# Sh:606

- Shelah, S. (1999).
*On T_3-topological space omitting many cardinals*. Period. Math. Hungar.,**38**(1-2), 87–98. arXiv: math/9811177 DOI: 10.1023/A:1004707417470 MR: 1721480 -
Abstract:

We prove that for every (infinite cardinal) \lambda there is a T_3-space X with clopen basis, 2^\mu points where \mu = 2^\lambda, such that every closed subspace of cardinality <|X| has cardinality <\lambda. - published version (12p)

Bib entry

@article{Sh:606, author = {Shelah, Saharon}, title = {{On $T_3$-topological space omitting many cardinals}}, journal = {Period. Math. Hungar.}, fjournal = {Periodica Mathematica Hungarica. Journal of the J\'anos Bolyai Mathematical Society}, volume = {38}, number = {1-2}, year = {1999}, pages = {87--98}, issn = {0031-5303}, doi = {10.1023/A:1004707417470}, mrclass = {54A25 (54D15)}, mrnumber = {1721480}, mrreviewer = {Richard Wilson}, doi = {10.1023/A:1004707417470}, note = {\href{https://arxiv.org/abs/math/9811177}{arXiv: math/9811177}}, arxiv_number = {math/9811177} }