# Sh:791

- Shelah, S., & Zapletal, J. (2002).
*Duality and the PCF theory*. Math. Res. Lett.,**9**(5-6), 585–595. arXiv: math/0212041 DOI: 10.4310/MRL.2002.v9.n5.a2 MR: 1906062 -
Abstract:

We consider natural cardinal invariants {\mathfrak hm}_n and prove several duality theorems, saying roughly: if I is a suitably definable ideal and provably {\rm cov}(I)\geq{\mathfrak hm}_n, then {\rm non}(I) is provably small. The proofs integrate the determinacy theory, forcing and pcf theory. - published version (11p)

Bib entry

@article{Sh:791, author = {Shelah, Saharon and Zapletal, Jind{\v{r}}ich}, title = {{Duality and the PCF theory}}, journal = {Math. Res. Lett.}, fjournal = {Mathematical Research Letters}, volume = {9}, number = {5-6}, year = {2002}, pages = {585--595}, issn = {1073-2780}, mrnumber = {1906062}, mrclass = {03E17 (03E04)}, doi = {10.4310/MRL.2002.v9.n5.a2}, note = {\href{https://arxiv.org/abs/math/0212041}{arXiv: math/0212041}}, arxiv_number = {math/0212041} }