# Sh:314

- Mekler, A. H., Rosłanowski, A., & Shelah, S. (1999).
*On the p-rank of Ext*. Israel J. Math.,**112**, 327–356. arXiv: math/9806165 DOI: 10.1007/BF02773487 MR: 1714978 -
Abstract:

Assume V=L and \lambda is regular smaller than the first weakly compact cardinal. Under those circumstances and with arbitrary requirements on the structure of Ext(G,{\mathbb Z}) (under well known limitations), we construct an abelian group G of cardinality \lambda such that for no G'\subseteq G, |G'|< \lambda is G/G' free and Ext(G,{\mathbb Z}) realizes our requirements. - published version (30p)

Bib entry

@article{Sh:314, author = {Mekler, Alan H. and Ros{\l}anowski, Andrzej and Shelah, Saharon}, title = {{On the $p$-rank of Ext}}, journal = {Israel J. Math.}, fjournal = {Israel Journal of Mathematics}, volume = {112}, year = {1999}, pages = {327--356}, issn = {0021-2172}, doi = {10.1007/BF02773487}, mrclass = {03E45 (18G15 20K40)}, mrnumber = {1714978}, mrreviewer = {Paul C. Eklof}, doi = {10.1007/BF02773487}, note = {\href{https://arxiv.org/abs/math/9806165}{arXiv: math/9806165}}, arxiv_number = {math/9806165} }