordrecht, pp. 175–182. arXiv: math/9708210 MR: 1602000
  552. Sh:579
    Göbel, R., & Shelah, S. (1996). GCH implies existence of many rigid almost free abelian groups. In Abelian groups and modules (Colorado Springs, CO, 1995), Vol. 182, Dekker, New York, pp. 253–271. arXiv: math/0011185 MR: 1415638
  553. Sh:580
    Shelah, S. (2000). Strong covering without squares. Fund. Math., 166(1-2), 87–107. arXiv: math/9604243 MR: 1804706
  554. Sh:582
    Gitik, M., & Shelah, S. (2001). More on real-valued measurable cardinals and forcing with ideals. Israel J. Math., 124, 221–242. arXiv: math/9507208 DOI: 10.1007/BF02772619 MR: 1856516
  555. Sh:583
    Gilchrist, M., & Shelah, S. (1997). The consistency of ZFC + 2^{\aleph_0}>\aleph_\omega+\mathcal I(\aleph_2)=\mathcal I(\aleph_\omega). J. Symbolic Logic, 62(4), 1151–1160. arXiv: math/9603219 DOI: 10.2307/2275632 MR: 1617993
  556. Sh:584
    Saxl, J., Shelah, S., & Thomas, S. (1996). Infinite products of finite simple groups. Trans. Amer. Math. Soc., 348(11), 4611–4641. arXiv: math/9605202 DOI: 10.1090/S0002-9947-96-01746-1 MR: 1376555
  557. Sh:585
    Rabus, M., & Shelah, S. (2000). Covering a function on the plane by two continuous functions on an uncountable square—the consistency. Ann. Pure Appl. Logic, 103(1-3), 229–240. arXiv: math/9706223 DOI: 10.1016/S0168-0072(98)00053-0 MR: 1756147
  558. Sh:586
    Shelah, S. (1998). A polarized partition relation and failure of GCH at singular strong limit. Fund. Math., 155(2), 153–160. arXiv: math/9706224 MR: 1606515
  559. Sh:587
    Shelah, S. (2003). Not collapsing cardinals \leq\kappa in (<\kappa)-support iterations. Israel J. Math., 136, 29–115. arXiv: math/9707225 DOI: 10.1007/BF02807192 MR: 1998104
  560. Sh:588
    Shelah, S. (2013). Large weight does not yield an irreducible base. Period. Math. Hungar., 66(2), 131–137. arXiv: 1007.2693 DOI: 10.1007/s10998-013-1031-7 MR: 3090811
  561. Sh:589
    Shelah, S. (2000). Applications of PCF theory. J. Symbolic Logic, 65(4), 1624–1674. arXiv: math/9804155 DOI: 10.2307/2695067 MR: 1812172
  562. Sh:590
    Shelah, S. (2000). On a problem of Steve Kalikow. Fund. Math., 166(1-2), 137–151. arXiv: math/9705226 MR: 1804708
  563. Sh:591
    Göbel, R., & Shelah, S. (1998). Indecomposable almost free modules—the local case. Canad. J. Math., 50(4), 719–738. arXiv: math/0011182 DOI: 10.4153/CJM-1998-039-7 MR: 1638607
  564. Sh:592
    Shelah, S. (2000). Covering of the null ideal may have countable cofinality. Fund. Math., 166(1-2), 109–136. arXiv: math/9810181 MR: 1804707
  565. Sh:593
    Fuchino, S., Mildenberger, H., Shelah, S., & Vojtáš, P. (1999). On absolutely divergent series. Fund. Math., 160(3), 255–268. arXiv: math/9903114 MR: 1708990
  566. Sh:594
    Shelah, S. (1998). There may be no nowhere dense ultrafilter. In Logic Colloquium ’95 (Haifa), Vol. 11, Springer, Berlin, pp. 305–324. arXiv: math/9611221 DOI: 10.1007/978-3-662-22108-2_17 MR: 1690694
  567. Sh:595
    Shelah, S. (2000). Embedding Cohen algebras using pcf theory. Fund. Math., 166(1-2), 83–86. arXiv: math/9508201 MR: 1804705
  568. Sh:596
    Cummings, J., & Shelah, S. (1999). Some independence results on reflection. J. London Math. Soc. (2), 59(1), 37–49. arXiv: math/9703219 DOI: 10.1112/S0024610798006863 MR: 1688487
  569. Sh:597
    Gitik, M., & Shelah, S. (1998). On densities of box products. Topology Appl., 88(3), 219–237. arXiv: math/9603206 DOI: 10.1016/S0166-8641(97)00176-4 MR: 1632081
  570. Sh:598
    Abraham, U., & Shelah, S. (2004). Ladder gaps over stationary sets. J. Symbolic Logic, 69(2), 518–532. arXiv: math/0404151 DOI: 10.2178/jsl/1082418541 MR: 2058187
  571. Sh:599
    Rosłanowski, A., & Shelah, S. (2000). More on cardinal invariants of Boolean algebras. Ann. Pure Appl. Logic, 103(1-3), 1–37. arXiv: math/9808056 DOI: 10.1016/S0168-0072(98)00066-9 MR: 1756140
  572. Sh:601
    Kuhlmann, F.-V., Kuhlmann, S., & Shelah, S. (1997). Exponentiation in power series fields. Proc. Amer. Math. Soc., 125(11), 3177–3183. arXiv: math/9608214 DOI: 10.1090/S0002-9939-97-03964-6 MR: 1402868
  573. Sh:602
    Hyttinen, T., & Shelah, S. (1999). Constructing strongly equivalent nonisomorphic models for unsuperstable theories. Part C. J. Symbolic Logic, 64(2), 634–642. arXiv: math/9709229 DOI: 10.2307/2586489 MR: 1777775
  574. Sh:603
    Shelah, S. (2002). Few non minimal types on non structure. In In the Scope of Logic, Methodology and Philosophy of Science . Volume One of the 11th International Congress of Logic, Methodology and Philosophy of Science, Cracow, August 1999, Vol. 1, Springer Netherlands, pp. 29–53. arXiv: math/9906023
  575. Sh:604
    Shelah, S. (2005). The pair (\aleph_n,\aleph_0) may fail \aleph_0-compactness. In Logic Colloquium ’01, Vol. 20, Assoc. Symbol. Logic, Urbana, IL, pp. 402–433. arXiv: math/0404240 MR: 2143906
  576. Sh:605
    Shelah, S., & Truss, J. K. (1999). On distinguishing quotients of symmetric groups. Ann. Pure Appl. Logic, 97(1-3), 47–83. arXiv: math/9805147 DOI: 10.1016/S0168-0072(98)00023-2 MR: 1682068
  577. Sh:606
    Shelah, S. (1999). On T_3-topological space omitting many cardinals. Period. Math. Hungar., 38(1-2), 87–98. arXiv: math/9811177 DOI: 10.1023/A:1004707417470 MR: 1721480
  578. Sh:607
    Bartoszyński, T., & Shelah, S. (2001). Strongly meager sets do not form an ideal. J. Math. Log., 1(1), 1–34. arXiv: math/9805148 DOI: 10.1142/S0219061301000028 MR: 1838340
  579. Sh:608
    Shelah, S., & Stanley, L. J. (2001). Forcing many positive polarized partition relations between a cardinal and its powerset. J. Symbolic Logic, 66(3), 1359–1370. arXiv: math/9710216 DOI: 10.2307/2695112 MR: 1856747
  580. Sh:609
    Kojman, M., & Shelah, S. (1998). A ZFC Dowker space in \aleph_{\omega+1}: an application of PCF theory to topology. Proc. Amer. Math. Soc., 126(8), 2459–2465. arXiv: math/9512202 DOI: 10.1090/S0002-9939-98-04884-9 MR: 1605988
  581. Sh:610
    Shelah, S., & Zapletal, J. (1999). Canonical models for \aleph_1-combinatorics. Ann. Pure Appl. Logic, 98(1-3), 217–259. arXiv: math/9806166 DOI: 10.1016/S0168-0072(98)00022-0 MR: 1696852
  582. Sh:611
    Rosen, E., Shelah, S., & Weinstein, S. (1997). k-universal finite graphs. In Logic and random structures (New Brunswick, NJ, 1995), Vol. 33, Amer. Math. Soc., Providence, RI, pp. 65–77. arXiv: math/9604244 MR: 1465469
  583. Sh:612
    Juhász, I., & Shelah, S. (1998). On the cardinality and weight spectra of compact spaces. II. Fund. Math., 155(1), 91–94. arXiv: math/9703220 MR: 1487990
  584. Sh:613
    Jin, R., & Shelah, S. (1998). Compactness of Loeb spaces. J. Symbolic Logic, 63(4), 1371–1392. arXiv: math/9604211 DOI: 10.2307/2586655 MR: 1665731
  585. Sh:614
    Džamonja, M., & Shelah, S. (2004). On the existence of universal models. Arch. Math. Logic, 43(7), 901–936. arXiv: math/9805149 DOI: 10.1007/s00153-004-0235-1 MR: 2096141
  586. Sh:615
    Kuhlmann, F.-V., Kuhlmann, S., & Shelah, S. (2003). Functorial equations for lexicographic products. Proc. Amer. Math. Soc., 131(10), 2969–2976. arXiv: math/0107206 DOI: 10.1090/S0002-9939-03-06830-8 MR: 1993201
  587. Sh:616
    Bartoszyński, T., Rosłanowski, A., & Shelah, S. (2000). After all, there are some inequalities which are provable in ZFC. J. Symbolic Logic, 65(2), 803–816. arXiv: math/9711222 DOI: 10.2307/2586571 MR: 1771087
  588. Sh:617
    Eklof, P. C., Huisgen-Zimmermann, B., & Shelah, S. (1997). Torsion modules, lattices and p-points. Bull. London Math. Soc., 29(5), 547–555. arXiv: math/9703221 DOI: 10.1112/S0024609397003329 MR: 1458714
  589. Sh:618
    Hamkins, J. D., & Shelah, S. (1998). Superdestructibility: a dual to Laver’s indestructibility. J. Symbolic Logic, 63(2), 549–554. arXiv: math/9612227 DOI: 10.2307/2586848 MR: 1625927
  590. Sh:619
    Shelah, S. (2003). The null ideal restricted to some non-null set may be \aleph_1-saturated. Fund. Math., 179(2), 97–129. arXiv: math/9705213 DOI: 10.4064/fm179-2-1 MR: 2029228
  591. Sh:620
    Shelah, S. (1999). Special subsets of ^{\mathrm{cf}(\mu)}\mu, Boolean algebras and Maharam measure algebras. Topology Appl., 99(2-3), 135–235. arXiv: math/9804156 DOI: 10.1016/S0166-8641(99)00138-8 MR: 1728851
  592. Sh:621
    Eklof, P. C., & Shelah, S. (2001). A non-reflexive Whitehead group. J. Pure Appl. Algebra, 156(2-3), 199–214. arXiv: math/9908157 DOI: 10.1016/S0022-4049(99)00152-8 MR: 1808823
  593. Sh:622
    Shelah, S. (2001). Non-existence of universal members in classes of abelian groups. J. Group Theory, 4(2), 169–191. arXiv: math/9808139 DOI: 10.1515/jgth.2001.014 MR: 1812323
  594. Sh:623
    Baldwin, J. T., & Shelah, S. (2000). On the classifiability of cellular automata. Theoret. Comput. Sci., 230(1-2), 117–129. arXiv: math/9801152 DOI: 10.1016/S0304-3975(99)00042-0 MR: 1725633
  595. Sh:624
    Shelah, S. (1999). On full Suslin trees. Colloq. Math., 79(1), 1–7. arXiv: math/9608215 DOI: 10.4064/cm-79-1-1-7 MR: 1665618
  596. Sh:625
    Eklof, P. C., & Shelah, S. (1998). The Kaplansky test problems for \aleph_1-separable groups. Proc. Amer. Math. Soc., 126(7), 1901–1907. arXiv: math/9709230 DOI: 10.1090/S0002-9939-98-04749-2 MR: 1485469
  597. Sh:626
    Jin, R., & Shelah, S. (1999). Possible size of an ultrapower of \omega. Arch. Math. Logic, 38(1), 61–77. arXiv: math/9801153 DOI: 10.1007/s001530050115 MR: 1667288
  598. Sh:627
    Shelah, S. (1998). Erdős and Rényi conjecture. J. Combin. Theory Ser. A, 82(2), 179–185. arXiv: math/9707226 DOI: 10.1006/jcta.1997.2845 MR: 1620869
  599. Sh:628
    Rosłanowski, A., & Shelah, S. (1997). Norms on possibilities. II. More ccc ideals on 2^\omega. J. Appl. Anal., 3(1), 103–127. arXiv: math/9703222 DOI: 10.1515/JAA.1997.103 MR: 1618851
  600. Sh:629
    Hyttinen, T., & Shelah, S. (2000). Strong splitting in stable homogeneous models. Ann. Pure Appl. Logic, 103(1-3), 201–228. arXiv: math/9911229 DOI: 10.1016/S0168-0072(99)00044-5 MR: 1756146
  601. Sh:630
    Shelah, S. (2004). Properness without elementaricity. J. Appl. Anal., 10(2), 169–289. arXiv: math/9712283 DOI: 10.1515/JAA.2004.169 MR: 2115943
  602. Sh:631
    Rabus, M., & Shelah, S. (1999). Topological density of ccc Boolean algebras—every cardinality occurs. Proc. Amer. Math. Soc., 127(9), 2573–2581. arXiv: math/9709231 DOI: 10.1090/S0002-9939-99-04813-3 MR: 1486748
  603. Sh:632
    Hyttinen, T., & Shelah, S. (1998). On the number of elementary submodels of an unsuperstable homogeneous structure. MLQ Math. Log. Q., 44(3), 354–358. arXiv: math/9702228 DOI: 10.1002/malq.19980440307 MR: 1645490
  604. Sh:633
    Goldstern, M., & Shelah, S. (1998). Order polynomially complete lattices must be large. Algebra Universalis, 39(3-4), 197–209. arXiv: math/9707203 DOI: 10.1007/s000120050075 MR: 1636999
  605. Sh:634
    Shelah, S. (2000). Choiceless Polynomial Time Logic: Inability to express. In P. G. Clote & H. Schwichtenberg, eds., Computer Science Logic, 14th International Workshop, CSL 2000, Annual Conference of the EACSL, Fischbachau, Germany, August 21–26, 2000, Proceedings, Vol. 1862, Springer, pp. 72–125. arXiv: math/9807179
  606. Sh:635
    Shelah, S., & Villaveces, A. (1999). Toward categoricity for classes with no maximal models. Ann. Pure Appl. Logic, 97(1-3), 1–25. arXiv: math/9707227 DOI: 10.1016/S0168-0072(98)00015-3 MR: 1682066
  607. Sh:636
    Shelah, S. (1998). The lifting problem with the full ideal. J. Appl. Anal., 4(1), 1–17. arXiv: math/9712284 DOI: 10.1515/JAA.1998.1 MR: 1648938
  608. Sh:638
    Shelah, S. (2021). More on weak diamond. Acta Math. Hungar., 165(1), 1–27. arXiv: math/9807180 DOI: 10.1007/s10474-021-01182-2 MR: 4323582
  609. Sh:639
    Shelah, S. (2000). On quantification with a finite universe. J. Symbolic Logic, 65(3), 1055–1075. arXiv: math/9809201 DOI: 10.2307/2586688 MR: 1791364
  610. Sh:640
    Błaszczyk, A., & Shelah, S. (2001). Regular subalgebras of complete Boolean algebras. J. Symbolic Logic, 66(2), 792–800. arXiv: math/9712285 DOI: 10.2307/2695044 MR: 1833478
  611. Sh:641
    Shelah, S. (2001). Constructing Boolean algebras for cardinal invariants. Algebra Universalis, 45(4), 353–373. arXiv: math/9712286 DOI: 10.1007/s000120050219 MR: 1816973
  612. Sh:642
    Brendle, J., & Shelah, S. (1999). Ultrafilters on \omega—their ideals and their cardinal characteristics. Trans. Amer. Math. Soc., 351(7), 2643–2674. arXiv: math/9710217 DOI: 10.1090/S0002-9947-99-02257-6 MR: 1686797
  613. Sh:643
    Shelah, S., & Spasojević, Z. (2002). Cardinal invariants \mathfrak b_\kappa and \mathfrak t_\kappa. Publ. Inst. Math. (Beograd) (N.S.), 72(86), 1–9. arXiv: math/0003141 DOI: 10.2298/PIM0272001S MR: 1997605
  614. Sh:644
    Shelah, S., & Väisänen, P. (2000). On inverse \gamma-systems and the number of L_{\infty\lambda}-equivalent, non-isomorphic models for \lambda singular. J. Symbolic Logic, 65(1), 272–284. arXiv: math/9807181 DOI: 10.2307/2586536 MR: 1782119
  615. Sh:645
    Komjáth, P., & Shelah, S. (2000). Two consistency results on set mappings. J. Symbolic Logic, 65(1), 333–338. arXiv: math/9807182 DOI: 10.2307/2586540 MR: 1782123
  616. Sh:646
    Shelah, S., & Väisänen, P. (2001). On the number of L_{\infty\omega_1}-equivalent non-isomorphic models. Trans. Amer. Math. Soc., 353(5), 1781–1817. arXiv: math/9908160 DOI: 10.1090/S0002-9947-00-02604-0 MR: 1707477
  617. Sh:647
    Göbel, R., & Shelah, S. (2000). Cotorsion theories and splitters. Trans. Amer. Math. Soc., 352(11), 5357–5379. arXiv: math/9910159 DOI: 10.1090/S0002-9947-00-02475-2 MR: 1661246
  618. Sh:648
    Shelah, S., & Villaveces, A. (2021). The Hart-Shelah example, in stronger logics. Ann. Pure Appl. Logic, 172(6), 102958, 23. arXiv: math/0404258 DOI: 10.1016/j.apal.2021.102958 MR: 4216281
  619. Sh:649
    Kojman, M., & Shelah, S. (1999). Regressive Ramsey numbers are Ackermannian. J. Combin. Theory Ser. A, 86(1), 177–181. arXiv: math/9805150 DOI: 10.1006/jcta.1998.2906 MR: 1682971
  620. Sh:650
    Göbel, R., & Shelah, S. (2004). Uniquely transitive torsion-free abelian groups. In Rings, modules, algebras, and abelian groups, Vol. 236, Dekker, New York, pp. 271–290. arXiv: math/0404259 MR: 2050717
  621. Sh:651
    Rosłanowski, A., & Shelah, S. (2001). Forcing for hL and hd. Colloq. Math., 88(2), 273–310. arXiv: math/9808104 DOI: 10.4064/cm88-2-9 MR: 1852911
  622. Sh:652
    Shelah, S. (2002). More constructions for Boolean algebras. Arch. Math. Logic, 41(5), 401–441. arXiv: math/9605235 DOI: 10.1007/s001530100099 MR: 1918108
  623. Sh:653
    Ciesielski, K. C., & Shelah, S. (1999). A model with no magic set. J. Symbolic Logic, 64(4), 1467–1490. arXiv: math/9801154 DOI: 10.2307/2586790 MR: 1780064
  624. Sh:654
    Just, W., Shelah, S., & Thomas, S. (1999). The automorphism tower problem revisited. Adv. Math., 148(2), 243–265. arXiv: math/0003120 DOI: 10.1006/aima.1999.1852 MR: 1736959
  625. Sh:655
    Rosłanowski, A., & Shelah, S. (2001). Iteration of \lambda-complete forcing notions not collapsing \lambda^+. Int. J. Math. Math. Sci., 28(2), 63–82. arXiv: math/9906024 DOI: 10.1155/S016117120102018X MR: 1885053
  626. Sh:657
    Shelah, S., & Väänänen, J. A. (2000). Stationary sets and infinitary logic. J. Symbolic Logic, 65(3), 1311–1320. arXiv: math/9706225 DOI: 10.2307/2586701 MR: 1791377
  627. Sh:658
    Bartoszyński, T., & Shelah, S. (2002). Strongly meager and strong measure zero sets. Arch. Math. Logic, 41(3), 245–250. arXiv: math/9907137 DOI: 10.1007/s001530000068 MR: 1901186
  628. Sh:659
    Džamonja, M., & Shelah, S. (2003). Universal graphs at the successor of a singular cardinal. J. Symbolic Logic, 68(2), 366–388. arXiv: math/0102043 DOI: 10.2178/jsl/1052669056 MR: 1976583
  629. Sh:660
    Shelah, S. Covering numbers associated with trees branching into a countably generated set of possibilities. Real Anal. Exchange, 24(1), 205–213. arXiv: math/9711223 MR: 1691746
  630. Sh:661
    Kolman, O., & Shelah, S. (1998). A result related to the problem CN of Fremlin. J. Appl. Anal., 4(2), 161–165. arXiv: math/9712287 DOI: 10.1515/JAA.1998.161 MR: 1667030
  631. Sh:662
    Halko, A., & Shelah, S. (2001). On strong measure zero subsets of ^\kappa2. Fund. Math., 170(3), 219–229. arXiv: math/9710218 DOI: 10.4064/fm170-3-1 MR: 1880900
  632. Sh:663
    Shelah, S., & Spinas, O. (1999). On tightness and depth in superatomic Boolean algebras. Proc. Amer. Math. Soc., 127(12), 3475–3480. arXiv: math/9802135 DOI: 10.1090/S0002-9939-99-04944-8 MR: 1610793
  633. Sh:664
    Shelah, S. (2001). Strong dichotomy of cardinality. Results Math., 39(1-2), 131–154. arXiv: math/9807183 DOI: 10.1007/BF03322680 MR: 1817405
  634. Sh:665
    Shelah, S., & Steprāns, J. (2001). The covering numbers of Mycielski ideals are all equal. J. Symbolic Logic, 66(2), 707–718. arXiv: math/9712288 DOI: 10.2307/2695039 MR: 1833473
  635. Sh:666
    Shelah, S. (2000). On what I do not understand (and have something to say). I. Fund. Math., 166(1-2), 1–82. arXiv: math/9906113 MR: 1804704
  636. Sh:667
    Shelah, S. (2003). Successor of singulars: combinatorics and not collapsing cardinals \le\kappa in (<\kappa)-support iterations. Israel J. Math., 134, 127–155. arXiv: math/9808140 DOI: 10.1007/BF02787405 MR: 1972177
  637. Sh:668
    Shelah, S. (2004). Anti-homogeneous partitions of a topological space. Sci. Math. Jpn., 59(2), 203–255. arXiv: math/9906025 MR: 2062196
  638. Sh:669
    Shelah, S. (2006). Non-Cohen oracle C.C.C. J. Appl. Anal., 12(1), 1–17. arXiv: math/0303294 DOI: 10.1515/JAA.2006.1 MR: 2243849
  639. Sh:671
    Jech, T. J., & Shelah, S. (2000). On reflection of stationary sets in \mathcal P_\kappa\lambda. Trans. Amer. Math. Soc., 352(6), 2507–2515. arXiv: math/9801078 DOI: 10.1090/S0002-9947-99-02448-4 MR: 1650097
  640. Sh:672
    Rosłanowski, A., & Shelah, S. (2004). Sweet & sour and other flavours of ccc forcing notions. Arch. Math. Logic, 43(5), 583–663. arXiv: math/9909115 DOI: 10.1007/s00153-004-0213-7 MR: 2076408
  641. Sh:673
    Kojman, M., & Shelah, S. (2000). The PCF trichotomy theorem does not hold for short sequences. Arch. Math. Logic, 39(3), 213–218. arXiv: math/9712289 DOI: 10.1007/s001530050143 MR: 1758508
  642. Sh:674
    Balogh, Z. T., Davis, S. W., Just, W., Shelah, S., & Szeptycki, P. J. (2000). Strongly almost disjoint sets and weakly uniform bases. Trans. Amer. Math. Soc., 352(11), 4971–4987. arXiv: math/9803167 DOI: 10.1090/S0002-9947-00-02599-X MR: 1707497
  643. Sh:675
    Shelah, S. (1997). On Ciesielski’s problems. J. Appl. Anal., 3(2), 191–209. arXiv: math/9801155 DOI: 10.1515/JAA.1997.191 MR: 1619548
  644. Sh:676
    Hyttinen, T., & Shelah, S. (2001). Main gap for locally saturated elementary submodels of a homogeneous structure. J. Symbolic Logic, 66(3), 1286–1302. arXiv: math/9804157 DOI: 10.2307/2695107 MR: 1856742
  645. Sh:677
    Shelah, S., & Spinas, O. (2000). On incomparability and related cardinal functions on ultraproducts of Boolean algebras. Math. Japon., 52(3), 345–358. arXiv: math/9903116 MR: 1796651
  646. Sh:678
    Eklof, P. C., & Shelah, S. (1999). Absolutely rigid systems and absolutely indecomposable groups. In Abelian groups and modules (Dublin, 1998), Birkhäuser, Basel, pp. 257–268. arXiv: math/0010264 MR: 1735574
  647. Sh:679
    Shelah, S. (2002). A partition theorem. Sci. Math. Jpn., 56(2), 413–438. arXiv: math/0003163 MR: 1922806
  648. Sh:680
    Ciesielski, K. C., & Shelah, S. Uniformly antisymmetric functions with bounded range. Real Anal. Exchange, 24(2), 615–619. arXiv: math/9805151 MR: 1704738
  649. Sh:681
    Göbel, R., Shelah, S., & Strüngmann, L. H. (2004). Generalized E-rings. In Rings, modules, algebras, and abelian groups, Vol. 236, Dekker, New York, pp. 291–306. arXiv: math/0404271 MR: 2050718
  650. Sh:682
    Göbel, R., & Shelah, S. (1999). Almost free splitters. Colloq. Math., 81(2), 193–221. arXiv: math/9910161 DOI: 10.4064/cm-81-2-193-221 MR: 1715347
    See [Sh:E22]
  651. Sh:683
    Kolman, O., & Shelah, S. (1999). Almost disjoint pure subgroups of the Baer-Specker group. In Abelian groups and modules (Dublin, 1998), Birkhäuser, Basel, pp. 225–230. arXiv: math/0102057 MR: 1735570
  652. Sh:684
    Mildenberger, H., & Shelah, S. (2000). Changing cardinal characteristics without changing \omega-sequences or confinalities. Ann. Pure Appl. Logic, 106(1-3), 207–261. arXiv: math/9901096 DOI: 10.1016/S0168-0072(00)00026-9 MR: 1785760
  653. Sh:685
    Džamonja, M., & Shelah, S. (2000). On versions of \clubsuit on cardinals larger than \aleph_1. Math. Japon., 51(1), 53–61. arXiv: math/9911228 MR: 1739051
  654. Sh:686
    Rosłanowski, A., & Shelah, S. (2001). The yellow cake. Proc. Amer. Math. Soc., 129(1), 279–291. arXiv: math/9810179 DOI: 10.1090/S0002-9939-00-05538-6 MR: 1694876
  655. Sh:687
    Laskowski, M. C., & Shelah, S. (2003). Karp complexity and classes with the independence property. Ann. Pure Appl. Logic, 120(1-3), 263–283. arXiv: math/0303345 DOI: 10.1016/S0168-0072(02)00080-5 MR: 1949710
  656. Sh:688
    Goldstern, M., & Shelah, S. (1999). There are no infinite order polynomially complete lattices, after all. Algebra Universalis, 42(1-2), 49–57. arXiv: math/9810050 DOI: 10.1007/s000120050122 MR: 1736340
  657. Sh:689
    Cherlin, G. L., Shelah, S., & Shi, N. (1999). Universal graphs with forbidden subgraphs and algebraic closure. Adv. In Appl. Math., 22(4), 454–491. arXiv: math/9809202 DOI: 10.1006/aama.1998.0641 MR: 1683298
  658. Sh:690
    Eisworth, T., Nyikos, P. J., & Shelah, S. (2003). Gently killing S-spaces. Israel J. Math., 136, 189–220. arXiv: math/9812133 DOI: 10.1007/BF02807198 MR: 1998110
  659. Sh:691
    Džamonja, M., & Shelah, S. (2003). Weak reflection at the successor of a singular cardinal. J. London Math. Soc. (2), 67(1), 1–15. arXiv: math/0003118 DOI: 10.1112/S0024610702003757 MR: 1942407
    See [Sh:E20]
  660. Sh:692
    Džamonja, M., & Shelah, S. (2004). On \vartriangleleft^*-maximality. Ann. Pure Appl. Logic, 125(1-3), 119–158. arXiv: math/0009087 DOI: 10.1016/j.apal.2003.11.001 MR: 2033421
  661. Sh:693
    Shelah, S., & Trlifaj, J. (2001). Spectra of the \Gamma-invariant of uniform modules. J. Pure Appl. Algebra, 162(2-3), 367–379. arXiv: math/0009060 DOI: 10.1016/S0022-4049(00)00118-3 MR: 1843814
  662. Sh:694
    Jech, T. J., & Shelah, S. (2001). Simple complete Boolean algebras. Proc. Amer. Math. Soc., 129(2), 543–549. arXiv: math/0406438 DOI: 10.1090/S0002-9939-00-05566-0 MR: 1707521
  663. Sh:695
    Ciesielski, K. C., & Shelah, S. (2000). Category analogue of sup-measurability problem. J. Appl. Anal., 6(2), 159–172. arXiv: math/9905147 DOI: 10.1515/JAA.2000.159 MR: 1805097
  664. Sh:696
    Goldstern, M., & Shelah, S. (2002). Antichains in products of linear orders. Order, 19(3), 213–222. arXiv: math/9902054 DOI: 10.1023/A:1021289412771 MR: 1942184
  665. Sh:697
    Hajnal, A., Juhász, I., & Shelah, S. (2000). Strongly almost disjoint families, revisited. Fund. Math., 163(1), 13–23. arXiv: math/9812114 MR: 1750332
  666. Sh:698
    Shelah, S. (2002). On the existence of large subsets of [\lambda]^{<\kappa} which contain no unbounded non-stationary subsets. Arch. Math. Logic, 41(3), 207–213. arXiv: math/9908159 DOI: 10.1007/s001530000054 MR: 1901184
  667. Sh:699
    Halbeisen, L. J., & Shelah, S. (2001). Relations between some cardinals in the absence of the axiom of choice. Bull. Symbolic Logic, 7(2), 237–261. arXiv: math/0010268 DOI: 10.2307/2687776 MR: 1839547
  668. Sh:700
    Shelah, S. (2004). Two cardinal invariants of the continuum (\mathfrak d<\mathfrak a) and FS linearly ordered iterated forcing. Acta Math., 192(2), 187–223. Previous title “Are \mathfrak a and \mathfrak d your cup of tea?” arXiv: math/0012170 DOI: 10.1007/BF02392740 MR: 2096454
    See [Sh:700a]
  669. Sh:701
    Göbel, R., Rodrı́guez Blancas, J. L., & Shelah, S. (2002). Large localizations of finite simple groups. J. Reine Angew. Math., 550, 1–24. arXiv: math/9912191 DOI: 10.1515/crll.2002.072 MR: 1925906
  670. Sh:702
    Shelah, S. (2000). On what I do not understand (and have something to say), model theory. Math. Japon., 51(2), 329–377. arXiv: math/9910158 MR: 1747306
  671. Sh:703
    Shelah, S. (2003). On ultraproducts of Boolean algebras and irr. Arch. Math. Logic, 42(6), 569–581. arXiv: math/0012171 DOI: 10.1007/s00153-002-0167-6 MR: 2001060
  672. Sh:704
    Shelah, S. (2002). Superatomic Boolean algebras: maximal rigidity. In Set theory (Piscataway, NJ, 1999), Vol. 58, Amer. Math. Soc., Providence, RI, pp. 107–128. arXiv: math/0009075 DOI: 10.1090/dimacs/058/09 MR: 1903854
  673. Sh:706
    Shelah, S. (2012). Universality among graphs omitting a complete bipartite graph. Combinatorica, 32(3), 325–362. arXiv: math/0102058 DOI: 10.1007/s00493-012-2033-4 MR: 2965281
  674. Sh:708
    Gitik, M., & Shelah, S. (2001). On some configurations related to the Shelah weak hypothesis. Arch. Math. Logic, 40(8), 639–650. arXiv: math/9909087 DOI: 10.1007/s001530100076 MR: 1867686
  675. Sh:709
    Kolman, O., & Shelah, S. (2000). Infinitary axiomatizability of slender and cotorsion-free groups. Bull. Belg. Math. Soc. Simon Stevin, 7(4), 623–629. arXiv: math/9910162 http://projecteuclid.org/euclid.bbms/1103055621 MR: 1806941
  676. Sh:710
    Džamonja, M., & Shelah, S. (2006). On properties of theories which preclude the existence of universal models. Ann. Pure Appl. Logic, 139(1-3), 280–302. arXiv: math/0009078 DOI: 10.1016/j.apal.2005.06.001 MR: 2206258
  677. Sh:711
    Shelah, S. (2005). On nicely definable forcing notions. J. Appl. Anal., 11(1), 1–17. arXiv: math/0303293 DOI: 10.1515/JAA.2005.1 MR: 2151390
  678. Sh:712
    Fuchino, S., Geschke, S., Shelah, S., & Soukup, L. (2001). On the weak Freese-Nation property of complete Boolean algebras. Ann. Pure Appl. Logic, 110(1-3), 89–105. arXiv: math/9911230 DOI: 10.1016/S0168-0072(01)00023-9 MR: 1846760
  679. Sh:713
    Matet, P., Péan, C., & Shelah, S. (2016). Cofinality of normal ideals on [\lambda]^{<\kappa} I. Arch. Math. Logic, 55(5-6), 799–834. arXiv: math/0404318 DOI: 10.1007/s00153-016-0496-5 MR: 3523657
  680. Sh:714
    Juhász, I., Shelah, S., Soukup, L., & Szentmiklóssy, Z. (2003). A tall space with a small bottom. Proc. Amer. Math. Soc., 131(6), 1907–1916. arXiv: math/0104198 DOI: 10.1090/S0002-9939-03-06662-0 MR: 1955280
  681. Sh:715
    Shelah, S. (2004). Classification theory for elementary classes with the dependence property—a modest beginning. Sci. Math. Jpn., 59(2), 265–316. arXiv: math/0009056 MR: 2062198
  682. Sh:716
    Göbel, R., & Shelah, S. (2001). Decompositions of reflexive modules. Arch. Math. (Basel), 76(3), 166–181. arXiv: math/0003165 DOI: 10.1007/s000130050557 MR: 1816987
  683. Sh:717
    Eklof, P. C., & Shelah, S. (2002). The structure of \mathrm{Ext}(A,\mathbb Z) and GCH: possible co-Moore spaces. Math. Z., 239(1), 143–157. arXiv: math/0303344 DOI: 10.1007/s002090100288 MR: 1879333
  684. Sh:718
    Shelah, S., & Väisänen, P. (2002). The number of L_{\infty\kappa}-equivalent nonisomorphic models for \kappa weakly compact. Fund. Math., 174(2), 97–126. arXiv: math/9911232 DOI: 10.4064/fm174-2-1 MR: 1927234
  685. Sh:719
    Shelah, S., & Väisänen, P. (2002). On equivalence relations second order definable over H(\kappa). Fund. Math., 174(1), 1–21. arXiv: math/9911231 DOI: 10.4064/fm174-1-1 MR: 1925484
  686. Sh:720
    Kojman, M., & Shelah, S. (2001). Fallen cardinals. Ann. Pure Appl. Logic, 109(1-2), 117–129. arXiv: math/0009079 DOI: 10.1016/S0168-0072(01)00045-8 MR: 1835242
  687. Sh:721
    Göbel, R., Shelah, S., & Wallutis, S. L. (2001). On the lattice of cotorsion theories. J. Algebra, 238(1), 292–313. arXiv: math/0103154 DOI: 10.1006/jabr.2000.8619 MR: 1822193
  688. Sh:722
    Bartoszyński, T., & Shelah, S. (2001). Continuous images of sets of reals. Topology Appl., 116(2), 243–253. arXiv: math/0001051 DOI: 10.1016/S0166-8641(00)00079-1 MR: 1855966
  689. Sh:723
    Shelah, S. (2001). Consistently there is no non trivial ccc forcing notion with the Sacks or Laver property. Combinatorica, 21(2), 309–319. arXiv: math/0003139 DOI: 10.1007/s004930100027 MR: 1832454
  690. Sh:724
    Shelah, S. (2004). On nice equivalence relations on ^\lambda 2. Arch. Math. Logic, 43(1), 31–64. arXiv: math/0009064 DOI: 10.1007/s00153-003-0183-1 MR: 2036248
  691. Sh:725
    Mildenberger, H., & Shelah, S. (2004). On needed reals. Israel J. Math., 141, 1–37. arXiv: math/0104276 DOI: 10.1007/BF02772209 MR: 2063023
  692. Sh:726
    Shelah, S., & Väänänen, J. A. (2005). A note on extensions of infinitary logic. Arch. Math. Logic, 44(1), 63–69. arXiv: math/0009080 DOI: 10.1007/s00153-004-0212-8 MR: 2116833
  693. Sh:727
    Göbel, R., & Shelah, S. (2001). Reflexive subgroups of the Baer-Specker group and Martin’s axiom. In Abelian groups, rings and modules (Perth, 2000), Vol. 273, Amer. Math. Soc., Providence, RI, pp. 145–158. arXiv: math/0009062 DOI: 10.1090/conm/273/04431 MR: 1817159
  694. Sh:728
    Kennedy, J. C., & Shelah, S. (2003). On embedding models of arithmetic of cardinality \aleph_1 into reduced powers. Fund. Math., 176(1), 17–24. arXiv: math/0105134 DOI: 10.4064/fm176-1-2 MR: 1971470
  695. Sh:729
    Shelah, S., & Strüngmann, L. H. (2001). The failure of the uncountable non-commutative Specker phenomenon. J. Group Theory, 4(4), 417–426. arXiv: math/0009045 DOI: 10.1515/jgth.2001.031 MR: 1859179
  696. Sh:730
    Shelah, S. (2000). A space with only Borel subsets. Period. Math. Hungar., 40(2), 81–84. arXiv: math/0009047 DOI: 10.1023/A:1010364023601 MR: 1805307
  697. Sh:731
    Mildenberger, H., & Shelah, S. (2002). The relative consistency of \mathfrak g<\mathrm{cf}(\mathrm{Sym}(\omega)). J. Symbolic Logic, 67(1), 297–314. arXiv: math/0009077 DOI: 10.2178/jsl/1190150045 MR: 1889552
  698. Sh:732
    Bartoszyński, T., & Shelah, S. (2002). Perfectly meager sets and universally null sets. Proc. Amer. Math. Soc., 130(12), 3701–3711. arXiv: math/0102011 DOI: 10.1090/S0002-9939-02-06465-1 MR: 1920051
  699. Sh:733
    Rosłanowski, A., & Shelah, S. (2001). Historic forcing for depth. Colloq. Math., 89(1), 99–115. arXiv: math/0006219 DOI: 10.4064/cm89-1-7 MR: 1853418
  700. Sh:735
    Shelah, S., & Steprāns, J. (2002). Martin’s axiom is consistent with the existence of nowhere trivial automorphisms. Proc. Amer. Math. Soc., 130(7), 2097–2106. arXiv: math/0011166 DOI: 10.1090/S0002-9939-01-06280-3 MR: 1896046
  701. Sh:736
    Rosłanowski, A., & Shelah, S. (2006). Measured creatures. Israel J. Math., 151, 61–110. arXiv: math/0010070 DOI: 10.1007/BF02777356 MR: 2214118
  702. Sh:737
    Goldstern, M., & Shelah, S. (2002). Clones on regular cardinals. Fund. Math., 173(1), 1–20. arXiv: math/0005273 DOI: 10.4064/fm173-1-1 MR: 1899044
  703. Sh:738
    Göbel, R., & Shelah, S. (2003). Philip Hall’s problem on non-abelian splitters. Math. Proc. Cambridge Philos. Soc., 134(1), 23–31. arXiv: math/0009091 DOI: 10.1017/S0305004102006096 MR: 1937789
  704. Sh:739
    Göbel, R., & Shelah, S. (2002). Constructing simple groups for localizations. Comm. Algebra, 30(2), 809–837. arXiv: math/0009089 DOI: 10.1081/AGB-120013184 MR: 1883027
  705. Sh:740
    Göbel, R., Paras, A. T., & Shelah, S. (2002). Groups isomorphic to all their non-trivial normal subgroups. Israel J. Math., 129, 21–27. arXiv: math/0009088 DOI: 10.1007/BF02773151 MR: 1910930
  706. Sh:741
    Göbel, R., & Shelah, S. (2002). Radicals and Plotkin’s problem concerning geometrically equivalent groups. Proc. Amer. Math. Soc., 130(3), 673–674. arXiv: math/0010303 DOI: 10.1090/S0002-9939-01-06108-1 MR: 1866018
  707. Sh:742
    Göbel, R., Shelah, S., & Wallutis, S. L. (2003). On universal and epi-universal locally nilpotent groups. Illinois J. Math., 47(1-2), 223–236. arXiv: math/0112252 http://projecteuclid.org/euclid.ijm/1258488149 MR: 2031317
  708. Sh:743
    Droste, M., & Shelah, S. (2002). Outer automorphism groups of ordered permutation groups. Forum Math., 14(4), 605–621. arXiv: math/0010304 DOI: 10.1515/form.2002.026 MR: 1900174
  709. Sh:744
    Shelah, S. (2003). A countable structure does not have a free uncountable automorphism group. Bull. London Math. Soc., 35(1), 1–7. arXiv: math/0010305 DOI: 10.1112/S0024609302001534 MR: 1934424
  710. Sh:745
    Nešetřil, J., & Shelah, S. (2003). On the order of countable graphs. European J. Combin., 24(6), 649–663. arXiv: math/0404319 DOI: 10.1016/S0195-6698(03)00064-7 MR: 1995579
  711. Sh:746
    Larson, P. B., & Shelah, S. (2003). Bounding by canonical functions, with CH. J. Math. Log., 3(2), 193–215. arXiv: math/0011187 DOI: 10.1142/S021906130300025X MR: 2030084
  712. Sh:747
    Goldstern, M., & Shelah, S. (2009). Large intervals in the clone lattice. Algebra Universalis, 62(4), 367–374. arXiv: math/0208066 DOI: 10.1007/s00012-010-0047-6 MR: 2670171
  713. Sh:748
    Kikyo, H., & Shelah, S. (2002). The strict order property and generic automorphisms. J. Symbolic Logic, 67(1), 214–216. arXiv: math/0010306 DOI: 10.2178/jsl/1190150038 MR: 1889545
  714. Sh:749
    Eklof, P. C., & Shelah, S. (2003). On the existence of precovers. Illinois J. Math., 47(1-2), 173–188. arXiv: math/0011228 http://projecteuclid.org/euclid.ijm/1258488146 MR: 2031314
  715. Sh:750
    Shelah, S. (2011). On \lambda strong homogeneity existence for cofinality logic. Cubo, 13(2), 59–72. arXiv: 0902.0439 DOI: 10.4067/s0719-06462011000200003 MR: 2908010
  716. Sh:751
    Eda, K., & Shelah, S. (2002). The non-commutative Specker phenomenon in the uncountable case. J. Algebra, 252(1), 22–26. arXiv: math/0011231 DOI: 10.1016/S0021-8693(02)00045-5 MR: 1922382
  717. Sh:752
    Eklof, P. C., & Shelah, S. (2002). Whitehead modules over large principal ideal domains. Forum Math., 14(3), 477–482. arXiv: math/0011230 DOI: 10.1515/form.2002.021 MR: 1899295
  718. Sh:753
    Mildenberger, H., & Shelah, S. (2002). The splitting number can be smaller than the matrix chaos number. Fund. Math., 171(2), 167–176. arXiv: math/0011188 DOI: 10.4064/fm171-2-4 MR: 1880382
  719. Sh:754
    Shelah, S., & Strüngmann, L. H. (2003). It is consistent with ZFC that B_1-groups are not B_2. Forum Math., 15(4), 507–524. arXiv: math/0012172 DOI: 10.1515/form.2003.028 MR: 1978332
  720. Sh:755
    Shelah, S. (2002). Weak diamond. Sci. Math. Jpn., 55(3), 531–538. arXiv: math/0107207 MR: 1901038
  721. Sh:756
    Hyttinen, T., & Shelah, S. (2002). Forcing a Boolean algebra with predesigned automorphism group. Proc. Amer. Math. Soc., 130(10), 2837–2843. arXiv: math/0102044 DOI: 10.1090/S0002-9939-02-06399-2 MR: 1908905
  722. Sh:757
    Shelah, S. (2004). Quite complete real closed fields. Israel J. Math., 142, 261–272. arXiv: math/0112212 DOI: 10.1007/BF02771536 MR: 2085719
  723. Sh:758
    Matsubara, Y., & Shelah, S. (2002). Nowhere precipitousness of the non-stationary ideal over \mathcal P_{\kappa}\lambda. J. Math. Log., 2(1), 81–89. arXiv: math/0102045 DOI: 10.1142/S021906130200014X MR: 1900548
  724. Sh:759
    Baldwin, J. T., & Shelah, S. (2001). Model companions of T_\mathrm{Aut} for stable T. Notre Dame J. Formal Logic, 42(3), 129–142 (2003). arXiv: math/0105136 DOI: 10.1305/ndjfl/1063372196 MR: 2010177
  725. Sh:760
    Blass, A. R., Gurevich, Y., & Shelah, S. (2002). On polynomial time computation over unordered structures. J. Symbolic Logic, 67(3), 1093–1125. arXiv: math/0102059 DOI: 10.2178/jsl/1190150152 MR: 1926601
  726. Sh:761
    Shelah, S. (2003). A partition relation using strongly compact cardinals. Proc. Amer. Math. Soc., 131(8), 2585–2592. arXiv: math/0103155 DOI: 10.1090/S0002-9939-02-06789-8 MR: 1974659
  727. Sh:762
    Brendle, J., & Shelah, S. (2003). Evasion and prediction. IV. Strong forms of constant prediction. Arch. Math. Logic, 42(4), 349–360. arXiv: math/0103153 DOI: 10.1007/s001530200143 MR: 2018086
  728. Sh:763
    Fuchino, S., Greenberg, N., & Shelah, S. (2006). Models of real-valued measurability. Ann. Pure Appl. Logic, 142(1-3), 380–397. arXiv: math/0601087 DOI: 10.1016/j.apal.2006.04.003 MR: 2250550
    See [Sh:E85]
  729. Sh:764
    Shelah, S., & Shioya, M. (2006). Nonreflecting stationary sets in \mathcal P_\kappa\lambda. Adv. Math., 199(1), 185–191. arXiv: math/0405013 DOI: 10.1016/j.aim.2005.01.012 MR: 2187403
    See [Sh:E86]
  730. Sh:765
    Juhász, I., Shelah, S., Soukup, L., & Szentmiklóssy, Z. (2004). Cardinal sequences and Cohen real extensions. Fund. Math., 181(1), 75–88. arXiv: math/0404322 DOI: 10.4064/fm181-1-3 MR: 2071695
  731. Sh:766
    Fuchs, L., & Shelah, S. (2003). On a non-vanishing Ext. Rend. Sem. Mat. Univ. Padova, 109, 235–239. arXiv: math/0405015 MR: 1997989
  732. Sh:767
    Shelah, S., & Tsuboi, A. (2002). Definability of initial segments. Notre Dame J. Formal Logic, 43(2), 65–73 (2003). arXiv: math/0104277 DOI: 10.1305/ndjfl/1071509428 MR: 2033316
  733. Sh:768
    Shelah, S., & Tsaban, B. (2003). Critical cardinalities and additivity properties of combinatorial notions of smallness. J. Appl. Anal., 9(2), 149–162. arXiv: math/0304019 DOI: 10.1515/JAA.2003.149 MR: 2021285
  734. Sh:769
    Kennedy, J. C., & Shelah, S. (2002). On regular reduced products. J. Symbolic Logic, 67(3), 1169–1177. arXiv: math/0105135 DOI: 10.2178/jsl/1190150156 MR: 1926605
  735. Sh:770
    Hellsten, A., Hyttinen, T., & Shelah, S. (2002). Potential isomorphism and semi-proper trees. Fund. Math., 175(2), 127–142. arXiv: math/0112288 DOI: 10.4064/fm175-2-3 MR: 1969631
  736. Sh:771
    Shelah, S. (2011). Polish algebras, shy from freedom. Israel J. Math., 181, 477–507. arXiv: math/0212250 DOI: 10.1007/s11856-011-0020-x MR: 2773054
  737. Sh:772
    Shelah, S., & Strüngmann, L. H. (2003). Kulikov’s problem on universal torsion-free abelian groups. J. London Math. Soc. (2), 67(3), 626–642. arXiv: math/0112253 DOI: 10.1112/S0024610703004216 MR: 1967696
  738. Sh:773
    Shelah, S., & Strüngmann, L. H. (2002). Cotorsion theories cogenerated by \aleph_1-free abelian groups. Rocky Mountain J. Math., 32(4), 1617–1626. arXiv: math/0107208 DOI: 10.1216/rmjm/1181070044 MR: 1987629
  739. Sh:774
    Bartoszyński, T., Shelah, S., & Tsaban, B. (2003). Additivity properties of topological diagonalizations. J. Symbolic Logic, 68(4), 1254–1260. arXiv: math/0112262 DOI: 10.2178/jsl/1067620185 MR: 2017353
  740. Sh:775
    Shelah, S. (2005). Super black box (ex. Middle diamond). Arch. Math. Logic, 44(5), 527–560. arXiv: math/0212249 DOI: 10.1007/s00153-004-0239-x MR: 2210145
  741. Sh:776
    Hyttinen, T., Shelah, S., & Väänänen, J. A. (2002). More on the Ehrenfeucht-Fraïssé game of length \omega_1. Fund. Math., 175(1), 79–96. arXiv: math/0212234 DOI: 10.4064/fm175-1-5 MR: 1971240
  742. Sh:777
    Rosłanowski, A., & Shelah, S. (2007). Sheva-Sheva-Sheva: large creatures. Israel J. Math., 159, 109–174. arXiv: math/0210205 DOI: 10.1007/s11856-007-0040-8 MR: 2342475
  743. Sh:778
    Mildenberger, H., & Shelah, S. (2003). Specialising Aronszajn trees by countable approximations. Arch. Math. Logic, 42(7), 627–647. arXiv: math/0112287 DOI: 10.1007/s00153-002-0168-5 MR: 2015092
  744. Sh:779
    Larson, P. B., & Shelah, S. (2017). Consistency of a strong uniformization principle. Colloq. Math., 146(1), 1–13. DOI: 10.4064/cm6542-3-2016 MR: 3570198
  745. Sh:780
    Göbel, R., & Shelah, S. (2003). Characterizing automorphism groups of ordered abelian groups. Bull. London Math. Soc., 35(3), 289–292. arXiv: math/0112264 DOI: 10.1112/S0024609302001881 MR: 1960938
  746. Sh:781
    Kojman, M., & Shelah, S. (2003). van der Waerden spaces and Hindman spaces are not the same. Proc. Amer. Math. Soc., 131(5), 1619–1622. arXiv: math/0112265 DOI: 10.1090/S0002-9939-02-06916-2 MR: 1950294
  747. Sh:782
    Shelah, S. (2005). On the Arrow property. Adv. In Appl. Math., 34(2), 217–251. arXiv: math/0112213 DOI: 10.1016/j.aam.2002.03.001 MR: 2110551
  748. Sh:783
    Shelah, S. (2009). Dependent first order theories, continued. Israel J. Math., 173, 1–60. arXiv: math/0406440 DOI: 10.1007/s11856-009-0082-1 MR: 2570659
  749. Sh:784
    Shelah, S. (2004). Forcing axiom failure for any \lambda>\aleph_1. Arch. Math. Logic, 43(3), 285–295. arXiv: math/0112286 DOI: 10.1007/s00153-003-0208-9 MR: 2052883
  750. Sh:785
    Göbel, R., Shelah, S., & Strüngmann, L. H. (2003). Almost-free E-rings of cardinality \aleph_1. Canad. J. Math., 55(4), 750–765. arXiv: math/0112214 DOI: 10.4153/CJM-2003-032-8 MR: 1994072
  751. Sh:786
    Shelah, S., & Steprāns, J. (2007). Possible cardinalities of maximal abelian subgroups of quotients of permutation groups of the integers. Fund. Math., 196(3), 197–235. arXiv: math/0212233 DOI: 10.4064/fm196-3-1 MR: 2353856
  752. Sh:787
    Shelah, S., & Väisänen, P. (2002). Almost free groups and Ehrenfeucht-Fraïssé games for successors of singular cardinals. Ann. Pure Appl. Logic, 118(1-2), 147–173. arXiv: math/0212063 DOI: 10.1016/S0168-0072(02)00037-4 MR: 1934121
  753. Sh:788
    Komjáth, P., & Shelah, S. (2005). Finite subgraphs of uncountably chromatic graphs. J. Graph Theory, 49(1), 28–38. arXiv: math/0212064 DOI: 10.1002/jgt.20060 MR: 2130468
  754. Sh:789
    Shelah, S., & Usvyatsov, A. (2006). Banach spaces and groups—order properties and universal models. Israel J. Math., 152, 245–270. arXiv: math/0303325 DOI: 10.1007/BF02771986 MR: 2214463
  755. Sh:790
    Shelah, S., & Väänänen, J. A. (2006). Recursive logic frames. MLQ Math. Log. Q., 52(2), 151–164. arXiv: math/0405016 DOI: 10.1002/malq.200410058 MR: 2214627
  756. Sh:791
    Shelah, S., & Zapletal, J. (2002). Duality and the PCF theory. Math. Res. Lett., 9(5-6), 585–595. arXiv: math/0212041 DOI: 10.4310/MRL.2002.v9.n5.a2 MR: 1906062
  757. Sh:792
    Shelah, S., & Zapletal, J. (2003). Games with creatures. Comment. Math. Univ. Carolin., 44(1), 9–21. arXiv: math/0212042 MR: 2045842
  758. Sh:793
    Kojman, M., Kubiś, W., & Shelah, S. (2004). On two problems of Erdős and Hechler: new methods in singular madness. Proc. Amer. Math. Soc., 132(11), 3357–3365. arXiv: math/0406441 DOI: 10.1090/S0002-9939-04-07580-X MR: 2073313
  759. Sh:794
    Shelah, S. (2008). Reflection implies the SCH. Fund. Math., 198(2), 95–111. arXiv: math/0404323 DOI: 10.4064/fm198-2-1 MR: 2369124
  760. Sh:795
    Juhász, I., & Shelah, S. (2003). Generic left-separated spaces and calibers. Topology Appl., 132(2), 103–108. arXiv: math/0212027 DOI: 10.1016/S0166-8641(02)00367-X MR: 1991801
  761. Sh:796
    Komjáth, P., & Shelah, S. (2003). A partition theorem for scattered order types. Combin. Probab. Comput., 12(5-6), 621–626. arXiv: math/0212022 DOI: 10.1017/S0963548303005686 MR: 2037074
  762. Sh:797
    Shelah, S. (2012). Nice infinitary logics. J. Amer. Math. Soc., 25(2), 395–427. arXiv: 1005.2806 DOI: 10.1090/S0894-0347-2011-00712-1 MR: 2869022
  763. Sh:799
    Matet, P., Rosłanowski, A., & Shelah, S. (2005). Cofinality of the nonstationary ideal. Trans. Amer. Math. Soc., 357(12), 4813–4837. arXiv: math/0210087 DOI: 10.1090/S0002-9947-05-04007-9 MR: 2165389
  764. Sh:801
    Doron, M., & Shelah, S. (2005). A dichotomy in classifying quantifiers for finite models. J. Symbolic Logic, 70(4), 1297–1324. arXiv: math/0405091 DOI: 10.2178/jsl/1129642126 MR: 2194248
  765. Sh:802
    Kubiś, W., & Shelah, S. (2003). Analytic colorings. Ann. Pure Appl. Logic, 121(2-3), 145–161. arXiv: math/0212026 DOI: 10.1016/S0168-0072(02)00110-0 MR: 1982945
  766. Sh:803
    Shelah, S., & Strüngmann, L. H. (2009). Large indecomposable minimal groups. Q. J. Math., 60(3), 353–365. DOI: 10.1093/qmath/han012 MR: 2533663
  767. Sh:805
    Gitik, M., Schindler, R.-D., & Shelah, S. (2006). PCF theory and Woodin cardinals. In Logic Colloquium ’02, Vol. 27, Assoc. Symbol. Logic, La Jolla, CA, pp. 172–205. arXiv: math/0211433 MR: 2258707
  768. Sh:806
    Shelah, S. Martin’s axiom and maximal orthogonal families. Real Anal. Exchange, 28(2), 477–480. arXiv: math/0211438 DOI: 10.14321/realanalexch.28.2.0477 MR: 2010330
  769. Sh:807
    Bartoszyński, T., & Shelah, S. (2003). Strongly meager sets of size continuum. Arch. Math. Logic, 42(8), 769–779. arXiv: math/0211023 DOI: 10.1007/s00153-003-0184-0 MR: 2020043
  770. Sh:808
    Goldstern, M., & Shelah, S. (2005). Clones from creatures. Trans. Amer. Math. Soc., 357(9), 3525–3551. arXiv: math/0212379 DOI: 10.1090/S0002-9947-04-03593-7 MR: 2146637
  771. Sh:809
    Shelah, S., & Steprāns, J. (2005). Comparing the uniformity invariants of null sets for different measures. Adv. Math., 192(2), 403–426. arXiv: math/0405092 DOI: 10.1016/j.aim.2004.04.010 MR: 2128705
  772. Sh:811
    Geschke, S., & Shelah, S. (2003). Some notes concerning the homogeneity of Boolean algebras and Boolean spaces. Topology Appl., 133(3), 241–253. arXiv: math/0211399 DOI: 10.1016/S0166-8641(03)00103-2 MR: 2000501
  773. Sh:812
    Shelah, S., Väisänen, P., & Väänänen, J. A. (2005). On ordinals accessible by infinitary languages. Fund. Math., 186(3), 193–214. DOI: 10.4064/fm186-3-1 MR: 2191236
  774. Sh:813
    Matet, P., Péan, C., & Shelah, S. (2005). Cofinality of normal ideals on P_\kappa(\lambda). II. Israel J. Math., 150, 253–283. DOI: 10.1007/BF02762383 MR: 2255811
  775. Sh:814
    Eklof, P. C., Shelah, S., & Trlifaj, J. (2004). On the cogeneration of cotorsion pairs. J. Algebra, 277(2), 572–578. arXiv: math/0405117 DOI: 10.1016/j.jalgebra.2003.09.018 MR: 2067620
  776. Sh:815
    Baizhanov, B. S., Baldwin, J. T., & Shelah, S. (2005). Subsets of superstable structures are weakly benign. J. Symbolic Logic, 70(1), 142–150. arXiv: math/0303324 DOI: 10.2178/jsl/1107298514 MR: 2119127
  777. Sh:816
    Shelah, S. (2009). What majority decisions are possible. Discrete Math., 309(8), 2349–2364. arXiv: math/0405119 DOI: 10.1016/j.disc.2008.05.010 MR: 2510361
  778. Sh:817
    Shelah, S. (2004). Spectra of monadic second order sentences. Sci. Math. Jpn., 59(2), 351–355. arXiv: math/0405158 MR: 2062201
  779. Sh:818
    Kramer, L., Shelah, S., Tent, K., & Thomas, S. (2005). Asymptotic cones of finitely presented groups. Adv. Math., 193(1), 142–173. arXiv: math/0306420 DOI: 10.1016/j.aim.2004.04.012 MR: 2132762
  780. Sh:819
    Eisworth, T., & Shelah, S. (2009). Successors of singular cardinals and coloring theorems. II. J. Symbolic Logic, 74(4), 1287–1309. arXiv: 0806.0031 DOI: 10.2178/jsl/1254748692 MR: 2583821
  781. Sh:820
    Shelah, S. (2017). Universal structures. Notre Dame J. Form. Log., 58(2), 159–177. arXiv: math/0405159 DOI: 10.1215/00294527-3800985 MR: 3634974
  782. Sh:821
    Hyttinen, T., Lessmann, O., & Shelah, S. (2005). Interpreting groups and fields in some nonelementary classes. J. Math. Log., 5(1), 1–47. arXiv: math/0406481 DOI: 10.1142/S0219061305000390 MR: 2151582
  783. Sh:822
    Börner, F., Goldstern, M., & Shelah, S. (2023). Automorphisms and strongly invariant relations. Algebra Universalis, 84(4), Paper No. 27, 23. arXiv: math/0309165 DOI: 10.1007/s00012-023-00818-4 MR: 4629461
  784. Sh:823
    Bergman, G. M., & Shelah, S. (2006). Closed subgroups of the infinite symmetric group. Algebra Universalis, 55(2-3), 137–173. arXiv: math/0401305 DOI: 10.1007/s00012-006-1959-z MR: 2280223
  785. Sh:824
    Shelah, S. (2005). Two cardinals models with gap one revisited. MLQ Math. Log. Q., 51(5), 437–447. arXiv: math/0404149 DOI: 10.1002/malq.200410036 MR: 2163755
  786. Sh:825
    Kanovei, V., & Shelah, S. (2004). A definable nonstandard model of the reals. J. Symbolic Logic, 69(1), 159–164. arXiv: math/0311165 DOI: 10.2178/jsl/1080938834 MR: 2039354
  787. Sh:826
    Bartoszyński, T., & Shelah, S. (2008). On the density of Hausdorff ultrafilters. In Logic Colloquium 2004, Vol. 29, Assoc. Symbol. Logic, Chicago, IL, pp. 18–32. arXiv: math/0311064 MR: 2401857
  788. Sh:827
    Kojman, M., & Shelah, S. (2006). Almost isometric embedding between metric spaces. Israel J. Math., 155, 309–334. arXiv: math/0406530 DOI: 10.1007/BF02773958 MR: 2269433
  789. Sh:828
    Kellner, J., & Shelah, S. (2005). Preserving preservation. J. Symbolic Logic, 70(3), 914–945. arXiv: math/0405081 DOI: 10.2178/jsl/1122038920 MR: 2155272
  790. Sh:829
    Shelah, S. (2006). More on the revised GCH and the black box. Ann. Pure Appl. Logic, 140(1-3), 133–160. arXiv: math/0406482 DOI: 10.1016/j.apal.2005.09.013 MR: 2224056
  791. Sh:830
    Shelah, S. (2006). The combinatorics of reasonable ultrafilters. Fund. Math., 192(1), 1–23. arXiv: math/0407498 DOI: 10.4064/fm192-1-1 MR: 2283626
  792. Sh:831
    Göbel, R., & Shelah, S. (2005). How rigid are reduced products? J. Pure Appl. Algebra, 202(1-3), 230–258. DOI: 10.1016/j.jpaa.2005.02.002 MR: 2163410
  793. Sh:832
    Greenberg, N., & Shelah, S. (2024). Many forcing axioms for all regular uncountable cardinals. Israel J. Math., 261, 127–170. arXiv: 2107.05755
  794. Sh:833
    Göbel, R., & Shelah, S. (2005). On Crawley modules. Comm. Algebra, 33(11), 4211–4218. arXiv: math/0504198 DOI: 10.1080/00927870500261520 MR: 2183994
  795. Sh:834
    Göbel, R., & Shelah, S. (2006). Torsionless linearly compact modules. In Abelian groups, rings, modules, and homological algebra, Vol. 249, Chapman & Hall/CRC, Boca Raton, FL, pp. 153–158. DOI: 10.1201/9781420010763.ch14 MR: 2229109
  796. Sh:836
    Shelah, S. (2006). On long EF-equivalence in non-isomorphic models. In Logic Colloquium ’03, Vol. 24, Assoc. Symbol. Logic, La Jolla, CA, pp. 315–325. arXiv: math/0404222 MR: 2207360
  797. Sh:837
    Shelah, S., & Usvyatsov, A. (2011). Model theoretic stability and categoricity for complete metric spaces. Israel J. Math., 182, 157–198. arXiv: math/0612350 DOI: 10.1007/s11856-011-0028-2 MR: 2783970
  798. Sh:840
    Shelah, S. (2009). Model theory without choice? Categoricity. J. Symbolic Logic, 74(2), 361–401. arXiv: math/0504196 DOI: 10.2178/jsl/1243948319 MR: 2518563
  799. Sh:841
    Shelah, S., & Sági, G. (2005). On topological properties of ultraproducts of finite sets. MLQ Math. Log. Q., 51(3), 254–257. arXiv: math/0404148 DOI: 10.1002/malq.200410024 MR: 2135487
  800. Sh:843
    Mildenberger, H., & Shelah, S. (2007). Increasing the groupwise density number by c.c.c. forcing. Ann. Pure Appl. Logic, 149(1-3), 7–13. arXiv: math/0404147 DOI: 10.1016/j.apal.2007.07.001 MR: 2364193
  801. Sh:844
    Shelah, S., & Usvyatsov, A. (2008). More on SOP_1 and SOP_2. Ann. Pure Appl. Logic, 155(1), 16–31. arXiv: math/0404178 DOI: 10.1016/j.apal.2008.02.003 MR: 2454629
  802. Sh:845
    Rosłanowski, A., & Shelah, S. (2007). Universal forcing notions and ideals. Arch. Math. Logic, 46(3-4), 179–196. arXiv: math/0404146 DOI: 10.1007/s00153-007-0037-3 MR: 2306175
  803. Sh:846
    Shelah, S. (2008). The spectrum of characters of ultrafilters on \omega. Colloq. Math., 111(2), 213–220. arXiv: math/0612240 DOI: 10.4064/cm111-2-5 MR: 2365799
  804. Sh:847
    Mildenberger, H., Shelah, S., & Tsaban, B. (2006). Covering the Baire space by families which are not finitely dominating. Ann. Pure Appl. Logic, 140(1-3), 60–71. arXiv: math/0407487 DOI: 10.1016/j.apal.2005.09.008 MR: 2224049
  805. Sh:848
    Mildenberger, H., & Shelah, S. (2009). Specializing Aronszajn trees and preserving some weak diamonds. J. Appl. Anal., 15(1), 47–78. DOI: 10.1515/JAA.2009.47 MR: 2537976
  806. Sh:849
    Shelah, S. (2016). Beginning of stability theory for Polish spaces. Israel J. Math., 214(2), 507–537. arXiv: 1011.3578 DOI: 10.1007/s11856-016-1342-5 MR: 3544691
  807. Sh:850
    Cherlin, G. L., & Shelah, S. (2007). Universal graphs with a forbidden subtree. J. Combin. Theory Ser. B, 97(3), 293–333. arXiv: math/0512218 DOI: 10.1016/j.jctb.2006.05.008 MR: 2305886
  808. Sh:851
    Laskowski, M. C., & Shelah, S. (2006). Decompositions of saturated models of stable theories. Fund. Math., 191(2), 95–124. DOI: 10.4064/fm191-2-1 MR: 2231058
  809. Sh:852
    Kennedy, J. C., & Shelah, S. (2004). More on regular reduced products. J. Symbolic Logic, 69(4), 1261–1266. arXiv: math/0504200 DOI: 10.2178/jsl/1102022222 MR: 2135667
  810. Sh:853
    Shelah, S. (2005). The depth of ultraproducts of Boolean algebras. Algebra Universalis, 54(1), 91–96. arXiv: math/0406531 DOI: 10.1007/s00012-005-1925-1 MR: 2217966
  811. Sh:854
    Blass, A. R., & Shelah, S. (2005). Ultrafilters and partial products of infinite cyclic groups. Comm. Algebra, 33(6), 1997–2007. arXiv: math/0504199 DOI: 10.1081/AGB-200063355 MR: 2150855
  812. Sh:855
    Shelah, S., & Strüngmann, L. H. (2010). Filtration-equivalent \aleph_1-separable abelian groups of cardinality \aleph_1. Ann. Pure Appl. Logic, 161(7), 935–943. arXiv: math/0612241 DOI: 10.1016/j.apal.2009.12.001 MR: 2601022
  813. Sh:856
    Rosłanowski, A., & Shelah, S. (2006). How much sweetness is there in the universe? MLQ Math. Log. Q., 52(1), 71–86. arXiv: math/0406612 DOI: 10.1002/malq.200410056 MR: 2195002
  814. Sh:857
    Kuhlmann, S., & Shelah, S. (2005). \kappa-bounded exponential-logarithmic power series fields. Ann. Pure Appl. Logic, 136(3), 284–296. arXiv: math/0512220 DOI: 10.1016/j.apal.2005.04.001 MR: 2169687
  815. Sh:858
    Mildenberger, H., Shelah, S., & Tsaban, B. (2007). The combinatorics of \tau-covers. Topology Appl., 154(1), 263–276. arXiv: math/0409068 DOI: 10.1016/j.topol.2006.04.011 MR: 2271787
  816. Sh:859
    Kellner, J., & Shelah, S. (2011). Saccharinity. J. Symbolic Logic, 76(4), 1153–1183. arXiv: math/0511330 DOI: 10.2178/jsl/1318338844 MR: 2895391
  817. Sh:860
    Rosłanowski, A., & Shelah, S. (2006). Reasonably complete forcing notions. In Set theory: recent trends and applications, Vol. 17, Dept. Math., Seconda Univ. Napoli, Caserta, pp. 195–239. arXiv: math/0508272 MR: 2374767
  818. Sh:861
    Shelah, S. (2007). Power set modulo small, the singular of uncountable cofinality. J. Symbolic Logic, 72(1), 226–242. arXiv: math/0612243 DOI: 10.2178/jsl/1174668393 MR: 2298480
  819. Sh:862
    Baldwin, J. T., & Shelah, S. (2008). Examples of non-locality. J. Symbolic Logic, 73(3), 765–782. DOI: 10.2178/jsl/1230396746 MR: 2444267
  820. Sh:863
    Shelah, S. (2014). Strongly dependent theories. Israel J. Math., 204(1), 1–83. arXiv: math/0504197 DOI: 10.1007/s11856-014-1111-2 MR: 3273451
  821. Sh:864
    Shelah, S., & Sági, G. (2006). On weak and strong interpolation in algebraic logics. J. Symbolic Logic, 71(1), 104–118. arXiv: math/0612244 DOI: 10.2178/jsl/1140641164 MR: 2210057
  822. Sh:865
    Doron, M., & Shelah, S. (2007). Relational structures constructible by quantifier free definable operations. J. Symbolic Logic, 72(4), 1283–1298. arXiv: math/0607375 DOI: 10.2178/jsl/1203350786 MR: 2371205
  823. Sh:866
    Havlin, C., & Shelah, S. (2007). Existence of EF-equivalent non-isomorphic models. MLQ Math. Log. Q., 53(2), 111–127. arXiv: math/0612245 DOI: 10.1002/malq.200610031 MR: 2308491
  824. Sh:867
    Göbel, R., & Shelah, S. (2006). Generalized E-algebras via \lambda-calculus. I. Fund. Math., 192(2), 155–181. arXiv: 0711.3045 DOI: 10.4064/fm192-2-5 MR: 2283757
  825. Sh:868
    Shelah, S. (2012). When a first order T has limit models. Colloq. Math., 126(2), 187–204. arXiv: math/0603651 DOI: 10.4064/cm126-2-4 MR: 2924249
  826. Sh:869
    Matet, P., & Shelah, S. (2017). The nonstationary ideal on P_\kappa (\lambda) for \lambda singular. Arch. Math. Logic, 56(7-8), 911–934. arXiv: math/0612246 DOI: 10.1007/s00153-017-0552-9 MR: 3696072
  827. Sh:870
    Blass, A. R., & Shelah, S. (2006). Disjoint non-free subgroups of abelian groups. In Set theory: recent trends and applications, Vol. 17, Dept. Math., Seconda Univ. Napoli, Caserta, pp. 1–24. arXiv: math/0509406 MR: 2374760
  828. Sh:871
    Laskowski, M. C., & Shelah, S. (2011). A trichotomy of countable, stable, unsuperstable theories. Trans. Amer. Math. Soc., 363(3), 1619–1629. arXiv: 0711.3043 DOI: 10.1090/S0002-9947-2010-05196-7 MR: 2737280
  829. Sh:872
    Kellner, J., & Shelah, S. (2009). Decisive creatures and large continuum. J. Symbolic Logic, 74(1), 73–104. arXiv: math/0601083 DOI: 10.2178/jsl/1231082303 MR: 2499421
  830. Sh:873
    Shelah, S., & Strüngmann, L. H. (2007). A characterization of \mathrm{Ext}(G,\mathbb Z) assuming (V=L). Fund. Math., 193(2), 141–151. arXiv: math/0609638 DOI: 10.4064/fm193-2-3 MR: 2282712
  831. Sh:874
    Shelah, S., & Strüngmann, L. H. (2007). On the p-rank of \mathrm{Ext}_{\mathbb Z}(G,\mathbb Z) in certain models of ZFC. Algebra Logika, 46(3), 369–397, 403–404. arXiv: math/0609637 DOI: 10.1007/s10469-007-0019-x MR: 2356727
  832. Sh:875
    Jarden, A., & Shelah, S. (2013). Non-forking frames in abstract elementary classes. Ann. Pure Appl. Logic, 164(3), 135–191. arXiv: 0901.0852 DOI: 10.1016/j.apal.2012.09.007 MR: 3001542
  833. Sh:876
    Shelah, S. (2008). Minimal bounded index subgroup for dependent theories. Proc. Amer. Math. Soc., 136(3), 1087–1091. arXiv: math/0603652 DOI: 10.1090/S0002-9939-07-08654-6 MR: 2361885
  834. Sh:877
    Shelah, S. (2014). Dependent T and existence of limit models. Tbilisi Math. J., 7(1), 99–128. arXiv: math/0609636 DOI: 10.2478/tmj-2014-0010 MR: 3313049
  835. Sh:878
    Garti, S., & Shelah, S. (2008). On Depth and Depth^+ of Boolean algebras. Algebra Universalis, 58(2), 243–248. arXiv: math/0512217 DOI: 10.1007/s00012-008-2065-1 MR: 2386531
  836. Sh:879
    Eklof, P. C., Fuchs, L., & Shelah, S. (2012). Test groups for Whitehead groups. Rocky Mountain J. Math., 42(6), 1863–1873. arXiv: math/0702293 DOI: 10.1216/RMJ-2012-42-6-1863 MR: 3028765
  837. Sh:880
    Göbel, R., & Shelah, S. (2007). Absolutely indecomposable modules. Proc. Amer. Math. Soc., 135(6), 1641–1649. arXiv: 0711.3011 DOI: 10.1090/S0002-9939-07-08725-4 MR: 2286071
  838. Sh:881
    Shelah, S. (2009). The Erdős-Rado arrow for singular cardinals. Canad. Math. Bull., 52(1), 127–131. arXiv: math/0605385 DOI: 10.4153/CMB-2009-015-8 MR: 2494318
  839. Sh:882
    Kaplan, I., & Shelah, S. (2009). The automorphism tower of a centerless group without choice. Arch. Math. Logic, 48(8), 799–815. arXiv: math/0606216 DOI: 10.1007/s00153-009-0154-2 MR: 2563819
  840. Sh:883
    Shelah, S. (2007). \aleph_n-free abelian group with no non-zero homomorphism to \mathbb Z. Cubo, 9(2), 59–79. arXiv: math/0609634 MR: 2354353
  841. Sh:884
    Goldstern, M., & Shelah, S. (2016). All creatures great and small. Trans. Amer. Math. Soc., 368(11), 7551–7577. arXiv: 0706.1190 DOI: 10.1090/tran/6568 MR: 3546775
  842. Sh:885
    Shelah, S. (2009). A comment on “\mathfrak p<\mathfrak t. Canad. Math. Bull., 52(2), 303–314. arXiv: math/0404220 DOI: 10.4153/CMB-2009-033-4 MR: 2518968
  843. Sh:886
    Shelah, S. (2017). Definable groups for dependent and 2-dependent theories. Sarajevo J. Math., 13(25)(1), 3–25. arXiv: math/0703045 DOI: 10.5644/SJM.13.1.01 MR: 3666349
  844. Sh:887
    Shelah, S. (2008). Groupwise density cannot be much bigger than the unbounded number. MLQ Math. Log. Q., 54(4), 340–344. arXiv: math/0612353 DOI: 10.1002/malq.200710032 MR: 2435897
  845. Sh:888
    Rosłanowski, A., & Shelah, S. (2011). Lords of the iteration. In Set theory and its applications, Vol. 533, Amer. Math. Soc., Providence, RI, pp. 287–330. arXiv: math/0611131 DOI: 10.1090/conm/533/10514 MR: 2777755
  846. Sh:889
    Rosłanowski, A., & Shelah, S. (2008). Generating ultrafilters in a reasonable way. MLQ Math. Log. Q., 54(2), 202–220. arXiv: math/0607218 DOI: 10.1002/malq.200610055 MR: 2402629
  847. Sh:890
    Rosłanowski, A., & Shelah, S. (2011). Reasonable ultrafilters, again. Notre Dame J. Form. Log., 52(2), 113–147. arXiv: math/0605067 DOI: 10.1215/00294527-1306154 MR: 2794647
  848. Sh:891
    Garti, S., & Shelah, S. (2007). Two cardinal models for singular \mu. MLQ Math. Log. Q., 53(6), 636–641. arXiv: math/0612247 DOI: 10.1002/malq.200610053 MR: 2351585
  849. Sh:892
    Dror Farjoun, E., Göbel, R., Segev, Y., & Shelah, S. (2007). On kernels of cellular covers. Groups Geom. Dyn., 1(4), 409–419. arXiv: math/0702294 DOI: 10.4171/GGD/20 MR: 2357479
  850. Sh:893
    Shelah, S. (2015). A.E.C. with not too many models. In A. Hirvonen, M. Kesala, J. Kontinen, R. Kossak, & A. Villaveces, eds., Logic Without Borders: Essays on Set Theory, Model Theory, Philosophical Logic and Philosophy of Mathematics, Vols. Ontos Mathematical Logic, vol. 5, Berlin, Boston: DeGruyter, pp. 367–402. arXiv: 1302.4841 DOI: 10.1515/9781614516873.367
  851. Sh:894
    Mildenberger, H., & Shelah, S. (2009). The near coherence of filters principle does not imply the filter dichotomy principle. Trans. Amer. Math. Soc., 361(5), 2305–2317. DOI: 10.1090/S0002-9947-08-04806-X MR: 2471919
  852. Sh:895
    Shelah, S. (2010). Large continuum, oracles. Cent. Eur. J. Math., 8(2), 213–234. arXiv: 0707.1818 DOI: 10.2478/s11533-010-0018-3 MR: 2610747
  853. Sh:896
    Kellner, J., Pauna, M., & Shelah, S. (2007). Winning the pressing down game but not Banach-Mazur. J. Symbolic Logic, 72(4), 1323–1335. arXiv: math/0609655 DOI: 10.2178/jsl/1203350789 MR: 2371208
  854. Sh:897
    Shelah, S. (2008). Theories with Ehrenfeucht-Fraïssé equivalent non-isomorphic models. Tbil. Math. J., 1, 133–164. arXiv: math/0703477 MR: 2563810
  855. Sh:898
    Shelah, S. (2013). Pcf and abelian groups. Forum Math., 25(5), 967–1038. arXiv: 0710.0157 DOI: 10.1515/forum-2013-0119 MR: 3100959
  856. Sh:899
    Juhász, I., & Shelah, S. (2008). Hereditarily Lindelöf spaces of singular density. Studia Sci. Math. Hungar., 45(4), 557–562. arXiv: math/0702295 DOI: 10.1556/SScMath.2007.1037 MR: 2641451
  857. Sh:900
    Shelah, S. (2015). Dependent theories and the generic pair conjecture. Commun. Contemp. Math., 17(1), 1550004, 64. arXiv: math/0702292 DOI: 10.1142/S0219199715500042 MR: 3291978
  858. Sh:901
    Juhász, I., Shelah, S., & Soukup, L. (2009). Resolvability vs. almost resolvability. Topology Appl., 156(11), 1966–1969. arXiv: math/0702296 DOI: 10.1016/j.topol.2009.03.019 MR: 2536179
  859. Sh:902
    Larson, P. B., & Shelah, S. (2008). The stationary set splitting game. MLQ Math. Log. Q., 54(2), 187–193. arXiv: 1003.2425 DOI: 10.1002/malq.200610054 MR: 2402627
  860. Sh:903
    Machura, M., Shelah, S., & Tsaban, B. (2010). Squares of Menger-bounded groups. Trans. Amer. Math. Soc., 362(4), 1751–1764. arXiv: math/0611353 DOI: 10.1090/S0002-9947-09-05169-1 MR: 2574876
  861. Sh:904
    Shelah, S. (2010). Reflexive abelian groups and measurable cardinals and full MAD families. Algebra Universalis, 63(4), 351–366. arXiv: math/0703493 DOI: 10.1007/s00012-010-0086-z MR: 2734302
  862. Sh:905
    Kellner, J., & Shelah, S. (2010). A Sacks real out of nowhere. J. Symbolic Logic, 75(1), 51–76. arXiv: math/0703302 DOI: 10.2178/jsl/1264433909 MR: 2605882
  863. Sh:906
    Shelah, S. (2011). No limit model in inaccessibles. In Models, logics, and higher-dimensional categories, Vol. 53, Amer. Math. Soc., Providence, RI, pp. 277–290. arXiv: 0705.4131 MR: 2867976
  864. Sh:907
    Shelah, S. (2008). EF-equivalent not isomorphic pair of models. Proc. Amer. Math. Soc., 136(12), 4405–4412. arXiv: 0705.4126 DOI: 10.1090/S0002-9939-08-09362-3 MR: 2431056
  865. Sh:908
    Shelah, S. (2010). On long increasing chains modulo flat ideals. MLQ Math. Log. Q., 56(4), 397–399. arXiv: 0705.4130 DOI: 10.1002/malq.200910010 MR: 2681343
  866. Sh:909
    Gruenhut, E., & Shelah, S. (2011). Uniforming n-place functions on well founded trees. In Set theory and its applications, Vol. 533, Amer. Math. Soc., Providence, RI, pp. 267–280. arXiv: 0906.3055 DOI: 10.1090/conm/533/10512 MR: 2777753
  867. Sh:910
    Blass, A. R., & Shelah, S. (2008). Basic subgroups and freeness, a counterexample. In Models, modules and abelian groups, Walter de Gruyter, Berlin, pp. 63–73. arXiv: 0711.3031 DOI: 10.1515/9783110203035.63 MR: 2513227
  868. Sh:911
    Garti, S., & Shelah, S. (2011). Depth of Boolean algebras. Notre Dame J. Form. Log., 52(3), 307–314. arXiv: 0802.4185 DOI: 10.1215/00294527-1435474 MR: 2822491
  869. Sh:912
    Kennedy, J. C., Shelah, S., & Väänänen, J. A. (2008). Regular ultrafilters and finite square principles. J. Symbolic Logic, 73(3), 817–823. DOI: 10.2178/jsl/1230396748 MR: 2444269
  870. Sh:913
    Kaplan, I., & Shelah, S. (2012). Automorphism towers and automorphism groups of fields without choice. In Groups and model theory, Vol. 576, Amer. Math. Soc., Providence, RI, pp. 187–203. arXiv: 1004.1810 DOI: 10.1090/conm/576/11337 MR: 2962885
  871. Sh:914
    Shelah, S. (2011). The first almost free Whitehead group. Tbil. Math. J., 4, 17–30. arXiv: 0708.1980 MR: 2886755
  872. Sh:915
    Shelah, S. (2011). The character spectrum of \beta(\mathbb N). Topology Appl., 158(18), 2535–2555. arXiv: 1004.2083 DOI: 10.1016/j.topol.2011.08.014 MR: 2847327
  873. Sh:916
    Dow, A. S., & Shelah, S. (2008). Tie-points and fixed-points in \mathbb N^*. Topology Appl., 155(15), 1661–1671. arXiv: 0711.3037 DOI: 10.1016/j.topol.2008.05.002 MR: 2437015
  874. Sh:917
    Dow, A. S., & Shelah, S. (2009). More on tie-points and homeomorphism in \mathbb N^\ast. Fund. Math., 203(3), 191–210. arXiv: 0711.3038 DOI: 10.4064/fm203-3-1 MR: 2506596
  875. Sh:918
    Shelah, S. (2012). Many partition relations below density. Israel J. Math., 191(2), 507–543. arXiv: 0902.0440 DOI: 10.1007/s11856-012-0027-y MR: 3011486
  876. Sh:919
    Cohen, M., & Shelah, S. (2016). Stable theories and representation over sets. MLQ Math. Log. Q., 62(3), 140–154. arXiv: 0906.3050 DOI: 10.1002/malq.200920105 MR: 3509699
  877. Sh:920
    Göbel, R., & Shelah, S. (2009). \aleph_n-free modules with trivial duals. Results Math., 54(1-2), 53–64. DOI: 10.1007/s00025-009-0382-0 MR: 2529626
  878. Sh:921
    Shelah, S., & Tsaban, B. (2010). On a problem of Juhász and van Mill. Topology Proc., 36, 385–392. arXiv: 0710.2768 MR: 2646986
  879. Sh:922
    Shelah, S. (2010). Diamonds. Proc. Amer. Math. Soc., 138(6), 2151–2161. arXiv: 0711.3030 DOI: 10.1090/S0002-9939-10-10254-8 MR: 2596054
  880. Sh:923
    Ardal, H., Maňuch, J., Rosenfeld, M., Shelah, S., & Stacho, L. (2009). The odd-distance plane graph. Discrete Comput. Geom., 42(2), 132–141. DOI: 10.1007/s00454-009-9190-2 MR: 2519871
  881. Sh:924
    Shelah, S. (2015). Models of PA: when two elements are necessarily order automorphic. MLQ Math. Log. Q., 61(6), 399–417. arXiv: 1004.3342 DOI: 10.1002/malq.200920124 MR: 3433640
  882. Sh:925
    Larson, P. B., & Shelah, S. (2009). Splitting stationary sets from weak forms of choice. MLQ Math. Log. Q., 55(3), 299–306. arXiv: 1003.2477 DOI: 10.1002/malq.200810011 MR: 2519245
  883. Sh:926
    Bartoszyński, T., & Shelah, S. (2010). Dual Borel conjecture and Cohen reals. J. Symbolic Logic, 75(4), 1293–1310. DOI: 10.2178/jsl/1286198147 MR: 2767969
  884. Sh:927
    Baldwin, J. T., Kolesnikov, A. S., & Shelah, S. (2009). The amalgamation spectrum. J. Symbolic Logic, 74(3), 914–928. DOI: 10.2178/jsl/1245158091 MR: 2548468
    See [Sh:927a]
  885. Sh:929
    Herden, D., & Shelah, S. (2010). \kappa-fold transitive groups. Forum Math., 22(4), 627–640. DOI: 10.1515/FORUM.2010.034 MR: 2661440
  886. Sh:930
    Herden, D., & Shelah, S. (2009). An upper cardinal bound on absolute E-rings. Proc. Amer. Math. Soc., 137(9), 2843–2847. DOI: 10.1090/S0002-9939-09-09842-6 MR: 2506440
  887. Sh:931
    Shelah, S., & Steprāns, J. (2011). Masas in the Calkin algebra without the continuum hypothesis. J. Appl. Anal., 17(1), 69–89. DOI: 10.1515/JAA.2011.004 MR: 2805847
  888. Sh:933
    Laskowski, M. C., & Shelah, S. (2015). \mathbf P-NDOP and \mathbf P-decompositions of \aleph_\epsilon-saturated models of superstable theories. Fund. Math., 229(1), 47–81. arXiv: 1206.6028 DOI: 10.4064/fm229-1-2 MR: 3312115
  889. Sh:934
    Hall, E. J., & Shelah, S. (2013). Partial choice functions for families of finite sets. Fund. Math., 220(3), 207–216. arXiv: 0808.0535 DOI: 10.4064/fm220-3-2 MR: 3040670
  890. Sh:935
    Shelah, S. (2011). MAD saturated families and SANE player. Canad. J. Math., 63(6), 1416–1435. arXiv: 0904.0816 DOI: 10.4153/CJM-2011-057-1 MR: 2894445
  891. Sh:936
    Enayat, A., & Shelah, S. (2011). An improper arithmetically closed Borel subalgebra of \mathcal P(\omega)\bmod\mathrm{FIN}. Topology Appl., 158(18), 2495–2502. DOI: 10.1016/j.topol.2011.08.006 MR: 2847322
  892. Sh:937
    Shelah, S. (2011). Models of expansions of \mathbb N with no end extensions. MLQ Math. Log. Q., 57(4), 341–365. arXiv: 0808.2960 DOI: 10.1002/malq.200910129 MR: 2832642
  893. Sh:938
    Shelah, S. (2012). PCF arithmetic without and with choice. Israel J. Math., 191(1), 1–40. arXiv: 0905.3021 DOI: 10.1007/s11856-012-0026-z MR: 2970861
  894. Sh:939
    Kellner, J., & Shelah, S. (2011). More on the pressing down game. Arch. Math. Logic, 50(3-4), 477–501. arXiv: 0905.3913 DOI: 10.1007/s00153-011-0227-x MR: 2786767
  895. Sh:941
    Rosłanowski, A., Shelah, S., & Spinas, O. (2012). Nonproper products. Bull. Lond. Math. Soc., 44(2), 299–310. arXiv: 0905.0526 DOI: 10.1112/blms/bdr094 MR: 2914608
  896. Sh:942
    Rosłanowski, A., & Shelah, S. (2013). More about \lambda-support iterations of (<\lambda)-complete forcing notions. Arch. Math. Logic, 52(5-6), 603–629. arXiv: 1105.6049 DOI: 10.1007/s00153-013-0334-y MR: 3072781
  897. Sh:943
    Göbel, R., Herden, D., & Shelah, S. (2009). Skeletons, bodies and generalized E(R)-algebras. J. Eur. Math. Soc. (JEMS), 11(4), 845–901. DOI: 10.4171/JEMS/169 MR: 2538507
  898. Sh:944
    Shelah, S. (2018). Models of PA: standard systems without minimal ultrafilters. Sarajevo J. Math., 14(27)(1), 3–11. arXiv: 0901.1499 MR: 3858024
  899. Sh:945
    Shelah, S. (2020). On \mathrm{con}(\mathfrak{d}_\lambda>\mathrm{cov}_\lambda(\mathrm{meagre})). Trans. Amer. Math. Soc., 373(8), 5351–5369. arXiv: 0904.0817 DOI: 10.1090/tran/7948 MR: 4127879
  900. Sh:946
    Kaplan, I., & Shelah, S. (2014). Examples in dependent theories. J. Symb. Log., 79(2), 585–619. arXiv: 1009.5420 DOI: 10.1017/jsl.2013.11 MR: 3224981
  901. Sh:947
    Larson, P. B., Neeman, I., & Shelah, S. (2010). Universally measurable sets in generic extensions. Fund. Math., 208(2), 173–192. arXiv: 1003.2479 DOI: 10.4064/fm208-2-4 MR: 2640071
  902. Sh:948
    Göbel, R., Herden, D., & Shelah, S. (2011). Absolute E-rings. Adv. Math., 226(1), 235–253. DOI: 10.1016/j.aim.2010.06.019 MR: 2735757
  903. Sh:949
    Garti, S., & Shelah, S. (2012). A strong polarized relation. J. Symbolic Logic, 77(3), 766–776. arXiv: 1103.0350 DOI: 10.2178/jsl/1344862161 MR: 2987137
  904. Sh:951
    Mildenberger, H., & Shelah, S. (2011). Proper translation. Fund. Math., 215(1), 1–38. DOI: 10.4064/fm215-1-1 MR: 2851699
  905. Sh:952
    Shelah, S., & Zapletal, J. (2011). Ramsey theorems for product of finite sets with submeasures. Combinatorica, 31(2), 225–244. DOI: 10.1007/s00493-011-2677-5 MR: 2848252
  906. Sh:953
    Doron, M., & Shelah, S. (2010). Hereditary zero-one laws for graphs. In Fields of logic and computation, Vol. 6300, Springer, Berlin, pp. 581–614. arXiv: 1006.2888 DOI: 10.1007/978-3-642-15025-8_29 MR: 2756404
  907. Sh:954
    Farah, I., & Shelah, S. (2010). A dichotomy for the number of ultrapowers. J. Math. Log., 10(1-2), 45–81. arXiv: 0912.0406 DOI: 10.1142/S0219061310000936 MR: 2802082
  908. Sh:955
    Shelah, S. (2014). Pseudo PCF. Israel J. Math., 201(1), 185–231. arXiv: 1107.4625 DOI: 10.1007/s11856-014-1063-6 MR: 3265284
  909. Sh:956
    Garti, S., & Shelah, S. (2012). (\kappa,\theta)-weak normality. J. Math. Soc. Japan, 64(2), 549–559. arXiv: 1104.1491 http://projecteuclid.org/euclid.jmsj/1335444403 MR: 2916079
  910. Sh:957
    Rosłanowski, A., & Shelah, S. (2013). Partition theorems from creatures and idempotent ultrafilters. Ann. Comb., 17(2), 353–378. arXiv: 1005.2803 DOI: 10.1007/s00026-013-0184-7 MR: 3056773
  911. Sh:958
    Baldwin, J. T., & Shelah, S. (2011). A Hanf number for saturation and omission. Fund. Math., 213(3), 255–270. DOI: 10.4064/fm213-3-5 MR: 2822421
  912. Sh:959
    Baldwin, J. T., & Shelah, S. (2012). The stability spectrum for classes of atomic models. J. Math. Log., 12(1), 1250001, 19. DOI: 10.1142/S0219061312500018 MR: 2950191
  913. Sh:960
    Shelah, S. (2017). Preserving old ([\omega]^{\aleph_0},\supseteq^*) is proper. Sarajevo J. Math., 13(26)(2), 141–154. arXiv: 1005.2802 MR: 3744785
  914. Sh:961
    Kellner, J., & Shelah, S. (2012). Creature forcing and large continuum: the joy of halving. Arch. Math. Logic, 51(1-2), 49–70. arXiv: 1003.3425 DOI: 10.1007/s00153-011-0253-8 MR: 2864397
  915. Sh:962
    Garti, S., & Shelah, S. (2012). Combinatorial aspects of the splitting number. Ann. Comb., 16(4), 709–717. arXiv: 1007.2266 DOI: 10.1007/s00026-012-0154-5 MR: 3000439
  916. Sh:963
    Cummings, J., Džamonja, M., Magidor, M., Morgan, C., & Shelah, S. (2017). A framework for forcing constructions at successors of singular cardinals. Trans. Amer. Math. Soc., 369(10), 7405–7441. arXiv: 1403.6795 DOI: 10.1090/tran/6974 MR: 3683113
  917. Sh:964
    Garti, S., & Shelah, S. (2012). Strong polarized relations for the continuum. Ann. Comb., 16(2), 271–276. arXiv: 1103.5195 DOI: 10.1007/s00026-012-0130-0 MR: 2927607
  918. Sh:965
    Larson, P. B., Matteo, N., & Shelah, S. (2012). Majority decisions when abstention is possible. Discrete Math., 312(7), 1336–1352. arXiv: 1003.2756 DOI: 10.1016/j.disc.2011.12.024 MR: 2885917
  919. Sh:967
    Mildenberger, H., & Shelah, S. (2011). The minimal cofinality of an ultrapower of \omega and the cofinality of the symmetric group can be larger than \mathfrak b^+. J. Symbolic Logic, 76(4), 1322–1340. DOI: 10.2178/jsl/1318338852 MR: 2895398
  920. Sh:968
    Shelah, S., & Strüngmann, L. H. (2014). On the p-rank of \mathrm{Ext}(A,B) for countable abelian groups A and B. Israel J. Math., 199(2), 567–572. arXiv: 1401.5317 DOI: 10.1007/s11856-013-0039-2 MR: 3219548
  921. Sh:969
    Goldstern, M., Kellner, J., Shelah, S., & Wohofsky, W. (2014). Borel conjecture and dual Borel conjecture. Trans. Amer. Math. Soc., 366(1), 245–307. arXiv: 1105.0823 DOI: 10.1090/S0002-9947-2013-05783-2 MR: 3118397
    See [Sh:969a]
  922. Sh:970
    Göbel, R., Herden, D., & Shelah, S. (2014). Prescribing endomorphism algebras of \aleph_n-free modules. J. Eur. Math. Soc. (JEMS), 16(9), 1775–1816. DOI: 10.4171/JEMS/475 MR: 3273308
  923. Sh:971
    Khelif, A., & Shelah, S. (2010). Équivalence élémentaire de puissances cartésiennes d’un même groupe. C. R. Math. Acad. Sci. Paris, 348(23-24), 1241–1244. DOI: 10.1016/j.crma.2010.10.034 MR: 2745331
  924. Sh:972
    Rosłanowski, A., & Shelah, S. (2014). Monotone hulls for \mathcal N\cap\mathcal M. Period. Math. Hungar., 69(1), 79–95. arXiv: 1007.5368 DOI: 10.1007/s10998-014-0042-3 MR: 3269711
  925. Sh:973
    Mildenberger, H., & Shelah, S. (2014). Many countable support iterations of proper forcings preserve Souslin trees. Ann. Pure Appl. Logic, 165(2), 573–608. arXiv: 1309.0196 DOI: 10.1016/j.apal.2013.08.002 MR: 3129729
  926. Sh:974
    Garti, S., & Shelah, S. (2019). Depth^+ and Length^+ of Boolean algebras. Houston J. Math., 45(4), 953–963. arXiv: 1303.3704 MR: 4102862
  927. Sh:975
    Kaplan, I., & Shelah, S. (2014). A dependent theory with few indiscernibles. Israel J. Math., 202(1), 59–103. arXiv: 1010.0388 DOI: 10.1007/s11856-014-1067-2 MR: 3265314
  928. Sh:976
    Shelah, S., & Strüngmann, L. H. (2011). Kulikov’s problem on universal torsion-free abelian groups revisited. Bull. Lond. Math. Soc., 43(6), 1198–1204. DOI: 10.1112/blms/bdr055 MR: 2861541
  929. Sh:977
    Shelah, S. (2012). Modules and infinitary logics. In Groups and model theory, Vol. 576, Amer. Math. Soc., Providence, RI, pp. 305–316. arXiv: 1011.3581 DOI: 10.1090/conm/576/11376 MR: 2962893
  930. Sh:978
    Malliaris, M., & Shelah, S. (2014). Regularity lemmas for stable graphs. Trans. Amer. Math. Soc., 366(3), 1551–1585. arXiv: 1102.3904 DOI: 10.1090/S0002-9947-2013-05820-5 MR: 3145742
  931. Sh:979
    Shelah, S., & Simon, P. (2012). Adding linear orders. J. Symbolic Logic, 77(2), 717–725. arXiv: 1103.0206 DOI: 10.2178/jsl/1333566647 MR: 2963031
  932. Sh:980
    Shelah, S. (2023). Nice \aleph_1 generated non-P-points, Part I. MLQ Math. Log. Q., 69(1), 117–129. arXiv: 1112.0819 DOI: 10.1002/malq.202200070 MR: 4606452
  933. Sh:981
    Göbel, R., Shelah, S., & Strüngmann, L. H. (2013). \aleph_n-free modules over complete discrete valuation domains with almost trivial dual. Glasg. Math. J., 55(2), 369–380. DOI: 10.1017/S0017089512000614 MR: 3040868
  934. Sh:982
    Lücke, P., & Shelah, S. (2012). External automorphisms of ultraproducts of finite models. Arch. Math. Logic, 51(3-4), 433–441. DOI: 10.1007/s00153-012-0271-1 MR: 2899700
  935. Sh:983
    Pinsker, M., & Shelah, S. (2013). Universality of the lattice of transformation monoids. Proc. Amer. Math. Soc., 141(9), 3005–3011. arXiv: 1107.3946 DOI: 10.1090/S0002-9939-2013-11566-2 MR: 3068953
  936. Sh:984
    Dow, A. S., & Shelah, S. (2013). An Efimov space from Martin’s axiom. Houston J. Math., 39(4), 1423–1435. MR: 3164725
  937. Sh:985
    Dow, A. S., & Shelah, S. (2012). Martin’s axiom and separated mad families. Rend. Circ. Mat. Palermo (2), 61(1), 107–115. DOI: 10.1007/s12215-011-0078-7 MR: 2897749
  938. Sh:987
    Farah, I., & Shelah, S. (2014). Trivial automorphisms. Israel J. Math., 201(2), 701–728. arXiv: 1112.3571 DOI: 10.1007/s11856-014-1048-5 MR: 3265300
  939. Sh:988
    Mildenberger, H., & Shelah, S. (2019). Specializing Aronszajn trees with strong axiom A and halving. Notre Dame J. Form. Log., 60(4), 587–616. DOI: 10.1215/00294527-2019-0021 MR: 4019863
  940. Sh:989
    Goldstern, M., Shelah, S., & Sági, G. (2013). Very many clones above the unary clone. Algebra Universalis, 69(4), 387–399. arXiv: 1108.2061 DOI: 10.1007/s00012-013-0236-1 MR: 3061094
  941. Sh:990
    Shelah, S., & Steprāns, J. (2015). Non-trivial automorphisms of \mathcal P(\mathbb N)/[\mathbb N]^{<\aleph_0} from variants of small dominating number. Eur. J. Math., 1(3), 534–544. DOI: 10.1007/s40879-015-0058-0 MR: 3401904
    See [Sh:990a]
  942. Sh:991
    Raghavan, D., & Shelah, S. (2012). Comparing the closed almost disjointness and dominating numbers. Fund. Math., 217(1), 73–81. arXiv: 1110.6690 DOI: 10.4064/fm217-1-6 MR: 2914923
  943. Sh:992
    Baldwin, J. T., & Shelah, S. (2014). A Hanf number for saturation and omission: the superstable case. MLQ Math. Log. Q., 60(6), 437–443. DOI: 10.1002/malq.201300022 MR: 3274973
  944. Sh:993
    Kaplan, I., & Shelah, S. (2013). Chain conditions in dependent groups. Ann. Pure Appl. Logic, 164(12), 1322–1337. arXiv: 1112.0807 DOI: 10.1016/j.apal.2013.06.014 MR: 3093393
  945. Sh:994
    Goldstern, M., Pinsker, M., & Shelah, S. (2013). A closed algebra with a non-Borel clone and an ideal with a Borel clone. Internat. J. Algebra Comput., 23(5), 1115–1125. arXiv: 1112.0774 DOI: 10.1142/S0218196713500197 MR: 3096314
  946. Sh:995
    Garti, S., & Shelah, S. (2014). Partition calculus and cardinal invariants. J. Math. Soc. Japan, 66(2), 425–434. arXiv: 1112.5772 DOI: 10.2969/jmsj/06620425 MR: 3201820
  947. Sh:996
    Malliaris, M., & Shelah, S. (2015). Constructing regular ultrafilters from a model-theoretic point of view. Trans. Amer. Math. Soc., 367(11), 8139–8173. arXiv: 1204.1481 DOI: 10.1090/S0002-9947-2015-06303-X MR: 3391912
  948. Sh:997
    Malliaris, M., & Shelah, S. (2014). Model-theoretic properties of ultrafilters built by independent families of functions. J. Symb. Log., 79(1), 103–134. arXiv: 1208.2579 DOI: 10.1017/jsl.2013.28 MR: 3226014
  949. Sh:998
    Malliaris, M., & Shelah, S. (2016). Cofinality spectrum theorems in model theory, set theory, and general topology. J. Amer. Math. Soc., 29(1), 237–297. arXiv: 1208.5424 DOI: 10.1090/jams830 MR: 3402699
  950. Sh:999
    Malliaris, M., & Shelah, S. (2013). A dividing line within simple unstable theories. Adv. Math., 249, 250–288. arXiv: 1208.2140 DOI: 10.1016/j.aim.2013.08.027 MR: 3116572
  951. Sh:1001
    Rosłanowski, A., & Shelah, S. (2019). The last forcing standing with diamonds. Fund. Math., 246(2), 109–159. arXiv: 1406.4217 DOI: 10.4064/fm898-9-2018 MR: 3959246
  952. Sh:1002
    Garti, S., & Shelah, S. (2012). The ultrafilter number for singular cardinals. Acta Math. Hungar., 137(4), 296–301. arXiv: 1201.1713 DOI: 10.1007/s10474-012-0245-0 MR: 2992547
  953. Sh:1003
    Baldwin, J. T., Larson, P. B., & Shelah, S. (2015). Almost Galois \omega-stable classes. J. Symb. Log., 80(3), 763–784. DOI: 10.1017/jsl.2015.19 MR: 3395349
  954. Sh:1004
    Shelah, S. (2017). A parallel to the null ideal for inaccessible \lambda: Part I. Arch. Math. Logic, 56(3-4), 319–383. arXiv: 1202.5799 DOI: 10.1007/s00153-017-0524-0 MR: 3633799
  955. Sh:1005
    Shelah, S. (2016). ZF + DC + AX_4. Arch. Math. Logic, 55(1-2), 239–294. arXiv: 1411.7164 DOI: 10.1007/s00153-015-0469-0 MR: 3453586
  956. Sh:1006
    Shelah, S. (2013). On incompactness for chromatic number of graphs. Acta Math. Hungar., 139(4), 363–371. arXiv: 1205.0064 DOI: 10.1007/s10474-012-0287-3 MR: 3061483
  957. Sh:1007
    Chernikov, A., Kaplan, I., & Shelah, S. (2016). On non-forking spectra. J. Eur. Math. Soc. (JEMS), 18(12), 2821–2848. arXiv: 1205.3101 DOI: 10.4171/JEMS/654 MR: 3574578
  958. Sh:1008
    Shelah, S. (2013). Non-reflection of the bad set for \check I_{\theta}[\lambda] and pcf. Acta Math. Hungar., 141(1-2), 11–35. arXiv: 1206.2048 DOI: 10.1007/s10474-013-0344-6 MR: 3102967
  959. Sh:1009
    Malliaris, M., & Shelah, S. (2015). Saturating the random graph with an independent family of small range. In A. Hirvonen, M. Kesala, J. Kontinen, R. Kossak, & A. Villaveces, eds., Logic Without Borders: Essays on Set Theory, Model Theory, Philosophical Logic and Philosophy of Mathematics, Berlin, Boston: De Gruyter, pp. 319–337. arXiv: 1208.5585 DOI: 10.1515/9781614516873.319
  960. Sh:1011
    Kennedy, J. C., Shelah, S., & Väänänen, J. A. (2015). Regular ultrapowers at regular cardinals. Notre Dame J. Form. Log., 56(3), 417–428. arXiv: 1307.6396 DOI: 10.1215/00294527-3132788 MR: 3373611
  961. Sh:1012
    Garti, S., & Shelah, S. (2016). Open and solved problems concerning polarized partition relations. Fund. Math., 234(1), 1–14. arXiv: 1208.6091 DOI: 10.4064/fm763-10-2015 MR: 3509813
  962. Sh:1013
    Gitik, M., & Shelah, S. (2013). Applications of pcf for mild large cardinals to elementary embeddings. Ann. Pure Appl. Logic, 164(9), 855–865. arXiv: 1307.5977 DOI: 10.1016/j.apal.2013.03.002 MR: 3056300
  963. Sh:1014
    Lücke, P., & Shelah, S. (2014). Free groups and automorphism groups of infinite structures. Forum Math. Sigma, 2, e8, 18. arXiv: 1211.6891 DOI: 10.1017/fms.2014.9 MR: 3264251
  964. Sh:1015
    Koszmider, P., & Shelah, S. (2013). Independent families in Boolean algebras with some separation properties. Algebra Universalis, 69(4), 305–312. arXiv: 1209.0177 DOI: 10.1007/s00012-013-0227-2 MR: 3061090
  965. Sh:1016
    Laskowski, M. C., & Shelah, S. (2015). Borel completeness of some \aleph_0-stable theories. Fund. Math., 229(1), 1–46. arXiv: 1211.0558 DOI: 10.4064/fm229-1-1 MR: 3312114
  966. Sh:1017
    Shelah, S. (2014). Ordered black boxes: existence. Geombinatorics, 23(3), 108–126. arXiv: 1302.3426 MR: 3184377
  967. Sh:1020
    Shelah, S., & Usvyatsov, A. (2019). Minimal stable types in Banach spaces. Adv. Math., 355, 106738, 29. arXiv: 1402.6513 DOI: 10.1016/j.aim.2019.106738 MR: 3994442
  968. Sh:1021
    Mildenberger, H., & Shelah, S. (2021). The cofinality of the symmetric group and the cofinality of ultrapowers. Israel J. Math., 242(1), 97–128. DOI: 10.1007/s11856-021-2124-2 MR: 4282078
  969. Sh:1022
    Rosłanowski, A., & Shelah, S. (2014). Around cofin. Colloq. Math., 134(2), 211–225. arXiv: 1304.5683 DOI: 10.4064/cm134-2-5 MR: 3194406
  970. Sh:1024
    Kuhlmann, F.-V., Kuhlmann, K., & Shelah, S. (2015). Symmetrically complete ordered sets abelian groups and fields. Israel J. Math., 208(1), 261–290. arXiv: 1308.0780 DOI: 10.1007/s11856-015-1199-z MR: 3416920
  971. Sh:1025
    Juhász, I., & Shelah, S. (2015). Strong colorings yield \kappa-bounded spaces with discretely untouchable points. Proc. Amer. Math. Soc., 143(5), 2241–2247. arXiv: 1307.1989 DOI: 10.1090/S0002-9939-2014-12394-X MR: 3314130
  972. Sh:1026
    Shelah, S. (2018). The spectrum of ultraproducts of finite cardinals for an ultrafilter. Acta Math. Hungar., 155(2), 201–220. arXiv: 1312.6780 DOI: 10.1007/s10474-018-0847-2 MR: 3831292
  973. Sh:1027
    Shelah, S. (2019). The colouring existence theorem revisited. Acta Math. Hungar., 159(1), 1–26. arXiv: 1311.1026 DOI: 10.1007/s10474-019-00953-2 MR: 4003692
  974. Sh:1028
    Shelah, S. (2020). Quite free complicated Abelian groups, pcf and black boxes. Israel J. Math., 240(1), 1–64. arXiv: 1404.2775 DOI: 10.1007/s11856-020-2051-7 MR: 4193126
  975. Sh:1029
    Shelah, S. (2016). No universal group in a cardinal. Forum Math., 28(3), 573–585. arXiv: 1311.4997 DOI: 10.1515/forum-2014-0040 MR: 3510831
  976. Sh:1030
    Malliaris, M., & Shelah, S. (2016). Existence of optimal ultrafilters and the fundamental complexity of simple theories. Adv. Math., 290, 614–681. arXiv: 1404.2919 DOI: 10.1016/j.aim.2015.12.009 MR: 3451934
  977. Sh:1031
    Filipczak, T., Rosłanowski, A., & Shelah, S. On Borel hull operations. Real Anal. Exchange, 40(1), 129–140. arXiv: 1308.3749 http://projecteuclid.org/euclid.rae/1435759199 MR: 3365394
  978. Sh:1032
    Machura, M., Shelah, S., & Tsaban, B. (2016). The linear refinement number and selection theory. Fund. Math., 234(1), 15–40. arXiv: 1404.2239 DOI: 10.4064/fm124-8-2015 MR: 3509814
  979. Sh:1033
    Cherlin, G. L., & Shelah, S. (2016). Universal graphs with a forbidden subgraph: block path solidity. Combinatorica, 36(3), 249–264. arXiv: 1404.5757 DOI: 10.1007/s00493-014-3181-5 MR: 3521114
  980. Sh:1034
    Shelah, S., Veličković, B., & Väänänen, J. A. (2015). Positional strategies in long Ehrenfeucht-Fraïssé games. J. Symb. Log., 80(1), 285–300. arXiv: 1308.0156 DOI: 10.1017/jsl.2014.43 MR: 3320594
  981. Sh:1035
    Chernikov, A., & Shelah, S. (2016). On the number of Dedekind cuts and two-cardinal models of dependent theories. J. Inst. Math. Jussieu, 15(4), 771–784. arXiv: 1308.3099 DOI: 10.1017/S1474748015000018 MR: 3569076
  982. Sh:1036
    Shelah, S. (2022). Forcing axioms for \lambda-complete \mu^+-c.c. MLQ Math. Log. Q., 68(1), 6–26. arXiv: 1310.4042 DOI: 10.1002/malq.201900020 MR: 4413641
  983. Sh:1037
    Baldwin, J. T., Laskowski, M. C., & Shelah, S. (2016). Constructing many atomic models in \aleph_1. J. Symb. Log., 81(3), 1142–1162. arXiv: 1503.00318 DOI: 10.1017/jsl.2015.81 MR: 3569124
  984. Sh:1038
    Shelah, S., & Spinas, O. (2015). Mad spectra. J. Symb. Log., 80(3), 901–916. arXiv: 1402.5616 DOI: 10.1017/jsl.2015.9 MR: 3395354
  985. Sh:1039
    Greenberg, N., & Shelah, S. (2014). Models of Cohen measurability. Ann. Pure Appl. Logic, 165(10), 1557–1576. arXiv: 1309.3938 DOI: 10.1016/j.apal.2014.05.001 MR: 3226055
  986. Sh:1040
    Garti, S., Magidor, M., & Shelah, S. (2018). On the spectrum of characters of ultrafilters. Notre Dame J. Form. Log., 59(3), 371–379. arXiv: 1601.01409 DOI: 10.1215/00294527-2018-0006 MR: 3832086
  987. Sh:1041
    Bagaria, J., & Shelah, S. (2016). On partial orderings having precalibre-\aleph_1 and fragments of Martin’s axiom. Fund. Math., 232(2), 181–197. arXiv: 1502.05500 DOI: 10.4064/fm232-2-6 MR: 3418888
  988. Sh:1042
    Farah, I., & Shelah, S. (2016). Rigidity of continuous quotients. J. Inst. Math. Jussieu, 15(1), 1–28. arXiv: 1401.6689 DOI: 10.1017/S1474748014000218 MR: 3427592
  989. Sh:1043
    Shelah, S. (2020). Superstable theories and representation. Sarajevo J. Math., 16(29)(1), 71–82. arXiv: 1412.0421 DOI: 10.5644/sjm MR: 4144091
  990. Sh:1044
    Fischer, A. J., Goldstern, M., Kellner, J., & Shelah, S. (2017). Creature forcing and five cardinal characteristics in Cichoń’s diagram. Arch. Math. Logic, 56(7-8), 1045–1103. arXiv: 1402.0367 DOI: 10.1007/s00153-017-0553-8 MR: 3696076
  991. Sh:1047
    Garti, S., & Shelah, S. (2018). Random reals and polarized colorings. Studia Sci. Math. Hungar., 55(2), 203–212. arXiv: 1609.00242 DOI: 10.1556/012.2018.55.2.1393 MR: 3813351
  992. Sh:1048
    Shelah, S. (2020). The Hanf number in the strictly stable case. MLQ Math. Log. Q., 66(3), 280–294. arXiv: 1412.0428 DOI: 10.1002/malq.201900021 MR: 4174105
  993. Sh:1050
    Malliaris, M., & Shelah, S. (2018). Keisler’s order has infinitely many classes. Israel J. Math., 224(1), 189–230. arXiv: 1503.08341 DOI: 10.1007/s11856-018-1647-7 MR: 3799754
  994. Sh:1051
    Malliaris, M., & Shelah, S. (2017). Model-theoretic applications of cofinality spectrum problems. Israel J. Math., 220(2), 947–1014. arXiv: 1503.08338 DOI: 10.1007/s11856-017-1526-7 MR: 3666452
  995. Sh:1052
    Shelah, S. (2016). Lower bounds on coloring numbers from hardness hypotheses in pcf theory. Proc. Amer. Math. Soc., 144(12), 5371–5383. arXiv: 1503.02423 DOI: 10.1090/proc/13163 MR: 3556279
  996. Sh:1053
    Shelah, S., & Wohofsky, W. (2016). There are no very meager sets in the model in which both the Borel conjecture and the dual Borel conjecture are true. MLQ Math. Log. Q., 62(4-5), 434–438. DOI: 10.1002/malq.201600002 MR: 3549562
  997. Sh:1054
    Kaplan, I., & Shelah, S. (2016). Forcing a countable structure to belong to the ground model. MLQ Math. Log. Q., 62(6), 530–546. arXiv: 1410.1224 DOI: 10.1002/malq.201400094 MR: 3601093
  998. Sh:1055
    Kaplan, I., Lavi, N., & Shelah, S. (2016). The generic pair conjecture for dependent finite diagrams. Israel J. Math., 212(1), 259–287. arXiv: 1410.2516 DOI: 10.1007/s11856-016-1286-9 MR: 3504327
  999. Sh:1056
    Bartoszyński, T., Larson, P. B., & Shelah, S. (2017). Closed sets which consistently have few translations covering the line. Fund. Math., 237(2), 101–125. DOI: 10.4064/fm191-8-2016 MR: 3615047
  1000. Sh:1057
    Dow, A. S., & Shelah, S. (2018). Asymmetric tie-points and almost clopen subsets of \mathbb N^*. Comment. Math. Univ. Carolin., 59(4), 451–466. arXiv: 1801.02523 MR: 3914712
  1001. Sh:1058
    Raghavan, D., & Shelah, S. (2017). On embedding certain partial orders into the P-points under Rudin-Keisler and Tukey reducibility. Trans. Amer. Math. Soc., 369(6), 4433–4455. arXiv: 1411.0084 DOI: 10.1090/tran/6943 MR: 3624416
  1002. Sh:1059
    Haber, S., & Shelah, S. (2015). An extension of the Ehrenfeucht-Fraïssé game for first order logics augmented with Lindström quantifiers. In Fields of logic and computation. II, Vol. 9300, Springer, Cham, pp. 226–236. arXiv: 1510.06581 DOI: 10.1007/978-3-319-23534-9_13 MR: 3485648
  1003. Sh:1060
    Raghavan, D., & Shelah, S. (2017). Two inequalities between cardinal invariants. Fund. Math., 237(2), 187–200. arXiv: 1505.06296 DOI: 10.4064/fm253-7-2016 MR: 3615051
  1004. Sh:1061
    Shelah, S. (2015). On failure of 0-1 laws. In Fields of logic and computation. II, Vol. 9300, Springer, Cham, pp. 293–296. arXiv: 2108.03846 DOI: 10.1007/978-3-319-23534-9_18 MR: 3485653
  1005. Sh:1062
    Shelah, S. (2017). Failure of 0-1 law for sparse random graph in strong logics (Sh1062). In Beyond first order model theory, CRC Press, Boca Raton, FL, pp. 77–101. arXiv: 1706.01226 MR: 3729324
  1006. Sh:1063
    Kumar, A., & Shelah, S. (2018). Clubs on quasi measurable cardinals. MLQ Math. Log. Q., 64(1-2), 44–48. DOI: 10.1002/malq.201600003 MR: 3803065
  1007. Sh:1064
    Shelah, S. (2021). Atomic saturation of reduced powers. MLQ Math. Log. Q., 67(1), 18–42. arXiv: 1601.04824 DOI: 10.1002/malq.201900006 MR: 4313125
  1008. Sh:1066
    Goldstern, M., Mejı́a, D. A., & Shelah, S. (2016). The left side of Cichoń’s diagram. Proc. Amer. Math. Soc., 144(9), 4025–4042. arXiv: 1504.04192 DOI: 10.1090/proc/13161 MR: 3513558
  1009. Sh:1068
    Kumar, A., & Shelah, S. (2017). A transversal of full outer measure. Adv. Math., 321, 475–485. DOI: 10.1016/j.aim.2017.10.008 MR: 3715717
  1010. Sh:1069
    Malliaris, M., & Shelah, S. (2017). Open problems on ultrafilters and some connections to the continuum. In Foundations of mathematics, Vol. 690, Amer. Math. Soc., Providence, RI, pp. 145–159. MR: 3656310
  1011. Sh:1070
    Malliaris, M., & Shelah, S. (2016). Cofinality spectrum problems: the axiomatic approach. Topology Appl., 213, 50–79. DOI: 10.1016/j.topol.2016.08.019 MR: 3563070
  1012. Sh:1071
    Shelah, S., & Steprāns, J. (2016). When automorphisms of \mathcal P(\kappa)/[\kappa]^{<\aleph_0} are trivial off a small set. Fund. Math., 235(2), 167–182. DOI: 10.4064/fm222-2-2016 MR: 3549381
  1013. Sh:1072
    Mohsenipour, S., & Shelah, S. (2018). Set mappings on 4-tuples. Notre Dame J. Form. Log., 59(3), 405–416. arXiv: 1510.02216 DOI: 10.1215/00294527-2018-0002 MR: 3832089
  1014. Sh:1074
    Kaplan, I., Shelah, S., & Simon, P. (2017). Exact saturation in simple and NIP theories. J. Math. Log., 17(1), 1750001, 18. arXiv: 1510.02741 DOI: 10.1142/S0219061317500015 MR: 3651210
  1015. Sh:1075
    Golshani, M., & Shelah, S. (2016). On cuts in ultraproducts of linear orders I. J. Math. Log., 16(2), 1650008, 34. arXiv: 1510.06278 DOI: 10.1142/S0219061316500082 MR: 3580893
  1016. Sh:1076
    Larson, P. B., & Shelah, S. (2017). Coding with canonical functions. MLQ Math. Log. Q., 63(5), 334–341. DOI: 10.1002/malq.201500060 MR: 3748478
  1017. Sh:1078
    Kumar, A., & Shelah, S. (2017). On a question about families of entire functions. Fund. Math., 239(3), 279–288. DOI: 10.4064/fm252-3-2017 MR: 3691208
  1018. Sh:1079
    Kumar, A., & Shelah, S. (2017). Avoiding equal distances. Fund. Math., 236(3), 263–267. DOI: 10.4064/fm169-5-2016 MR: 3600761
  1019. Sh:1080
    Komjáth, P., & Shelah, S. (2017). Consistently \mathcal P(\omega_1) is the union of less than 2^{\aleph_1} strongly independent families. Israel J. Math., 218(1), 165–173. DOI: 10.1007/s11856-017-1463-5 MR: 3625129
  1020. Sh:1081
    Rosłanowski, A., & Shelah, S. (2018). Small-large subgroups of the reals. Math. Slovaca, 68(3), 473–484. arXiv: 1605.02261 DOI: 10.1515/ms-2017-0117 MR: 3805955
  1021. Sh:1082
    Kaplan, I., & Shelah, S. (2017). Decidability and classification of the theory of integers with primes. J. Symb. Log., 82(3), 1041–1050. arXiv: 1601.07099 DOI: 10.1017/jsl.2017.16 MR: 3694340
  1022. Sh:1083
    Garti, S., Hayut, Y., & Shelah, S. (2017). On the verge of inconsistency: Magidor cardinals and Magidor filters. Israel J. Math., 220(1), 89–102. arXiv: 1601.07745 DOI: 10.1007/s11856-017-1510-2 MR: 3666820
  1023. Sh:1084
    Barnea, I., & Shelah, S. (2018). The abelianization of inverse limits of groups. Israel J. Math., 227(1), 455–483. arXiv: 1608.02220 DOI: 10.1007/s11856-018-1741-x MR: 3846331
  1024. Sh:1085
    Cohen, S., & Shelah, S. (2019). Generalizing random real forcing for inaccessible cardinals. Israel J. Math., 234(2), 547–580. arXiv: 1603.08362 DOI: 10.1007/s11856-019-1925-z MR: 4040837
  1025. Sh:1086
    Koszmider, P., Shelah, S., & Świȩtek, M. (2018). There is no bound on sizes of indecomposable Banach spaces. Adv. Math., 323, 745–783. arXiv: 1603.01753 DOI: 10.1016/j.aim.2017.11.002 MR: 3725890
  1026. Sh:1087
    Golshani, M., & Shelah, S. (2018). On cuts in ultraproducts of linear orders II. J. Symb. Log., 83(1), 29–39. arXiv: 1604.06044 DOI: 10.1017/jsl.2017.87 MR: 3796271
  1027. Sh:1088
    Shelah, S., & Steprāns, J. (2021). Universal graphs and functions on \omega_1. Ann. Pure Appl. Logic, 172(8), Paper No. 102986, 43. DOI: 10.1016/j.apal.2021.102986 MR: 4266242
  1028. Sh:1089
    Horowitz, H., & Shelah, S. (2023). A Borel maximal eventually different family. Ann. Pure Appl. Logic, (175). arXiv: 1605.07123 DOI: 10.106/j.apal.2023.103334
  1029. Sh:1090
    Horowitz, H., & Shelah, S. (2019). On the non-existence of mad families. Arch. Math. Logic, 58(3-4), 325–338. DOI: 10.1007/s00153-018-0640-5 MR: 3928385
    Contains [Sh:E95a], [Sh:E95b]
  1030. Sh:1091
    Dugas, M. H., Herden, D., & Shelah, S. (2017). An extension of M. C. R. Butler’s theorem on endomorphism rings. In Groups, modules, and model theory—surveys and recent developments, Springer, Cham, pp. 277–284. MR: 3675912
  1031. Sh:1092
    Baldwin, J. T., & Shelah, S. (2022). Hanf numbers for extendibility and related phenomena. Arch. Math. Logic, 61(3-4), 437–464. arXiv: 2111.01704 DOI: 10.1007/s00153-021-00796-1 MR: 4418753
  1032. Sh:1093
    Horowitz, H., & Shelah, S. (2021). Transcendence bases, well-orderings of the reals and the axiom of choice. Proc. Amer. Math. Soc., 149(2), 851–858. arXiv: 1901.01508 DOI: 10.1090/proc/15242 MR: 4198089
  1033. Sh:1095
    Horowitz, H., & Shelah, S. (2023). A Borel maximal cofinitary group. J. Symbolic Logic. arXiv: 1610.01344
  1034. Sh:1099
    Laskowski, M. C., & Shelah, S. (2019). A strong failure of \aleph_0-stability for atomic classes. Arch. Math. Logic, 58(1-2), 99–118. arXiv: 1701.05474 DOI: 10.1007/s00153-018-0623-6 MR: 3902807
  1035. Sh:1101
    Shelah, S. (2021). Isomorphic limit ultrapowers for infinitary logic. Israel J. Math., 246(1), 21–46. arXiv: 1810.12729 DOI: 10.1007/s11856-021-2226-x MR: 4358271
  1036. Sh:1102
    Kumar, A., & Shelah, S. (2019). On possible restrictions of the null ideal. J. Math. Log., 19(2), 1950008, 14. DOI: 10.1142/S0219061319500089 MR: 4014888
  1037. Sh:1104
    Kumar, A., & Shelah, S. (2019). Saturated null and meager ideal. Trans. Amer. Math. Soc., 371(6), 4475–4491. DOI: 10.1090/tran/7702 MR: 3917229
  1038. Sh:1105
    Larson, P. B., & Shelah, S. (2018). A model of ZFA + PAC with no outer model of ZFAC with the same pure part. Arch. Math. Logic, 57(7-8), 853–859. DOI: 10.1007/s00153-018-0610-y MR: 3850686
  1039. Sh:1106
    Paolini, G., & Shelah, S. (2018). The automorphism group of Hall’s universal group. Proc. Amer. Math. Soc., 146(4), 1439–1445. arXiv: 1703.10540 DOI: 10.1090/proc/13836 MR: 3754331
  1040. Sh:1107
    Paolini, G., & Shelah, S. (2020). Automorphism groups of countable stable structures. Fund. Math., 248(3), 301–307. arXiv: 1712.02568 DOI: 10.4064/fm723-4-2019 MR: 4046958
  1041. Sh:1109
    Paolini, G., & Shelah, S. (2019). Reconstructing structures with the strong small index property up to bi-definability. Fund. Math., 247(1), 25–35. arXiv: 1703.10498 DOI: 10.4064/fm640-9-2018 MR: 3984277
  1042. Sh:1110
    Shelah, S., & Spinas, O. (2023). Different cofinalities of tree ideals. Ann. Pure Appl. Logic, 174(8), Paper No. 103290, 18. DOI: 10.1016/j.apal.2023.103290 MR: 4597956
  1043. Sh:1111
    Garti, S., & Shelah, S. (2021). Double weakness. Acta Math. Hungar., 163(2), 379–391. arXiv: 2002.03573 DOI: 10.1007/s10474-021-01132-y MR: 4227788
  1044. Sh:1112
    Paolini, G., & Shelah, S. (2017). No uncountable Polish group can be a right-angled Artin group. Axioms Topical Collection “Topological Groups", 6(2), 4. arXiv: 1701.03021
  1045. Sh:1114
    Shelah, S., & Steprāns, J. (2018). Trivial and non-trivial automorphisms of \mathcal P(\omega_1)/[\omega_1]^{<\aleph_0}. Fund. Math., 243(2), 155–168. DOI: 10.4064/fm402-11-2017 MR: 3846847
  1046. Sh:1115
    Paolini, G., & Shelah, S. (2018). Polish topologies for graph products of cyclic groups. Israel J. Math., 228(1), 305–319. arXiv: 1705.01815 DOI: 10.1007/s11856-018-1765-2 MR: 3874845
  1047. Sh:1116
    Casanovas, E., & Shelah, S. (2019). Universal theories and compactly expandable models. J. Symb. Log., 84(3), 1215–1223. arXiv: 1705.02611 DOI: 10.1017/jsl.2019.16 MR: 4010496
  1048. Sh:1117
    Paolini, G., & Shelah, S. (2017). Group metrics for graph products of cyclic groups. Topology Appl., 232, 281–287. arXiv: 1705.02582 DOI: 10.1016/j.topol.2017.10.016 MR: 3720899
  1049. Sh:1118
    Kaplan, I., Ramsey, N., & Shelah, S. (2019). Local character of Kim-independence. Proc. Amer. Math. Soc., 147(4), 1719–1732. arXiv: 1707.02902 DOI: 10.1090/proc/14305 MR: 3910436
  1050. Sh:1119
    Shelah, S., & Vasey, S. (2018). Abstract elementary classes stable in \aleph_0. Ann. Pure Appl. Logic, 169(7), 565–587. arXiv: 1702.08281 DOI: 10.1016/j.apal.2018.02.004 MR: 3788738
  1051. Sh:1120
    Golshani, M., & Shelah, S. (2021). Specializing trees and answer to a question of Williams. J. Math. Log., 21(1), 2050023, 20. arXiv: 1708.02719 DOI: 10.1142/S0219061320500233 MR: 4194557
  1052. Sh:1121
    Paolini, G., & Shelah, S. (2019). Polish topologies for graph products of groups. J. Lond. Math. Soc. (2), 100(2), 383–403. arXiv: 1711.06155 DOI: 10.1112/jlms.12219 MR: 4017147
  1053. Sh:1122
    Goldstern, M., Kellner, J., & Shelah, S. (2019). Cichoń’s maximum. Ann. Of Math. (2), 190(1), 113–143. arXiv: 1708.03691 DOI: 10.4007/annals.2019.190.1.2 MR: 3990602
  1054. Sh:1123
    Shelah, S., & Verner, J. L. (2023). Ramsey partitions of metric spaces. Acta Math. Hungar., 169(2), 524–533. arXiv: 2210.12836 DOI: 10.1007/s10474-023-01318-6 MR: 4594315
  1055. Sh:1124
    Malliaris, M., & Shelah, S. (2019). A new look at interpretability and saturation. Ann. Pure Appl. Logic, 170(5), 642–671. arXiv: 1709.04899 DOI: 10.1016/j.apal.2019.01.001 MR: 3926500
  1056. Sh:1126
    Shelah, S. (2023). Corrected iteration. Boll. Unione Mat. Ital., 16(3), 521–584. arXiv: 2108.03672 DOI: 10.1007/s40574-022-00338-4 MR: 4627290
  1057. Sh:1127
    Dow, A. S., & Shelah, S. (2018). On the cofinality of the splitting number. Indag. Math. (N.S.), 29(1), 382–395. arXiv: 1801.02517 DOI: 10.1016/j.indag.2017.01.010 MR: 3739621
  1058. Sh:1129
    Komjáth, P., Leader, I., Russell, P., Shelah, S., Soukup, D. T., & Vidnyánszky, Z. (2019). Infinite monochromatic sumsets for colourings of the reals. Proc. Amer. Math. Soc., 147(6), 2673–2684. arXiv: 1710.07500 DOI: 10.1090/proc/14431 MR: 3951442
  1059. Sh:1131
    Kellner, J., Latif, A., & Shelah, S. (2019). Another ordering of the ten cardinal characteristics in Cichoń’s diagram. Comment. Math. Univ. Carolin., 60(1), 61–95. arXiv: 1712.00778 DOI: 10.14712/1213-7243.2015.273 MR: 3946665
  1060. Sh:1132
    Saveliev, D. I., & Shelah, S. (2019). Ultrafilter extensions do not preserve elementary equivalence. MLQ Math. Log. Q., 65(4), 511–516. arXiv: 1712.06198 MR: 4057949
  1061. Sh:1133
    Palacı́n, D., & Shelah, S. (2018). On the class of flat stable theories. Ann. Pure Appl. Logic, 169(8), 835–849. arXiv: 1801.01438 DOI: 10.1016/j.apal.2018.04.005 MR: 3802227
  1062. Sh:1134
    Dow, A. S., & Shelah, S. (2019). Pseudo P-points and splitting number. Arch. Math. Logic, 58(7-8), 1005–1027. arXiv: 1802.04829 DOI: 10.1007/s00153-019-00674-x MR: 4003647
  1063. Sh:1135
    Raghavan, D., & Shelah, S. (2019). Two results on cardinal invariants at uncountable cardinals. In Proceedings of the 14th and 15th Asian Logic Conferences, World Sci. Publ., Hackensack, NJ, pp. 129–138. arXiv: 1801.09369 DOI: 10.1142/9789813237551_0006 MR: 3890461
  1064. Sh:1136
    Kumar, A., & Shelah, S. (2021). On some variants of the club principle. Eur. J. Math., 7(1), 1–27. arXiv: 1802.01137 DOI: 10.1007/s40879-020-00425-w MR: 4220028
  1065. Sh:1137
    Fischer, V., & Shelah, S. (2019). The spectrum of independence. Arch. Math. Logic, 58(7-8), 877–884. DOI: 10.1007/s00153-019-00665-y MR: 4003640
  1066. Sh:1138
    Rosłanowski, A., & Shelah, S. (2019). Borel sets without perfectly many overlapping translations. Rep. Math. Logic, (54), 3–43. arXiv: 1806.06283 DOI: 10.4467/20842589rm.19.001.10649 MR: 4011916
  1067. Sh:1139
    Bartoszyński, T., & Shelah, S. (2018). A note on small sets of reals. C. R. Math. Acad. Sci. Paris, 356(11-12), 1053–1061. arXiv: 1805.02703 DOI: 10.1016/j.crma.2018.11.003 MR: 3907570
  1068. Sh:1140
    Malliaris, M., & Shelah, S. (2020). An example of a new simple theory. In Trends in set theory, Vol. 752, Amer. Math. Soc., [Providence], RI, pp. 121–151. arXiv: 1804.03254 DOI: 10.1090/conm/752/15133 MR: 4132104
  1069. Sh:1141
    Shelah, S., & Ulrich, D. (2019). Torsion-free abelian groups are consistently {\mathrm{a}}\Delta^1_2-complete. Fund. Math., 247(3), 275–297. arXiv: 1804.08152 DOI: 10.4064/fm673-12-2018 MR: 4017015
  1070. Sh:1142
    Corson, S. M., & Shelah, S. (2019). Deeply concatenable subgroups might never be free. J. Math. Soc. Japan, 71(4), 1123–1136. arXiv: 1804.05538 DOI: 10.2969/jmsj/80498049 MR: 4023299
  1071. Sh:1143
    Garti, S., & Shelah, S. (2020). Remarks on generalized ultrafilter, dominating and reaping numbers. Fundamenta Mathematicae, 250(2), 101–115. arXiv: 1806.09286 DOI: 10.4064/fm595-9-2019 MR: 4107530
  1072. Sh:1144
    Baumhauer, T., Goldstern, M., & Shelah, S. (2021). The higher Cichoń diagram. Fund. Math., 252(3), 241–314. arXiv: 1806.08583 DOI: 10.4064/fm666-4-2020 MR: 4178868
  1073. Sh:1145
    Horowitz, H., & Shelah, S. (2022). \kappa-madness and definability. MLQ Math. Log. Q., 68(3), 346–351. arXiv: 1805.07048 MR: 4472782
  1074. Sh:1146
    Mohsenipour, S., & Shelah, S. (2019). On finitary Hindman numbers. Combinatorica, 39(5), 1185–1189. arXiv: 1806.04917 DOI: 10.1007/s00493-019-4002-7 MR: 4039607
  1075. Sh:1148
    Paolini, G., & Shelah, S. (2020). On a cardinal invariant related to the Haar measure problem. Israel J. Math., 236(1), 305–316. arXiv: 1809.10442 DOI: 10.1007/s11856-020-1975-2 MR: 4093888
  1076. Sh:1149
    Malliaris, M., & Shelah, S. (2022). A separation theorem for simple theories. Trans. Amer. Math. Soc., 375(2), 1171–1205. arXiv: 1810.09604 DOI: 10.1090/tran/8513 MR: 4369245
  1077. Sh:1150
    Brendle, J., Halbeisen, L. J., Klausner, L. D., Lischka, M., & Shelah, S. (2023). Halfway new cardinal characteristics. Ann. Pure Appl. Logic, 174(9), Paper No. 103303, 33. arXiv: 1808.02442 DOI: 10.1016/j.apal.2023.103303 MR: 4609469
  1078. Sh:1152
    Horowitz, H., & Shelah, S. (2022). On the definability of mad families of vector spaces. Ann. Pure Appl. Logic. arXiv: 1811.03753 MR: 4354828
  1079. Sh:1153
    Kubiś, W., & Shelah, S. (2020). Homogeneous structures with nonuniversal automorphism groups. J. Symb. Log., 85(2), 817–827. arXiv: 1811.09650 DOI: 10.1017/jsl.2020.10 MR: 4206113
  1080. Sh:1154
    Mildenberger, H., & Shelah, S. (2020). A version of \kappa-Miller forcing. Arch. Math. Logic, 59(7-8), 879–892. arXiv: 1802.07986 DOI: 10.1007/s00153-020-00721-y MR: 4159758
  1081. Sh:1155
    Paolini, G., & Shelah, S. (2020). Some results on Polish groups. Rep. Math. Logic, (55), 61–71. arXiv: 1810.12855 DOI: 10.4467/20842589rm.20.003.12435 MR: 4183417
  1082. Sh:1156
    Garti, S., Gitik, M., & Shelah, S. (2020). Cardinal characteristics at \aleph_\omega. Acta Math. Hungar., 160(2), 320–336. arXiv: 1812.05291 DOI: 10.1007/s10474-019-00971-0 MR: 4075404
  1083. Sh:1157
    Bergfalk, J., Hrušák, M., & Shelah, S. (2021). Ramsey theory for highly connected monochromatic subgraphs. Acta Math. Hungar., 163(1), 309–322. arXiv: 1812.06386 DOI: 10.1007/s10474-020-01058-x MR: 4217971
  1084. Sh:1158
    Shelah, S. (2021). Mutual stationarity and singular Jonsson cardinals. Acta Math. Hungar., 163(1), 140–148. DOI: 10.1007/s10474-020-01041-6 MR: 4217962
  1085. Sh:1159
    Shelah, S. (2020). On \mathfrak{d}_\mu for \mu singular. Acta Math. Hungar., 161(1), 245–256. DOI: 10.1007/s10474-019-00999-2 MR: 4110369
  1086. Sh:1160
    Raghavan, D., & Shelah, S. (2020). A small ultrafilter number at smaller cardinals. Arch. Math. Logic, 59(3-4), 325–334. arXiv: 1904.02379 DOI: 10.1007/s00153-019-00693-8 MR: 4081063
  1087. Sh:1161
    Komjáth, P., & Shelah, S. (2019). Universal graphs omitting finitely many finite graphs. Discrete Math., 342(12), 111596, 4. DOI: 10.1016/j.disc.2019.111596 MR: 3990009
  1088. Sh:1162
    Shelah, S. (2020). No universal in singular. Boll. Unione Mat. Ital., 13(3), 361–368. DOI: 10.1007/s40574-020-00229-6 MR: 4132913
  1089. Sh:1163
    Shelah, S. (2021). Colouring of successor of regular, again. Acta Math. Hungar., 165(1), 192–202. arXiv: 1910.02419 DOI: 10.1007/s10474-021-01181-3 MR: 4323594
  1090. Sh:1164
    Shelah, S. (2023). Universality: new criterion for non-existence. Boll. Unione Mat. Ital., 16(1), 43–64. arXiv: 2108.06727 DOI: 10.1007/s40574-022-00327-7 MR: 4548558
  1091. Sh:1165
    Garti, S., Magidor, M., & Shelah, S. (2020). Infinite monochromatic paths and a theorem of Erdös-Hajnal-Rado. Electronic Journal of Combinatorics, 27(2), 11 pages. arXiv: 1907.03254 DOI: 10.37236/8849 MR: 4245063
  1092. Sh:1166
    Goldstern, M., Kellner, J., Mejı́a, D. A., & Shelah, S. (2021). Controlling cardinal characteristics without adding reals. J. Math. Log., 21(3), Paper No. 2150018, 29. arXiv: 2006.09826 DOI: 10.1142/S0219061321500185 MR: 4330526
  1093. Sh:1167
    Malliaris, M., & Shelah, S. (2021). Keisler’s order is not simple (and simple theories may not be either). Adv. Math., 392, Paper No. 108036, 94. arXiv: 1906.10241 DOI: 10.1016/j.aim.2021.108036 MR: 4319768
  1094. Sh:1168
    Horowitz, H., & Shelah, S. (2023). On the non-existence of \kappa-mad families. Arch. Math. Logic, 62(7-8), 1033–1039. arXiv: 1906.09538 DOI: 10.1007/s00153-023-00874-6 MR: 4643484
  1095. Sh:1169
    Corson, S. M., & Shelah, S. (2020). Strongly bounded groups of various cardinalities. Proc. Amer. Math. Soc., 148(12), 5045–5057. arXiv: 1906.10481 DOI: 10.1090/proc/14998 MR: 4163821
  1096. Sh:1171
    Dugas, M. H., Herden, D., & Shelah, S. (2020). \aleph_k-free cogenerators. Rend. Semin. Mat. Univ. Padova, 144, 87–104. arXiv: 1909.00595 DOI: 10.4171/rsmup/58 MR: 4186448
  1097. Sh:1172
    Kaplan, I., Segel, O., & Shelah, S. (2022). Boolean types in dependent theories. J. Symb. Log., 87(4), 1349–1373. arXiv: 2008.03214 DOI: 10.1017/jsl.2022.7 MR: 4510824
  1098. Sh:1173
    Hrušák, M., Ramos-Garcı́a, U. A., Shelah, S., & Mill, J. van. (2021). Countably compact groups without non-trivial convergent sequences. Trans. Amer. Math. Soc., 374(2), 1277–1296. arXiv: 2006.12675 DOI: 10.1090/tran/8222 MR: 4196393
  1099. Sh:1175
    Shelah, S. (2023). Canonical universal locally finite groups. Rend. Semin. Mat. Univ. Padova, 149, 25–44. arXiv: 2303.03788 DOI: 10.4171/rsmup/117 MR: 4575363
  1100. Sh:1177
    Goldstern, M., Kellner, J., Mejı́a, D. A., & Shelah, S. (2022). Cichoń’s maximum without large cardinals. J. Eur. Math. Soc. (JEMS), 24(11), 3951–3967. arXiv: 1906.06608 DOI: 10.4171/jems/1178 MR: 4493617
  1101. Sh:1179
    Garti, S., & Shelah, S. (2023). Tiltan and superclub. C. R. Math. Acad. Sci. Paris, 361, 853–861. arXiv: 2305.09490 DOI: 10.5802/crmath.434 MR: 4616154
  1102. Sh:1180
    Hamel, C., Horowitz, H., & Shelah, S. (2020). Turing invariant sets and the perfect set property. MLQ Math. Log. Q., 66(2), 247–250. arXiv: 1912.12558 DOI: 10.1002/malq.202000005 MR: 4130400
  1103. Sh:1181
    Shelah, S. (2020). Density of indecomposable locally finite groups. Rend. Semin. Mat. Univ. Padova, 144, 253–270. DOI: 10.4171/rsmup/68 MR: 4186458
  1104. Sh:1184
    Shelah, S., & Villaveces, A. (2022). Infinitary logics and A.E.C. Proc. Amer. Math. Soc., 150, 371–380. arXiv: 2010.02145 MR: 4335884
  1105. Sh:1186
    Džamonja, M., & Shelah, S. (2021). On wide Aronszajn trees in the presence of MA. J. Symb. Log., 86(1), 210–223. arXiv: 2002.02396 DOI: 10.1017/jsl.2020.42 MR: 4282706
  1106. Sh:1189
    Poór, M., & Shelah, S. (2021). Characterizing the spectra of cardinalities of branches of Kurepa trees. Pacific J. Math., 311(2), 423–453. arXiv: 2003.01272 DOI: 10.2140/pjm.2021.311.423 MR: 4292936
  1107. Sh:1190
    Komjáth, P., & Shelah, S. (2021). Monocolored topological complete graphs in colorings of uncountable complete graphs. Acta Math. Hungar., 163(1), 71–84. DOI: 10.1007/s10474-020-01125-3 MR: 4217959
  1108. Sh:1191
    Mildenberger, H., & Shelah, S. (2021). Higher Miller forcing may collapse cardinals. J. Symb. Log., 86(4), 1721–1744. DOI: 10.1017/jsl.2021.90 MR: 4362933
  1109. Sh:1192
    Kaplan, I., Ramsey, N., & Shelah, S. (2021). Criteria for exact saturation and singular compactness. Ann. Pure Appl. Logic, 172(9), Paper No. 102992, 28. arXiv: 2003.00597 DOI: 10.1016/j.apal.2021.102992 MR: 4264145
  1110. Sh:1193
    Shelah, S., & Soukup, L. (2023). On \kappa-homogeneous, but not \kappa-transitive permutation groups. J. Symb. Log., 88(1), 363–380. arXiv: 2003.02023 DOI: 10.1017/jsl.2021.63 MR: 4550395
  1111. Sh:1194
    Shelah, S., & Väänänen, J. A. (2023). Positive logics. Arch. Math. Logic, 62(1-2), 207–223. arXiv: 2008.01145 DOI: 10.1007/s00153-022-00837-3 MR: 4535931
  1112. Sh:1196
    Halevi, Y., Kaplan, I., & Shelah, S. (2022). Infinite stable graphs with large chromatic number. Trans. Amer. Math. Soc., 375(3), 1767–1799. arXiv: 2007.12139 DOI: 10.1090/tran/8570 MR: 4378079
  1113. Sh:1197
    Kaplan, I., Ramsey, N., & Shelah, S. (2023). Exact saturation in pseudo-elementary classes for simple and stable theories. J. Math. Log., 23(2), Paper No. 2250020, 26. arXiv: 2009.08365 DOI: 10.1142/S0219061322500209 MR: 4575271
  1114. Sh:1198
    Golshani, M., & Shelah, S. (2023). On slow minimal reals I. Proc. Amer. Math. Soc., 151(10), 4527–4536. arXiv: 2010.10812 DOI: 10.1090/proc/16397 MR: 4643336
  1115. Sh:1199
    Goldstern, M., Kellner, J., Mejı́a, D. A., & Shelah, S. (2021). Preservation of splitting families and cardinal characteristics of the continuum. Israel J. Math., 246(1), 73–129. arXiv: 2007.13500 DOI: 10.1007/s11856-021-2237-7 MR: 4358274
  1116. Sh:1201
    Mühlherr, B., Paolini, G., & Shelah, S. (2022). First-order aspects of Coxeter groups. J. Algebra, 595, 297–346. arXiv: 2010.13161 DOI: 10.1016/j.jalgebra.2021.12.033 MR: 4359398
  1117. Sh:1202
    Farah, I., & Shelah, S. (2022). Between reduced powers and ultrapowers, II. Trans. Amer. Math. Soc., 375(12), 9007–9034. arXiv: 2011.07352 DOI: 10.1090/tran/8777 MR: 4504659
  1118. Sh:1203
    Brian, W., Dow, A. S., & Shelah, S. (2022). The independence of GCH and a combinatorial principle related to Banach-Mazur games. Arch. Math. Logic, 61(1-2), 1–17. arXiv: 2011.01273 DOI: 10.1007/s00153-021-00770-x MR: 4380012
  1119. Sh:1207
    Kumar, A., & Shelah, S. (2023). Large Turing independent sets. Proc. Amer. Math. Soc., 151(1), 355–367. DOI: 10.1090/proc/16081 MR: 4504631
  1120. Sh:1209
    Shelah, S., & Strüngmann, L. H. (2021). Infinite Combinatorics in Mathematical Biology. BioSystems, 204, 14. DOI: 10.1016/j.biosystems.2021.104392
  1121. Sh:1211
    Halevi, Y., Kaplan, I., & Shelah, S. (2024). Infinite Stable Graphs With Large Chromatic Number II. J. Eur. Math. Soc. (JEMS), 26(12), 4585–4614. arXiv: 2103.13931 DOI: 10.4171/JEMS/1352
  1122. Sh:1212
    Shelah, S., & Steprāns, J. (2024). Some variations on the splitting number. Annals of Pure and Applied Logic, (175). DOI: 10.1016/j.apal.2023.103321
  1123. Sh:1213
    Juhász, I., Shelah, S., Soukup, L., & Szentmiklóssy, Z. (2023). Large strongly anti-Urysohn spaces exist. Topology Appl., 323, Paper No. 108288, 15. arXiv: 2106.00618 DOI: 10.1016/j.topol.2022.108288 MR: 4518085
  1124. Sh:1215
    Golshani, M., & Shelah, S. (2023). The Keisler-Shelah isomorphism theorem and the continuum hypothesis. Fund. Math., 260(1), 59–66. arXiv: 2108.03977 MR: 4516185
  1125. Sh:1216
    Golshani, M., & Shelah, S. (2023). Usuba’s principle UB_\lambda can fail at singular cardinals. J. Symbolic Logic. arXiv: 2107.09339 DOI: 10.1017/jsl.2023.61
  1126. Sh:1218
    Malliaris, M., & Shelah, S. (2024). Some simple theories from a Boolean algebra point of view. APAL, (175). arXiv: 2108.05314 DOI: 10.106/j.apal.2023.103345
  1127. Sh:1219
    Benhamou, T., Garti, S., & Shelah, S. (2023). Kurepa trees and the failure of the Galvin property. Proc. Amer. Math. Soc., 151(3), 1301–1309. arXiv: 2111.11823 DOI: 10.1090/proc/16198 MR: 4531656
  1128. Sh:1220
    Halbeisen, L. J., Plati, R., Schumacher, S., & Shelah, S. (2023). Four cardinals and their relations in ZF. Ann. Pure Appl. Logic, 174(2), Paper No. 103200, 17. arXiv: 2109.11315 DOI: 10.1016/j.apal.2022.103200 MR: 4498208
  1129. Sh:1221
    Malliaris, M., & Shelah, S. (2023). Shearing in some simple rank one theories. Israel J. Math. arXiv: 2109.12642 MR: 4682926
  1130. Sh:1223
    Golshani, M., & Shelah, S. (2023). The Keisler-Shelah isomorphism theorem and the continuum hypothesis II. Monatshefte Fur Mathematik, 201, 789–801. arXiv: 2112.15468 MR: 4595008
  1131. Sh:1225
    Fischer, V., & Shelah, S. (2022). The spectrum of independence, II. Ann. Pure Appl. Logic, 173(9), Paper No. 103161. DOI: 10.1016/j.apal.2022.103161 MR: 4452678
  1132. Sh:1228
    Dow, A. S., & Shelah, S. (2023). S-spaces and large continuum. Topology Appl., 333, Paper No. 108526, 18. arXiv: 2206.11122 DOI: 10.1016/j.topol.2023.108526 MR: 4579945
  1133. Sh:1232
    Asgharzadeh, M., Golshani, M., & Shelah, S. (2023). Co-Hopfian and boundedly endo-rigid mixed abelian groups. PACIFIC JOURNAL OF MATHEMATICS. arXiv: 2210.17210
  1134. Sh:1233
    Corson, S. M., & Shelah, S. (2024). On projections of the tails of a power. Forum Mathematicum, 36(4), 955–971. arXiv: 2211.13749
  1135. Sh:1243
    Halbeisen, L. J., Plati, R., & Shelah, S. (2024). Implications of Ramsey Choice Principles in ZF. MLQ Math. Log. Q., 70, 255–261. arXiv: 2306.00743 DOI: 10.1002/malq.202300024
  1136. Sh:1244
    Baldwin, J. T., Laskowski, M. C., & Shelah, S. (2024). When does \aleph_1-categoricity imply \omega-stability? Model Theory, 3(3). arXiv: 2308.13942 DOI: 10.2140/mt.2024.3.801
  1137. Sh:E3
    Shelah, S. (1996). On some problems in general topology. In Set theory (Boise, ID, 1992–1994), Vol. 192, Amer. Math. Soc., Providence, RI, pp. 91–101. arXiv: 0708.1981 DOI: 10.1090/conm/192/02352 MR: 1367138
  1138. Sh:E9
    Shelah, S. (1996). Remarks on \aleph_1-CWH not CWH first countable spaces. In Set theory (Boise, ID, 1992–1994), Vol. 192, Amer. Math. Soc., Providence, RI, pp. 103–145. arXiv: math/9408202 DOI: 10.1090/conm/192/02353 MR: 1367139
  1139. Sh:E33
    Shelah, S., & Soifer, A. (2003). Axiom of choice and chromatic number of the plane. J. Combin. Theory Ser. A, 103(2), 387–391. DOI: 10.1016/S0097-3165(03)00102-X MR: 1996076
  1140. Sh:E33a
    Shelah, S., & Soifer, A. (2003). Chromatic number of the plane. III. Its future. Geombinatorics, 13(1), 41–46. MR: 1985343
  1141. Sh:E33b
    Shelah, S., & Soifer, A. (2004). How the axiom of choice can affect the chromatic number of distance graphs: three examples on the plane. In Proceedings of the Thirty-Fifth Southeastern International Conference on Combinatorics, Graph Theory and Computing, Vol. 166, pp. 5–9. MR: 2121999
  1142. Sh:E51
    Shelah, S., & Soifer, A. (2004). Axiom of choice and chromatic number: examples on the plane. J. Combin. Theory Ser. A, 105(2), 359–364. DOI: 10.1016/j.jcta.2004.01.001 MR: 2046089
  1143. Sh:E87
    Goldstern, M., Kellner, J., Mejı́a, D. A., & Shelah, S. (2022). Controlling classical cardinal characteristics while collapsing cardinals. Colloq. Math., 170(1), 115–144. arXiv: 1904.02617 DOI: 10.4064/cm8420-2-2022 MR: 4460218

Research articles (co)authored by S. Shelah accepted in peer reviewed journals.

  1. Sh:835
    Shelah, S. PCF without choice. Arch. Math. Logic. To appear. arXiv: math/0510229
  2. Sh:1019
    Shelah, S. Model theory for a compact cardinal. Israel J. Math. To appear. arXiv: 1303.5247
  3. Sh:1108
    Paolini, G., & Shelah, S. The strong small index property for free homogeneous structures. In Research Trends in Contemporary Logic. To appear. arXiv: 1703.10517
  4. Sh:1125
    Golshani, M., & Shelah, S. On C^s_n(\kappa) and the Juhasz-Kunen question. Notre Dame J. Formal Logic. To appear. arXiv: 1709.06249
  5. Sh:1205
    Paolini, G., & Shelah, S. Torsion-free abelian groups are Borel complete. Ann. Of Math. (2) 199 (2024), No. 03, 1177-1224. To appear. arXiv: 2102.12371
  6. Sh:1206
    Malliaris, M., & Shelah, S. New simple theories from hypergraph sequences. Model Theory. To appear. arXiv: 2108.05526
  7. Sh:1210
    Kostana, Z., & Shelah, S. Slicing axiom. Proceedings of the AMS. To appear. arXiv: 2102.11666
  8. Sh:1222
    Malliaris, M., & Shelah, S. The Turing degrees and Keisler’s order. J. Symbolic Logic. To appear. DOI: 10.1017/jsl.2022.63
  9. Sh:1224
    Kellner, J., Latif, A., & Shelah, S. On automorphisms of \mathcal P(\lambda)/[\lambda]^{<\lambda}. J. Symbolic Logic. To appear. arXiv: 2206.02228

Preprints (co)authored by S. Shelah (intended for publication).

  1. Sh:259
    Grossberg, R. P., & Shelah, S. On Hanf numbers of the infinitary order property. Preprint. arXiv: math/9809196
  2. Sh:311
    Shelah, S. A more general iterable condition ensuring \aleph_1 is not collapsed. Preprint. arXiv: math/0404221
  3. Sh:322a
    Shelah, S., & Usvyatsov, A. Classification over a predicate — the general case I. Preprint. arXiv: 1910.10811
  4. Sh:322b
    Shelah, S., & Usvyatsov, A. Classification over a predicate — the general case II. Preprint.
  5. Sh:421
    Asgharzadeh, M., Golshani, M., & Shelah, S. Kaplansky test problems for R-modules in ZFC. Preprint. arXiv: 2106.13068
  6. Sh:423
    Shelah, S. Compactness spectrum. Preprint.
  7. Sh:538
    Shelah, S. Historic iteration with \aleph_\varepsilon-support. Preprint. arXiv: math/9607227
  8. Sh:550
    Larson, P. B., & Shelah, S. 0-1 laws. Preprint.
  9. Sh:555
    Scheepers, M., & Shelah, S. Embeddings of partial orders into \omega^\omega. Preprint.
  10. Sh:581
    Shelah, S. When 0–1 law hold for G_{n,\bar{p}}, \bar{p} monotonic. Preprint.
  11. Sh:637
    Shelah, S. 0.1 Laws: Putting together two contexts randomly. Preprint.
  12. Sh:656
    Golshani, M., & Shelah, S. NNR Revisited. Preprint. arXiv: math/0003115
  13. Sh:670
    Rosłanowski, A., & Shelah, S. Norms on possibilities III: strange subsets of the real line. Preprint.
  14. Sh:707
    Cardona, M., & Shelah, S. Long iterations for the continuum. Preprint. arXiv: math/0112238
  15. Sh:798
    Shelah, S., & Väänänen, J. A. The \Delta–closure of L(Q_1) is not finitely generated, assuming CH. Preprint.
  16. Sh:800
    Shelah, S. On complicated models and compact quantifiers. Preprint.
  17. Sh:810
    Shelah, S. The height of the automorphism tower of a group. Preprint. arXiv: math/0405116
  18. Sh:839
    Shelah, S. AEC: weight and p-simplicity. Preprint. arXiv: 2305.01970
  19. Sh:842
    Shelah, S., & Vasey, S. Categoricity and multidimensional diagrams. Preprint. arXiv: 1805.06291
  20. Sh:928
    Shelah, S., & Usvyatsov, A. Unstable Classes of Metric Structures. Preprint. arXiv: 0810.0734
  21. Sh:932
    Shelah, S. Maximal failures of sequence locality in a.e.c. Preprint. arXiv: 0903.3614
  22. Sh:940
    Jarden, A., & Shelah, S. Non forking good frames minus local character. Preprint. arXiv: 1105.3674
  23. Sh:950
    Shelah, S. Dependent dreams: recounting types. Preprint. arXiv: 1202.5795
  24. Sh:966
    Jarden, A., & Shelah, S. Existence of uniqueness triples without stability. Preprint.
  25. Sh:986
    Haber, S., & Shelah, S. Random graphs and Lindström quantifiers for natural graph properties. Preprint. arXiv: 1510.06574
  26. Sh:1010
    Shelah, S., & Usuba, T. \omega_1-Stationary preserving \sigma-Baire posets of size \aleph_1. Preprint.
  27. Sh:1028p
    Shelah, S. clarifications of proofs for the Journal. Preprint.
  28. Sh:1045
    Shelah, S. Quite free Abelian groups with prescribed endomorphism ring. Preprint.
  29. Sh:1046
    Kumar, A., & Shelah, S. RVM, RVC revisited: Clubs and Lusin sets. Preprint.
  30. Sh:1049
    Asgharzadeh, M., Golshani, M., Herden, D., & Shelah, S. On groups well represented as automorphism groups of groups. Preprint. arXiv: 2407.09279
  31. Sh:1065
    Shelah, S., & Ulrich, D. \le_{SP} can have infinitely many classes. Preprint. arXiv: 1804.08523
  32. Sh:1067
    Horowitz, H., & Shelah, S. Saccharinity with ccc. Preprint. arXiv: 1610.02706
  33. Sh:1073
    Larson, P. B., & Shelah, S. On the absoluteness of orbital \omega-stability. Preprint.
  34. Sh:1077
    Shelah, S. Random graph: stronger logic but with the zero one law. Preprint. arXiv: 1511.05383
  35. Sh:1094
    Horowitz, H., & Shelah, S. Solovay’s inaccessible over a weak set theory without choice. Preprint. arXiv: 1609.03078
  36. Sh:1096
    Shelah, S. Strong failure of 0-1 law for LFP and the path logics. Preprint.
  37. Sh:1097
    Golshani, M., Horowitz, H., & Shelah, S. On the classification of definable ccc forcing notions. Preprint. arXiv: 1610.07553
  38. Sh:1098
    Shelah, S. LF groups, aec amalgamation, few automorphisms. Preprint. arXiv: 1901.09747
  39. Sh:1100
    Shelah, S. Creature iteration for inaccessibles. Preprint.
  40. Sh:1103
    Horowitz, H., & Shelah, S. Mad families and non-meager filters. Preprint. arXiv: 1701.02806
  41. Sh:1113
    Horowitz, H., Karagila, A., & Shelah, S. Madness and regularity properties. Preprint. arXiv: 1704.08327
  42. Sh:1126a
    Shelah, S. up to 1 Sept 2021 version of 1126 (simple bold m only. Preprint.
  43. Sh:1128
    Garti, S., & Shelah, S. Length and Depth. Preprint. arXiv: 1804.05304
  44. Sh:1130
    Larson, P. B., & Shelah, S. An Extendable structure with a rigid elementary extension. Preprint. arXiv: 1711.07333
  45. Sh:1147
    Baldwin, J. T., & Shelah, S. Maximal models up to the first measurable in ZFC. Preprint. arXiv: 2111.01709
  46. Sh:1170
    Rosłanowski, A., & Shelah, S. Borel sets without perfectly many overlapping translations II. In. Preprint. arXiv: 1909.00937
  47. Sh:1174
    Shelah, S. More forcing for no ultrafilters. Preprint.
  48. Sh:1176
    Shelah, S. Partition theorems for expanded trees. Preprint. arXiv: 2108.13955
  49. Sh:1178
    Larson, P. B., & Shelah, S. Universally measurable sets may all be \boldsymbol{\Delta}^{1}_{2}. Preprint. arXiv: 2005.10399
  50. Sh:1182
    Golshani, M., & Shelah, S. Iterated Ramsey bounds for the Hales-Jewett numbers; withdrawn. Preprint. arXiv: 1912.08643
  51. Sh:1183
    Baldwin, J. T., Laskowski, M. C., & Shelah, S. An analog of U-rank for atomic classes. Preprint.
  52. Sh:1185
    Poór, M., & Shelah, S. Universal graphs between a strong limit singular and its power. Preprint. arXiv: 2201.00741
  53. Sh:1187
    Rosłanowski, A., & Shelah, S. Borel sets without perfectly many overlapping translations, III. Preprint. arXiv: 2009.03471
  54. Sh:1188
    Greenberg, N., Richter, L., Shelah, S., & Turetsky, D. More on bases of uncountable free Abelian groups. Preprint.
  55. Sh:1195
    Barnea, I., & Shelah, S. Inverse Limits of left adjoint functors on pointed sets. Preprint. arXiv: 2006.13705
  56. Sh:1200
    Shelah, S. Existence of universal models. Preprint.
  57. Sh:1204
    Horowitz, H., & Shelah, S. Abstract Corrected iterations. Preprint. arXiv: 2302.08581
  58. Sh:1208
    Kumar, A., & Shelah, S. Weak projections of the null ideal. Preprint.
  59. Sh:1214
    Paolini, G., & Shelah, S. On the existence of uncountable Hopfian and co-Hopfian abelian groups. Preprint. arXiv: 2107.11290
  60. Sh:1217
    Asgharzadeh, M., Golshani, M., & Shelah, S. Graphs represented by Ext. Preprint. arXiv: 2110.11143
  61. Sh:1226
    Poór, M., & Shelah, S. On the weak Borel chromatic number and cardinal invariants of the continuum. Preprint. arXiv: 2302.10141
  62. Sh:1227
    Golshani, M., & Shelah, S. Adding highly undefinable sets over L. Preprint. arXiv: 2311.02322
  63. Sh:1229
    Golshani, M., & Shelah, S. The measuring principle and the continuum hypothesis. Preprint. arXiv: 2207.08048
  64. Sh:1230
    Dobrinen, N., & Shelah, S. The Halpern–Läuchli Theorem at singular cardinals and failures of weak versions. Preprint. arXiv: 2209.11226
  65. Sh:1231
    Mildenberger, H., & Shelah, S. Tiltan (=club) revisited. Preprint.
  66. Sh:1234
    Poór, M., & Shelah, S. Universal graphs at the successors of small singulars. Preprint.
  67. Sh:1235
    Kumar, A., & Shelah, S. Turing independence and Baire category. Preprint.
  68. Sh:1236
    Garti, S., & Shelah, S. Superclub, splitting, separating statements. Preprint. arXiv: 2302.00904
  69. Sh:1237
    Paolini, G., & Shelah, S. Anti-classification results for rigidity conditions in Abelian and nilpotent groups. Preprint. arXiv: 2303.03778
  70. Sh:1238
    Shelah, S. AEC for strictly stable. Preprint. arXiv: 2305.02020
  71. Sh:1239
    Shelah, S. AEC for strictly stable II. Preprint.
  72. Sh:1240
    Rosłanowski, A., & Shelah, S. Borel sets without perfectly many overlapping translations IV. Preprint. arXiv: 2302.12964
  73. Sh:1241
    Shelah, S., & Steprāns, J. Higher Dimensional Universal functions from lower dimensional ones. Preprint.
  74. Sh:1242
    Hrušák, M., Shelah, S., & Zhang, J. More Ramsey theory for highly connected monochromatic subgraphs. Preprint. arXiv: 2305.00882
  75. Sh:1245
    Asgharzadeh, M., Golshani, M., & Shelah, S. Naturality and Definability III. Preprint. arXiv: 2309.02090
  76. Sh:1246
    Asgharzadeh, M., Golshani, M., & Shelah, S. Expressive power of infinitary logic and absolute co-Hopfianity. Preprint. arXiv: 2309.16997
  77. Sh:1247
    Kumar, A., & Shelah, S. Remarks on some cardinal invariants and partition relations. Preprint.
  78. Sh:1248
    Paolini, G., & Shelah, S. TORSION-FREE ABELIAN GROUPS ARE FAITHFULLY BOREL COMPLETE AND PURE EMBEDDABILITY IS A COMPLETE ANALYTIC QUASI-ORDER. Preprint.
  79. Sh:1249
    Garti, S., Hayut, Y., & Shelah, S. On a problem of Erdös and Hajnal. Preprint.
  80. Sh:1250
    Haber, S., Hershko, T., Mirabi, M., & Shelah, S. First order logic with equicardinality in random graphs. Preprint.
  81. Sh:1251
    Kellner, J., & Shelah, S. Nowhere trivial automorphisms of P(\lambda)/[\lambda]^{<\lambda}, for \lambda inaccessible. Preprint.
  82. Sh:1252
    Kostana, Z., Rinot, A., & Shelah, S. Diamond on Kurepa trees. Preprint. arXiv: 2404.02715
  83. Sh:1253
    Garti, S., & Shelah, S. Poésie Aristotélienne. Preprint.
  84. Sh:1254
    Paolini, G., & Shelah, S. On non-Archimedean Polish groups. Preprint.
  85. Sh:1255
    Corson, S. M., & Shelah, S. Artinian groups of large cardinality. Preprint. arXiv: 2408.03201
  86. Sh:1256
    Halevi, Y., Kaplan, I., & Shelah, S. Infinite Cliques in Simple and Stable Graphs. Preprint. arXiv: 2408.05605
  87. Sh:E102
    Kolman, O., & Shelah, S. Categoricity and amalgamation for AEC and \kappa measurable. Preprint. arXiv: math/9602216

Published survey articles, opinion pieces, interviews, etc.

  1. Sh:1151
    Shelah, S. (2021). Divide and conquer: dividing lines and universality. Theoria, 87(2), 259–348. DOI: 10.1111/theo.12289 MR: 4329456
  2. Sh:E16
    Shelah, S. (1993). The future of set theory. In Set theory of the reals (Ramat Gan, 1991), Vol. 6, Bar-Ilan Univ., Ramat Gan, pp. 1–12. arXiv: math/0211397 MR: 1234276
  3. Sh:E23
    Shelah, S. (2003). Logical dreams. Bull. Amer. Math. Soc. (N.S.), 40(2), 203–228. arXiv: math/0211398 DOI: 10.1090/S0273-0979-03-00981-9 MR: 1962296
  4. Sh:E25
    Shelah, S. (2002). You can enter Cantor’s paradise! In Paul Erdős and his mathematics, II (Budapest, 1999), Vol. 11, János Bolyai Math. Soc., Budapest, pp. 555–564. arXiv: math/0102056 MR: 1954743
  5. Sh:E35
    Shelah, S. (2008). A bothersome question. Internat. Math. Nachrichten, 208, 27–30.
  6. Sh:E72
    Shelah, S. (2013). Dependent classes E72. In European Congress of Mathematics, Eur. Math. Soc., Zürich, pp. 137–157. MR: 3469119
  7. Sh:E73
    Shelah, S. (2014). Reflecting on logical dreams. In Interpreting Gödel, Cambridge Univ. Press, Cambridge, pp. 242–255. MR: 3468189
  8. Sh:E74
    Malliaris, M., & Shelah, S. (2013). General topology meets model theory, on \mathfrak p and \mathfrak t. Proc. Natl. Acad. Sci. USA, 110(33), 13300–13305. DOI: 10.1073/pnas.1306114110 MR: 3105597

Abstracts and research articles (co)authored by S. Shelah, published without peer review

  1. Sh:217
    Sageev, G., & Shelah, S. (1986). There are Noetherian domain in every cardinality with free additive groups. Abstracts Amer. Math. Soc., 7, 369. 86T-03-268, 269 arXiv: 0705.4132
  2. Sh:E4
    Shelah, S. (1984). An \aleph _2 Souslin tree from a strange hypothesis. Abstracts Amer. Math. Soc., 160, 198. 84T-03
  3. Sh:E5
    Marcus, L., Redmond, T., & Shelah, S. (1985). Completeness of State Deltas, Aerospace Corporation. Tech. Rep. ATR-85(8354)-5
  4. Sh:E17
    Shelah, S. (1971). Two cardinal and power like models: compactness and large group of automorphisms. Notices Amer. Math. Soc., 18(2), 425. 71 T-El5
  5. Sh:E30
    Shelah, S. (1980). Going to Canossa. Abstracts Amer. Math. Soc., 1, 630. 80T-E85

Corrections, clarifications and explanations of other publications.

  1. Sh:25
    Shelah, S. (1973). Errata to: First order theory of permutation groups. Israel Journal of Mathematics, 15, 437–441.
    Correction of [Sh:24]
  2. Sh:154a
    Shelah, S., & Stanley, L. J. (1986). Corrigendum to: “Generalized Martin’s axiom and Souslin’s hypothesis for higher cardinals” [Israel J. Math. 43 (1982), no. 3, 225–236]. Israel J. Math., 53(3), 304–314. DOI: 10.1007/BF02786563 MR: 852482
    corrigendum to [Sh:154]
  3. Sh:240a
    Foreman, M. D., Magidor, M., & Shelah, S. (1989). Correction to: “Martin’s maximum, saturated ideals, and nonregular ultrafilters. I” [Ann. of Math. (2) 127 (1988), no. 1, 1–47]. Ann. Of Math. (2), 129(3), 651. DOI: 10.2307/1971520 MR: 997316
    correction to [Sh:240]
  4. Sh:326a
    Shelah, S. (1992). Erratum to: Vive la différence. I. Nonisomorphism of ultrapowers of countable models. In Set theory of the continuum, Vol. 26, Springer, New York, p. 419. MR: 1233826
    Correction of [Sh:326]
  5. Sh:406a
    Fremlin, D. H., & Shelah, S. Postscript to Shelah & Fremlin [Sh:406]. Preprint.
    strengthens a theorem of [Sh:406]
  6. Sh:446a
    Shelah, S. (2020). Retraction of “Baire property and axiom of choice”. Israel J. Math., 240(1), 443. DOI: 10.1007/s11856-020-2083-z MR: 4193139
    Retraction of [Sh:446]
  7. Sh:465a
    Shelah, S., & Steprāns, J. (1994). Erratum: “Maximal chains in {}^\omega\omega and ultrapowers of the integers” [Arch. Math. Logic 32 (1993), no. 5, 305–319]. Arch. Math. Logic, 33(2), 167–168. arXiv: math/9308202 DOI: 10.1007/BF01352936 MR: 1271434
    erratum to [Sh:465]
  8. Sh:533a
    Blass, A. R., Gurevich, Y., & Shelah, S. (2001). Addendum to: “Choiceless polynomial time” [Ann. Pure Appl. Logic 100 (1999), no. 1-3, 141–187;MR1711992 (2001a:68036)]. Ann. Pure Appl. Logic, 112(1), 117. DOI: 10.1016/S0168-0072(01)00086-0 MR: 1854233
    Correction of [Sh:533]
  9. Sh:559a
    Eklof, P. C., & Shelah, S. New non-free Whitehead groups (corrected version). Preprint. arXiv: math/9711221
    corrected version of [Sh:559]
  10. Sh:700a
    Shelah, S. Are \mathfrak a and \mathfrak d your cup of tea? Revisited. Preprint. arXiv: 2108.03666
    Revised version of [Sh:700]
  11. Sh:927a
    Baldwin, J. T., Kolesnikov, A. S., & Shelah, S. Correction for “The Amalgamation Spectrum”. Preprint.
    Correction of [Sh:927]
  12. Sh:990a
    Shelah, S., & Steprāns, J. Non-trivial automorphisms of \mathcal P(\mathbb N)/[\mathbb N]^{<\aleph_0} from variants of small dominating number (corrected). Preprint.
    Corrected version of [Sh:990]
  13. Sh:E11
    Shelah, S. Also quite large {\frak b}\subseteq {\textrm{pcf}}({\frak a}) behave nicely. Preprint. arXiv: math/9906018
    Correction of [Sh:371]
  14. Sh:E12
    Shelah, S. Analytical Guide and Updates to [Sh:g]. Preprint. arXiv: math/9906022
    Correction of [Sh:g]
  15. Sh:E19a
    Džamonja, M., & Shelah, S. (2000). Erratum: “\clubsuit does not imply the existence of a Suslin tree” [Israel J. Math. 113 (1999), 163–204]. Israel J. Math., 119, 379. MR: 1802661
    Retraction of [Sh:E19]
  16. Sh:E22
    Göbel, R., & Shelah, S. (2001). An addendum and corrigendum to: “Almost free splitters” [Colloq. Math. vol. 81 no. 2, 193–221; MR1715347 (2000m:20092)]. Colloq. Math., 88(1), 155–158. arXiv: math/0009063 DOI: 10.4064/cm88-1-11 MR: 1814921
    corrects an error in [Sh:682]
  17. Sh:E28
    Shelah, S. Details on [Sh:74]. Preprint.
    Details on [Sh:74]
  18. Sh:E54
    Shelah, S. Comments to Universal Classes. Preprint.
    Comments on [Sh:h]

Papers that contain serious errors and have therefore been withdrawn.

  1. Sh:446
    Judah, H. I., & Shelah, S. (1993). Retracted: Baire property and axiom of choice. Israel J. Math., 84(3), 435–450. arXiv: math/9211213 DOI: 10.1007/BF02760952 MR: 1244679
    See [Sh:446a]
  2. Sh:E19
    Džamonja, M., & Shelah, S. (1999). Retracted: \clubsuit does not imply the existence of a Suslin tree. Israel J. Math., 113, 163–204. arXiv: math/9612226 DOI: 10.1007/BF02780176 MR: 1729446
    See [Sh:E19a]
  3. Sh:E91
    Ben-David, S., & Shelah, S. (1996). Retracted: The two-cardinals transfer property and resurrection of supercompactness. Proc. Amer. Math. Soc., 124(9), 2827–2837. NB: There is a flaw in the proof of the main theorem DOI: 10.1090/S0002-9939-96-03327-8 MR: 1326996

Remarks, lecture notes, etc., not intended for publication.

  1. Sh:360a
    Shelah, S. The primal framework. Part C: Premature Minimality. Preprint.
    additions to [Sh:360]
  2. Sh:532
    Shelah, S. Borel rectangles. Preprint.
  3. Sh:804
    Matet, P., & Shelah, S. Positive partition relations for P_\kappa(\lambda). Preprint. arXiv: math/0407440
  4. Sh:969a
    Goldstern, M., Kellner, J., Shelah, S., & Wohofsky, W. An overview of the proof in Borel Conjecture and Dual Borel Conjecture. Preprint. arXiv: 1112.4424
    Explanation to [Sh:969]
  5. Sh:1018
    Shelah, S. Compactness of chromatic number II. Preprint. arXiv: 1302.3431
  6. Sh:E6
    Bartoszyński, T., & Shelah, S. Borel conjecture and 2^{\aleph_0}>\aleph_2. included in Bartoszynski Judah “Set theory. On the structure of the real line” (1995) in 8.3.B Preprint.
  7. Sh:E13
    Goldstern, M., & Shelah, S. A cardinal invariant related to homogeneous families. Preprint. arXiv: math/9707201
  8. Sh:E20
    Shelah, S. A continuation of [Sh:691]. Preprint. arXiv: math/9912165
    [Sh:691]
  9. Sh:E29
    Shelah, S. 3 lectures on pcf. Preprint.
  10. Sh:E34
    Shelah, S. On model completion of T_{\mathrm{aut}}. Preprint. arXiv: math/0404180
  11. Sh:E36
    Shelah, S. Good Frames. Preprint.
  12. Sh:E39
    Kanovei, V., Reeken, M., & Shelah, S. Fully saturated extensions of standard universe. Preprint.
  13. Sh:E40
    Shelah, S. A collection of abstracts of Shelah’s Papers. Preprint. arXiv: 2209.01617
  14. Sh:E43
    Shelah, S. Revised GCH. Preprint.
  15. Sh:E47
    Shelah, S., & Väänänen, J. A. On the Method of Identities. Preprint.
  16. Sh:E50
    Firstenberg, E., & Shelah, S. Perpendicular Indiscernible Sequences in Real Closed Fields. Preprint. arXiv: 1208.1302
  17. Sh:E52
    Shelah, S. Consistency of “the ideal of null restricted to some A is \kappa–complete not \kappa^+–complete, \kappa weakly inaccessible and {\mathrm{cov}}({\mathrm{meagre}})=\aleph_1. Preprint. arXiv: math/0504201
  18. Sh:E56
    Shelah, S. Density is at most the spread of the square. Preprint. arXiv: 0708.1984
  19. Sh:E64
    Gruenhut, E., & Shelah, S. Abstract matrix-tree. Preprint.
  20. Sh:E65
    Cohen, M., & Shelah, S. Ranks for strongly dependent theories. Preprint. arXiv: 1303.3441
  21. Sh:E66
    Shelah, S. Selected Papers of Abraham Robinson. Preprint.
  22. Sh:E67
    Shelah, S. Forcing is Great. Preprint.
  23. Sh:E68
    Shelah, S. Inner product space with no ortho-normal basis without choice. Preprint. arXiv: 1009.1441
  24. Sh:E69
    Shelah, S. PCF: The Advanced PCF Theorems. Preprint. arXiv: 1512.07063
  25. Sh:E70
    Shelah, S. (2012). On Model Theory (from: Plenary speakers answer two questions). Wiad. Mat., 48(2), 59–65. arXiv: 1208.1301 https://wydawnictwa.ptm.org.pl/index.php/wiadomosci-matematyczne/article/view/321/326
  26. Sh:E71
    Shelah, S. ECM presentation: Classifying classes of structures in model theory. Preprint.
  27. Sh:E75
    Shelah, S. Categoricity of Classes of Models. Preprint.
  28. Sh:E76
    Shelah, S. On reaping number having countable cofinality. Preprint. arXiv: 1401.4649
  29. Sh:E78
    Shelah, S. From spring 1979 collection of preprints. Preprint.
  30. Sh:E79
    Shelah, S. There may exist a unique Ramsey ultrafilter. Preprint.
  31. Sh:E80
    Shelah, S. Countably closed in ccc extension. Preprint. http://mathoverflow.net/questions/193522/#199287
  32. Sh:E81
    Shelah, S. Bigness properties for \kappa-trees and linear order. Preprint.
  33. Sh:E82
    Shelah, S. Bounding forcing with chain conditions for uncountable cardinals. Preprint.
  34. Sh:E83
    Dow, A. S., & Shelah, S. (2023). On the bounding, splitting, and distributivity number. Comment. Math. Univ. Carolin., 64(3), 331–351. arXiv: 2202.00372
  35. Sh:E88
    Shelah, S. (2021). Applying set theory. Axioms. DOI: 10.3390/axioms10040329
  36. Sh:E89
    Larson, P. B., & Shelah, S. The number of models of a fixed Scott rank, for a counterexample to the analytic Vaught conjecture. Preprint. arXiv: 1903.09753
  37. Sh:E90
    Shelah, S. (2020). Struggling with the Size of Infinity — The Paul Bernays lectures 2020, ETH Zürich. supplementary material for the talks, which can be found at https://video.ethz.ch/speakers/bernays/2020.html
  38. Sh:E93
    Shelah, S. (1988). Classifying general classes, 1 videocassette (NTSC; 1/2 inch; VHS) (60 min.); sd., col; American Mathematical Society, Providence, RI. A plenary address presented at the International Congress of Mathematicians held in Berkeley, California, August 1986, Introduced by Ronald L. Graham MR: 1055086
  39. Sh:E94
    Shelah, S. Power set modulo small, the singular of uncountable cofinality. Preprint.
  40. Sh:E98
    Malliaris, M., & Shelah, S. (2021). Notes on the stable regularity lemma. Bull. Symb. Log., 27(4), 415–425. arXiv: 2012.09794 DOI: 10.1017/bsl.2021.69 MR: 4386783
  41. Sh:E99
    Shelah, S. (1973). On the monadic (second order) theory of order. Notices A.M.S., 19, A–22.
  42. Sh:E100
    Shelah, S. (1973). On the monadic theory of order II. Notices A.M.S., 19, A–282.
  43. Sh:E101
    Shelah, S. Colouring sucessor of regular, more on [1163]. Preprint.
  44. Sh:E103
    Shelah, S. Theories with minimal universality spectrum. Preprint.
  45. Sh:E104
    Shelah, S. Non P-point preserved by many. Preprint.
  46. Sh:E105
    Sageev, G., & Shelah, S. There are Noetherian domains in every cardinality with free additive groups. Preprint.
  47. Sh:E106
    Shelah, S. Lecture on: Categoricity of atomic classes in small cardinals in ZFC. Preprint.
    [Sh:F2195]
  48. Sh:E107
    Shelah, S. Some results in set theory. Preprint.
  49. Sh:E108
    Shelah, S. Stable frames and weights. Preprint. arXiv: 2304.04467
  50. Sh:E109
    Sageev, G., & Shelah, S. (1986). There are Noether Noetherian. domain in every cardinality with free additive groups. Abstracts Amer. Math. Soc., 7, 369. 86T-03-268, 269. Preprint.
  51. Sh:E110
    Shelah, S. Notes on ESTS lecture Logical dreams 2023. Preprint.
  52. Sh:E111
    Shelah, S. Strong Covering Lemma and Ch in \mathbf{V} [r]. Preprint.
  53. Sh:E112
    Shelah, S. countable union of scattered linear orders. Preprint.

Appendices (with new mathematics), and forewords.

  1. Sh:395
    Shelah, S. (1990). Appendix to: Small uncountable cardinals and topology by Jerry E. Vaughan, North-Holland, Amsterdam, pp. 217–218. MR: 1078647
  2. Sh:E21
    Shelah, S. (2002). On a Question of Grinblat (Appendix to: Algebras of sets and combinatorics, by L. Grinblat), American Mathematical Society, Providence, RI, pp. 247–250. arXiv: math/9912163 MR: 1923171
  3. Sh:E84
    Shelah, S. (2017). Foreword to: Beyond first order model theory. (J. Iovino, Ed.), CRC Press, Boca Raton, FL, pp. xi–xii. MR: 3726900
  4. Sh:E92
    Shelah, S. (1998). Foreword to: The incompleteness phenomenon by Martin Goldstern and Haim Judah, A K Peters, Ltd., Natick, MA, p. viii. MR: 1690312

Preprints that are now (sometimes in changed form) part of a book (or another article).

  1. Sh:88a
    Shelah, S. (1985). Appendix. In Classification of nonelementary classes. II. Abstract elementary classes., pp. 483–495.
    appendix of [Sh:88]
  2. Sh:88r
    Shelah, S. (2009). Abstract elementary classes near \aleph_1. In Classification theory for abstract elementary classes, Vol. 18, College Publications, London, p. vi+813. arXiv: 0705.4137
    Ch. I of [Sh:h]
  3. Sh:171
    Shelah, S. (1986). Classifying generalized quantifiers. In Around classification theory of models, Vol. 1182, Springer, Berlin, pp. 1–46. DOI: 10.1007/BFb0098504 MR: 850052
    Part of [Sh:d]
  4. Sh:197
    Shelah, S. (1986). Monadic logic: Hanf numbers. In Around classification theory of models, Vol. 1182, Springer, Berlin, pp. 203–223. DOI: 10.1007/BFb0098511 MR: 850059
    Part of [Sh:d]
  5. Sh:212
    Shelah, S. (1986). The existence of coding sets. In Around classification theory of models, Vol. 1182, Springer, Berlin, pp. 188–202. DOI: 10.1007/BFb0098510 MR: 850058
    Part of [Sh:d]
  6. Sh:228
    Shelah, S. (1986). On the \mathrm{no}(M) for M of singular power. In Around classification theory of models, Vol. 1182, Springer, Berlin, pp. 120–134. DOI: 10.1007/BFb0098507 MR: 850055
    Part of [Sh:d]
  7. Sh:229
    Shelah, S. (1986). Existence of endo-rigid Boolean algebras. In Around classification theory of models, Vol. 1182, Springer, Berlin, pp. 91–119. arXiv: math/9201238 DOI: 10.1007/BFb0098506 MR: 850054
    Part of [Sh:d]
  8. Sh:232
    Shelah, S. (1986). Nonstandard uniserial module over a uniserial domain exists. In Around classification theory of models, Vol. 1182, Springer, Berlin, pp. 135–150. DOI: 10.1007/BFb0098508 MR: 850056
    Part of [Sh:d]
  9. Sh:233
    Shelah, S. (1986). Remarks on the numbers of ideals of Boolean algebra and open sets of a topology. In Around classification theory of models, Vol. 1182, Springer, Berlin, pp. 151–187. DOI: 10.1007/BFb0098509 MR: 850057
    Part of [Sh:d]
  10. Sh:234
    Shelah, S. (1986). Classification over a predicate. II. In Around classification theory of models, Vol. 1182, Springer, Berlin, pp. 47–90. DOI: 10.1007/BFb0098505 MR: 850053
    Part of [Sh:d]
  11. Sh:237a
    Shelah, S. (1986). On normal ideals and Boolean algebras. In Around classification theory of models, Vol. 1182, Springer, Berlin, pp. 247–259. DOI: 10.1007/BFb0098513 MR: 850061
    Part of [Sh:d]
  12. Sh:237b
    Shelah, S. (1986). A note on \kappa-freeness of abelian groups. In Around classification theory of models, Vol. 1182, Springer, Berlin, pp. 260–268. DOI: 10.1007/BFb0098514 MR: 850062
    Part of [Sh:d]
  13. Sh:237c
    Shelah, S. (1986). On countable theories with models—homogeneous models only. In Around classification theory of models, Vol. 1182, Springer, Berlin, pp. 269–271. DOI: 10.1007/BFb0098515 MR: 850063
    Part of [Sh:d]
  14. Sh:237d
    Shelah, S. (1986). On decomposable sentences for finite models. In Around classification theory of models, Vol. 1182, Springer, Berlin, pp. 272–275. DOI: 10.1007/BFb0098516 MR: 850064
    Part of [Sh:d]
  15. Sh:237e
    Shelah, S. (1986). Remarks on squares. In Around classification theory of models, Vol. 1182, Springer, Berlin, pp. 276–279. DOI: 10.1007/BFb0098517 MR: 850065
    Part of [Sh:d]
  16. Sh:247
    Shelah, S. (1986). More on stationary coding. In Around classification theory of models, Vol. 1182, Springer, Berlin, pp. 224–246. DOI: 10.1007/BFb0098512 MR: 850060
    Part of [Sh:d]
  17. Sh:282a
    Shelah, S. (1994). Colorings. In D. M. Gabbay, A. Macintyre, & D. Scott, eds., Cardinal Arithmetic, Vol. 29, Oxford University Press.
    Apdx. 1 of [Sh:g]
  18. Sh:300a
    Shelah, S. (2009). Universal Classes: Stability theory for a model. In Classification Theory for Abstract Elementary Classes II.
    Ch. V of [Sh:i]
  19. Sh:300b
    Shelah, S. (2009). Universal Classes: Axiomatic Framework [Sh:h]. In Classification Theory for Abstract Elementary Classes II.
    Ch. V (B) of [Sh:i]
  20. Sh:300c
    Shelah, S. (2009). Universal Classes: A frame is not smooth or not \chi-based. In Classification Theory for Abstract Elementary Classes II.
    Ch. V (C) of [Sh:i]
  21. Sh:300d
    Shelah, S. (2009). Universal Classes: Non-Forking and Prime Modes. In Classification Theory for Abstract Elementary Classes II.
    Ch. V (D) of [Sh:i]
  22. Sh:300e
    Shelah, S. (2009). Universal Classes: Types of finite sequences. In Classification Theory for Abstract Elementary Classes II.
    Ch. V (E) of [Sh:i]
  23. Sh:300f
    Shelah, S. (2009). Universal Classes: The heart of the matter. In Classification Theory for Abstract Elementary Classes II.
    Ch. V (F) of [Sh:i]
  24. Sh:300g
    Shelah, S. (2009). Universal Classes: Changing the framework. In Classification Theory for Abstract Elementary Classes II.
    Ch. V (G) of [Sh:i]
  25. Sh:300x
    Shelah, S. (2009). Bibliography. In Classification Theory for Abstract Elementary Classes.
    Bibliography for [Sh:h]
  26. Sh:300z
    Shelah, S. (2009). Annotated Contents. In Classification Theory for Abstract Elementary Classes [Sh:h].
    Annotated Contents for [Sh:i]
  27. Sh:309
    Shelah, S. (2022). Black boxes. Ann. Univ. Sci. Budapest. Eötvös Sect. Math., 65, 69–130. arXiv: 0812.0656 MR: 4636538
    Ch. IV of The Non-Structure Theory" book [Sh:e]
  28. Sh:331
    Shelah, S. A complicated family of members of trees with \omega +1 levels. Preprint. arXiv: 1404.2414
    Ch. VI of The Non-Structure Theory" book [Sh:e]
  29. Sh:333
    Shelah, S. (1994). Bounds on Power of singulars: Induction. In Cardinal Arithmetic, Vol. 29, Oxford University Press.
    Ch. VI of [Sh:g]
  30. Sh:345a
    Shelah, S. (1994). Basic: Cofinalities of small reduced products. In Cardinal Arithmetic, Vol. 29, Oxford University Press.
    Ch. I of [Sh:g]
  31. Sh:345b
    Shelah, S. (1994). Entangled Orders and Narrow Boolean Algebras. In Cardinal Arithmetic, Vol. 29, Oxford University Press.
    Apdx. 2 of [Sh:g]
  32. Sh:355
    Shelah, S. (1994). \aleph _{\omega +1} has a Jonsson Algebra. In Cardinal Arithmetic, Vol. 29, Oxford University Press.
    Ch. II of [Sh:g]
  33. Sh:363
    Shelah, S. On spectrum of \kappa-resplendent models. Preprint. arXiv: 1105.3774
    Ch. V of [Sh:e]
  34. Sh:365
    Shelah, S. (1994). There are Jonsson algebras in many inaccessible cardinals. In Cardinal Arithmetic, Vol. 29, Oxford University Press.
    Ch. III of [Sh:g]
  35. Sh:371
    Shelah, S. (1994). Advanced: cofinalities of small reduced products. In Cardinal Arithmetic, Vol. 29, Oxford University Press.
    Ch. VIII of [Sh:g]
    See [Sh:E11]
  36. Sh:380
    Shelah, S. (1994). Jonsson Algebras in an inaccessible \lambda not \lambda-Mahlo. In Cardinal Arithmetic, Vol. 29, Oxford University Press.
    Ch. IV of [Sh:g]
  37. Sh:384
    Shelah, S. Compact logics in ZFC: Constructing complete embeddings of atomless Boolean rings. Preprint.
    Ch. X of “The Non-Structure Theory" book [Sh:e]
  38. Sh:386
    Shelah, S. (1994). Bounding pp(\mu ) when cf(\mu ) > \mu > \aleph _0 using ranks and normal ideals. In Cardinal Arithmetic, Vol. 29, Oxford University Press.
    Ch. V of [Sh:g]
  39. Sh:400
    Shelah, S. (1994). Cardinal Arithmetic. In Cardinal Arithmetic, Vol. 29, Oxford University Press.
    Ch. IX of [Sh:g]
  40. Sh:482
    Shelah, S. Compactness of the Quantifier on “Complete embedding of BA’s”. Preprint. arXiv: 1601.03596
    Ch. XI of "The Non-Structure Theory" book [Sh:e]
  41. Sh:511
    Shelah, S. Building complicated index models and Boolean algebras. Preprint. arXiv: 2401.15644
    Ch. VII of [Sh:e]
  42. Sh:600
    Shelah, S. (2009). Categoricity in abstract elementary classes: going up inductively. In Classification Theory for Abstract Elementary Classes. arXiv: math/0011215
    Ch. II of [Sh:h]
  43. Sh:705
    Shelah, S. (2009). Toward classification theory of good \lambda frames and abstract elementary classes. In Classification Theory for Abstract Elementary Classes. arXiv: math/0404272
    Ch. III of [Sh:h]
  44. Sh:734
    Shelah, S. (2009). Categoricity and solvability of A.E.C., quite highly. In Classification Theory for Abstract Elementary Classes. arXiv: 0808.3023
    Ch. IV of [Sh:h]
  45. Sh:838
    Shelah, S. (2009). Non-structure in \lambda^{++} using instances of WGCH. In Classification theory for abstract elementary classes II. arXiv: 0808.3020
    Ch. VII of [Sh:i]
  46. Sh:E8
    Shelah, S. A note on \kappa-freeness. Now in [Sh:d] pp. 260–268 Preprint. arXiv: math/0404207
    Part of [Sh:d]
  47. Sh:E46
    Shelah, S. (2009). Categoricity of an abstract elementary class in two successive cardinals, revisited. In Classification Theory for Abstract Elementary Classes II.
    Ch. 6 of [Sh:i]
  48. Sh:E53
    Shelah, S. Introduction and Annotated Contents. Preprint. arXiv: 0903.3428
    introduction of [Sh:h]
  49. Sh:E58
    Shelah, S. Existence of endo-rigid Boolean Algebras. Preprint. arXiv: 1105.3777
    Ch. I of [Sh:e]
  50. Sh:E59
    Shelah, S. General non-structure theory and constructing from linear orders; to appear in Beyond first order model theory II. Preprint. arXiv: 1011.3576
    Ch. III of The Non-Structure Theory" book [Sh:e]
  51. Sh:E60
    Shelah, S. Constructions with instances of GCH: applying. Preprint.
    Ch. VIII of [Sh:e]
  52. Sh:E61
    Shelah, S. Constructions with instances of GCH: proving. Preprint.
    part of Ch. IX of [Sh:e]
  53. Sh:E62
    Shelah, S. Combinatorial background for Non-structure. Preprint. arXiv: 1512.04767
    Appendix of [Sh:e]
  54. Sh:E63
    Shelah, S. Quite Complete Real Closed Fields revisited. Preprint.
    part of Ch. 9 of [Sh:e]
  55. Sh:E95a
    Horowitz, H., & Shelah, S. Can you take Toernquist’s inaccessible away? Preprint. arXiv: 1605.02419
    Has been incorporated (as one of two parts) into [Sh:1090]
  56. Sh:E95b
    Horowitz, H., & Shelah, S. Maximal independent sets in Borel graphs and large cardinals. Preprint. arXiv: 1606.04765
    Has been incorporated (as one of two parts) into [Sh:1090]

Published papers that are preliminary versions or a reprint of a journal publication

  1. Sh:54a
    Shelah, S. (1978). The lazy model theorist’s guide to stability. In Six days of model theory, ed. P. Henrard, Paul Castella, Switzerland 1661 Albeuve, pp. 9–76.
    Reprint of [Sh:54]
  2. Sh:244
    Gurevich, Y., & Shelah, S. (1985). Fixed-point extensions of first-order logic. In 26th Annual Symposium on Foundations of Computer Science (sfcs 1985), IEEE Computer Science Society Press, pp. 346–353. DOI: 10.1109/SFCF.1985.27
    Conference proceedings version of [Sh:244a]
  3. Sh:E85
    Fuchino, S., & Shelah, S. (2001). Models of real-valued measurability. Sūrikaisekikenkyūsho Kōkyūroku, (1202), 38–60. Axiomatic set theory (Japanese) (Kyoto, 2000) MR: 1855549
    Preliminary version of [Sh:763]
  4. Sh:E86
    Shelah, S., & Shioya, M. (2001). Nonreflecting stationary sets in \mathcal{P}_\kappa\lambda. Sūrikaisekikenkyūsho Kōkyūroku, (1202), 61–65. Axiomatic set theory (Japanese) (Kyoto, 2000) MR: 1855550
    Preliminary version of [Sh:764]