# Sh:945

- Shelah, S. (2020).
*On \mathrm{con}(\mathfrak{d}_\lambda>\mathrm{cov}_\lambda(\mathrm{meagre}))*. Trans. Amer. Math. Soc.,**373**(8), 5351–5369. arXiv: 0904.0817 DOI: 10.1090/tran/7948 MR: 4127879 -
Abstract:

We prove the consistency of: for suitable strongly inaccessible cardinal \lambda the dominating number, i.e. the cofinaty of {}^\lambda \lambda is strictly bigger than cov(meagre_\lambda), i.e. the minimal number of no-where-dense subsets of {}^\lambda 2 needed to cover it. This answers a question of Matet. - Version 2022-08-12_2 (25p) published version (19p)

Bib entry

@article{Sh:945, author = {Shelah, Saharon}, title = {{On $\mathrm{con}(\mathfrak{d}_\lambda>\mathrm{cov}_\lambda(\mathrm{meagre}))$}}, journal = {Trans. Amer. Math. Soc.}, fjournal = {Transactions of the American Mathematical Society}, volume = {373}, number = {8}, year = {2020}, pages = {5351--5369}, issn = {0002-9947}, mrnumber = {4127879}, mrclass = {03E35 (03E17 03E55)}, doi = {10.1090/tran/7948}, note = {\href{https://arxiv.org/abs/0904.0817}{arXiv: 0904.0817}}, arxiv_number = {0904.0817} }