# Sh:546

- Shelah, S. (2000).
*Was Sierpiński right? IV*. J. Symbolic Logic,**65**(3), 1031–1054. arXiv: math/9712282 DOI: 10.2307/2586687 MR: 1791363 -
Abstract:

We prove for any \mu=\mu^{<\mu}<\theta<\lambda,\lambda large enough (just strongly inaccessible Mahlo) the consistency of 2^\mu=\lambda\rightarrow [\theta]^2_3 and even 2^\mu=\lambda\rightarrow [\theta]^2_{\sigma,2} for \sigma<\mu. The new point is that possibly \theta>\mu^+. - published version (25p)

Bib entry

@article{Sh:546, author = {Shelah, Saharon}, title = {{Was Sierpi\'nski right? IV}}, journal = {J. Symbolic Logic}, fjournal = {The Journal of Symbolic Logic}, volume = {65}, number = {3}, year = {2000}, pages = {1031--1054}, issn = {0022-4812}, doi = {10.2307/2586687}, mrclass = {03E02 (03E35)}, mrnumber = {1791363}, mrreviewer = {J. M. Henle}, doi = {10.2307/2586687}, note = {\href{https://arxiv.org/abs/math/9712282}{arXiv: math/9712282}}, arxiv_number = {math/9712282} }