# Sh:472

- Shelah, S. (2001).
*Categoricity of theories in L_{\kappa^\ast,\omega}, when \kappa^\ast is a measurable cardinal. II*. Fund. Math.,**170**(1-2), 165–196. arXiv: math/9604241 DOI: 10.4064/fm170-1-10 MR: 1881375 -
Abstract:

We continue the work of [KlSh:362] and prove that for \lambdasuccessor, a \lambda-categorical theory T in L_{\kappa^*,\omega} is \mu-categorical for every \mu, \mu\leq\lambda which is above the (2^{LS(T)})^+-beth cardinal. - published version (32p)

Bib entry

@article{Sh:472, author = {Shelah, Saharon}, title = {{Categoricity of theories in $L_{\kappa^\ast,\omega}$, when $\kappa^\ast$ is a measurable cardinal. II}}, journal = {Fund. Math.}, fjournal = {Fundamenta Mathematicae}, volume = {170}, number = {1-2}, year = {2001}, pages = {165--196}, issn = {0016-2736}, mrnumber = {1881375}, mrclass = {03C45 (03C35)}, doi = {10.4064/fm170-1-10}, note = {\href{https://arxiv.org/abs/math/9604241}{arXiv: math/9604241}}, arxiv_number = {math/9604241}, dedication = {Dedicated to the memory of Jerzy {\L}o\'s} }