# Sh:713

- Matet, P., Péan, C., & Shelah, S. (2016).
*Cofinality of normal ideals on [\lambda]^{<\kappa} I*. Arch. Math. Logic,**55**(5-6), 799–834. arXiv: math/0404318 DOI: 10.1007/s00153-016-0496-5 MR: 3523657 -
Abstract:

Given an ordinal \delta\leq\lambda and a cardinal \theta\leq\kappa, an ideal J on P_{\kappa}(\lambda) is said to be \lbrack\delta\rbrack^{<\theta}-normal if given B_e\in J for e\in P_\theta(\delta), the set of all a\in P_{\kappa}(\lambda) such that a\in B_e for some e\in P_{|a\cap\theta|}(a\cap\delta) lies in J. We give necessary and sufficient conditions for the existence of such ideals and we describe the least one and we compute its cofinality. - Version 2016-06-19_11 (41p) published version (36p)

Bib entry

@article{Sh:713, author = {Matet, Pierre and P{\'e}an, C{\'e}dric and Shelah, Saharon}, title = {{Cofinality of normal ideals on $[\lambda]^{<\kappa}$ I}}, journal = {Arch. Math. Logic}, fjournal = {Archive for Mathematical Logic}, volume = {55}, number = {5-6}, year = {2016}, pages = {799--834}, issn = {0933-5846}, mrnumber = {3523657}, mrclass = {03E05 (03E35 03E55)}, doi = {10.1007/s00153-016-0496-5}, note = {\href{https://arxiv.org/abs/math/0404318}{arXiv: math/0404318}}, arxiv_number = {math/0404318} }