# Sh:736

- Rosłanowski, A., & Shelah, S. (2006).
*Measured creatures*. Israel J. Math.,**151**, 61–110. arXiv: math/0010070 DOI: 10.1007/BF02777356 MR: 2214118 -
Abstract:

Using forcing with measured creatures we build a universe of set theory in which (a) every sup-measurable function f:{\mathbb R}^2\longrightarrow{\mathbb R} is measurable, and (b) every function f:{\mathbb R}\longrightarrow{\mathbb R} is continuous on a non-measurable set. This answers von Weizsäcker’s problem (see Fremlin’s list of problems) and a question of Balcerzak, Ciesielski and Kharazishvili. - published version (50p)

Bib entry

@article{Sh:736, author = {Ros{\l}anowski, Andrzej and Shelah, Saharon}, title = {{Measured creatures}}, journal = {Israel J. Math.}, fjournal = {Israel Journal of Mathematics}, volume = {151}, year = {2006}, pages = {61--110}, issn = {0021-2172}, doi = {10.1007/BF02777356}, mrclass = {03E35 (03E05 03E40 28E15 34A12)}, mrnumber = {2214118}, mrreviewer = {J\"org D. Brendle}, doi = {10.1007/BF02777356}, note = {\href{https://arxiv.org/abs/math/0010070}{arXiv: math/0010070}}, arxiv_number = {math/0010070} }